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A program logic for higher-order procedural variables
and non-local jumps

T. Crolarda,1, E. Polonowskia,1

aLACL, Université Paris Est, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France

Abstract

Relying on the formulae-as-types paradigm for classical logic, we define a program logic for an imperative
language with higher-order procedural variables and non-local jumps. Then, we show how to derive a sound
program logic for this programming language. As a by-product, we obtain a non-dependent type system
which is more permissive than what is usually found in statically typed imperative languages. As a generic
example, we encode imperative versions of delimited continuations operators shift and reset.

Key words: callcc, continuation, monad, reset, shift, imperative programming, loop, jump, goto.

1 Introduction

In his seminal series of papers [44, 45, 46], Landin proposed a direct translation of an idealized Algol into the
λ-calculus. This translation required to extend the λ-calculus with a new operator J in order to handle non-
local jumps in Algol. This operator, which was described in detail in [47] (see also [74] for an introduction),
is the father to all control operators in functional languages (such as the famous call/cc of Scheme [40] or
Standard ML of New Jersey [32]). The syntactic theory of control has subsequently been explored thoroughly
by Felleisen [21].
A type system for control operators which extends the so-called Curry-Howard correspondence [16, 39] to

classical logic first appeared in Griffin’s pioneering work [31], and was immediately generalized to first-order
dependent types (and Peano’s arithmetic) by Murthy in his thesis [56]. The following years, this extension of
the formulas-as-types paradigm to classical logic has then studied by several researchers, for instance in [7,
69, 19, 41, 62] and many others since.
It is thus tempting to revisit Landin’s work in the light of the formulas-as-types interpretation of control.

Indeed, it is notoriously difficult to derive a sound program logic for an imperative language with procedures
and non-local jumps [60], especially in the presence of local variables and higher-order procedures [73]. On
the other hand, adding first-order dependent types to such an imperative language, and translating type
derivations into proof derivations appears more tractable. The difficult to obtain program logic is then
mechanically derived. Moreover, this logic permits by construction to deal elegantly with mutable higher-
order procedural variables.
As a stepping stone, we focus in this paper on Peano’s arithmetic. The corresponding functional language

(through the proofs-as-programs paradigm) is thus an extension of Gödel System T [30] with control opera-
tors as described in [56]. We shall use instead a variant which was proposed by Leivant [48, 49] (and redis-
covered independently by Krivine and Parigot in the second-order framework [42]). The main advantage of
this variant is that it requires no encoding in formulas (with Gödel numbers) to reason about functional pro-
grams. Moreover it can be extended to any other algebraic datatypes (such as lists or trees). In this paper,
the control operators are given an indirect semantics through a call-by-value CPS transform (we do not con-
sider any direct style semantics). As noticed in [56], this CPS transformation operates a variant of Kuroda’s
translation on dependent types [43].
The imperative counterpart of Gödel System T [30] (called Loopω) which was defined by the authors in

[15], is essentially an extension of Meyer and Ritchie’s Loop language [51] with higher-order procedural vari-
ables. Loopω is a genuine imperative language as opposed to functional languages with imperative features.
However, Loopω is a “pure” imperative language: side-effects and aliasing are forbidden. These restrictions

1. Email addresses: crolard@u-pec.fr (T. Crolard), polonowski@u-pec.fr (E. Polonowski)

1



enable simple location-free operational semantics [20]. Moreover, the type system relies on the distinction
between mutable and read-only variables to prevent procedure bodies to refer to non-local mutable variables.
This property is crucial to guarantee that fix-points cannot be encoded using procedural variables. Since
there is no recursivity and no unbounded loop construct in Loopω, one can prove that all Loopω programs
terminate (note that the expressive power of system T is still attained thanks to mutable higher-order proce-
dural variables).
In this paper, we extend Loopω with first-order dependent types. This led us in particular to relax the

underlying static type system. Indeed, for instance, after the assignment x 0, the type of x is nat(0). The
type of x is thus changed by this assignment whenever the former value of x is different from 0. Moreover,
the type of x before the assignment does not matter: there is no need to even require that x be a natural
number. Pushing this idea to the limit, we obtain a type system for Loopω where the type of any mutable
variable can be changed by an assignment (or a procedure call). Although, this feature seems characteristic
of a dynamic language, our type system is fully static. Moreover, since dealing with mutable variables is nat-
ural in imperative programming, global variables are easily simulated with usual state-passing style. Besides,
the logical meaning of this simulation is perfectly clear.
This above remark suggests that usual static type systems for imperative languages are overly restrictive.

Indeed, a pseudo-dynamic type system is quite expressive: typing an imperative program in state-passing
style amounts (up to curryfication) to typing its functional image with a parameterised state monad [5]. To
capture this expressivity would usually require an effect system on the imperative side [28]. Moreover, a
pseudo-dynamic type system provides an elegant way to deal with uninitialized variables. Indeed, in a logical
type system, a type is not necessarily inhabited and there are thus no default values for arbitrary types.
Although it is possible to design a type system which track uninitialized variables, it would be awkward (and
meaningless from a logical standpoint). On the other hand, in a pseudo-dynamic type system any mutable
variable can be initialized to a default inhabited type with a chosen default value.
Let us summarize the main developments of this paper. We rephrase Landin’s translation for a total

imperative language featuring higher-order procedures and non-local jumps and then we rely on the Curry-
Howard correspondence for classical logic to derive a program logic for this language. To be more specific, we
define a framework which includes an imperative language I, a call-by-value functional language F and a
retraction between I and F as follows:

• The functional language F, which is our formulation of Gödel System T, is equipped with two usual
type systems, a simple type system FS and a dependent type system FD which is akin to Leivant’s
M1LP [48]. In particular, dependent types include arbitrary formulas of first-order arithmetic.

• The imperative language I (essentially Loopω from [15]) is an extension of Meyer and Ritchie’s Loop

language [51] with higher-order procedural variables. Language I is also equipped with two (unusual)
type systems, a pseudo-dynamic simple type system IS and a dependent type system ID.

• A compositional translation � from I to F is definable [15]. This translation actually provides a simu-
lation: each evaluation step of an imperative program is simulated by a bounded number of reduction
step of its functional image. In this paper, we show that this translation is type-preserving in both the
pseudo-dynamic and dependent frameworks.

• We characterize the shape of the functional image of an imperative program by �: these functional
terms are monadic normal forms [33] (also called A-normal forms [25]). A reverse translation � from
monadic normal forms of F to I is then defined, which is also compositional and type-preserving in
both the pseudo-dynamic and dependent frameworks.

• We show that ��, �� forms a retraction. Consequently, from any dependently-typed functional program
(and thus from any proof in Heyting arithmetic) we can derive an imperative program which imple-
ments the corresponding dependent type.

• Fc is then defined as an extension of F with control operators callcc and throw (taken from [32]).
The semantics of Fc is given by a call-by-value CPS-transformation into F. Following [33], since the
functional image of an imperative program is in monadic normal form, we factor the CPS transforma-
tion through Moggi’s computational meta-language [53, 54].

• From Fc we derive Ic which extends I with two primitive procedures callcc and throw. Although we
do not pretend that these control operators are natural in an imperative language, they can be used to
define more conventional statements which have to interact with the control flow. It is of course not
possible to encode arbitrary goto statements since our programming language is total.
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• Finally, as a generic example, by combining a simulated global state with callcc and throw, we show
how to encode shift and reset [18] (and thus any representable monad) using Filinski’s decomposition
[23]. As a consequence, we obtain an indirect formulas-as-types interpretation of delimited continua-
tions in a dependently-typed framework.

Related works

Although several program logics have been designed for higher-order procedural mutable variables or non-
local jumps, we are not aware of any work which combines both in an imperative setting.
Of course, there has been much research on Floyd-Hoare logics [26, 35, 36] (see the surveys [2] and [13]).

Such program logics for higher-order procedures have been defined for instance in [17] (for Clarke’s language
L4 [9]) or more recently for stored parameterless procedures in [70]. Program logics for jumps exists since
[10], and although designing such a logic is error-prone [60], there have been successfully used recently for
proving properties in low-level languages [22, 72].
A dependent type system for an imperative programming language is defined in [76], where the dependent

types are restricted to ensure that type checking remains decidable. They also made the observation that
imperative dependent types requires to allow the type of variables to change during evaluation. However they
chose to restrict the type system in order to guarantee that the extracted program is typable in some usual
static (non-dependent) type systems. On the contrary, we believe that a dynamically-flavoured static type
system should be advocated.
Proofs-as-Imperative-Program [67, 68] adapts the proofs-as-programs paradigm for the synthesis of impera-

tive SML programs with side-effect free return values. The type theory is however intrinsically constructive:
it requires a strong existential quantifier which is not compatible with classical logic [34].
The Dependent Hoare Type Theory [58] and the Imperative Hoare Logic [38, 37] are frameworks for rea-

soning about effectful higher-order functions. The dynamic semantics of those systems are much more com-
plicated (since aliasing is allowed) than our location-free semantics. Although the Dependent Hoare Type
Theory contains control expressions and enjoys a formulas-as-types interpretation, it is not clear whether pro-
grams correspond to proofs in some deduction system for classical logic.

Plan of the paper. In Section 2, we present the untyped functional language F, the untyped imperative lan-
guage I and and their dynamic semantics. We define also the retraction ��, �� between programs of I and
monadic normal forms of F. Section 3 is devoted to the definition of the pseudo-dynamic type system IS.
Section 4 contains the definitions of the dependently-typed systems ID and FD together with their main
properties. In Section 5, we extend language F with control operators and its type system is raised to clas-
sical arithmetic FDc. Finally, in Section 6, we extend I with non-local jumps and we derive a corresponding
program logic IDc.

2 Dynamic semantics of I and F

In this section, we present the untyped functional language F (which is a variant of Gödel System T) and the
untyped imperative language I (which is an extension of Meyer and Ritchie’s Loop language [51] with
higher-order procedural variables studied in [15]). We define also the dynamic semantics of both languages
and the retraction ��, �� between programs of I and monadic normal forms of F.

2.1 Language F

Gödel System T may be defined as the simply typed λ-calculus extended with a type of natural numbers and
with primitive recursion at all types [29]. The language F we consider in this paper a variant of System T
with product types (n-ary tuples actually) and a constant-time predecessor operation (since any definition of
this function as a term of System T is at least linear under the call-by-value evaluation strategy [11]). More-
over, we formulate this system directly as a context semantics (a set of reduction rules together with an
inductive definition of evaluation contexts). As usual, we consider terms up to α-conversion and the set
FV(t) of free variables of a term t is defined in the standard way. The rewriting system is summarized in
Figure 2.1, where variables x, x1, , xn, y range over a set of identifiers and t[v1/x1, , vn/xn] denotes the
usual capture-avoiding substitution.

3



(terms) (values)
t ::= x

| 0
| S(t)
| pred(t)
| t1 t2
| λx.t
| (t1, , tn)
| let (x1, , xn)= t1 in t2
| rec(t1, t2, t3)

(contexts)
v ::= x

| 0
| S(v)
| (v1, , vn)
| λx.t

C[ ] ::= [ ]
| C[ ] t
| v C[ ]
| S(C[ ])
| pred(C[ ])
| rec(C[ ], t2, t3)
| rec(v1, C[ ], t3)
| rec(v1, v2,C[ ])
| (v1, vi−1, C[ ], ti+1 , tn)
| let (x1, , xn)=C[ ] in t

(evaluation rules)
C[pred(0)] � C[0]

C[pred(S(v))] � C[v]
C[rec(0, v2, λx.λy .t)] � C[v2]

C[rec(S(v1), v2, λx.λy .t)] � C[λx.λy .t v1 rec(v1, v2,λx.λy .t)]
C[λx.t v] � C[t[v/x]]

C[let (x1, , xn)= (v1, , vn) in t] � C[t[v1/x1, , vn/xn]]

Figure 2.1. Syntax and context semantics of Language F

Remark 2.1. In order to distinguish the successor S (which is a constructor) from the successor seen as an
operation (whose evaluation should imply a reduction step), we use the keyword succ as an abbreviation for
λx.S(x).

Remark 2.2. We write λ(x1, , xn).t (or λx .t) as an abbreviation for λz.let (x1, , xn) = z in t where z is a
fresh variable. Similarly, we write λ().t as an abbreviation for λz.let ()= z in t where z is a fresh variable.

2.1.1 Example: the Ackermann function

The Ackermann function is an example of function known not to be primitive recursive [63] but which can be
represented in System T. Here follows an example of a slightly modified version of the function defined by
the following equations [49]:

(1) a(0, n) = s(n)
(2) a(s(z), 0) = s(s(0))
(3) a(s(z), s(u)) = a(z, a(s(z), u))

ack(m,n)= rec(m,λy.S(y), λi.λf.λy.rec(y, S(S(0)), λj.λk.(f k))) n

2.2 Language I

The untyped language I is essentially the Loopω language presented in [15] except that Loopω was explicitly
typed. Moreover the loop syntax is now for y 0 until e {s} where the bound e is excluded from the range
(since this new syntax corresponds more closely to reasoning by induction). The location-free transition
semantics [20] is also the same as in [15] except that we consider only sequences. Although it is somewhat
more verbose, both semantics are clearly equivalent.

2.2.1 Syntax

The raw syntax of imperative programs is given below. There is nothing particular to this syntax except that
we annotate each block {s}x with a list of variables x (which corresponds to the mutable variables which
may occur in the block). In the following grammar, x, y, z range over a set of identifiers, q̄ ranges over nat-
ural numbers (i.e. constant literals), ε denotes the empty sequence and ∗ denotes the singleton value. Free
identifiers are defined in the standard way (see Appendix A).
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(command) c ::= {s}x
| for y 0 until e {s}x
| y e | inc(y) | dec(y)

| e(e ; y )

(sequence) s ::= ε

| c ; s

| cst y= e; s

| var y e; s

(expression) e ::= y | ∗ | q̄ | (e )

| proc (in y ;out z ) {s}z

Notation 2.3. (values). Imperative values are closed expressions, i.e. the singleton value, natural numbers,
procedures and tuples of values. We shall use w as a syntactica category for values whenever we will need to
distinguish between expressions and values.

Remark 2.4. (no aliasing). In order to avoid parameter-induced aliasing problems, we assume that all yi

are pairwise distinct in a procedure call p(e ; y ).

Remark 2.5. (annotations). In a block {s}x , the variables in x are visible mutable variables (according to
standard C-like scoping rules). Moreover, the list x must also contain all the free mutable variables occurring
in the sequence. Such annotations can automatically be inferred by taking, for instance, all the visible
mutable variables.

Remark 2.6. (no backpatching). No free mutable variable is allowed in the body of a procedure (except its
out parameters). This restriction is required to prevent the well-known technique called “tying the recursive
knot” [44] which takes advantage of higher-order mutable variables (or function pointers) to define arbitrary
recursive functions.

2.2.2 Example: the addition procedure

Here follows a procedure that computes the addition of two natural numbers:

cst add =proc (in X,Y ;out Z) {
Z X;
for I 0 until Y {

inc(Z);
}Z;

}Z

2.2.3 Operational semantics

The operational semantics is given as transition system [66] which defines inductively a binary relation
between states. A state is a pair (s, µ) consisting of a sequence s and a store µ, where a store is a finite
ordered mapping from (mutable) variables to closed imperative values (i.e. integer literals, procedures and ∗ ,
and tuples of imperative values).
Note that expressions do not require any evaluation since they are either variables or values. We introduce

thus the following notation which allows us to treat uniformly values and variables in the semantics:

Notation 2.7. Given a store µ, let ϕµ be the trivial extension of µ to expressions defined as follows ϕµ(x) =
µ(x) if x is a variable, ϕµ(w) =w and ϕµ((e1, , en))= (ϕµ(e1), , ϕµ(en)). In the sequel, we write e=µw for
ϕµ(e)=w.

Notation 2.8. Let s be a sequence. We write s[x ← w] for the substitution of a read-only variable x by a
closed imperative value w and s[y z] for the renaming of a mutable variable y by a mutable variable z. The
formal definitions are similar to those given in [ 15].

5



(({}z ; s), µ) (s, µ) (s.block-i)

(s1, µ) (s1
� , µ�)

(({s1}z ; s2), µ) (({s1�}z ; s2), µ�)
(s.block-ii)

((var y e; ε), µ) (ε, µ) (s.var-i)

e=µw (s, (µ, y←w)) (s�, (µ�, y←w �))

((var y e; s), µ) ((var y w �; s�), µ�)
(s.var-ii)

e=µw

((y e; s), µ) (s, µ[y ←w ])
(s.assign)

µ(y)= q̄

((inc(y); s), µ) ((y q+1; s), µ)
(s.inc)

µ(y)= q̄

((dec(y); s), µ) ((y q –̇ 1; s), µ)
(s.dec)

e =µw p=µproc (in y ;out z ){s�}z
((p(e ; r ); s), µ) (({s�[y ←w ][z r ]}r ; s), µ[r ←∗ ])

(s.call)

e=µw

((cst y= e; s), µ) (s[y←w], µ)
(s.cst)

e=µ 0̄

((for y 0 until e {s}z ; s�), µ) (s�, µ)
(s.for-i)

e=µ q+1

((for y 0 until e {s}z ; s�), µ) (({for y 0 until q̄ {s}z ; s[y← q̄ ]}z ; s�), µ)
(s.for-ii)

Figure 2.2. Transition semantics

Notation 2.9. Let µ be a store. We write (µ[y ← w]) for the store update, i.e. µ[y ← w](x) = µ(x) if x y

and µ[y←w](y)= µ(y). We write (µ, y←w) for the store extension with the new variable y mapped to w.

This definition of the transition system is summarized in Figure 2.2.

Remark 2.10. This semantics is clearly deterministic since there is always at most one rule which can be
applied (depending on the content of the store and the shape of the command).

2.3 Translation from I to F and simulation

We recall the translation, similar in spirit to Landin’s translation of Algol-like languages, described in [15].
The intuition behind this translation of imperative programs into functional programs is the following: a
sequence {c1; ; cn; }x is translated into:

let x1= c1
� in let xn= cn

� in x

where each xi⊆ x corresponds to the “output” of command ci and x is the output of the sequence.

Definition 2.11. For any expression e, sequence s and variables x, the translations e
� and (s)x

� into terms
of language F are defined by mutual induction as follows:

− n̄ �=S
n(0)

− y
�= y

− ∗�=()

− (e1, , en)�=(e1
�
, , en

�)
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− (proc (in y ; out z ){s}z )�=λy .(s)z
� [()/z ]

− (ε)x
� =x

− (var y e; s)x
� =(s)x

� [e�/y]

− (cst y= e; s)x
� = let y= e

� in (s)x
�

− (y e; s)x
� = let y = e

� in (s)x
�

− (inc(y); s)x
� = let y= succ(y) in (s)x

�

− (dec(y); s)x
� = let y=pred(y) in (s)x

�

− (p(e ; z ); s)x
� = let z = p

� (e �) in (s)x
�

− ({s1}z ; s2)x
� = let z =(s1)z

� in (s2)x
�

− (for y 0 until e {s1}z ; s2)x
� = let z = rec(e�, z ,λy.λz .(s1)z

�) in (s2)x
�

2.3.1 Simulation

We recall the simulation theorem from [15] which states that for any sequence s, the evaluation of s is simu-
lated by the reduction of (s)z

� .

Proposition 2.12. For any state (s, µ), if x = dom(µ) and z ⊆ x we have:

(s, µ) (s�, µ�) implies (s)z
� [µ(x )�/x ]�∗ (s�)z

� [µ�(x )�/x ]

2.4 Translation from F to I and retraction

In this section, we show how to translate a functional program of F into an imperative program of I. How-
ever, this translation is only defined for a sub-language L of monadic normal forms (terms where any non-
trivial intermediate computation is named [33, 25]). This sub-language L characterize the image of impera-
tive programs by �. We show in appendix C.5 how to transform any term of language F into a monadic
normal form of L.

Definition 2.13. We define inductively L and V, families of terms (resp. values) of F, as follows:

• x∈V
• ()∈V
• S

n(0)∈V
• λx.t∈V
• (v1, , vn)∈V if v1, , vn∈V

• v ∈L if v ∈V
• let x = v in u∈L if v ∈V and u∈L
• let x= succ(v) in u∈L if v ∈V and u∈L
• let x=pred(v) in u∈L if v ∈V and u∈L
• let x = v v

� in u∈L if v ∈V, v �∈V and u∈L
• let x= rec(v, v �

,λy.λz.t) in u∈L if v ∈V, v �∈V and u∈L
• let x = t in u∈L if t∈L and u∈L

Proposition 2.14. For any sequence s, any expression e and any variables x = (x1, , xn), (s)x
� ∈ L and

e
�∈V.

Proof. Straightforward mutual induction on s and e. �

Notation 2.15. In the sequel, we shall use the following abbreviations:

var y ; s = var y1 ∗ ; ; var yn ∗ ; s

var y w ; s = var y1 w1; ; var yn wn; s

cst y = z ; s = cst y1= z1; ; cst yn= zn; s

y w ; s = y1 w1; ; yn wn; s

7



Definition 2.16. For any value w ∈W and any term t ∈Ln, the translation w
� and tr

� are defined by mutual
induction, where r =(r1, , rn), z and z =(z1, , zn) are fresh variables, as follows:

− ()� = ∗
− S

n(0)� = n̄

− y
� = y

− (λx.t)� = proc (in x;out z) {tz�}z
− (w)� = (w�)

− (w)r
� = r w; ε

− (let y=w in u)r
� = cst y=w

�; (u)r
�

− (let y= succ(w) in u)r
� = var z w

�; inc(z); cst y= z; (u)r
�

− (let y=pred(w) in u)r
� = var z w

�; dec(z); cst y= z; (u)r
�

− (let x =w w
� in u)r

� = var z ; w
�(w ��; z ); cst x = z ; (u)r

�

− (let x= rec(w,w
�
,λi.λy .t) in u)r

�= var z w
�; for i 0 until w� {cst y= z; tz

�}z; cst x= z; (u)r
�

− (let x = t in u)r
� = var z; {(t)z�}z; cst x = z; (u)r

�

Remark 2.17. Note that all identifiers of the source term are mapped to read-only variables. Indeed,
mutable are introduced locally, assigned and then only used to initialize local read-only variables. This prop-
erty ensures that mutable variables do not occur in the body of procedures in the resulting Loopω program:
the only mutable variables are fresh variables introduced during the translation.

2.4.1 Retraction

We prove that for any term t of L, the term (tr
�)r

� is convertible with t. Both terms are not equal in general
since some “administrative” redices are introduced by the translations. However, equality holds for integer
values.

Definition 2.18. We define the reduction relation ≈ as the reflexive, symmetric, transitive and contextual
closure of the reduction � for arbitrary contexts.

Proposition 2.19.

• Given a term t∈L and a fresh mutable variable tuple r we have (tr
�)r

� ≈ t.

• Given a value w ∈W, if w=S
n(0) or w= ∗ then w

��=w else w
��≈w.

Proof. See Appendix-A. �

Proposition 2.20. For any value w, if w= q̄ or w= ∗ then w
��=w.

Proof. By Proposition 2.19, if w= q̄ or w= ∗ then w
���=w

�. �

3 Pseudo-dynamic Type System

In this section, we present the simple type system for language F and the pseudo-dynamic type system for
language I. Then we show that both translation � and � preserve typability and that the transition semantics
of I enjoys the usual “type preservation” and “progress” properties.

3.1 Functional simple type system FS

The functional simple type system FS is defined as usual for a simply typed λ-calculus extended with tuples,
natural numbers and with primitive recursion at all types. The set ΣFS of simple functional types is defined
by the following grammar:

σ ::= nat | unit | σ1→σ2 | σ1× × σn

8



x: τ ∈Γ

Γ� x: τ
(ident)

Γ� 0:nat (zero)

Γ� t:nat

Γ�S(t):nat
(succ)

Γ� t:nat

Γ�pred(t):nat
(pred)

Γ� t1: τ1 Γ� tn: τn

Γ� (t1, , tn): τ1× × τn
(tuple)

Γ� ():unit
(unit)

Γ, x1: τ1, , xn: τn� t: τ Γ�u: τ1× × τn

Γ� let (x1, , xn)=u in t: τ
(let)

Γ, x: τ � t: σ

Γ�λx.t : τ → σ
(abs)

Γ� t1:σ→ τ Γ� t2: σ

Γ� t1 t2 : τ
(app)

Γ� t1:nat Γ� t2: τ Γ, x:nat, y: τ � t3: τ

Γ� rec(t1, t2,λx.λy.t3): τ
(rec)

Figure 3.1. Functional type system FS

The type system is summarized in Figure 3.1.

3.2 Pseudo-dynamic imperative type system IS

The static type system described in this section is called “pseudo-dynamic” since the type of a mutable vari-
able is allowed to change during execution. It is however fully static in the sense that it guarantees statically
that no type error can occur at run-time. As a side benefit, we obtain a convenient way to address the issue
of uninitialized variables: any mutable variable can be initialized with the ∗ (which denotes the single value
of type unit) and its type shall change later (when assigned its first relevant value).
The pseudo-dynamic type system may also be seen as a simple effect system [28, 71] since it is able to

guarantee the absence of side-effects, aliasing and fix-points in well-typed programs. Its key feature which
enable this property is the distinction between mutable variables and read-only variables. More formally, the
set ΣIS of imperative types is defined by the following grammar:

σ, τ ::= nat | proc (in τ ;out σ ) | (τ1, , τn) | unit

A typing environment has the form Γ;Ω where Γ and Ω are (possibly empty) lists of pairs x: τ (x ranges over
variables and τ over types). Γ stands for read-only variables (constants and in parameters) and Ω stands for
mutable variables (local variables and out parameters). We use two typing judgments, one for expressions
and one for sequences: Γ; Ω � e: τ has the usual meaning, whereas in Γ; Ω � s � Ω�, the environment Ω� con-
tains the types of the mutable variables at the end of the sequence s. The type system is given in Figure 3.2.
As usual, we consider programs up to renaming of bound variables, where the notion of free variable of a
command is defined in the standard way.

Remark 3.1. Let us recall important features of this pseudo-dynamic type system shared with the static
type system described in [15]:

• (scoping rules). As usual for C -like languages, the scope of a constant (rule t.cst) or a variable (rule
t.var) extends from the point of declaration to the end of the block containing the declaration.
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x: τ ∈Γ;Ω

Γ;Ω� x: τ
(t.env)

Γ;Ω� q̄ :nat
(t.num)

Γ;Ω� ∗ :unit
(t.unit)

Γ;Ω� e1: τ1 Γ;Ω� en: τn

Γ;Ω� (e1, , en): (τ1, , τn)
(t.tuple)

z ∅ Γ, y :σ ; z :unit� s� z : τ

Γ;Ω�proc (in y ;out z ){s}z :proc (in σ ;out τ )
(t.proc)

Γ;Ω,Ω�� ε�Ω�
(t.empty)

Γ;Ω, x :σ � c� x : τ Γ;Ω, x : τ � s�Ω�

Γ;Ω, x :σ � c; s �Ω�
(t.seq)

Γ;Ω� e: τ Γ, y: τ ;Ω� s�Ω�

Γ;Ω� cst y= e; s �Ω�
(t.cst)

Γ;Ω� e: τ Γ;Ω, y: τ � s�Ω� y Ω�

Γ;Ω�var y e; s �Ω�
(t.var)

Γ;Ω, y :σ � e: (τ ) Γ;Ω, y : τ � s�Ω�

Γ;Ω, y :σ � y e; s�Ω�
(t.assign)

Γ;x : τ � s� x :σ

Γ;Ω, x : τ � {s}x � x :σ
(t.block)

Γ;Ω, y:nat� inc(y)� y:nat
(t.inc)

Γ;Ω, y:nat�dec(y)� y:nat
(t.dec)

Γ;Ω, x :σ � e:nat Γ, y:nat;x :σ � s� x :σ

Γ;Ω, x :σ � for y 0 until e {s}x � x :σ
(t.for)

Γ;Ω, r :ω � p:proc (in σ ;out τ ) Γ;Ω, r :ω � e :σ

Γ;Ω, r :ω � p(e ; r )� r : τ
(t.call)

Figure 3.2. Imperative type system

• (no side-effects). Rule (t.proc) implies that the only mutable variables which may occur inside the
body of a procedure are its out parameters and its local mutable variables. This is enough to guar-
antee the absence of side-effects. However, side-effects can still be simulated by passing the non-local
variable as an explicit in out parameter (see section-3.5).

• (no fix-points). Rule (t.proc) also forbids the reading of non-local mutable variables: this is necessary
to prevents the definition of fix-points in the language.

Let us define formally the notions of well-typed stores and states.

Definition 3.2. (store typing). We say that a store µ is typable of output typing environment Ω = z1: τ1, ,

zn: τn, denoted µ�Ω if and only if z ∈ dom(µ) and for all (zi, wi)∈ µ we have ∅; ∅ �wi: τi.

Definition 3.3. (state typing). We say that a state (s, µ) is typable of output typing environment Ω� for a
restriction of the store to the variables z : τ, which we write as z : τ � (s, µ)�Ω�, if and only if µ� z : τ and ∅;
z : τ � s�Ω�.
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3.3 Translations between IS and FS

We define translations � and � for simple types (which also form a retraction at the type level) and we show
that both translations preserve typing.

Definition 3.4. For any type τ ∈ΣIS, the corresponding type τ
�∈ΣFS is defined inductively as follows:

− unit�=unit

− nat�=nat

− (τ1, , τn)�=(τ1
�× × τn

�)

− proc (in τ ;out σ )�= τ
�→σ

�

Definition 3.5. For any type σ ∈ΣFS the translation σ
�∈ΣIS is defined as follows:

− unit �=unit

− nat �=nat

− (σ1× ×σn)�=(σ1
�
, ,σn

�)

− (σ → τ )�=proc (in σ
�;out τ

�)

Proposition 3.6. (retraction at the type level).

1. For any type σ ∈ΣIS, we have σ
��= σ.

2. For any type σ ∈ΣFS, we have σ
��= σ.

Proof. Straightforward induction on the translations σ� and σ
�. �

Theorem 3.7. For any environments Γ and Ω, any expression e, any sequence s we have:

• Γ;Ω� e: τ in IS implies Γ�
,Ω�� e

�: τ� in FS.

• Γ;Ω� s� z :σ in IS implies Γ�
,Ω�� (s)z

� :σ � in FS.

Proof. By induction on the typing derivation. �

Theorem 3.8. For any state (s, µ), if z : τ � (s, µ)�Ω in IS with z :σ ⊂Ω, then � (s)z
� [µ(x )�/x ]:σ� in FS.

Proof. By definition of state typing, z : τ � (s, µ) � Ω implies ∅; z : τ � s � Ω and for all (zi, µ(zi)) ∈ µ, ∅;
∅ � µ(zi): τi. By Theorem 3.7, on one hand ∅; z : τ � s � Ω implies z : τ � � (s)z

� : σ�, and on the other hand ∅;
∅ � µ(zi): τi implies � µ(zi)�: τi

�. Since (s)z
� is well typed in the environment z : τ �, the variables in x which

are not in z are not free in (s)z
� . Hence, by the substitution lemma, � (s)z

� [µ(x )�/x ]:σ �. �

Theorem 3.9.

• Given a term t ∈ L such that Γ � t: σ in FS with Γ, σ ∈ ΣFS and a fresh mutable variable tuple r of
any type σ �∈ΣID we have Γ�; r :σ �� tr

� � r :σ� in IS.

• Given a value v ∈V such that Γ� v:σ in FS with Γ,σ ∈ΣFS, we have Γ�;� v
�:σ� in IS.

Proof. By induction on the typing derivation. �

3.4 Properties of the pseudo-dynamic type system

As expected, the transition semantics preserves typing and the usual “progress” property holds.

Theorem 3.10. (preservation). For any state (s, µ), if z : τ � (s, µ) � Ω in IS and (s, µ) (s�, µ�) then
there exists τ � such that z : τ �� (s�, µ�)�Ω, in the simple type system.

Proof. By induction on the transition, and by case analysis on the typing derivation (see Appendix B.3). �
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Lemma 3.11. (progress). For any state (s, µ), if z : τ � (s, µ)�Ω in IS then either s= ε and no more eval-
uation step can occur, or there is a unique state (s�, µ�) such that (s, µ) (s�, µ�).

Proof. By induction on the typing derivation (see Appendix B.4). �

Lemma 3.12. (termination). For any state (s, µ), if z : τ � (s, µ) � Ω in IS then the evaluation of (s, µ)
terminates.

Proof. By contradiction, let us assume that there is an infinite sequence of evaluation steps of (s, µ). By
Proposition 2.12, with the fact that there cannot be an infinite sequence of evaluation steps using only rule
(s.var-i), we have an infinite sequence of evaluation steps of (s)z

� [µ(x )�/x ]. By Theorem 3.8, z : τ � (s, µ)�Ω
implies � (s)z

� [µ(x )�/x ]: σ� and since typable terms of system T are strongly normalizing, we have a contra-
diction. �

Proposition 3.13. For any (s, µ), Ω and z, if z : τ � (s, µ) � Ω in IS, then there is a unique store µ
� such

that (s, µ) n (ε, µ�) for some n.

Proof. Since, by Lemma 3.12, no infinite evaluation of (s, µ) can occur, we prove the property by induction
on the length n of the longest sequence of evaluation steps from (s, µ), using appropriately Theorem 3.10 in
the induction step. �

3.5 Global variables

Recall that the imperative type systems IS (and also ID, in the next section) forbids any access to global
mutable variables. It is straightforward to address this restriction by passing the global variable as an explicit
in out parameter to each procedure declaration. The same variable is then given as argument for each proce-
dure call. Moreover, an in out parameter can be encoded with one in parameter and one out parameter,
where each procedure initialize the variable with its input value before executing its body. To handle more
conveniently a list of global variables z we introduce the following abbreviations:

proc(in x ;out y )z {s}y ,z = proc(in x , z �; out y , z ){z z �; s}y ,z

p(e ; y )z = p(e , z ; y , z )

This transformation corresponds to the usual state-passing style transform in functional programming. Up to
curryfication, we also obtain a state monad [50]. At the type level, however, since the type of a mutable vari-
able can be changed by an assignment, this transform do not correspond to the usual state monad τ ST =
σ→ (τ × σ) where σ is the fixed type of the global state. We obtain instead a parameterized state monad [5],
(σ , τ ,σ �) ST =σ→ (τ × σ

�) where σ is the input type of the global state and σ
� is its output state.

This remark shows that the pseudo-dynamic type system is quite expressive and enables to type programs
which would usually require an ad-hoc effect system [71].

4 Dependent Type Systems

In this section, we present the dependently-typed systems for languages F and I. As in the non-dependent
case, we show that both translation � and � preserve typability. As a corollary, we obtain a soundness result
(theorem 4.8) and a representation theorem (proposition 4.10) for dependently-typed imperative programs.

4.1 Functional dependent type system FD

Following the definition of ML1P [48] (or similarly IT(N) in [49]), we enrich language F with dependent
types. The type system is parameterized by a first-order signature and an equational system E which defines
a set of functions in the style of Herbrand-Gödel. We consider only the sort nat (with constructors 0 and s),
and we assume that E contains at least the usual defining equations for addition, multiplication and a prede-
cessor function p (which is essential to derive all axioms of Peano’s arithmetic [49]). The syntax of formulas
is the following (where n,m are first-order terms):

τ ::= nat(n) | (n=m) | ∀ı (τ1⇒ τ2) | ∃ı (τ1∧ ∧ τk)
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Note that first-order quantifiers are provided in the form of dependent products and dependent sums. As
usual, implication and conjunction are recovered as special non-dependent cases (when ı is empty). Simi-
larly, relativized quantification ∀x(nat(x)⇒ ϕ) and ∃x(nat(x)∧ ϕ) are also obtained as special cases.
The functional dependent type system is summarized in Figure 4.1 (where � denotes n= n for some n and

�En=m means that either n=m or m=n is an instance of E).
The main difference between this type system and the deduction system ML1P described in [48] comes

from the fact that a derived sequent is directly annotated by a realizer (a functional term), whereas in [48] an
extraction function (or forgetful map) κ needs to be applied to the derivation to obtain the realizer. In other
words, if Π is a derivation of a sequent Γ � σ in ML1P, then Γ � κ(Π): σ is derivable in FD. Conversely, if Π
is a derivation of Γ � t: σ in FD, then Π is also derivation of Γ � σ in ML1P (just remove the realizers from
the derivation). Let us recall the subject reduction property of ML1P [48] and derive the same property for
FD as a corollary.

Theorem 4.1. (subject reduction for ML1P).

• If Π Prawitz-reduces to Π�, then κΠ reduces to κΠ�.

• If t= κΠ reduces to t
� then t

�=κΠ� for some Π� such that Π Prawitz-reduces to Π�.

Corollary 4.2. (subject reduction for FD). If Γ� t:σ in FD and t� t
� then Γ� t

�:σ.

Proof. Let Π be a derivation of Γ � t: σ in FD, then κ(Π) = t and Π is also a derivation of Γ � σ in ML1P.
By the above theorem, if t � t

� then t
� = κΠ� for some derivation Π� of the same sequent Γ � σ in ML1P.

Consequently, Γ� t
�:σ is derivable since t

�=κΠ�. �

Similarly, we obtain the representation theorem for FD as a corollary of the same property for ML1P [48,
49].

Proposition 4.3. (representation theorem for FD) Given an equational system E and an n-ary function
symbol f, if

�E t: ∀n.nat(n)⇒nat(f(n))

is derivable in FD then t represents f.

Definition 4.4. (forgetful map). For any functional dependent type τ, the computational content κτ of τ is
defined inductively as follows:

• κ(n=m)=unit

• κ(nat(n)) =nat

• κ(∀ı (σ⇒ τ ))= κσ→ κτ

• κ(∃ı (τ1∧ ∧ τn) =κτ1× × κτn

4.1.1 Example: the addition function

Recall the usual Peano’s axiom for addition (see in appendix D the conventions we use in the examples):

(1) x+0 = x

(2) x+ s(i) = s(x+ i)

The proof of ∀n(nat(n) ⇒ ∀m(nat(m) ⇒ nat(n + m))) gives us a term of F that computes the addition of
two natural numbers. Here follows, in a “pure” natural deduction style, the proof annotated by the terms of
F.

y:nat(m)

x:nat(n)

x:nat(n+0)
by (1)

z:nat(n+ u)

S(z):nat(s(n+u))

S(z):nat(n+ s(u))
by (2)

rec(y, x,λi.λz.S(z)):nat(n+m)

λy.rec(y, x,λi.λz.S(z)): ∀m(nat(m)⇒nat(n+m))

λx.λy.rec(y, x,λi.λz.S(z)): ∀n(nat(n)⇒∀m(nat(m)⇒nat(n+m)))
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x: τ ∈Γ

Γ�x: τ
(ident)

Γ� 0:nat(0) (zero)

Γ� t:nat(n)

Γ�S(t):nat(s(n))
(succ)

Γ� t:nat(n)

Γ�pred(t):nat(p(n))
(pred)

Γ� t1: τ1[m/ı ] Γ� tk: τk[m/ı ]

Γ� (t1, , tk):∃ı (τ1∧ ∧ τk)
(tuple)

Γ, x1: τ1, , xk: τk � t: τ Γ�u:∃ı (τ1∧ ∧ τk)

Γ� let (x1, , xk)=u in t: τ
(let)�

Γ, x: τ � t:σ

Γ�λx.t : ∀ı (τ ⇒ σ)
(abs)�

Γ� t1:∀ı (σ⇒ τ) Γ� t2:σ[n/ı ]

Γ� t1 t2 : τ [n/ı ]
(app)

Γ� t1:nat(n) Γ� t2: τ [0/i] Γ, x:nat(i), y: τ � t3: τ [s(i)/i]

Γ� rec(t1, t2,λx.λy.t3): τ [n/i]
(rec)�

�E n=m

Γ� (): (n=m)
(equal)

Γ� t: τ [n/i] Γ� v: (n=m)

Γ� t: τ [m/i]
(subst)

∗where ı FV(Γ) in (abs), ı FV(Γ, τ ) in (let) and i FV(Γ) in (rec)

Figure 4.1. Functional dependent type system

4.2 Imperative dependent type system ID

As in the functional case, the type system is parameterized by equational system E . The syntax of imperative
dependent types is the following:

σ, τ ::= nat(n) | proc ∀ı (in τ ;out σ ) | ∃ (τ1, , τn) | n=m

The dependent type system is summarized in Figure 4.2 (where � denotes n = n for some n and �E n = m

means that either n=m or m=n is an instance of E).
The store typing and the state typing are defined in the same way as for the pseudo-dynamic type system.

Definition. (store typing). We say that a store µ is typable of output typing environment Ω = z1: τ1, , zn:
τn, denoted µ�Ω if and only if z ∈ dom(µ) and for all (zi, wi)∈ µ we have ∅; ∅ �wi: τi.

Definition. (state typing). We say that a state (s, µ) is typable of output typing environment Ω� for a
restriction of the store to the variables z : τ, which we write as z : τ � (s, µ)�Ω�, if and only if µ� z : τ and ∅;
z : τ � s�Ω�.

Definition 4.5. (forgetful map). For any imperative dependent type τ, the computational content κτ of τ is
defined inductively as follows:

• κ(n=m)=unit

• κ(nat(n)) =nat
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x: τ ∈Γ;Ω

Γ;Ω� x: τ
(t.env)

Γ;Ω� q̄ :nat(sq(0))
(t.num)

�En=m

Γ;Ω� ∗ :n=m
(t.equal)

Γ;Ω� e1: τ1[m/ı ] Γ;Ω� en: τn[m/ı ]

Γ;Ω� (e1, , en):∃ı (τ1, , τn)
(t.tuple)

z ∅ Γ, y :σ ; z :�� s� z : τ

Γ;Ω�proc (in y ; out z ){s}z :proc ∀ı (in σ ;out τ )
(t.proc)∗

Γ;Ω� e�: τ [n/i] Γ;Ω� e:n=m

Γ;Ω� e�: τ [m/i]
(t.subst-i)

Γ;Ω� s�Ω�[n/i] Γ;Ω� e:n=m

Γ;Ω� s�Ω�[m/i]
(t.subst-ii)

Γ;Ω,Ω�� ε�Ω�
(t.empty)

Γ;Ω, x :σ � c� x : τ Γ;Ω, x : τ � s�Ω�

Γ;Ω, x :σ � c; s �Ω�
(t.seq)

Γ;Ω� e: τ Γ, y: τ ;Ω� s�Ω�

Γ;Ω� cst y= e; s �Ω�
(t.cst)

Γ;Ω� e: τ Γ;Ω, y: τ � s�Ω� y Ω�

Γ;Ω�var y e; s �Ω�
(t.var)

Γ;Ω, y : σ � e: ∃ı (τ1, , τn) Γ;Ω, y1: τ1, , yn: τn� s�Ω�

Γ;Ω, y :σ � y e; s�Ω�
(t.assign)∗

Γ;x : τ � s� x : σ

Γ;Ω, x : τ � {s}x � x :σ
(t.block)

Γ;Ω, y:nat(n)� inc(y)� y:nat(s(n))
(t.inc)

Γ;Ω, y:nat(n)�dec(y)� y:nat(p(n))
(t.dec)

Γ;Ω, x :σ [0/i]� e:nat(n) Γ, y:nat(i);x :σ � s� x :σ [s(i)/i]

Γ;Ω, x :σ [0/i]� for y 0 until e {s}x � x :σ [n/i]
(t.for)∗

Γ;Ω, r :ω � p:proc ∀ı (in σ ;out τ ) Γ;Ω, r :ω � e :σ [m/ı ]

Γ;Ω, r :ω � p(e ; r )� r : τ [m/ı ]
(t.call)

∗where ı FV(Γ) in (t.proc) and i FV(Γ) in (t.for)
and  FV(Γ,Ω,Ω�) in (t.assign)

Figure 4.2. Imperative dependent type system

• κ(∃ (τ1, , τn))= (κτ1, ,κτn)

• κ(proc ∀ı (in σ ;out τ )) =proc (in κτ ;out κσ )

Proposition 4.6. (erasure). If Γ;Ω� s�Ω� is derivable in ID then κΓ; κΩ� s� κΩ� is derivable in IS.

Proof. By induction on the typing derivation of Γ;Ω� s�Ω�. �
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4.2.1 Example: the addition procedure

Complete type derivations in ID are tedious. In the following examples, we prefer instead to provide only
some type annotations on the right-hand side of the program. Although we did not formally define this
syntax, we believe that it is self-explanatory and contains enough information to reconstruct the complete
type derivation in ID. For instance, here is the procedure add which computes the addition together with
the sketch of its type derivation:

cst add =proc (in X,Y ;out Z) { − (X :nat(x), Y :nat(y))[Z:�]
Z X; | [Z:nat(x+0)] by (1)
for I 0 until Y { | − (I:nat(i))[Z:nat(x+ i)]

inc(Z); | | [Z:nat(x+ s(i))] by (2)
}Z; | [Z:nat(x+ y)]

}Z (add :proc ∀x, y(in nat(x),nat(y);out nat(x+ y)))

4.2.2 Example: the Ackermann procedure

We recall the equations which define a variant the Ackermann function [49]:

(1) a(0, n) = s(n)
(2) a(s(z), 0) = s(s(0))
(3) a(s(z), s(u)) = a(z, a(s(z), u))

Similarly, from a proof of ∀m, n(nat(m) ∧ nat(n) ⇒ nat(a(m, n))) in FD in monadic normal form, by
applying translation � by hand, we obtain a procedure which computes a(m, n) (the functional typing deriva-
tion is in Appendix D.3.1). Here is the definition of the procedure ack with its typing annotations.

cst ack =proc (in M,N ;out Z) { − (M :nat(m), N :nat(n))[Z:�]
|

var G proc (in Y ;out P ) { | − (Y :nat(y))[P :�]
P Y ; | | [P :nat(y)]
inc(P ); | | [P :nat(s(y))]

}P ; | [G:proc ∀y(in nat(y);out nat(a(0, y)))] by (1)
|

for I 0 until M { | − (I:nat(i))[G:proc ∀y(in nat(y);out nat(a(i, y)))]
cst H =G; | | (H :proc ∀y(in nat(y);out nat(a(i, y))))

| |
G proc (in Y ;out P ) { | | − (Y :nat(y))[P :�]

P 2; | | | [P :nat(a(s(i), 0))] by (2)
for J 0 until Y { | | | − (J :nat(j))[P :nat(a(s(i), j))]

H(P ;P ); | | | | [P :nat(a(s(i), s(j)))] by (3)
}P ; | | | [P :nat(a(s(i), y)))]

}P ; | | [G:proc ∀y(in nat(y);out nat(a(s(i), y))))]
| |

}G; | [G:proc ∀y(in nat(y);out nat(a(m, y)))]
|

G(N ;Z); | [Z: a(m,n)]
}Z (ack :proc ∀m,n(in nat(m),nat(n);out nat(a(m,n))))

4.3 Translation from ID to FD

We show that translation � preserves dependent types.

Definition 4.7. (translation of dependent types). For any imperative dependent type τ, the corresponding
functional dependent type τ

� is defined inductively as follows:

• (t= u)�=(t=u)
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• (nat(u))�=nat(u)

• (∃ı (τ1, , τn))�= ∃ı (τ1�∧ ∧ τn
�)

• (proc ∀ı (in τ ;out σ ))�= ∀ı (τ �⇒σ
�)

Theorem 4.8. (Soundness for ID). For any environments Γ and Ω, any expression e, any sequence s we
have:

− Γ;Ω� e: τ in ID implies Γ�
,Ω�� e

�: τ� in FD.

− Γ;Ω� s� z :σ in ID implies Γ�
,Ω�� (s)z

� :σ� in FD.

Proof. See Appendix C.3. �

Theorem 4.9. For any state (s, µ), if z : τ � (s, µ)� z :σ in ID then � (s)z
� [µ(x)�/x ]:σ� in FD.

Proof. By definition of state typing, z : τ � (s, µ)� z : σ implies ∅; z : τ � s� z : σ and for all (zi, µ(zi))∈ µ, ∅;
∅ � µ(zi): τi. By theorem 4.8, on one hand ∅; z : τ � s� z : σ implies z : τ � � (s)z

� : σ �, and on the other hand ∅;
∅ � µ(zi): τi implies � µ(zi)�: τi

�. Since (s)z
� is well typed in the environment z : τ �, the variables in x which

are not in z are not free in (s)z
� . Hence, by the substitution lemma, � (s)z

� [µ(x )�/x ]:σ �. �

4.4 Properties of dependently-typed imperative programs

We are now ready to state and prove the representation theorem for dependently-typed imperative programs.
This theorem is a corollary of the representation theorem for FD and the simulation theorem.

Corollary 4.10. (representation theorem for ID). Given an equational system E and an n-ary function
symbol f, if

� p:proc ∀n(in nat(n);out nat(f(n)))

is derivable in ID then p represents f.

Proof. Indeed, � p
�: ∀n.nat(n) ⇒ nat(f(n)) is derivable in FD, and thus p

� represents f by proposi-
tion 4.3. Since by Proposition 4.6, � p: proc(in nat; out nat) is derivable in IS, we know that p always ter-
minates by lemma 3.12 and computes p

� by proposition 2.12. �

4.5 Translation from FD to ID

We close this section by some properties of translation �.

Definition 4.11. For any type σ ∈ΣFD the translation σ
� is defined as follows:

− (n=m) �=(n=m)

− (nat(n))�=nat(n)

− (∃ (σ1∧ ∧σn))�=∃ (σ1
�
, ,σn

�)

− (∀ı (τ ⇒σ ))�=proc ∀ı (in τ
�;out σ

�)

As expected, Proposition 3.6 is extended as follows.

Proposition 4.12. (retraction).

1. For any type σ ∈ΣID, we have σ
��=σ.

2. For any type σ ∈ΣFD, we have σ
��=σ.

Proof. Straightforward induction on translations σ� and σ
�. �

Proposition 4.13. (erasure and translation commute). For any imperative dependent type σ we have
κ(σ�)= (κσ)�.
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Proof. Straightforward induction on types. �

Theorem 4.14.

• Given a term t ∈ L such that Γ � t: σ in FD with Γ, σ ∈ ΣFD and a fresh mutable variable tuple r of
any type σ �∈ΣID we have Γ�; r :σ �� tr

� � r :σ� in ID.

• Given a value v ∈V such that Γ� v:σ in FD with Γ,σ ∈ΣFD, we have Γ�;� v
�:σ� in ID.

Proof. By induction on the typing derivation (see Appendix C.4). �

Remark 4.15. Translation � is only defined above for terms of L. Translating an arbitrary term (typable in
FD) into an imperative program (typable in ID), just requires to put the term in monadic normal form.
More details are given in Appendix C.5.

5 Control operators

In order to extend the imperative language I with non-local jumps, we first extend the functional language F
with control operators. The resulting dependent type system FDc corresponds thus to classical logic [31]
(Peano’s arithmetic in fact). In this section, we rephrase known results from [55, 57] in our setting. However,
since FD is based on Leivant’s ML1P, our variant may seem closer to Parigot’s type system for the λµ-cal-
culus [61] (albeit in the second-order framework).

5.1 Functional dependent type system for control FDc

In order to extend FD to FDc, we assume the existence of a propositional constant “absurd” written ⊥, we
define the negation ¬ϕ as an abbreviation for ϕ⇒ ⊥ and we add two constants callcc and throw with the
following types:

callcc : (¬ϕ⇒ ϕ)⇒ ϕ

throw : (¬ϕ∧ ϕ)⇒ ψ

This choice of control operators is taken from [32] but it would be equivalent to take for instance A and C
from [21] as in [55, 57]. Note that we do not consider any direct style semantics of these operators in this
paper. Instead, we give an indirect semantics as a CPS-transformation [65].

5.2 CPS translation

As is well-known [33], it is natural to factor a CPS-transformation through Moggi’s computational meta-lan-
guage [53, 54]. Since we are interested in providing a semantics for imperative programs and since the output
of translation � is already a term in monadic normal form, the CPS-transformation needed is almost straight-
forward. We still have to be careful since in a dependent type system a monad is actually a modality [12, 8],
and we have to deal with first-order quantifiers.
Following [12], we write ¬oϕ for ϕ⇒ o where o is a fixed propositional variable. The continuation monad ∇

is then defined as ∇ϕ= ¬o¬oϕ together with the following two abbreviations (which corresponds to unit and
bind):

val u = λz.(z u)

let val x= u in t = λz.(u λx.(t z))

Moreover, in the continuation monad, control operators callcc and throw are definable as the following abbre-
viations [59]:

callcc = λh.λk.(h k k)

throw = λ(k, a).λk �
.(k a)

Let us now prove that for any monadic normal form (possibly containing callcc and throw) typable in FDc,
its call-by-value CPS-transform is typable in FD. The translation of dependent types is defined as follows:
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Definition 5.1. (translation of dependent types from FDc to FD)

nat(n)◦ = nat(n)

(n=m)◦ = (n=m)

(∃n(ϕ1∧ ∧ ϕn))◦ = ∃n(ϕ1
◦∧ ∧ ϕn

◦)

(∀n(ϕ⇒ ψ))◦ = ∀n(ϕ◦⇒∇ψ
◦)

(¬ϕ)◦ = ¬oϕ
◦

⊥◦ = o

Remark 5.2. If we instantiate the monad, and restrict ourselves to relativized quantifiers we obtain as
expected Murthy’s variant [55, 57] of Kuroda’s translation [43].

Definition 5.3. For any value v ∈ V and any term t ∈ L possibly containing callcc and throw, the call-by-
value CPS-transform v

• and t
◦ are defined by mutual induction as follows:

()• = ()

x
• = x

0• = 0

S(v)• = S(v•)

(λx.u)• = (λx.u◦)

(v1, , vk)• = (v1
•
, , vk

•)

(callcc)• = callcc

(throw)• = throw

(v)◦ = val (v•)

(v1 v2)◦ = (v1
•
v2
•)

(let (x1, , xn) = t in u)◦ = let val y= t
◦ in let (x1, , xn)= y in u

◦

rec(v, u,λx.λy.t)◦ = rec(v•, u◦
,λx.λr.let val y= r in t

◦)

pred(v)◦ = val pred(v•)

Remark 5.4. The translation above is defined for a syntax slightly more general than L since we only need
here to distinguish values from computations. It is however straightforward to check that any term of L
belongs to dom(◦) and any value of V belongs to dom(•).

Lemma 5.5. The following typing rules are derivable in FD:

Γ� u: ϕ

Γ�val u:∇ϕ

Γ�u:∇ϕ Γ, x: ϕ� t:∇ψ

Γ� let val x= u in t:∇ψ

Proof. Straightforward (see Appendix B). �

Lemma 5.6. Abbreviations callcc and throw are typable in FD as follows:

callcc : ((ϕ◦⇒ o)⇒∇ϕ
◦)⇒∇ϕ

◦

throw : ((ϕ◦⇒ o)∧ ϕ
◦)⇒∇ψ

◦

Proof. Straightforward (see Appendix B). �

Lemma 5.7. For any term t of L (resp. any value v of V) possibly containing callcc and throw, if Γ� t: ϕ
(resp. Γ� v: ϕ) is derivable in FDc then Γ◦� t

◦:∇ϕ
◦ (resp. Γ◦� v

•: ϕ◦) is derivable in FD.

Proof. By induction on the typing derivation where the basic cases for callcc and throw are obtained by
Lemma 5.6:

• (ident)

Γ, x: ϕ� x: ϕ
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Indeed,

Γ◦
, x: ϕ◦� x: ϕ◦

• (equal)
�E n=m

Γ� (): (n=m)
Indeed,

�E n=m

Γ◦� (): (n=m)
• (subst)

Γ� t: ϕ[n/i] Γ� v: (n=m)

Γ� t: ϕ[m/i]
Indeed,

Γ◦� t
◦:∇ϕ

◦[n/i] Γ◦� v
•: (n=m)

Γ◦� t◦:∇ϕ◦[m/i]
• (zero)

Γ� 0:nat(0)

Indeed,

Γ◦� 0:nat(0)

• (succ)
Γ� v:nat(n)

Γ�S(v):nat(sn)
Indeed,

Γ◦� v
•:nat(n)

Γ◦�S(v•):nat(sn)
• (abs) where ı FV(Γ)

Γ, x: ϕ� u: ψ

Γ�λx.u: ∀ı (ϕ⇒ ψ)
Indeed,

Γ◦
, x: ϕ◦� u

◦:∇ψ
◦

Γ◦�λx.u◦: ∀ı (ϕ◦⇒∇ψ◦)
• (app)

Γ� v1: ∀ı (ϕ⇒ ψ) Γ� v2: ϕ[n/ı ]

Γ� (v1 v2): ψ[n/ı ]
Indeed,

Γ� v1
•: ∀ı (ϕ◦⇒∇ψ

◦) Γ◦� v2
•: ϕ◦[n/ı ]

Γ� (v1
•
v2
•):∇ψ◦[n/ı ]

• (tuple)
Γ� v1: ϕ1[n/ı ] Γ� vk: ϕk[n/ı ]

Γ� (v1, , vk): ∃ı (ϕ1∧ ∧ ϕk)
Indeed,

Γ◦� v1
•: ϕ1

◦[n/ı ] Γ◦� vk
•: ϕk

◦[n/ı ]

Γ◦� (v1
•
, , vk

•): ∃ı (ϕ1
◦∧ ∧ ϕk

◦)
• (let) where n FV(Γ, ψ)

Γ� t: ∃ı (ϕ1∧ ∧ ϕk) Γ, x1: ϕ1[n/ı ], , xk: ϕk[n/ı ]� u: ψ

Γ� let (x1, , xk)= t in u: ψ

Indeed, since n FV(Γ◦
, ψ

◦)

Γ◦� t:∇(∃ı (ϕ1
◦∧ ∧ ϕk

◦))

Γ◦� t: ∃ı (ϕ1
◦∧ ∧ ϕk

◦) Γ◦
, x1: ϕ1

◦[n/ı ], , xk: ϕk
◦[n/ı ]� u

◦:∇ψ
◦

Γ◦� let (x1, , xk)= y in u◦:∇ψ◦

Γ◦� let val y= t◦ in let (x1, , xk) = y in u◦:∇ψ◦
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• (rec) where i FV(Γ)

Γ� v:nat(n) Γ�u: ϕ[0/i] Γ, x:nat(i), y: ϕ� t: ϕ[s(i)/i]

Γ� rec(v, u,λx.λy.t): ϕ[n/i]

Indeed, since i FV(Γ◦)

Γ◦� v
•:nat(n) Γ◦�u

◦:∇ϕ
◦[0/i]

Γ◦
, r:∇ϕ

◦� r:∇ϕ
◦ Γ◦

, x:nat(i), y: ϕ◦� t
◦:∇ϕ

◦[s(i)/i]

Γ◦, x:nat(i), r:∇ϕ◦� let val y= r in t◦:∇ϕ◦[s(i)/i]

Γ◦, x:nat(i)�λr.let val y= r in t◦:∇ϕ◦⇒∇ϕ◦[s(i)/i]

Γ◦� rec(v•, u◦,λx.λr.let val y= r in t◦):∇ϕ◦[n/i]

• (pred)
Γ� v:nat(n)

Γ�pred(v):nat(pn)
Indeed,

Γ◦� v
•:nat(n)

Γ◦�pred(v•):nat(pn)

Γ◦�val pred(v•):∇nat(pn)
�

As a corollary of Lemma 5.7, we obtain a representation theorem for FDc.

Theorem 5.8. (representation theorem for FDc). Given an equational system E and an n-ary function
symbol f, if � t: ∀n.nat(n)⇒nat(f(n))) is derivable in FDc then t represents f.

Proof. By Lemma 5.7 � t
◦: ∀n.nat(n)⇒∇nat(f(n))) is derivable in FD. Then, using Friedman’s top level

trick [27, 55], we replace o by nat(f(n)) in the derivation, we obtain that � λx.(t◦ x id): ∀n.nat(n) ⇒
nat(f(n)) is also derivable in FD, and thus λx .(t◦ x id) represents f . �

6 Non-local jumps

In this section we extend language I with control. Since control in imperative language are usually given in
the form of several ad-hoc statements (such as exits from loops, exception handling, generators), there is no
natural primitive statements. Consequently, we chose to retrofit operators callcc and throw to language I.
We do not claim that these are natural control statement in an imperative language, but they are merely
primitive constructs which can be used to encode other statements as derived forms. This main advantage of
this approach is that we derive immediately a sound program logic for imperative programs with control.

6.1 Dependent imperative type system with control IDc

Similarly to the functional case, we extend type system ID with a propositional type constant ⊥, we define ¬
σ as an abbreviation for proc (in σ ; out ⊥), and we add to ID two primitive procedures callcc and throw
with the following types:

callcc : proc (in proc (in ¬σ ;out σ );out σ)

throw : proc (in ¬σ ,σ ;out τ )

Note that the type of callcc is exactly ((¬σ ⇒ σ)⇒ σ )� and the type of throw is exactly ((¬σ ∧ σ )⇒ τ )�. If
we assume that callcc and throw are mapped by � to their functional counterpart, we have the following
properties by construction:

Proposition 6.1. For any environments Γ and Ω, any expression e, any sequence s, possibly containing
procedures callcc and throw, we have:

− Γ;Ω� e: τ in IDc implies Γ�
,Ω�� e

�: τ� in FDc.

− Γ;Ω� s� z :σ in IDc implies Γ�
,Ω�� (s)z

� :σ� in FDc.
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Proposition 6.2.

• Given a term t ∈ L possibly containing callcc and throw such that Γ � t: σ in FDc and a fresh
mutable variable tuple r of any type σ �∈ΣID we have Γ�; r :σ �� tr

� � r :σ � in IDc.

• Given a value v ∈ V possibly containing callcc and throw such that Γ � v: σ in FDc for any environ-
ment Ω we have Γ�;Ω� v

�:σ� in IDc.

Since our semantics of IDc is indirect, no representation theorem for IDc can be claimed. However, we still
have the following corollary:

Corollary 6.3. Given an equational system E and an n-ary function symbol f, if � p: proc({n }in nat(n);
out nat(f(n))) is derivable in IDc then p

� represents f.

Proof. Since � p
�: ∀n.nat(n)⇒nat(f(n))) is derivable in FDc and by Theorem 5.8, p

� represents f . �

6.2 Syntax and typing extensions with control operators

In order to get closer to some usual syntax for jumps in imperative language, we introduce the following two
abbreviations:

k: {s}z = cst z �= z ; callcc(proc(in k;out z ){z z �; s}z ; z )
jump(k, e )z = throw(k, e ; z )

The first abbreviation corresponds to the declaration of a (first-class) label. Recall that our type systems
requires that the current mutable variables be explicitly passed inside the body of the procedure, hence the
constants declaration. The second abbreviation is a “jump with parameters” to the end of the block anno-
tated with the label given as argument. Note that the output variables are important only for typing purpose
(since the jump never returns), they are thus written as a subscript.

Proposition 6.4. The following typing rules are derivable in IDc.

Γ, k:¬σ ; z : τ � s� z :σ Γ;Ω, z :σ � s
��Ω�

Γ;Ω, z : τ � k: {s}z ; s��Ω�

Γ;Ω, z : τ � k:¬σ Γ;Ω, z : τ � e :σ

Γ;Ω, z : τ � jump(k, e )z � z : τ �

Proof. See Appendix C.7. �

6.3 Imperative delimited continuations

As a concluding example we show how to encode delimited continuation operators shift and reset [18] in
IDc. This example is generic since it was shown by Filinski [23, 24] that any representable monad can be
encoded using shift and reset. We also refer the reader to [75] for a detailed analysis of various type sys-
tems for shift and reset in the monadic framework, to [3] for a type-theoretic study of delimited continua-
tions and to [4] for a generalization of Danvy and Filinski’s type system to allow for polymorphic delimited
continuations.
Our encoding follows [23] which contains the proof that shift and reset can themselves be implemented

using callcc, throw and one global mutable variable storing the meta-continuation. The idea behind this
encoding is best understood at the type level. First recall that the orignal semantics of these operators was
given in terms of a double CPS-transform [18] (indeed, a single CPS transform is not enough to obtain a
term whose semantics is independent of the evaluation strategy). The first transform corresponds to a
parameterized continuation monad [6]:

M(α, β , γ) = (γ→ β)→α

The second transform corresponds to the usual continuation monad, with a fixed output type o :

∇σ = (σ→ o)→ o
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Composing both transforms [50] yields the following parameterized monad:

(γ→∇β)→∇α ((γ × (β→ o))→ o)→ ((α→ o)→ o)

(α→ o)→ (((γ × (β→ o))→ o)→ o)

= (α→ o)→∇(γ × (β→ o))

Up to simple type isomorphisms, we recognize the parameterized state monad transformer applied to the
continuation monad. This monad correspond thus exactly to composing the state passing style transform
(where the state is a continuation) with a CPS transform. This is the type isomorphism which exploited in
[23] to encode shift et reset in direct style with a global state (always containing a continuation, called the
meta-continuation) and callcc/throw.
Relying on higher-order mutable variables and the abbreviations for global variables from section 3.5, Fil-

inski’s implementation can thus be almost mechanically translated in IDc (the type derivations are given in
Appendix D.4):

reset : proc(in proc(in ¬α;out β ,¬β),¬γ;out α,¬γ)
reset = proc(in p;out r)mk{

k: {
cst m=mk ;

mk proc(in r;out z){jump (k, r,m)z; }z;
var y; p(; y)mk;

jump (mk , y)r,mk;

}r,mk;

}r,mk;

shift : proc(in proc(in proc(in α,¬β;out γ ,¬β),¬δ;out �,¬�),¬δ;out α,¬γ)
shift = proc(in p;out r)mk{

k: {
proc q(in v;out r)mk{

reset (proc(out z)mk{jump (k, v,mk )z,mk; }z,mk; r)mk;

}r,mk;

var y; p(q; y)mk;

jump (mk , y)r,mk;

}r,mk;

}r,mk

Of course, the image of those procedures by translation � yields functional terms typable in FDc. Those
terms are given in Appendix E in Standard ML syntax [52]. The SML signature CONT is slightly different
from [32] but they are equivalent (see [23] for an implementation of a similar signature in SML/NJ [1]).
Their functional types are reproduced here:

reset : (¬α⇒ β ∧¬β)∧¬γ⇒α∧¬γ
shift : ((α∧¬β⇒ γ ∧¬β)∧¬δ⇒ ε∧¬ε)∧¬δ⇒α∧¬γ

These types could be made a little more readable by using a parameterized state monad. However, we recog-
nize the type of shift and reset from [18] where (α ∧ ¬σ)⇒ (β ∧ ¬τ) is written in the form α/τ → β/σ. Our
encoding thus provides a formulas-as-types interpretation of the full type system from [18] in a dependently-
typed framework.

6.3.1 Example

In [75], Wadler presents several simple examples using shift and reset, and its third example, which requires
the full type system from [18] to type check, is the following:

let g=(reset (if (shift λf.f) then 2 else 3))

in (g True) + (g False)
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Walder explains informally the semantics of his example as follows: “Here f (and hence g) is bound to the
function that returns 2 if passed True, and 3 if passed False, hence the value of the given term is 5.”
Now the question is “how to prove formally the correctness of this program?”. The solution we propose

consists in first translating the expression into an imperative program (with shift/reset defined as above)
and then proving its correctness by deriving the expected specification in IDc. We thus obtain following
imperative program (where the conditional is simulated by a for-loop):

cst q = proc(; out r )mk {
cst p = proc(in f ; out h)mk { h : = f ; }
var b; shift(p; b)mk;
r : = 3;
for i : = 0 until b {

r : = 2;
}r,mk;

};
var g ; reset(q ; g)mk;
var x ; g(0; x)mk;
var y ; g(1; y)mk;
add(x , y ; z )mk;

It is then possible to show that z:�� s� z: nat(f32(0) + f32(1)) is derivable in IDc where f32 is defined by
the equations:

f32(0)= 3
f32(S(i)) = 2

We shall not detail the type derivation since it is rather technical. However, we have formally specified IDc,
FDc, the translation � and our encoding of shift and reset in Twelf [64]. Moreover, thanks to Twelf logic
programming engine, those specifications are executable and we have mechanically checked the correctness of
the above example (together with a few others from [75]). The interested reader is referred to [14] for more
details.
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Appendix A Properties of I and F

A.1 Basic properties of I

Definition. The sets FI(s), FI(c) and FI(e) of free identifiers (including both variable and constant identi-
fiers) of a sequence, a command and an expression are defined by mutual induction as follows:

− FI(y)= {y}
− FI( ∗ )=FI(q̄ )= ∅

− FI(e1, , en)=FI(e1)∪ ∪FI(en)
− FI(proc (in y ;out z ) {s}z ) =FI(s) \ (y ∪ z )

− FI(inc(y))=FI(dec(y))= {y}

− FI({s}x)=FI(s)∪x

− FI(y e)= {y }∪FI(e)

− FI(p(e ; y )) = y ∪FI(e )∪FI(p)
− FI(for y 0 until e {s}x)=FI(e )∪ (FI(s) \ {y})∪ x

− FI(ε)= ∅
− FI(c ; s) =FI(c)∪FI(s)

− FI(cst y= e; s) =FI(var y e; s) =FI(e )∪ (FI(s) \ {y})

A.2 Translation from F to I and retraction

Definition A.1. We define the translation of any term t of F into a term t
� of L by the following equations:

x
� = x

()� = ()

S
n(0)� = S

n(0)

S
n(t)� = let x= t

� in let x= succ(x) in let x= succ(x) in x

(λx.t)� = λx.t
�

pred(t)� = let x= t
� in let x=pred(x) in x

rec(t1, t2, t3)� = let a= t1
� in let b= t2

� in let c= t3
� in

let z= rec(a, b,λx.λy.let d= c x in let e= d y in e) in z

(t u)� = let x= t
� in let y=u

� in let r=x y in r

(let x = u in t)� = let y= u
� in let x = y in t

�

(t1, , tn)� = let x1= t1
� in let xn= tn

� in (x1, , xn)

Proposition A.2. For any term t of F, we have t
�∈L.

Proof. Straightforward induction on t. �

Lemma A.3. Given a term t∈L and a fresh mutable variable tuple r we have r FV(((t)r�)r�).

Proof. By induction on t.

• ((w)r
�)r

�

= (r w ; )r
�
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= let r1=(w1
�)� in let rn=(wn

�)� in r

We easily conclude since r does not occur in (w�)�.

• ((let y=w in u)r
�)r

�

= (cst y=w
�; (u)r

�)r
�

= let y=(w�)� in ((u)r
�)r

�

By induction hypothesis, r FV(((u)r�)r�), and r does not occur in (w�)�.

• ((let y= succ(w) in u)r
�)r

�

= (var z w
�; inc(z); cst y= z; (u)r

�)r
�

= (let z= succ(z) in let y= z in ((u)r
�)r

�)[(w�)�/z]
= (let z= succ((w�)�) in let y= z in ((u)r

�)r
�)

By induction hypothesis, r FV(((u)r�)r�), and r does not occur in (w�)�.

• The case of pred is similar to succ.

• ((let x = rec(w,w ,λi.λy .t) in u)r
�)r

�

= (var z w ; for i 0 until w� {cst y = z ; (t)z
� }z ; cst x = z ; (u)r

�)r
�

= let z = rec((w�)�, z ,λi.λz .let y= z in ((t)z
�)z

�) in let x= z in ((u)r
�)r

�)[(w�)�/z ]
= let z = rec((w�)�, (w�)�,λi.λz .let y= z in ((t)z

�)z
�) in let x= z in ((u)r

�)r
�)

By induction hypothesis, r FV(((u)r�)r�), and r does not occur in (w�)�, (w�)� and ((t)z
�)z

�).

• ((let x =w w in u)r
�)r

�

= (var z ; w
�(w�; z ); cst x = z ; (u)r

�)r
�

= (let z =(w�)� (w�)� in let x1= z1 in let xn= zn in ((u)r
�)r

�)[()/z ]
= let z =(w�)� (w�)� in let x1= z1 in let xn= zn in ((u)r

�)r
�

By induction hypothesis, r FV(((u)r�)r�), and r does not occur in (w�)� and (w�)�.

• ((let x = t in u)r
�)r

�

= (var z ; {(t)z� }z ; cst x = z ; (u)r
�))r

�

= (let z =((t)z
�)z

� in let x1= z1 in let xn= zn in ((u)r
�)r

�)[()/z ]
= let z =((t)z

�)z
� in let x1= z1 in let xn= zn in ((u)r

�)r
�

By induction hypothesis, r FV(((u)r�)r�), and r does not occur in ((t)z
�)z

�).

�

Definition A.4. We define the reduction relation � as the reflexive, transitive and contextual closure of the
reduction � for arbitrary contexts.

Proposition. We prove the following properties, which clearly implies ((t)r
�)r

� ≈ t and if w = S
n(0) or w = ∗

then w
��=w else w

��≈w.

• Given a term t∈L and a fresh mutable variable r we have ((t)r
�)r

� � t.

• Given a value v ∈W, if w=S
n(0) or w= ∗ then w

��=w else w
���w.

Proof. By mutual induction.

• (Sn(0)�)�= n̄ �=S
n(0).

• (y�)�= y
�= y.

• (()�)�= ∗�=().

• ((λx .t)�)�

= (proc(in x ;out z ) {(t)z� }z )�
= λx .((t)z

�)z
� [()/z ]

=λx .((t)z
�)z

� since z FV(((t)z�)z�) by Lemma A.3
� λx .t by induction hypothesis.

• ((w)r
�)r

�

= (r w
�; )r

�

= let r1=(w1
�)� in let rn=(wn

�)� in r

�n (w�)�

� w by induction hypothesis.
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• ((let y=w in u)r
�)r

�

= (cst y=w
�; (u)r

�)r
�

= let y=(w�)� in ((u)r
�)r

�

� let y=w in u by induction hypothesis.

• ((let y= succ(w) in u)r
�)r

�

= (var z w
�; inc(z); cst y= z; (u)r

�)r
�

= (let z= succ(z) in let y= z in ((u)r
�)r

�)[(w�)�/z]
= (let z= succ((w�)�) in let y= z in ((u)r

�)r
�)

� (let y= succ((w�)�) in ((u)r
�)r

�) since z FV((u)r�)r�)
� let y= succ(w) in u by induction hypothesis.

• The case of pred is similar to succ.

• ((let x = rec(w,w ,λi.λy .t) in u)r
�)r

�

= (var z w ; for i 0 until w� {cst y = z ; (t)z
� }z ; cst x = z ; (u)r

�)r
�

= let z = rec((w�)�, z ,λi.λz .let y= z in ((t)z
�)z

�) in let x= z in ((u)r
�)r

�)[(w�)�/z ]
= let z = rec((w�)�, (w�)�,λi.λz .let y= z in ((t)z

�)z
�) in let x= z in ((u)r

�)r
�)

� let z = rec((w�)�, (w�)�,λi.λz .((t)z
�)z

� [z /y ]) in ((u)r
�)r

�)[z /x ]
� let z = rec(w,w ,λi.λz .t[z /y ]) in u[z /x ] by induction hypothesis
= let x = rec(w,w ,λi.λy .t) in u modulo α-conversion.

• ((let x =w w in u)r
�)r

�

= (var z ; w
�(w�; z ); cst x = z ; (u)r

�)r
�

= (let z =(w�)� (w�)� in let x1= z1 in let xn= zn in ((u)r
�)r

�)[()/z ]
= let z =(w�)� (w�)� in let x1= z1 in let xn= zn in ((u)r

�)r
�

� let z =(w�)� (w�)� in ((u)r
�)r

� [z /x ]
� let z =w w in u[z /x ] by induction hypothesis
= let x =w w in u modulo α-conversion.

• ((let x = t in u)r
�)r

�

= (var z ; {(t)z� }z ; cst x = z ; (u)r
�))r

�

= (let z =((t)z
�)z

� in let x1= z1 in let xn= zn in ((u)r
�)r

�)[()/z ]
= (let z =((t)z

�)z
� in let x1= z1 in let xn= zn in ((u)r

�)r
�)

� let z =((t)z
�)z

� in ((u)r
�)r

� [z /x ]
� let z = t in u[z /x ] by induction hypothesis
= let x = t in u modulo α-conversion.

�
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x: τ ∈Γ;Ω

Γ;Ω� x: τ
(t.env)

Γ;Ω� q̄ :nat
(t.num)

Γ;Ω� ∗ :unit
(t.unit)

Γ;Ω� e : τ

Γ;Ω� (e ): (τ )
(t.tuple)

z ∅ Γ, y :σ ; z :unit� s� z : τ

Γ;Ω�proc (in y ;out z ){s}z :proc (in σ ;out τ )
(t.proc)

Γ;Ω,Ω�� ε�Ω�
(t.empty)

Γ;Ω� e: τ Γ, y: τ ;Ω� s�Ω�

Γ;Ω� cst y= e; s �Ω�
(t.cst)

Γ;Ω� e: τ Γ;Ω, y: τ � s�Ω� y Ω�

Γ;Ω�var y e; s �Ω�
(t.var)

Γ; x :σ � s� x : τ Γ;Ω, x : τ � s��Ω�

Γ;Ω, x :σ � {s}x; s��Ω�
(t.block)

Γ;Ω, y:nat� s�Ω�

Γ;Ω, y:nat� inc(y); s�Ω�
(t.inc)

Γ;Ω, y:nat� s�Ω�

Γ;Ω, y:nat�dec(y); s�Ω�
(t.dec)

Γ;Ω, y :σ � e: (τ ) Γ;Ω, y : τ � s�Ω�

Γ;Ω, y :σ � y e; s�Ω�
(t.assign)

Γ;Ω, x : σ � e:nat Γ, y:nat; x :σ � s� x : σ Γ;Ω, x :σ � s��Ω�

Γ;Ω, x :σ � for y 0 until e {s}x; s��Ω�
(t.for)

Γ;Ω, r :ω � p:proc (in τ ;out σ ) Γ;Ω, r :ω � e : τ Γ;Ω, r :σ � s�Ω�

Γ;Ω, r :ω � p(e ; r ); s�Ω�
(t.call)

Figure B.1. Alternative imperative pseudo-dynamic type system

Appendix B Properties of IS and FS

B.1 Alternative pseudo-dynamic type system

We first present in Figure B.1 a different (but equivalent) formulation of the pseudo-dynamic type system
which is easier to deal with when proving properties by induction on sequences.

B.2 Preliminary properties

Lemma B.1. If Γ, x: τ ;Ω� s�Ω� and ∅; ∅ � e: τ in IS then Γ;Ω� s[x← e]�Ω� in IS.

Proof. Straightforward induction on s. �

Lemma B.2. If Γ;x: τ ,Ω� s� x: σ,Ω� in IS then Γ; y: τ ,Ω� s[x y]� y:σ ,Ω� in IS.
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Proof. Straightforward induction on s. �

Lemma B.3. If Γ;Ω� s�Ω� in IS then for any x:σ, Γ, x:σ;Ω� s�Ω� and Γ;Ω, x:σ � s�Ω� in IS.

Proof. Straightforward by induction on the typing derivation. �

Lemma B.4. If µ�Ω and ∅;Ω� e: τ in IS and e=µw, then we have ∅; ∅�w: τ in IS.

Proof. The case e = w is trivial and if e is some variable x ∈ Ω then by definition of µ � Ω, we have ∅;
∅� µ(x)=w: τ . �

B.3 Reduction preserves typing

Theorem. For any state (s, µ), Ω and z, if z : τ � (s, µ)� Ω in IS and (s, µ) (s�, µ�) then there exists τ �

such that z : τ �� (s�, µ�)�Ω in IS.

Proof. By induction on the derivation of (s, µ) (s�, µ�), and then by analysis of the typing derivation.

• (s.block-i): we have µ�∆, x : τ and

∅;x : τ � ε� x : τ ∅;∆, x : τ � s �∆�

∅;∆, x : τ � {}x ; s �∆�

then we get ∅;∆, x : τ � s �∆� hence µ�∆, x : τ and ∆, x : τ � (s, µ) �∆�.

• (s.block-ii): we have µ�∆, x :σ

∅;x :σ � s1�x : τ ∅;∆, x : τ � s2 �∆�

∅;∆, x :σ � {s1}x ; s2 �∆�

By induction hypothesis on x : σ � (s1, µ) � x : τ , we obtain x : σ � � (s1
�
, µ

�) � x : τ which gives us ∅; x :
σ �� s1

� � x : τ and µ
��∆, x :σ �. We can build the following typing derivation to conclude:

∅;x :σ �� s1
� � x : τ ∅;∆, x : τ � s �∆�

∅;∆, x :σ �� {s1�}x ; s2 �∆�

• (s.var-i): we have µ�Ω

∅;Ω� e: τ ∅;Ω, y: τ � ε�Ω

∅;Ω�var y e; ε�Ω
then we get ∅;Ω� ε�Ω.

• (s.var-ii): we have µ�∆ and

∅;∆� e: τ ∅;∆, y: τ � s�Ω y Ω

∅;∆�var y e; s�Ω

By Lemma B.4, µ�∆ and ∅;∆ � e: τ and e=µ w implies ∅; ∅ � w: τ . By definition of store typing, (µ,
y←w)�∆, y: τ . By induction hypothesis, since ∆, y: τ � (s, (µ, y←w))�Ω is derivable, we obtain Γ,
y: σ � (s�, (µ�

, y← w
�))�Ω which implies ∅; Γ, y: σ � s

� � Ω with (µ�
, y← w

�) = Γ, y: σ. This last asser-
tion trivially implies ∅; Γ � w

�: σ by definition of store typing. We can then build the following typing
derivation to conclude:

∅;Γ�w
�:σ ∅;Γ, y:σ � s

��Ω y Ω

∅;Γ�var y w �; s��Ω

• (s.assign): we have µ�∆, y :σ and

∅;∆, y : σ � e: (τ ) ∅;∆, y : τ � s �∆�

∅;∆, y :σ � y e; s �∆�
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then we get ∅;∆, y : τ � s �∆�. By Lemma B.4, µ�∆, y : σ and ∅;∆, y :σ � e: (τ ) and e=µ (w) implies
∅; ∅�w : τ . Then, by definition of store typing, we obtain µ[y ←w ]�∆, y : τ .

• (s.inc): we have µ�∆, y:nat and
∅;∆, y:nat� s�∆�

∅;∆, y:nat� inc(y); s�∆�

then

∅;∆, y:nat� q+1:nat ∅;∆, y:nat� s�∆�

∅;∆, y:nat� y q+1; s�∆�

• (s.dec): similar to above.

• (s.call): we have µ�∆, r :ω and

∅;∆, r :ω � p:proc (in τ ;out σ ) ∅;∆, r :ω � e : τ ∅;∆, r :σ � s�∆�

∅;∆, r :ω � p(e , r ); s�∆�

By Lemma B.4, µ�∆, r : ω and ∅;∆, r : ω � e : τ and e =µ w implies ∅; ∅ � w : τ . Still by Lemma B.4,
µ � ∆, r : ω and ∅; ∆, r : ω � p: proc(in τ ; out σ ) and p =µ proc(in y ; out x){s�}x implies ∅;
∅�proc(in y ;out x ){s}x :proc(in τ ;out σ ), that is

z ∅ ∅; y :σ ;x :unit� s
�� x :σ

∅; ∅�proc (in y ;out x ){s�}x :proc(in τ ;out σ)

By Lemmas B.1 and B.2, ∅; y : σ ; x : unit � s
� � x : σ and ∅; ∅ � w : τ implies ∅; r : unit � s

�[y ← w ][x

r ]� r : σ . By definition of store typing, we have µ[r ← ∗ ]�∆, r : unit and we can then build the fol-
lowing typing derivation to conclude:

∅; r :unit� s
�[y ←w ][x r ]� r :σ ∅;∆, r :σ � s�∆�

∅;∆, r :unit� {s�[y ←w ][x r ]}x ; s�∆�

• (s.cst): we have µ�∆ and
∅;∆� e: τ y: τ ;∆� s�Ω

∅;∆� cst y= e; s�Ω

By Lemma B.4, µ �∆ and ∅; ∆ � e: τ and e =µ w implies ∅; ∅ � w: τ . By Lemma B.1, y: τ ;∆ � s � Ω
and ∅; ∅�w: τ implies ∅;∆� s[y←w]�Ω.

• (s.for-i): we have µ�∆, x :σ and

∅;∆, x :σ � e:nat y:nat;x :σ � s� x :σ ∅;∆, x :σ � s
��∆�

∅;∆, x :σ � for y 0 until e {s}x ; s��∆�

We have immediately ∅;∆, x :σ � s
��∆�.

• (s.for-ii): we have µ�∆, x :σ and

∅;∆, x :σ � e:nat y:nat;x :σ � s� x :σ ∅;∆, x :σ � s
��∆�

∅;∆, x :σ � for y 0 until e {s}x ; s��∆�

By Lemma B.1, y: nat; x : σ � s� x : σ and ∅; ∅ � q̄ : nat implies ∅; x : σ � s[y← q̄ ]� x : σ . We can then
build the following typing derivation to conclude:

∅;∆, x :σ � q̄ :nat y:nat; x :σ � s� x : σ ∅;x :σ � s[y← q̄ ]� x : σ

∅;x :σ � for y 0 until q̄ {s}x; s[y← q̄ ]� x : σ ∅;∆, x :σ � s��∆�

∅;∆, x :σ � {for y 0 until q̄ {s}x; s[y← q̄ ]}x; s��∆�

�
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B.4 Progress

Proposition. For any state (s, µ), Ω and z, if z : τ � (s, µ) � Ω in IS then either s= ε and no more reduc-
tion can occur, or there is a state (s�, µ�) such that (s, µ) (s�, µ�).

Proof. By induction on z : τ � (s, µ)�Ω.

• s≡ ε: then we are in the first case.

• s≡ (cst y = e; s1): if e≡ x then by definition of state typing, x ∈ dom(µ) ; we then have ((cst y = e;
s1), µ) (s1[y← ϕµ(e)], µ)).

• s ≡ (var y e; s1): if e ≡ x then by definition of state typing, x ∈ dom(µ) ; by induction hypothesis
on z : τ , y: τ � (s1, (µ, y← ϕµ(e)))�Ω, y: τ �, we have either s1≡ ε or (s1, (µ, y← ϕµ(e))) (s1

�
, (µ�

, y←
w

�)) ; in the first case, we have ((var y e; ε), µ) (ε, µ), and in the second case we have ((var y

e; s1), µ) ((var y w
�; s1

� ), µ�).

• s≡ ({s1}z �; s2): by induction hypothesis on z �: σ � (s1, µ) � z �: σ �, we have either s1 ≡ ε or (s1, µ)
(s1

�
, µ

�) ; in the first case, we have (({}z �; s2), µ) (s2, µ), and in the second case we have (({s1}z �;
s2), µ) (({s1�}z �; s2), µ�).

• s ≡ (inc(y); s1): by definition of state typing, y ∈ dom(µ) ; we have ((inc(y); s1), µ) ((y q+1;
s1), µ).

• the case for dec is similar to inc.

• s≡ (y e; s1): if e≡ x then by definition of state typing, x ∈ dom(µ), hence e=µ (w) can always be
derived ; we have ((y e; s1), µ) (s1, µ[y ←w ]).

• s ≡ (p(e ; r ); s1): if ei ≡ x then by definition of state typing, x ∈ dom(µ), similarly for p ; we have
((p(e ; r ); s), µ) (({s�[y ←w ][z r ]}r ; s), µ[r ←∗ ]).

• s ≡ (for y 0 until e {s1}z �; s2): if e ≡ x then by definition of state typing, x ∈ dom(µ) ; either
e=µ 0̄ and ((for y 0 until e {s1}z �; s2), µ) (s2, µ), or e µ 0̄ and ((for y 0 until e {s1}z �; s2),
µ) (({for y 0 until q̄ {s1}z �; s1[y← q̄ ]}z �; s2), µ). �

B.5 Expressiveness

Definition B.5. The translation of a type τ ∈ΣFS into a type τ
�∈ΣFS is defined by the following rules:

nat� = nat

unit� = unit

(σ→ τ )� = σ
�→ τ

�

(τ1× × τn)� = (τ1
�× × τn

�)

Proposition B.6. For any functional term t, if Γ� t: τ in FS then Γ�� t
�: τ � in FS.

Proof. Straightforward induction on t. �
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Appendix C Properties of ID(c) and FD(c)

C.1 Alternative dependent type system

We first present in Figure C.1 a different (but equivalent) formulation of the imperative dependent type
system which is easier to deal with when proving properties by induction on sequences.

C.2 Preliminary properties

Lemma C.1. If Γ, x: τ ;Ω� s�Ω� and ∅; ∅ � e: τ in ID then Γ;Ω� s[x← e]�Ω� in ID.

Proof. Straightforward induction on s. �

Lemma C.2. If Γ;x: τ ,Ω� s� x:σ,Ω� in ID then Γ; y: τ ,Ω� s[x y]� y:σ ,Ω� in ID.

Proof. Straightforward induction on s. �

Lemma C.3. If Γ;Ω� s�Ω� in ID then for any x:σ, Γ, x:σ;Ω� s�Ω� and Γ;Ω, x:σ � s�Ω� in ID.

Proof. Straightforward induction on the typing derivation. �

Lemma C.4. If µ�Ω and ∅;Ω� e: τ in ID and e=µw, then we have ∅; ∅ �w: τ in ID.

Proof. The case e = w is trivial and if e is some variable x ∈ Ω then by definition of µ � Ω, we have ∅;
∅� µ(x)=w: τ . �

C.3 Translation from ID to FD

Theorem. (Soundness for ID). For any environments Γ and Ω, any expression e, any sequence s we have:

− Γ;Ω� e: τ in ID implies Γ�
,Ω�� e

�: τ� in FD.

− Γ;Ω� s� z :σ in ID implies Γ�
,Ω�� (s)z

� :σ� in FD.

Proof. We proceed by induction on the typing derivation:

• (t.env)
y: τ ∈Γ,Ω

Γ;Ω� y: τ
Indeed,

y: τ�∈Γ�
,Ω�

Γ�,Ω�� y: τ�

• (t.num)

Γ;Ω� q̄ :nat(sq(0))
Indeed,

Γ�
,Ω�� 0:nat(0)

Γ�,Ω��S
q(0):nat(sq(0))

• (t.tuple)
Γ;Ω� e : τ [u/ı ]

Γ;Ω� (e ): ∃ (τ )
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x: τ ∈Γ;Ω

Γ;Ω� x: τ
(t.env)

Γ;Ω� q̄ :nat(sq(0))
(t.num)

�En=m

Γ;Ω� ∗ :n=m
(t.equal)

Γ;Ω� e : τ [u/ı ]

Γ;Ω� (e ):∃ (τ )
(t.tuple)

z ∅ Γ, y :σ ; z :�� s� z : τ

Γ;Ω�proc (in y ; out z ){s}z :proc ∀ı (in σ ;out τ )
(t.proc)∗

Γ;Ω� e�: τ [n/i] Γ;Ω� e:n=m

Γ;Ω� e�: τ [m/i]
(t.subst-i)

Γ;Ω� s�Ω�[n/i] Γ;Ω� e:n=m

Γ;Ω� s�Ω�[m/i]
(t.subst-ii)

Γ;Ω,Ω�� ε�Ω�
(t.empty)

Γ;Ω� e: τ Γ, y: τ ;Ω� s�Ω�

Γ;Ω� cst y= e; s �Ω�
(t.cst)

Γ;Ω� e: τ Γ;Ω, y: τ � s�Ω� y Ω�

Γ;Ω�var y e; s �Ω�
(t.var)

Γ;x : τ � s� x : σ Γ;Ω, x : σ � s��Ω�

Γ;Ω, x : τ � {s}x; s��Ω�
(t.block)

Γ;Ω, y:nat(s(n))� s�Ω�

Γ;Ω, y:nat(n)� inc(y); s�Ω�
(t.inc)

Γ;Ω, y:nat(p(n))� s�Ω�

Γ;Ω, y:nat(n)�dec(y); s�Ω�
(t.dec)

Γ;Ω, y :σ � e:∃ı (τ ) Γ;Ω, y : τ � s�Ω�

Γ;Ω, y :σ � y e; s�Ω�
(t.assign)∗

Γ;Ω, x :σ [0/i]� e:nat(n) Γ, y:nat(i);x : σ � s� x :σ [s(i)/i] Γ;Ω, x :σ [n/i]� s��Ω�

Γ;Ω, x : σ [0/i]� for y 0 until e {s}x ; s��Ω�
(t.for)∗

Γ;Ω, r :ω � p:proc ∀ı (in σ ;out τ ) Γ;Ω, r :ω � e :σ [u/ı ] Γ;Ω, r : τ [u/ı ]� s�Ω�

Γ;Ω, r :ω � p(e ; r ); s�Ω�
(t.call)

∗where ı FV(Γ) in (t.proc) and i FV(Γ) in (t.for)
and ı FV(Γ,Ω,Ω�) in (t.assign)

Figure C.1. Alternative imperative dependent type system

Indeed,
Γ,Ω� e

�: τ �[u/ı ]

Γ,Ω� e
�: ∃ (τ )

• (t.subst-i)
Γ;Ω� e

�: τ [n/i] Γ;Ω� e:n=m

Γ;Ω� e�: τ [m/i]
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Indeed,

Γ�
,Ω�� e

��: τ [n/i] Γ�
,Ω�� e

�:n=m

Γ�,Ω�� e��: τ [m/i]
• (t.equal)

�E n=m

Γ;Ω� ∗ :n=m

Indeed,
�E n=m

Γ�,Ω�� () :n=m

• (t.subst-ii)
Γ;Ω� s� z :σ [n/i] Γ;Ω� e:n=m

Γ;Ω� s� z :σ [m/i]
Indeed,

Γ�
,Ω�� (s)z

� :σ�[n/i] Γ;Ω� e
�:n=m

Γ�,Ω�� (s)z
� :σ �[m/i]

• (t.empty)

Γ;Ω, z :σ � ε� z : σ
Indeed,

Γ,Ω, z :σ�� z :σ�

• (t.cst)
Γ;Ω� e: τ Γ, y: τ ;Ω� s� z :σ

Γ;Ω� cst y= e; s � z :σ
Indeed,

Γ�
,Ω�� e

�: τ� Γ�
, y: τ�,Ω�� (s)z

� :σ �

Γ�,Ω�� let y= e� in (s)z
� : σ�

• (t.var)
Γ;Ω� e: τ Γ;Ω, y: τ � s� z :σ y z

Γ;Ω�var y e; s � z :σ

Indeed, by the substitution lemma,

Γ�
,Ω�� e

�: τ� Γ�
, y: τ�,Ω�� (s)z

� :σ �

Γ�,Ω�� (s)z
� [e�/y] :σ�

• (t.block)
Γ;x : τ � s� x :σ � Γ;Ω, x :σ �� s

�� z :σ

Γ;Ω, x : τ � {s}x ; s�� z :σ
Indeed,

Γ�
, x : τ �� (s)x

� :σ �� Γ�
,Ω�

, x :σ ��� (s�)z
� :σ�

Γ�,Ω�, x : τ �� let x =(s)x
� in (s�)z

� :σ�

• (t.inc)
Γ;Ω, y:nat(s(n))� s� z :σ

Γ;Ω, y:nat(n)� inc(y); s� z :σ
Indeed,

Γ�
,Ω�

, y:nat(n)� succ: ∀x(nat(x)⇒nat(s(x))) Γ�
,Ω�

, y:nat(n)� y:nat(n)

Γ�,Ω�, y:nat(n)� succ(y):nat(s(n))
and

Γ�
,Ω�

, y:nat(n)� succ(y):nat(s(n)) Γ�
,Ω�

, y:nat(s(n))� (s)z
� :σ�

Γ�,Ω�, y:nat(n)� let y= succ(y) in (s)z
� :σ �

• (t.dec)
Γ;Ω, y:nat(p(n))� s� z :σ

Γ;Ω, y:nat(n)�dec(y); s� z :σ
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Indeed,

Γ�
,Ω�

, y:nat(n)� y:nat(n)

Γ�,Ω�, y:nat(n)�pred(y):nat(p(n)) Γ�
,Ω�

, y:nat(p(n))� (s)z
� :σ�

Γ�,Ω�, y:nat(n)� let y=pred(y) in (s)z
� :σ�

• (t.assign)

Γ;Ω, y :σ �� e: ∃ (τ ) Γ;Ω, y : τ � s� z :σ

Γ;Ω, y :σ �� y e; s� z :σ

with  FV(Γ,Ω,σ). Indeed,

Γ�
,Ω�

, y :σ ��� e
�: ∃ (τ �) Γ�

,Ω�
, y : τ �� (s)z

� :σ �

Γ�,Ω�, y :σ ��� let y = e� in (s)z
� :σ�

since  FV(Γ�
,Ω�

,σ
�).

• (t.for)

Γ;Ω, x :σ [0/i]� e:nat(n) Γ, y:nat(i);x :σ � s�x :σ [s(i)/i] Γ;Ω, x :σ [n/i]� s
�� z :σ �

Γ;Ω, x :σ [0/i]� for y 0 until e {s}x ; s�� z :σ �

with i FV(Γ). Indeed,

Γ�
,Ω�

, x :σ�[0/i]� e
�:nat(n) Γ�

,Ω�
, x :σ�[0/i]� x : (σ�[0/i]) Γ�

, y:nat(i), x :σ�� (s)x
� : (σ�[s(i)/i])

Γ�,Ω�, x :σ�[0/i]� rec(e�, x ,λy.λx.(s)x
� ): (σ �[n/i])

since i FV(Γ�), and then

Γ�
,Ω�

, x : σ�[0/i]� rec(e�, x ,λy.λx.(s)x
� ): (σ�[n/i]) Γ�

,Ω�
, x :σ �[n/i]� (s�)z

� :σ ��

Γ�,Ω�, x :σ�[0/i]� let x = rec(e�, x ,λy.λx.(s)x
� ) in (s�)z

� :σ ��

• (t.proc)

z ∅ Γ, y : σ ; z :�� s� z : τ

Γ;Ω�proc (in y ;out z ){s}z :proc ∀ı (in σ ;out τ )

with ı FV(Γ). Indeed,
Γ�

, y :σ�
, z :�� (s)z

� : τ �

Γ�, y :σ�� (s)z
� [()/z ]: τ �

Γ��λy .(s)z
� [()/z ]: ∀ı (σ �⇒ τ

�)

Γ�,Ω��λy .(s)z
� [()/z ]: ∀ı (σ�⇒ τ

�)
since ı FV(Γ�).

• (t.call)

Γ;Ω, r :ω � p:proc ∀ı (in τ ;out σ ) Γ;Ω, r :ω � e : τ [u/ı ] Γ;Ω, r :σ [u/ı ]� s� z :σ �

Γ;Ω, r :ω � p(e ; r ); s� z :σ �

Indeed,
Γ�

,Ω�
, r :ω�� p

�: ∀ı (τ �⇒ σ
�) Γ�

,Ω�
, r :ω�� e

�: (τ �)[n/ı ]

Γ�,Ω�, r :ω�� (p� e
�):σ �[n/ı ]

and then

Γ�
,Ω�

, r :ω�� (p� e
�):σ�[n/ı ] Γ�

,Ω�
, r :σ�[n/ı ]� (s)z

� :σ ��

Γ�,Ω�, r :ω�� let r = p� e
� in (s)z

� :σ ��

�
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C.4 Translation from FD to ID

Notation C.5. The following typing rules are derivable.

Γ;Ω, y :�� s�Ω�

Γ;Ω�var y ; s �Ω�

Γ;Ω�w : τ Γ;Ω, y : τ � s�Ω�

Γ;Ω�var y w ; s �Ω�

Γ, y : τ ;Ω, z : τ � s�Ω�

Γ;Ω, z : τ � cst y = z ; s �Ω�

Γ;Ω, y :σ �w : τ Γ;Ω, y : τ � s�Ω�

Γ;Ω, y :σ � y w ; s�Ω�

Lemma C.6. For all t∈Ln, if Γ� t: τ then τ =(σ1∧ ∧ σn) for some σ1, ,σn.

Proof. By induction on t∈Ln.

• t≡ v ∈Ln: by definition of v ∈Ln, we have v= (w1, , wn), hence the typing derivation of Γ� v: τ ends
with:

Γ�w1:σ1[m/ı ] Γ�wn:σn[m/ı ]

Γ� (w1, , wn): ∃ı .(σ1∧ ∧ σn)

• t≡ let x = u
� in u ∈Ln for any u

�: by definition, we have in all cases u ∈Ln. By induction hypothesis,
we have Γ�u: (σ1∧ ∧σn) and the typing derivation of t ends with:

Γ� u
�: ∃ .τ Γ, x : τ �u: (σ1∧ ∧σn)

Γ� let x = u� in u: (σ1∧ ∧ σn)
�

Theorem.

• Given a term t∈Ln such that Γ � t: (σ1∧ ∧ σn) in FD with Γ, σ ∈ΣFD and a fresh mutable variable
tuple (r1, , rn) of any type σ �∈ΣID we have Γ�; r :σ �� tr

� � (r1:σ1
�
, , rn:σn�) in ID.

• Given a value v ∈ V such that Γ � v: σ in FD with Γ, σ ∈ ΣFD, for any environment Ω we have Γ�;
Ω� v

�:σ� in ID.

Proof. By mutual induction on Γ� t:σ and Γ� v:σ, and by case analysis of the translation.

• x
�= x

x:σ ∈Γ

Γ� x:σ
Indeed,

x:σ�∈Γ�

Γ�;Ω� x:σ�

• (Sn(0))�= n̄

Γ� 0:nat(0)

Γ�Sn(0):nat(sn(0))
Indeed,

Γ�;Ω� n̄ :nat(sn(0))
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• ()�= ∗

Γ� (): (n=m)
Indeed,

Γ�;Ω� ∗ : (n=m)

• (λx .t)�=proc (in x ;out z ) {tz� }z where z =(z1, , zm) and t∈Lm.

Γ, x : τ � t:σ

Γ�λx .t: ∀ı (τ ⇒σ )

With ı FV(Γ). By lemma C.6, t ∈ Lm and Γ, x : τ � t: σ implies σ = (σ1 ∧ ∧ σm). By induction

hypothesis, Γ, x : τ � t: σ implies Γ�
, x : τ �; z : σ �� tz

� � z : σ� for any σ �, hence Γ�
, x : τ �; z :�� tz

� � z : σ�.
Since ı FV(Γ),

Γ�
, x : τ �; z :�� tz

� � z :σ�

Γ�;�proc (in x ;out z ) {tz� }z :proc ∀ı (in τ
�;out σ

�)

and, for any Ω, Γ�;Ω�proc (in x ;out z ) {tz� }z :proc ∀ı (in τ
�;out σ

�), by weakening (Lemma C.3).

• (w)r
� = r w

�;
Γ�w1:σ1[n/ı ] Γ�wm:σm[n/ı ]

Γ�w : ∃ı .σ

Indeed, by induction hypothesis, Γ � wi: σi[n/ı ] implies Γ�; Ω � wi
�: σi

�[n/ı ] for any Ω, hence Γ�; r :
σ ��wi

�:σi
�[n/ı ]. Then

Γ�; r :σ ��w
�:σ �[n/ı ] Γ�; r :σ�[n/ı ]� ε� r : ∃ı .σ�

Γ�; r :σ �� r w
�;� r : ∃ı .σ �

• v
�= v

�

Γ� v: τ [n/i] Γ� v
�: (n=m)

Γ� v: τ [m/i]

Indeed, by induction hypothesis, Γ � v: τ [n/i] implies Γ�; Ω � v
�: τ�[n/i] and Γ � v

�: (n=m) implies Γ�;
Ω� v

��: (n=m) for any Ω, then
Γ�;Ω� v

�: τ�[n/i] Γ�;Ω� v
��: (n=m)

Γ�;Ω� v�: τ�[m/i]
• (t)r

� =(t)r
�

Γ� t: ∃ .σ [n/i] Γ� v
�: (n=m)

Γ� t: ∃ .σ [m/i]

Indeed, by induction hypothesis, Γ � t: σ [n/i] implies Γ�; r : τ � � (t)r
� � r : ∃ .σ�[n/i] for any τ � ; Γ � v

�:
(n=m) implies Γ�;Ω� v

��: (n=m) for any Ω, hence Γ�; r : τ �� v
��: (n=m) ; then

Γ�; r : τ �� (t)r
� � r : ∃ .σ �[n/i] Γ�; r : τ �� v

��: (n=m)

Γ�; r : τ �� (t)r
� � r : ∃ .σ�[m/i]

• (let y=w in u)r
� = cst y=w

�; (u)r
�

Γ�w: τ Γ, y: τ � u: ∃ı .σ
Γ� let y=w in u: ∃ı .σ

Indeed, by induction hypothesis:

◦ Γ�w: τ implies Γ�;Ω�w
�: τ� for any Ω, hence Γ�; r :σ ��w

�: τ� ;

◦ Γ, y: τ � u: ∃ı .σ implies Γ�
, y: τ�; r :σ �� ur

� �∃ı .r :σ�.

Then
Γ�; r :σ ��w

�: τ� Γ�
, y: τ�; r :σ �� ur

� � ∃ı .r :σ �

Γ�; r :σ �� cst y=w�; (u)r
� �∃ı .r :σ�
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• (let y= succ(w) in u)r
� = var z w

�; inc(z); cst y= z; (u)r
�

Γ� succ: ∀x(nat(x)⇒nat(s(x))) Γ�w:nat(n)

Γ� succ(w):nat(s(n)) Γ, y:nat(s(n)))� u: ∃ı .σ
Γ� let y= succ(w) in u: ∃ı .σ

Indeed, by induction hypothesis:

◦ Γ�w:nat(n) implies Γ�;Ω�w
�:nat(n) for any Ω, hence Γ�; r :σ ��w

�:nat(n) ;

◦ Γ, y: nat(s(n)) � u: ∃ı .σ implies Γ, y: nat(s(n)); r : σ � � u� ∃ı .r : σ�, and, by Lemma C.3, Γ�
, y:

nat(s(n)); r :σ �, z:nat(s(n))� (u)r
� � ∃ı .r :σ�.

Then

Γ�
, y:nat(s(n)); r :σ �, z:nat(s(n))� (u)r

� � ∃ı .r :σ�

Γ�; r :σ �, z:nat(s(n))� cst y= z; (u)r
� �∃ı .r :σ�

Γ�; r :σ �, z:nat(n)� inc(z); cst y= z; (u)r
� �∃ı .r :σ�

and
Γ�; r :σ ��w

�:nat(n) Γ�; r :σ �, z:nat(n)� inc(z); cst y= z; (u)r
� �∃ı .r :σ�

Γ�; r :σ ��var z w�; inc(z); cst y= z; (u)r
� � ∃ı .r :σ �

• (let y=pred(w) in u)r
� = var z w

�; dec(z); cst y= z; (u)r
�

Γ�w:nat(n)

Γ�pred(w):nat(p(n)) Γ, y:nat(p(n))�u: ∃ı .σ
Γ� let y= succ(w) in u: ∃ı .σ

Indeed, by induction hypothesis:

◦ Γ�w:nat(n) implies Γ�;Ω�w
�:nat(n) for any Ω, hence Γ�; r :σ ��w

�:nat(n) ;

◦ Γ, y: nat(p(n)) � u: ∃ı .σ implies Γ, y: nat(p(n)); r : σ � � u� ∃ı .r : σ�, and, by Lemma C.3, Γ�
, y:

nat(p(n)); r :σ �, z:nat(p(n))� (u)r
� � ∃ı .r :σ �.

Then

Γ�
, y:nat(p(n)); r :σ �, z:nat(p(n))� (u)r

� � ∃ı .r :σ�

Γ�; r :σ �, z:nat(p(n))� cst y= z; (u)r
� � ∃ı .r :σ�

Γ�; r :σ �, z:nat(n)�pred(z); cst y= z; (u)r
� � ∃ı .r :σ�

and
Γ�; r :σ ��w

�:nat(n) Γ�; r :σ �, z:nat(n)�pred(z); cst y= z; (u)r
� � ∃ı .r :σ�

Γ�; r :σ ��var z w�; pred(z); cst y= z; (u)r
� �∃ı .r :σ�

• (let x = rec(w, w , λi.λy .t) in u)r
� = var z w ; for i 0 until w� {cst y = z ; tz

� }z ; cst x = z ;
(u)r

�

Γ�w:nat(n) Γ�w : τ [0/j] Γ, i:nat(j), y : τ � t: τ [s(j)/j]

Γ� rec(w,w ,λi.λy .t): τ [n/j] Γ, x : τ [n/j]� u: ∃ı .σ
Γ� let x = rec(w,w ,λi.λy .t) in u: ∃ı .σ

with j FV(Γ). Indeed, by induction hypothesis:

◦ Γ�w:nat(n) implies Γ�;Ω�w
�:nat(n) for any Ω, hence Γ�; r :σ �, z : τ �[0/j]�w

�:nat(n) ;

◦ Γ�w : τ [0/j] implies Γ�;Ω�w
�: τ �[0/j] for any Ω, hence Γ�; r :σ ��w

�: τ �[0/j] ;

◦ Γ, x : τ [n/j]� u:σ implies Γ�
, x : τ �[n/j]; r :σ �� (u)r

� � ∃ı .r :σ �, and, by Lemma C.3, Γ�
, x : τ �[n/

j]; r :σ �, z : τ �[n/j]� (u)r
� � ∃ı .r :σ� ;

◦ Γ, i: nat(j), y : τ � t: τ [s(j)/j] implies Γ�
, i: nat(j), y : τ �; z : τ � � tz

� � z : τ �[s(j)/j] for any τ �,
hence Γ�

, i:nat(j), y : τ �; z : τ �� tz
� � z : τ �[s(j)/j].
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Then

π1=
Γ�

, i:nat(j), y : τ �; z : τ �� tz
� � z : τ �[s(j)/j]

Γ�, i:nat(j); z : τ �� cst y = z ; tz
� � z : τ �[s(j)/j]

and

π2=
Γ�

, x : τ �[n/j]; r :σ �, z : τ �[n/j]� (u)r
� � ∃ı .r :σ �

Γ�; r :σ �, z : τ �[n/j]� cst x = z ; (u)r
� � ∃ı .r :σ�

and

π=
Γ�; r :σ �, z : τ �[0/j]�w

�:nat(n) π1 π2

Γ�; r :σ �, z : τ �[0/j]� for i 0 until w� {cst y = z ; tz
� }z ; cst x = z ; (u)r

� � r :σ�

since j FV(Γ�), and finally

Γ�; r :σ ��w
�: τ �[0/j] π

Γ�; r :σ ��var z w ; for i 0 until w� {cst y = z ; tz
� }z ; cst x = z ; (u)r

� �∃ı .r :σ�

• (let x =w w in u)r
� = var z ; w

�(w�; z ); cst x = z ; (u)r
�

Γ�w: ∀ı (τ ⇒∃ (τ �)) Γ�w : τ [n/ı ]

Γ�w w : ∃ (τ �[n/ı ]) Γ, x : τ �[n/ı ]�u: ∃κ .σ
Γ� let x =w w in u: ∃κ .σ

with  FV(Γ,σ ). Indeed, by induction hypothesis:

◦ Γ �w: ∀ı (τ ⇒∃ (τ �)) implies Γ�;Ω �w
�: proc ∀ı (in τ

�; ∃ out τ ��) for any Ω, hence Γ�; r : σ �,

z :��w
�:proc ∀ı (in τ

�; ∃ out τ ��) ;

◦ Γ�w : τ [n/ı ] implies Γ�;Ω�w
�: τ �[n/ı ] for any Ω, hence Γ�; r :σ �, z :��w

�: τ �[n/ı ] ;

◦ Γ, x : τ �[n/ı ]� u: ∃κ .σ implies Γ�
, x : τ ��[n/ı ]; r : σ �� (u)r

� � ∃κ .r : σ�, and, by Lemma C.3, Γ�
, x :

τ ��[n/ı ]; r :σ �, z : τ ��[n/ı ]� (u)r
� � ∃κ .r :σ �.

Then

π=
Γ�

, x : τ ��[n/ı ]; r :σ �, z : τ ��[n/ı ]� (u)r
� � ∃κ .r :σ�

Γ�; r :σ �, z : τ ��[n/ı ]� cst x = z ; (u)r
� � ∃κ .r :σ �

and

Γ�; r :σ �, z :��w
�:proc ∀ı (in τ

�; ∃ out τ ��) Γ�; r :σ �, z :��w
�: τ �[n/ı ] π

Γ�; r :σ �, z :��w�(w�; z ); cst x = z ; (u)r
� � ∃κ .r :σ�

Γ�; r :σ ��var z ; w�(w�; z ); cst x = z ; (u)r
� � ∃κ .r :σ �

since  FV(Γ�
,σ �,σ).

• (let x = t in u)r
� = var z ; {(t)z� }z ; cst x = z ; (u)r

�

Γ� t: ∃κ .τ Γ, x : τ � u: ∃ı .σ
Γ� let x = t in u: ∃ı .σ

Indeed, by induction hypothesis:

◦ Γ � t: ∃κ .τ implies Γ�; z : τ � � (t)z
� � ∃κ .z : τ � for any τ �, hence, by Lemma C.3 Γ�; r : σ �, z :

�� (t)z
� � ∃κ .z : τ � ;

◦ Γ, x : τ � u: ∃ı .σ implies Γ�
, x : τ �; r : σ � � (u)r

� � ∃ı .r : σ�, and, by Lemma C.3, Γ�
, x : τ �; r : σ �, z :

τ
�� (u)r

� �∃ı .r :σ�.

Then

Γ�; r :σ �, z :�� (t)z
� � ∃κ .z : τ �

Γ�
, x : τ �; r :σ �, z : τ �� (u)r

� �∃ı .r :σ�

Γ�; r : σ �, z : τ �� cst x = z ; (u)r
� �∃ı .r :σ�

Γ�; r :σ �, z :�� {(t)z� }z ; cst x = z ; (u)r
� � ∃ı .r :σ �

Γ�; r :σ ��var z ; {(t)z� }z ; cst x = z ; (u)r
� �∃ı .r :σ�
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�

C.5 Expressiveness

Definition C.7. The translation of a type τ ∈ΣFDc into a type τ
�∈ΣFDc is defined by the following rules:

nat(n)� = nat(n)

(n=m)� = (n=m)

(∀ı (σ⇒ τ ))� = ∀ı (σ�⇒ τ
�)

(∃ı (τ1∧ ∧ τn))� = ∃ı (τ1
�∧ ∧ τn

�)

⊥� = ⊥

Proposition C.8. For any functional term t, if Γ� t: τ in FDc then Γ�� t
�: τ � in FDc.

Proof. Straightforward induction on t. �

C.6 CPS translation

Lemma C.9. The following typing rules are derivable in FD:

Γ� u: ϕ

Γ�val u:∇ϕ

Γ�u:∇ϕ Γ, x: ϕ� t:∇ψ

Γ� let val x= u in t:∇ψ

Proof. Indeed,

Γ, z: ϕ⇒ o� z: ϕ⇒ o Γ� u: ϕ

Γ, z: ϕ⇒ o� z u: o

Γ�λz.(z u): (ϕ⇒ o)⇒ o

and,

Γ� u: (ϕ⇒ o)⇒ o

Γ, z: ψ⇒ o� u: (ϕ⇒ o)⇒ o

Γ, x: ϕ� t: (ψ⇒ o)⇒ o

Γ, z: ψ⇒ o, x: ϕ� t: (ψ⇒ o)⇒ o Γ, z: ψ⇒ o, x: ϕ� z: ψ⇒ o

Γ, z: ψ⇒ o, x: ϕ� (t z): o

Γ, z: ψ⇒ o�λx.(t z): ϕ⇒ o

Γ, z: ψ⇒ o� (u λx.(t z)): o

Γ�λz.(u λx.(t z)): (ψ⇒ o)⇒ o

�

Lemma C.10. Abbreviations callcc and throw are typable in FD as follows:

callcc : ((ϕ◦⇒ o)⇒∇ϕ
◦)⇒∇ϕ

◦

throw : ((ϕ◦⇒ o)∧ ϕ
◦)⇒∇ψ

◦

Proof. Indeed (with Γ�=Γ, h: (ϕ◦⇒ o)⇒ ((ϕ◦⇒ o)⇒ o), k: ϕ◦⇒ o),

Γ��h: (ϕ◦⇒ o)⇒ ((ϕ◦⇒ o)⇒ o) Γ�� k: ϕ◦⇒ o

Γ�� (h k): (ϕ◦⇒ o)⇒ o Γ�� k: ϕ◦⇒ o

Γ�� (h k k): o

Γ, h: (ϕ◦⇒ o)⇒ ((ϕ◦⇒ o)⇒ o)�λk.(h k k): (ϕ◦⇒ o)⇒ o

Γ�λh.λk.(h k k): ((ϕ◦⇒ o)⇒ ((ϕ◦⇒ o)⇒ o))⇒ (ϕ◦⇒ o)⇒ o
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and,

Γ, k: ϕ◦⇒ o, a: ϕ◦, k �: ψ◦⇒ o� k: ϕ◦⇒ o Γ, k: ϕ◦⇒ o, a: ϕ◦, k �: ψ◦⇒ o� a: ϕ◦

Γ, k: ϕ◦⇒ o, a: ϕ◦, k �: ψ◦⇒ o� k a: o

Γ, k: ϕ◦⇒ o, a: ϕ◦�λk �.(k a): (ψ◦⇒ o)⇒ o

Γ�λ(k, a).λk �.(k a): ((ϕ◦⇒ o)∧ ϕ◦)⇒ (ψ◦⇒ o)⇒ o

�

C.7 Labels and jumps

Proposition. The following typing rules are derivable.

Γ, k:¬σ ; z : τ � s� z :σ Γ;Ω, z :σ � s
��Ω�

Γ;Ω, z : τ � k: {s}z ; s��Ω�

Γ;Ω, z : τ � k:¬σ Γ;Ω, z : τ � e :σ

Γ;Ω, z : τ � jump(k, e )z �Ω�, z :ω �

Proof. Indeed, given the type of callcc and throw, we have

Γ, k:¬σ ; z : τ � s� z :σ

Γ, z �: τ , k:¬σ ; z : τ � s� z :σ

Γ, z �: τ , k:¬σ ; z :�� z z �; s� z :σ

Γ, z �: τ ;Ω, z : τ �proc (in k; out z ) {z z �; s}z :proc (in ¬σ ;out σ) Γ;Ω, z :σ � s
��Ω�

Γ, z �: τ ;Ω, z : τ � callcc(proc (in k;out z ) {z z �; s}z ; z ); s��Ω�

Γ;Ω, z : τ � cst z �= z ; callcc(proc (in k;out z ) {z z �; s}z ; z ); s��Ω�

Γ;Ω, z : τ � k:¬σ Γ;Ω, z : τ � e :σ

Γ;Ω, z : τ � throw(k, e ; z )� z :ω �

�
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Appendix D Examples of imperative programs

In this appendix, we adopt Prawitz style natural deduction for proof trees. Moreover, we will use the substi-
tution rule (in both functional and imperative typing derivations) without explicitly displaying the equations,
but only its number.
To begin with, we recall usual axioms of Peano’s arithmetic for + ,× :

(1) x+0 = x

(2) x+ s(i) = s(x+ i)
(3) x× 0 = 0
(4) x× s(i) = (x× i)+ x

D.1 Multiplication

D.1.1 Multiplication in FD

Let Ds be the derivation:

add : ∀p(nat(p)⇒∀q(nat(q)⇒nat(p+ q))) z:nat(n×u)

(add z): ∀q(nat(q)⇒nat(n× u+ q)) x:nat(n)

(add z x):nat((n× u)+n)

(add z x):nat(n× s(u))
(4)

Then:

y:nat(m)

0:nat(0)

0:nat(n× 0)
(3)

Ds

rec(y, 0,λi.λz.(add z x)):nat(n×m)

λy.rec(y, 0,λi.λz.(add z x)): ∀m(nat(m)⇒nat(n×m))

λx.λy.rec(y, 0,λi.λz.(add z x)): ∀n(nat(n)⇒∀m(nat(m)⇒nat(n×m)))

D.1.2 Multiplication in ID

cst mult =proc (in X,Y ;out Z) { − (X :nat(x), Y :nat(y))[Z:�]
Z 0; | [Z:nat(x× 0)] by (3)

|
for I 0 until Y { | − (I:nat(i))[Z:nat(x× i)]

add(Z,X;Z); | | [Z:nat(x× s(i))] by (4)
}Z; | [Z:nat(x× y)]

|
}Z; (mult :proc ∀x, y(in nat(x),nat(y);out nat(x× y)))

D.2 Factorial

Here follows the equations defining the factorial function:

(1) 0! = s(0)
(2) s(n)! = n!× s(n)
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D.2.1 Factorial in FD

Let Ds be the derivation:

mult : ∀n(nat(n)⇒∀m(nat(m)⇒nat(n×m))) z:nat(u!)

(mult z): ∀m(nat(m)⇒nat(u!×m))

i:nat(u)

s(i):nat(s(u))

(mult z s(i)):nat(u!× s(u))

(mult z s(i)):nat(s(u)!)
(2)

Then:

x:nat(p)

1:nat(s(0))

1:nat(0!)
(1)

Ds

rec(x, 1,λi.λz.(mult z s(i))):nat(p!)

λx.rec(x, 1,λi.λz.(mult z s(i))): ∀n(nat(p)⇒nat(p!))

D.2.2 Factorial in ID

cst fact =proc (in X ;out Z) { − (X :nat(n))[Z:�]
Z 1; | [Z:nat(0!)] by (1)

|
for I 0 until X { | − (I:nat(i))[Z:nat(i!)]

var Y I ; | | [Y :nat(i)]
inc(Y ); | | [Y :nat(s(i))]
mult(Z, Y ;Z); | | [Z:nat(s(i)!)] by (4)

}Z; | [Z:nat(n!)]
|

}Z; (fact :proc ∀n(in nat(n);out nat(n!)))

D.3 Ackermann function

Here follows the equations defining a version of the Ackermann function (from [49]):

(1) a(0, n) = s(n)
(2) a(s(z), 0) = s(s(0))
(3) a(z, a(s(z), u)) = a(s(z), s(u))

D.3.1 Ackermann function in FD

Here follows an annotated version of the proof given in [49]. Let Ds be the derivation:

y:nat(n)

0:nat(0)

S(0):nat(s(0))

S(S(0)):nat(s(s(0)))

S(S(0)):nat(a(s(z), 0))
(2)

f : ∀n(nat(n)⇒nat(a(z, n))) k:nat(a(s(z), u))

(f k):nat(a(z, a(s(z), u)))

(f k):nat(a(s(z), s(u)))
(3)

rec(y, S(S(0)),λj.λk.(f k)):nat(a(s(z), n))

λy.rec(y, S(S(0)),λj.λk.(f k)): ∀n(nat(n)⇒nat(a(s(z), n)))
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Then:

x:nat(m)

y:nat(s(n))

y:nat(a(0, n))
(1)

S(y):nat(a(0, n))

λy.S(y): ∀n(nat(n)⇒nat(a(0, n))) Ds

rec(x,λy.S(y),λi.λf.λy.rec(y, S(S(0)),λj.λk.(f k))): ∀n(nat(n)⇒nat(a(m,n)))

λx.rec(x,λy.S(y),λi.λf.λy.rec(y, S(S(0)),λj.λk.(f k))): ∀m(nat(m)⇒∀n(nat(n)⇒nat(a(m,n))))

D.4 Typing derivations for shift and reset in IDc

D.4.1 Typing derivation for reset

proc(in p;out r)mk{ − (p:proc(in ¬α;out β ,¬β),mk �:¬γ)[r:�,mk :¬γ]
k: { | − (k: cont(α,¬γ))[r:�,mk :¬γ]

cst m=mk ; | | (m:¬γ)
| |

mk proc(in r;out z){ | | − (r:α)[z:�]
jump(k, r,m)z; | | | [z:⊥]

}z; | | [mk :¬α]
| |

var y; | | [y:�]
p(; y)mk; | | [y: β ,mk :¬β]
jump(mk , y)r,mk; | | [r:α,mk :¬γ]

}r,mk; | [r:α,mk :¬γ]
}r,mk; proc(in proc(in ¬α;out β ,¬β),¬γ;out α,¬γ)

D.4.2 Typing derivation for shift

proc(in p;out r)mk{ − (p:proc(in proc(in α,¬β;out γ ,¬β),¬δ;out �,¬�))
− (mk �:¬δ)[r:�,mk :¬δ]

k: { | − (k:¬(α,¬γ))[r:�,mk :¬δ]
| |

proc q(in v;out r)mk{ | | − (v:α,mk �:¬β)[r:�,mk :¬β]
| | |

reset(proc(out z)mk{ | | | − (mk �:¬γ)[z:�,mk :¬γ]
jump(k, v,mk)z,mk; | | | | [z: η,mk :¬η]

}z,mk; | | | proc(in ¬γ;out η ,¬η)
r)mk; | | | [r: γ ,mk :¬β]

}r,mk ; | | (q:proc(in α,¬β;out γ ,¬β))
| |

var y; | | [y:�]
p(q; y)mk; | | [y: �,mk :¬�]
jump(mk , y)r,mk; | | [r:α,mk :¬γ]

}r,mk; | [r:α,mk :¬γ]
}r,mk proc(in proc(in proc(in α,¬β;out γ ,¬β),¬δ;

out �,¬�),¬δ;
out α,¬γ)
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Appendix E Shift and reset in state-passing style

signature CONT = sig

type void
type ’a K = ’a → void

val callcc: (’a K → ’a) → ’a
val throw: ’a K → ’a → ’b

end

functor ShiftReset(Cont : CONT ) = struct

open Cont

val reset : (’a K → ’c ∗ ’c K ) ∗ ’d K → ’a ∗ ’d K =
fn (p ,mk’ ) ⇒

let
val (r ,mk ) = ((),mk’ )
val (r’ ,mk’ ) = (r ,mk )
val (r ,mk ) =

callcc (fn k ⇒
let
val (r ,mk) = (r’ ,mk’ )
val m = mk
val mk = fn r ⇒

let val z = throw k (r ,m)
in z end

val (y ,mk) = p(mk )
val (r ,mk) = throw mk y

in (r ,mk) end)
in (r ,mk) end

val shift : ((’a ∗ ’b K → ’c ∗ ’b K ) ∗ ’d K → ’e ∗ ’e K ) ∗ ’d K → ’a ∗ ’c K =
fn (p ,mk’ ) ⇒

let
val (r ,mk ) = ((),mk’ )
val (r’ ,mk’ ) = (r ,mk )
val (r ,mk ) =

callcc (fn k ⇒
let
val (r ,mk) = (r’ ,mk’ )
val q = fn (v ,mk ) ⇒

let val (r ,mk ) =
reset (fn mk ⇒

let val (z ,mk ) = throw k (v ,mk)
in (z ,mk ) end,mk)

in (r ,mk ) end
val (y ,mk) = p(q ,mk)
val (r ,mk) = throw mk y

in (r ,mk) end)
in (r ,mk) end

end
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