Tristan Crolard 
email: crolard@u-pec.fr
  
Emmanuel Polonowski 
email: polonowski@u-pec.fr
  
  
A program logic for higher-order procedural variables and non-local jumps

Keywords: callcc, continuation, monad, reset, shift, imperative programming, loop, jump, goto

Relying on the formulae-as-types paradigm for classical logic, we define a program logic for an imperative language with higher-order procedural variables and non-local jumps. Then, we show how to derive a sound program logic for this programming language. As a by-product, we obtain a non-dependent type system which is more permissive than what is usually found in statically typed imperative languages. As a generic example, we encode imperative versions of delimited continuations operators shift and reset.

Introduction

In his seminal series of papers [START_REF] Landin | The mechanical evaluation of expressions[END_REF][START_REF] Landin | A correspondence between ALGOL 60 and Church's lambda-notation: part I[END_REF][START_REF] Landin | A correspondence between ALGOL 60 and Church's lambda-notations: Part ii[END_REF], Landin proposed a direct translation of an idealized Algol into the λ-calculus. This translation required to extend the λ-calculus with a new operator J in order to handle nonlocal jumps in Algol. This operator, which was described in detail in [START_REF] Landin | A generalization of jumps and labels[END_REF] (see also [START_REF] Thielecke | An introduction to landin's "a generalization of jumps and labels[END_REF] for an introduction), is the father to all control operators in functional languages (such as the famous call/cc of Scheme [START_REF] Kelsey | Revised 5 report on the algorithmic language Scheme[END_REF] or Standard ML of New Jersey [32]). The syntactic theory of control has subsequently been explored thoroughly by Felleisen [START_REF] Felleisen | The calculi of lambda-nu-cs conversion: a syntactic theory of control and state in imperative higher-order programming languages[END_REF].

A type system for control operators which extends the so-called Curry-Howard correspondence [START_REF] Curry | Combinatory Logic[END_REF][START_REF] Howard | The formulae-as-types notion of constructions[END_REF] to classical logic first appeared in Griffin's pioneering work [START_REF] Griffin | A formulae-as-types notion of control[END_REF], and was immediately generalized to first-order dependent types (and Peano's arithmetic) by Murthy in his thesis [START_REF] Murthy | Classical proofs as programs: How, when, and why[END_REF]. The following years, this extension of the formulas-as-types paradigm to classical logic has then studied by several researchers, for instance in [START_REF] Barbanera | Extracting constructive content from classical logic via control-like reductions[END_REF][START_REF] Rehof | The λ δ -calculus[END_REF][START_REF] De Groote | A simple calculus of exception handling[END_REF][START_REF] Krivine | Classical logic, storage operators and second order λ-calculus[END_REF][START_REF] Parigot | Strong normalization for second order classical natural deduction[END_REF] and many others since.

It is thus tempting to revisit Landin's work in the light of the formulas-as-types interpretation of control. Indeed, it is notoriously difficult to derive a sound program logic for an imperative language with procedures and non-local jumps [START_REF] O'donnell | A critique of the foundations of hoare style programming logics[END_REF], especially in the presence of local variables and higher-order procedures [START_REF] Tennent | Continuations in possible-world semantics[END_REF]. On the other hand, adding first-order dependent types to such an imperative language, and translating type derivations into proof derivations appears more tractable. The difficult to obtain program logic is then mechanically derived. Moreover, this logic permits by construction to deal elegantly with mutable higherorder procedural variables.

As a stepping stone, we focus in this paper on Peano's arithmetic. The corresponding functional language (through the proofs-as-programs paradigm) is thus an extension of Gödel System T [START_REF] Gödel | Über eine bisher noch nicht benützteerweiterung des finiten standpunktes[END_REF] with control operators as described in [START_REF] Murthy | Classical proofs as programs: How, when, and why[END_REF]. We shall use instead a variant which was proposed by Leivant [START_REF] Leivant | Contracting proofs to programs[END_REF][START_REF] Leivant | Intrinsic reasoning about functional programs I: first order theories[END_REF] (and rediscovered independently by Krivine and Parigot in the second-order framework [START_REF] Krivine | Programming with proofs[END_REF]). The main advantage of this variant is that it requires no encoding in formulas (with Gödel numbers) to reason about functional programs. Moreover it can be extended to any other algebraic datatypes (such as lists or trees). In this paper, the control operators are given an indirect semantics through a call-by-value CPS transform (we do not consider any direct style semantics). As noticed in [START_REF] Murthy | Classical proofs as programs: How, when, and why[END_REF], this CPS transformation operates a variant of Kuroda's translation on dependent types [START_REF] Kuroda | Intuitionistische untersuchungen der formalistischen logik[END_REF].

The imperative counterpart of Gödel System T [START_REF] Gödel | Über eine bisher noch nicht benützteerweiterung des finiten standpunktes[END_REF] (called Loop ω ) which was defined by the authors in [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF], is essentially an extension of Meyer and Ritchie's Loop language [START_REF] Meyer | The complexity of loop programs[END_REF] with higher-order procedural variables. Loop ω is a genuine imperative language as opposed to functional languages with imperative features. However, Loop ω is a "pure" imperative language: side-effects and aliasing are forbidden. These restrictions enable simple location-free operational semantics [START_REF] Donahue | Locations considered unnecessary[END_REF]. Moreover, the type system relies on the distinction between mutable and read-only variables to prevent procedure bodies to refer to non-local mutable variables. This property is crucial to guarantee that fix-points cannot be encoded using procedural variables. Since there is no recursivity and no unbounded loop construct in Loop ω , one can prove that all Loop ω programs terminate (note that the expressive power of system T is still attained thanks to mutable higher-order procedural variables).

In this paper, we extend Loop ω with first-order dependent types. This led us in particular to relax the underlying static type system. Indeed, for instance, after the assignment x 0, the type of x is nat(0). The type of x is thus changed by this assignment whenever the former value of x is different from 0. Moreover, the type of x before the assignment does not matter: there is no need to even require that x be a natural number. Pushing this idea to the limit, we obtain a type system for Loop ω where the type of any mutable variable can be changed by an assignment (or a procedure call). Although, this feature seems characteristic of a dynamic language, our type system is fully static. Moreover, since dealing with mutable variables is natural in imperative programming, global variables are easily simulated with usual state-passing style. Besides, the logical meaning of this simulation is perfectly clear.

This above remark suggests that usual static type systems for imperative languages are overly restrictive. Indeed, a pseudo-dynamic type system is quite expressive: typing an imperative program in state-passing style amounts (up to curryfication) to typing its functional image with a parameterised state monad [5]. To capture this expressivity would usually require an effect system on the imperative side [START_REF] Gifford | Integrating functional and imperative programming[END_REF]. Moreover, a pseudo-dynamic type system provides an elegant way to deal with uninitialized variables. Indeed, in a logical type system, a type is not necessarily inhabited and there are thus no default values for arbitrary types. Although it is possible to design a type system which track uninitialized variables, it would be awkward (and meaningless from a logical standpoint). On the other hand, in a pseudo-dynamic type system any mutable variable can be initialized to a default inhabited type with a chosen default value.

Let us summarize the main developments of this paper. We rephrase Landin's translation for a total imperative language featuring higher-order procedures and non-local jumps and then we rely on the Curry-Howard correspondence for classical logic to derive a program logic for this language. To be more specific, we define a framework which includes an imperative language I, a call-by-value functional language F and a retraction between I and F as follows:

• The functional language F, which is our formulation of Gödel System T, is equipped with two usual type systems, a simple type system FS and a dependent type system FD which is akin to Leivant's M1LP [START_REF] Leivant | Contracting proofs to programs[END_REF]. In particular, dependent types include arbitrary formulas of first-order arithmetic.

• The imperative language I (essentially Loop ω from [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF]) is an extension of Meyer and Ritchie's Loop language [START_REF] Meyer | The complexity of loop programs[END_REF] with higher-order procedural variables. Language I is also equipped with two (unusual) type systems, a pseudo-dynamic simple type system IS and a dependent type system ID.

• A compositional translation from I to F is definable [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF]. This translation actually provides a simulation: each evaluation step of an imperative program is simulated by a bounded number of reduction step of its functional image. In this paper, we show that this translation is type-preserving in both the pseudo-dynamic and dependent frameworks.

• We characterize the shape of the functional image of an imperative program by : these functional terms are monadic normal forms [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF] (also called A-normal forms [START_REF] Flanagan | The essence of compiling with continuations[END_REF]). A reverse translation from monadic normal forms of F to I is then defined, which is also compositional and type-preserving in both the pseudo-dynamic and dependent frameworks.

• We show that , forms a retraction. Consequently, from any dependently-typed functional program (and thus from any proof in Heyting arithmetic) we can derive an imperative program which implements the corresponding dependent type.

• F c is then defined as an extension of F with control operators callcc and throw (taken from [32]). The semantics of F c is given by a call-by-value CPS-transformation into F. Following [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF], since the functional image of an imperative program is in monadic normal form, we factor the CPS transformation through Moggi's computational meta-language [START_REF] Moggi | An abstract view of programming languages[END_REF][START_REF] Moggi | Notions of computation and monads[END_REF].

• From F c we derive I c which extends I with two primitive procedures callcc and throw. Although we do not pretend that these control operators are natural in an imperative language, they can be used to define more conventional statements which have to interact with the control flow. It is of course not possible to encode arbitrary goto statements since our programming language is total.

• Finally, as a generic example, by combining a simulated global state with callcc and throw, we show how to encode shift and reset [START_REF] Danvy | A functional abstraction of typed contexts[END_REF] (and thus any representable monad) using Filinski's decomposition [START_REF] Filinski | Representing monads[END_REF]. As a consequence, we obtain an indirect formulas-as-types interpretation of delimited continuations in a dependently-typed framework.

Related works

Although several program logics have been designed for higher-order procedural mutable variables or nonlocal jumps, we are not aware of any work which combines both in an imperative setting. Of course, there has been much research on Floyd-Hoare logics [START_REF] Floyd | Assigning meanings to programs[END_REF][START_REF] Hoare | An axiomatic basis for computer programming[END_REF][START_REF] Hoare | Procedures and parameters: An axiomatic approach[END_REF] (see the surveys [2] and [START_REF] Cousot | Methods and logics for proving programs[END_REF]). Such program logics for higher-order procedures have been defined for instance in [START_REF] Damm | A sound and relatively complete hoare-logic for a language with higher type procedures[END_REF] (for Clarke's language L4 [START_REF] Clarke | Programming language constructs for which it is impossible to obtain good hoare axioms[END_REF]) or more recently for stored parameterless procedures in [START_REF] Reus | About hoare logics for higher-order store[END_REF]. Program logics for jumps exists since [START_REF] Clint | Program proving: Jumps and functions[END_REF], and although designing such a logic is error-prone [START_REF] O'donnell | A critique of the foundations of hoare style programming logics[END_REF], there have been successfully used recently for proving properties in low-level languages [START_REF] Feng | Modular verification of assembly code with stack-based control abstractions[END_REF][START_REF] Tan | A compositional logic for control flow[END_REF].

A dependent type system for an imperative programming language is defined in [START_REF] Xi | Imperative programming with dependent types[END_REF], where the dependent types are restricted to ensure that type checking remains decidable. They also made the observation that imperative dependent types requires to allow the type of variables to change during evaluation. However they chose to restrict the type system in order to guarantee that the extracted program is typable in some usual static (non-dependent) type systems. On the contrary, we believe that a dynamically-flavoured static type system should be advocated.

Proofs-as-Imperative-Program [START_REF] Poernomo | Proofs-as-imperative-programs: Application to synthesis of contracts[END_REF][START_REF] Poernomo | The curry-howard isomorphism adapted for imperative program synthesis and reasoning[END_REF] adapts the proofs-as-programs paradigm for the synthesis of imperative SML programs with side-effect free return values. The type theory is however intrinsically constructive: it requires a strong existential quantifier which is not compatible with classical logic [START_REF] Herbelin | On the degeneracy of sigma-types in presence of computational classical logic[END_REF].

The Dependent Hoare Type Theory [START_REF] Nanevski | Polymorphism and separation in hoare type theory[END_REF] and the Imperative Hoare Logic [START_REF] Honda | An observationally complete program logic for imperative higher-order functions[END_REF][START_REF] Honda | Descriptive and relative completeness of logics for higher-order functions[END_REF] are frameworks for reasoning about effectful higher-order functions. The dynamic semantics of those systems are much more complicated (since aliasing is allowed) than our location-free semantics. Although the Dependent Hoare Type Theory contains control expressions and enjoys a formulas-as-types interpretation, it is not clear whether programs correspond to proofs in some deduction system for classical logic.

Plan of the paper. In Section 2, we present the untyped functional language F, the untyped imperative language I and and their dynamic semantics. We define also the retraction , between programs of I and monadic normal forms of F. Section 3 is devoted to the definition of the pseudo-dynamic type system IS. Section 4 contains the definitions of the dependently-typed systems ID and FD together with their main properties. In Section 5, we extend language F with control operators and its type system is raised to classical arithmetic FD c . Finally, in Section 6, we extend I with non-local jumps and we derive a corresponding program logic ID c .

Dynamic semantics of I and F

In this section, we present the untyped functional language F (which is a variant of Gödel System T) and the untyped imperative language I (which is an extension of Meyer and Ritchie's Loop language [START_REF] Meyer | The complexity of loop programs[END_REF] with higher-order procedural variables studied in [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF]). We define also the dynamic semantics of both languages and the retraction , between programs of I and monadic normal forms of F.

Language F

Gödel System T may be defined as the simply typed λ-calculus extended with a type of natural numbers and with primitive recursion at all types [START_REF] Girard | Proofs and Types[END_REF]. The language F we consider in this paper a variant of System T with product types (n-ary tuples actually) and a constant-time predecessor operation (since any definition of this function as a term of System T is at least linear under the call-by-value evaluation strategy [START_REF] Colson | System T, call-by-value and the minimum problem[END_REF]). Moreover, we formulate this system directly as a context semantics (a set of reduction rules together with an inductive definition of evaluation contexts). As usual, we consider terms up to α-conversion and the set FV(t) of free variables of a term t is defined in the standard way. The rewriting system is summarized in Figure 2.1, where variables x, x 1 , , x n , y range over a set of identifiers and t[v 1 /x 1 , , v n /x n ] denotes the usual capture-avoiding substitution. In order to distinguish the successor S (which is a constructor) from the successor seen as an operation (whose evaluation should imply a reduction step), we use the keyword succ as an abbreviation for λx.S(x). Remark 2.2. We write λ(x 1 , , x n ).t (or λx .t) as an abbreviation for λz.let (x 1 , , x n ) = z in t where z is a fresh variable. Similarly, we write λ().t as an abbreviation for λz.let () = z in t where z is a fresh variable.

Example: the Ackermann function

The Ackermann function is an example of function known not to be primitive recursive [START_REF] Peter | Recursive Functions[END_REF] but which can be represented in System T. Here follows an example of a slightly modified version of the function defined by the following equations [START_REF] Leivant | Intrinsic reasoning about functional programs I: first order theories[END_REF]:

(1) a(0, n) = s(n) (2) a(s(z), 0) = s(s(0)) (3) a(s(z), s(u)) = a(z, a(s(z), u)) ack (m, n) = rec(m, λy.S(y), λi.λf.λy.rec(y, S(S(0)), λj.λk.(f k))) n

Language I

The untyped language I is essentially the Loop ω language presented in [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF] except that Loop ω was explicitly typed. Moreover the loop syntax is now for y 0 until e {s} where the bound e is excluded from the range (since this new syntax corresponds more closely to reasoning by induction). The location-free transition semantics [START_REF] Donahue | Locations considered unnecessary[END_REF] is also the same as in [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF] except that we consider only sequences. Although it is somewhat more verbose, both semantics are clearly equivalent.

Syntax

The raw syntax of imperative programs is given below. There is nothing particular to this syntax except that we annotate each block {s} x with a list of variables x (which corresponds to the mutable variables which may occur in the block). In the following grammar, x, y, z range over a set of identifiers, q ¯ranges over natural numbers (i.e. constant literals), ε denotes the empty sequence and * denotes the singleton value. Free identifiers are defined in the standard way (see Appendix A). Remark 2.4. (no aliasing). In order to avoid parameter-induced aliasing problems, we assume that all y i are pairwise distinct in a procedure call p(e ; y ).

Remark 2.5. (annotations).

In a block {s} x , the variables in x are visible mutable variables (according to standard C-like scoping rules). Moreover, the list x must also contain all the free mutable variables occurring in the sequence. Such annotations can automatically be inferred by taking, for instance, all the visible mutable variables.

Remark 2.6. (no backpatching).

No free mutable variable is allowed in the body of a procedure (except its out parameters). This restriction is required to prevent the well-known technique called "tying the recursive knot" [START_REF] Landin | The mechanical evaluation of expressions[END_REF] which takes advantage of higher-order mutable variables (or function pointers) to define arbitrary recursive functions.

Example: the addition procedure

Here follows a procedure that computes the addition of two natural numbers:

cst add = proc (in X , Y ; out Z) { Z X; for I 0 until Y { inc(Z); } Z ; } Z

Operational semantics

The operational semantics is given as transition system [START_REF] Plotkin | A structural approach to operational semantics[END_REF] which defines inductively a binary relation between states. A state is a pair (s, µ) consisting of a sequence s and a store µ, where a store is a finite ordered mapping from (mutable) variables to closed imperative values (i.e. integer literals, procedures and * , and tuples of imperative values).

Note that expressions do not require any evaluation since they are either variables or values. We introduce thus the following notation which allows us to treat uniformly values and variables in the semantics: Notation 2.7. Given a store µ, let ϕ µ be the trivial extension of µ to expressions defined as follows ϕ µ (x) = µ(x) if x is a variable, ϕ µ (w) = w and ϕ µ ((e 1 , , e n )) = (ϕ µ (e 1 ), , ϕ µ (e n )). In the sequel, we write e = µ w for ϕ µ (e) = w. Notation 2.8. Let s be a sequence. We write s[x ← w] for the substitution of a read-only variable x by a closed imperative value w and s[y z] for the renaming of a mutable variable y by a mutable variable z. The formal definitions are similar to those given in [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF].

(({} z ; s), µ) (s, µ) (s.block-i) (s1, µ) (s 1 , µ ) (({s 1 } z ; s 2 ), µ) (({s 1 } z ; s 2 ), µ ) (s.block-ii) ((var y e; ε), µ) (ε, µ) (s.var-i)
e =µ w (s, (µ, y ← w)) (s , (µ , y ← w )) ((var y e; s), µ) ((var y w ; s ), µ ) (s.var-ii)

e =µ w ((y e; s), µ) (s, µ[y ← w ]) (s.assign) µ(y) = q ((inc(y); s), µ) ((y q + 1; s), µ) (s.inc) µ(y) = q ((dec(y); s), µ) ((y q -˙1; s), µ) (s.dec) e =µ w p =µ proc (in y ; out z ){s } z ((p(e ; r ); s), µ) (({s [y ← w ][z r ]} r ; s), µ[r ← * ]) (s.call) e =µ w ((cst y = e; s), µ) (s[y ← w], µ) (s.cst)
e =µ 0 ((for

y 0 until e {s} z ; s ), µ) (s , µ) (s.for-i)
e =µ q + 1 ((for y 0 until e {s} z ; s ), µ) (({for y 0 until q ¯{s} z ; s[y ← q ¯]} z ; s ), µ) (s.for-ii) This definition of the transition system is summarized in Figure 2.2.

Remark 2.10. This semantics is clearly deterministic since there is always at most one rule which can be applied (depending on the content of the store and the shape of the command).

Translation from I to F and simulation

We recall the translation, similar in spirit to Landin's translation of Algol-like languages, described in [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF]. The intuition behind this translation of imperative programs into functional programs is the following: a sequence {c 1 ; ; c n ; } x is translated into:

let x 1 = c 1 in let x n = c n in x
where each x i ⊆ x corresponds to the "output" of command c i and x is the output of the sequence. 

Simulation

We recall the simulation theorem from [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF] which states that for any sequence s, the evaluation of s is simulated by the reduction of (s) z .

Proposition 2.12. For any state (s, µ), if x = dom(µ) and z ⊆ x we have:

(s, µ) (s , µ ) implies (s) z [µ(x ) /x ] * (s ) z [µ (x ) /x ]

Translation from F to I and retraction

In this section, we show how to translate a functional program of F into an imperative program of I. However, this translation is only defined for a sub-language L of monadic normal forms (terms where any nontrivial intermediate computation is named [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF][START_REF] Flanagan | The essence of compiling with continuations[END_REF]). This sub-language L characterize the image of imperative programs by . We show in appendix C.5 how to transform any term of language F into a monadic normal form of L.

Definition 2.13. We define inductively L and V, families of terms (resp. values) of F, as follows: 

• x ∈ V • () ∈ V • S n (0) ∈ V • λx .t ∈ V • (v 1 , , v n ) ∈ V if v 1 , , v n ∈ V • v ∈ L if v ∈ V • let x = v in u ∈ L if v ∈ V and u ∈ L • let x = succ(v) in u ∈ L if v ∈ V and u ∈ L • let x = pred(v) in u ∈ L if v ∈ V and u ∈ L • let x = v v in u ∈ L if v ∈ V, v ∈ V and u ∈ L • let x = rec(v, v , λy.λz.t) in u ∈ L if v ∈ V, v ∈ V and u ∈ L • let x = t in u ∈ L if t ∈ L and u ∈ L
= z; t z } z ; cst x = z; (u) r -(let x = t in u) r = var z; {(t) z } z ; cst x = z; (u) r
Remark 2.17. Note that all identifiers of the source term are mapped to read-only variables. Indeed, mutable are introduced locally, assigned and then only used to initialize local read-only variables. This property ensures that mutable variables do not occur in the body of procedures in the resulting Loop ω program: the only mutable variables are fresh variables introduced during the translation.

Retraction

We prove that for any term t of L, the term (t r ) r is convertible with t. Both terms are not equal in general since some "administrative" redices are introduced by the translations. However, equality holds for integer values. • Given a term t ∈ L and a fresh mutable variable tuple r we have (t r ) r ≈ t.

• Given a value w ∈ W, if w = S n (0) or w = * then w = w else w ≈ w.

Proof. See Appendix-A.

Proposition 2.20. For any value w, if w = q ¯or w = * then w = w.

Proof. By Proposition 2.19, if w = q ¯or w = * then w = w .

Pseudo-dynamic Type System

In this section, we present the simple type system for language F and the pseudo-dynamic type system for language I. Then we show that both translation and preserve typability and that the transition semantics of I enjoys the usual "type preservation" and "progress" properties.

Functional simple type system FS

The functional simple type system FS is defined as usual for a simply typed λ-calculus extended with tuples, natural numbers and with primitive recursion at all types. The set Σ FS of simple functional types is defined by the following grammar: 

σ ::= nat | unit | σ 1 → σ 2 | σ 1 × × σ n Γ t1: σ → τ Γ t2: σ Γ t 1 t 2 : τ (app) Γ t1: nat Γ t2: τ Γ, x: nat, y: τ t3: τ Γ rec(t 1 , t 2 , λx.λy.t 3 ): τ (rec) 

Pseudo-dynamic imperative type system IS

The static type system described in this section is called "pseudo-dynamic" since the type of a mutable variable is allowed to change during execution. It is however fully static in the sense that it guarantees statically that no type error can occur at run-time. As a side benefit, we obtain a convenient way to address the issue of uninitialized variables: any mutable variable can be initialized with the * (which denotes the single value of type unit) and its type shall change later (when assigned its first relevant value). The pseudo-dynamic type system may also be seen as a simple effect system [START_REF] Gifford | Integrating functional and imperative programming[END_REF][START_REF] Talpin | The type and effect discipline[END_REF] since it is able to guarantee the absence of side-effects, aliasing and fix-points in well-typed programs. Its key feature which enable this property is the distinction between mutable variables and read-only variables. More formally, the set Σ IS of imperative types is defined by the following grammar:

σ, τ ::= nat | proc (in τ ; out σ ) | (τ 1 , , τ n ) | unit
A typing environment has the form Γ; Ω where Γ and Ω are (possibly empty) lists of pairs x: τ (x ranges over variables and τ over types). Γ stands for read-only variables (constants and in parameters) and Ω stands for mutable variables (local variables and out parameters). We use two typing judgments, one for expressions and one for sequences: Γ; Ω e: τ has the usual meaning, whereas in Γ; Ω s Ω , the environment Ω contains the types of the mutable variables at the end of the sequence s. The type system is given in Figure 3.2. As usual, we consider programs up to renaming of bound variables, where the notion of free variable of a command is defined in the standard way.

Remark 3.1. Let us recall important features of this pseudo-dynamic type system shared with the static type system described in [START_REF] Crolard | Extending the loop language with higher-order procedural variables[END_REF]:

• (scoping rules). As usual for C -like languages, the scope of a constant (rule t.cst) or a variable (rule t.var) extends from the point of declaration to the end of the block containing the declaration. • (no side-effects). Rule (t.proc) implies that the only mutable variables which may occur inside the body of a procedure are its out parameters and its local mutable variables. This is enough to guarantee the absence of side-effects. However, side-effects can still be simulated by passing the non-local variable as an explicit in out parameter (see section-3.5).

• (no fix-points). Rule (t.proc) also forbids the reading of non-local mutable variables: this is necessary to prevents the definition of fix-points in the language.

Let us define formally the notions of well-typed stores and states. 

Translations between IS and FS

We define translations and for simple types (which also form a retraction at the type level) and we show that both translations preserve typing.

Definition 3.4. For any type τ ∈ Σ IS , the corresponding type τ ∈ Σ FS is defined inductively as follows:

unit = unit

-nat = nat -(τ 1 , , τ n ) = (τ 1 × × τ n ) -proc (in τ ; out σ ) = τ → σ Definition 3.5.
For any type σ ∈ Σ FS the translation σ ∈ Σ IS is defined as follows:

unit = unit • Given a term t ∈ L such that Γ t: σ in FS with Γ, σ ∈ Σ FS and a fresh mutable variable tuple r of any type σ ∈ Σ ID we have Γ ; r : σ t r r : σ in IS.

-nat = nat -(σ 1 × × σ n ) = (σ 1 , , σ n ) -(σ → τ ) =
• Given a value v ∈ V such that Γ v: σ in FS with Γ, σ ∈ Σ FS , we have Γ ; v : σ in IS.

Proof. By induction on the typing derivation.

Properties of the pseudo-dynamic type system

As expected, the transition semantics preserves typing and the usual "progress" property holds. Lemma 3.12. (termination). For any state (s, µ), if z : τ (s, µ) Ω in IS then the evaluation of (s, µ) terminates.

Proof. By contradiction, let us assume that there is an infinite sequence of evaluation steps of (s, µ). By Proposition 2.12, with the fact that there cannot be an infinite sequence of evaluation steps using only rule (s.var-i), we have an infinite sequence of evaluation steps of (s) z [µ(x ) /x ]. By Theorem 3.8, z : τ (s, µ) Ω implies (s) z

[µ(x ) /x ]: σ and since typable terms of system T are strongly normalizing, we have a contradiction.

Proposition 3.13. For any (s, µ), Ω and z, if z : τ (s, µ) Ω in IS, then there is a unique store µ such that (s, µ) n (ε, µ ) for some n.

Proof. Since, by Lemma 3.12, no infinite evaluation of (s, µ) can occur, we prove the property by induction on the length n of the longest sequence of evaluation steps from (s, µ), using appropriately Theorem 3.10 in the induction step.

Global variables

Recall that the imperative type systems IS (and also ID, in the next section) forbids any access to global mutable variables. It is straightforward to address this restriction by passing the global variable as an explicit in out parameter to each procedure declaration. The same variable is then given as argument for each procedure call. Moreover, an in out parameter can be encoded with one in parameter and one out parameter, where each procedure initialize the variable with its input value before executing its body. To handle more conveniently a list of global variables z we introduce the following abbreviations: This transformation corresponds to the usual state-passing style transform in functional programming. Up to curryfication, we also obtain a state monad [START_REF] Liang | Monad transformers and modular interpreters[END_REF]. At the type level, however, since the type of a mutable variable can be changed by an assignment, this transform do not correspond to the usual state monad τ ST = σ → (τ × σ) where σ is the fixed type of the global state. We obtain instead a parameterized state monad [5], (σ, τ , σ ) ST = σ → (τ × σ ) where σ is the input type of the global state and σ is its output state.

This remark shows that the pseudo-dynamic type system is quite expressive and enables to type programs which would usually require an ad-hoc effect system [START_REF] Talpin | The type and effect discipline[END_REF].

Dependent Type Systems

In this section, we present the dependently-typed systems for languages F and I. As in the non-dependent case, we show that both translation and preserve typability. As a corollary, we obtain a soundness result (theorem 4.8) and a representation theorem (proposition 4.10) for dependently-typed imperative programs.

Functional dependent type system FD

Following the definition of ML1P [START_REF] Leivant | Contracting proofs to programs[END_REF] (or similarly IT(N) in [START_REF] Leivant | Intrinsic reasoning about functional programs I: first order theories[END_REF]), we enrich language F with dependent types. The type system is parameterized by a first-order signature and an equational system E which defines a set of functions in the style of Herbrand-Gödel. We consider only the sort nat (with constructors 0 and s), and we assume that E contains at least the usual defining equations for addition, multiplication and a predecessor function p (which is essential to derive all axioms of Peano's arithmetic [START_REF] Leivant | Intrinsic reasoning about functional programs I: first order theories[END_REF]). The syntax of formulas is the following (where n, m are first-order terms):

τ ::= nat(n) | (n = m) | ∀ı (τ 1 ⇒ τ 2 ) | ∃ı (τ 1 ∧ ∧ τ k )
Note that first-order quantifiers are provided in the form of dependent products and dependent sums. As usual, implication and conjunction are recovered as special non-dependent cases (when ı is empty). Similarly, relativized quantification ∀x(nat(x) ⇒ ϕ) and ∃x(nat(x) ∧ ϕ) are also obtained as special cases.

The functional dependent type system is summarized in Figure 4.1 (where denotes n = n for some n and E n = m means that either n = m or m = n is an instance of E).

The main difference between this type system and the deduction system ML1P described in [START_REF] Leivant | Contracting proofs to programs[END_REF] comes from the fact that a derived sequent is directly annotated by a realizer (a functional term), whereas in [START_REF] Leivant | Contracting proofs to programs[END_REF] an extraction function (or forgetful map) κ needs to be applied to the derivation to obtain the realizer. In other words, if Π is a derivation of a sequent Γ σ in ML1P, then Γ κ(Π): σ is derivable in FD. Conversely, if Π is a derivation of Γ t: σ in FD, then Π is also derivation of Γ σ in ML1P (just remove the realizers from the derivation). Let us recall the subject reduction property of ML1P [START_REF] Leivant | Contracting proofs to programs[END_REF] and derive the same property for FD as a corollary.

Theorem 4.1. (subject reduction for ML1P).

• If Π Prawitz-reduces to Π , then κΠ reduces to κΠ .

• If t = κΠ reduces to t then t = κΠ for some Π such that Π Prawitz-reduces to Π .

Corollary 4.2. (subject reduction for FD).

If Γ t: σ in FD and t t then Γ t : σ.

Proof. Let Π be a derivation of Γ t: σ in FD, then κ(Π) = t and Π is also a derivation of Γ σ in ML1P. By the above theorem, if t t then t = κΠ for some derivation Π of the same sequent Γ σ in ML1P. Consequently, Γ t : σ is derivable since t = κΠ .

Similarly, we obtain the representation theorem for FD as a corollary of the same property for ML1P [START_REF] Leivant | Contracting proofs to programs[END_REF][START_REF] Leivant | Intrinsic reasoning about functional programs I: first order theories[END_REF].

Proposition 4.3. (representation theorem for FD) Given an equational system E and an n-ary function symbol f, if

E t: ∀n .nat(n ) ⇒ nat(f (n ))
is derivable in FD then t represents f. Definition 4.4. (forgetful map). For any functional dependent type τ, the computational content κτ of τ is defined inductively as follows:

• κ(n = m) = unit • κ(nat(n)) = nat • κ(∀ı (σ ⇒ τ )) = κσ → κτ • κ(∃ı (τ 1 ∧ ∧ τ n ) = κτ 1 × × κτ n

Example: the addition function

Recall the usual Peano's axiom for addition (see in appendix D the conventions we use in the examples):

(1) x + 0 = x (2) x + s(i) = s(x + i)
The proof of ∀n(nat(n) ⇒ ∀m(nat(m) ⇒ nat(n + m))) gives us a term of F that computes the addition of two natural numbers. Here follows, in a "pure" natural deduction style, the proof annotated by the terms of 

Imperative dependent type system ID

As in the functional case, the type system is parameterized by equational system E. The syntax of imperative dependent types is the following:

σ, τ ::= nat(n) | proc ∀ı (in τ ; out σ ) | ∃ (τ 1 , , τ n ) | n = m
The dependent type system is summarized in The store typing and the state typing are defined in the same way as for the pseudo-dynamic type system.

Definition. (store typing). We say that a store µ is typable of output typing environment Ω = z 1 : τ 1 , , z n :

τ n , denoted µ Ω if and only if z ∈ dom(µ) and for all (z i , w i ) ∈ µ we have ∅; ∅ w i : τ i .

Definition. (state typing).

We say that a state (s, µ) is typable of output typing environment Ω for a restriction of the store to the variables z : τ, which we write as z : τ (s, µ) Ω , if and only if µ z : τ and ∅; z : τ s Ω .

Definition 4.5. (forgetful map).

For any imperative dependent type τ, the computational content κτ of τ is defined inductively as follows:

• κ(n = m) = unit • κ(nat(n)) = nat
x: τ ∈ Γ; Ω Γ; Ω x: τ (t.env) Γ; Ω q ¯: nat(s q (0)) (t.num) Proof. By induction on the typing derivation of Γ; Ω s Ω .

E n = m Γ; Ω * : n = m (t.
• (nat(u)) = nat(u) 

• (∃ı (τ 1 , , τ n )) = ∃ı (τ 1 ∧ ∧ τ n ) • (proc ∀ı (in τ ; out σ )) = ∀ı (τ ⇒ σ )

Properties of dependently-typed imperative programs

We are now ready to state and prove the representation theorem for dependently-typed imperative programs. This theorem is a corollary of the representation theorem for FD and the simulation theorem. 

Translation from FD to ID

We close this section by some properties of translation .

Definition 4.11. For any type σ ∈ Σ FD the translation σ is defined as follows:

-

(n = m) = (n = m) -(nat(n)) = nat(n) -(∃ (σ 1 ∧ ∧ σ n )) = ∃ (σ 1 , , σ n ) -(∀ı (τ ⇒ σ )) = proc ∀ı (in τ ; out σ )
As expected, Proposition 3.6 is extended as follows.

Proposition 4.12. (retraction).

1. For any type σ ∈ Σ ID , we have σ = σ. Proof. Straightforward induction on types.

Theorem 4.14.

• Given a term t ∈ L such that Γ t: σ in FD with Γ, σ ∈ Σ FD and a fresh mutable variable tuple r of any type σ ∈ Σ ID we have Γ ; r : σ t r r : σ in ID.

• Given a value v ∈ V such that Γ v: σ in FD with Γ, σ ∈ Σ FD , we have Γ ; v : σ in ID.

Proof. By induction on the typing derivation (see Appendix C.4). 

Control operators

In order to extend the imperative language I with non-local jumps, we first extend the functional language F with control operators. The resulting dependent type system FD c corresponds thus to classical logic [START_REF] Griffin | A formulae-as-types notion of control[END_REF] (Peano's arithmetic in fact). In this section, we rephrase known results from [START_REF] Murthy | Extracting Constructive Content from Classical proofs[END_REF][START_REF] Murthy | An evaluation semantics for classical proofs[END_REF] in our setting. However, since FD is based on Leivant's ML1P, our variant may seem closer to Parigot's type system for the λµ-calculus [START_REF] Parigot | Classical proofs as programs[END_REF] (albeit in the second-order framework).

Functional dependent type system for control FD c

In order to extend FD to FD c , we assume the existence of a propositional constant "absurd" written ⊥, we define the negation ¬ϕ as an abbreviation for ϕ ⇒ ⊥ and we add two constants callcc and throw with the following types:

callcc : (¬ϕ ⇒ ϕ) ⇒ ϕ throw : (¬ϕ ∧ ϕ) ⇒ ψ
This choice of control operators is taken from [32] but it would be equivalent to take for instance A and C from [START_REF] Felleisen | The calculi of lambda-nu-cs conversion: a syntactic theory of control and state in imperative higher-order programming languages[END_REF] as in [START_REF] Murthy | Extracting Constructive Content from Classical proofs[END_REF][START_REF] Murthy | An evaluation semantics for classical proofs[END_REF]. Note that we do not consider any direct style semantics of these operators in this paper. Instead, we give an indirect semantics as a CPS-transformation [START_REF] Plotkin | Call-by-name, call-by-value and the lambda-calculus[END_REF].

CPS translation

As is well-known [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF], it is natural to factor a CPS-transformation through Moggi's computational meta-language [START_REF] Moggi | An abstract view of programming languages[END_REF][START_REF] Moggi | Notions of computation and monads[END_REF]. Since we are interested in providing a semantics for imperative programs and since the output of translation is already a term in monadic normal form, the CPS-transformation needed is almost straightforward. We still have to be careful since in a dependent type system a monad is actually a modality [START_REF] Coquand | Computational content of classical logic[END_REF][START_REF] Benton | Computational types from a logical perspective[END_REF], and we have to deal with first-order quantifiers. Following [START_REF] Coquand | Computational content of classical logic[END_REF], we write ¬ o ϕ for ϕ ⇒ o where o is a fixed propositional variable. The continuation monad ∇ is then defined as ∇ϕ = ¬ o ¬ o ϕ together with the following two abbreviations (which corresponds to unit and bind ):

val u = λz.(z u) let val x = u in t = λz.(u λx.(t z))
Moreover, in the continuation monad, control operators callcc and throw are definable as the following abbreviations [START_REF] Nielsen | A selective cps transformation[END_REF]:

callcc = λh.λk.(h k k) throw = λ(k, a).λk .(k a)
Let us now prove that for any monadic normal form (possibly containing callcc and throw) typable in FD c , its call-by-value CPS-transform is typable in FD. The translation of dependent types is defined as follows: () • = ()

) • = nat(n) (n = m) • = (n = m) (∃n (ϕ 1 ∧ ∧ ϕ n )) • = ∃n (ϕ 1 • ∧ ∧ ϕ n • ) (∀n (ϕ ⇒ ψ)) • = ∀n (ϕ • ⇒ ∇ψ • ) (¬ϕ) • = ¬ o ϕ • ⊥ • = o
x • = x 0 • = 0 S(v) • = S(v • ) (λx.u) • = (λx.u • ) (v 1 , , v k ) • = (v 1 • , , v k • ) (callcc) • = callcc (throw) • = throw (v) • = val (v • ) (v 1 v 2 ) • = (v 1 • v 2 • ) (let (x 1 , , x n ) = t in u) • = let val y = t • in let (x 1 , , x n ) = y in u • rec(v, u, λx.λy.t) • = rec(v • , u • , λx.λr.let val y = r in t • ) pred(v) • = val pred(v • )
Remark 5.4. The translation above is defined for a syntax slightly more general than L since we only need here to distinguish values from computations. It is however straightforward to check that any term of L belongs to dom( • ) and any value of V belongs to dom( • ).

Lemma 5.5. The following typing rules are derivable in FD:

Γ u: ϕ Γ val u: ∇ϕ Γ u: ∇ϕ Γ, x: ϕ t: ∇ψ Γ let val x = u in t: ∇ψ Proof. Straightforward (see Appendix B).
Lemma 5.6. Abbreviations callcc and throw are typable in FD as follows:

callcc : ((ϕ • ⇒ o) ⇒ ∇ϕ • ) ⇒ ∇ϕ • throw : ((ϕ • ⇒ o) ∧ ϕ • ) ⇒ ∇ψ • Proof. Straightforward (see Appendix B).
Lemma 5.7. For any term t of L (resp. any value v of V) possibly containing callcc and throw, if Γ t: ϕ

(resp. Γ v: ϕ) is derivable in FD c then Γ • t • : ∇ϕ • (resp. Γ • v • : ϕ • ) is derivable in FD.
Proof. By induction on the typing derivation where the basic cases for callcc and throw are obtained by Lemma 5.6:

• (ident) Γ, x: ϕ x: ϕ Indeed, Γ • v • : nat(n) Γ • pred(v • ): nat(pn) Γ • val pred(v • ): ∇nat(pn)
As a corollary of Lemma 5.7, we obtain a representation theorem for FD c .

Theorem 5.8. (representation theorem for FD c ). Given an equational system E and an n-ary function

symbol f, if t: ∀n .nat(n ) ⇒ nat(f (n ))) is derivable in FD c then t represents f. Proof. By Lemma 5.7 t • : ∀n .nat(n ) ⇒ ∇nat(f (n ))
) is derivable in FD. Then, using Friedman's top level trick [START_REF] Friedman | Classically and intuitionistically provably recursive functions[END_REF][START_REF] Murthy | Extracting Constructive Content from Classical proofs[END_REF], we replace o by nat(f (n )) in the derivation, we obtain that λx .(t •

x id ): ∀n .nat(n ) ⇒ nat(f (n )) is also derivable in FD, and thus λx .(t •

x id ) represents f .

Non-local jumps

In this section we extend language I with control. Since control in imperative language are usually given in the form of several ad-hoc statements (such as exits from loops, exception handling, generators), there is no natural primitive statements. Consequently, we chose to retrofit operators callcc and throw to language I. We do not claim that these are natural control statement in an imperative language, but they are merely primitive constructs which can be used to encode other statements as derived forms. This main advantage of this approach is that we derive immediately a sound program logic for imperative programs with control.

Dependent imperative type system with control ID c

Similarly to the functional case, we extend type system ID with a propositional type constant ⊥, we define ¬ σ as an abbreviation for proc (in σ ; out ⊥), and we add to ID two primitive procedures callcc and throw with the following types: • Given a term t ∈ L possibly containing callcc and throw such that Γ t: σ in FD c and a fresh mutable variable tuple r of any type σ ∈ Σ ID we have Γ ; r : σ t r r : σ in ID c .

• Given a value v ∈ V possibly containing callcc and throw such that Γ v: σ in FD c for any environment Ω we have Γ ; Ω v : σ in ID c .

Since our semantics of ID c is indirect, no representation theorem for ID c can be claimed. However, we still have the following corollary: 

Syntax and typing extensions with control operators

In order to get closer to some usual syntax for jumps in imperative language, we introduce the following two abbreviations:

k: {s} z = cst z = z ; callcc(proc(in k; out z ){z z ; s} z ; z ) jump(k, e ) z = throw(k, e ; z )
The first abbreviation corresponds to the declaration of a (first-class) label. Recall that our type systems requires that the current mutable variables be explicitly passed inside the body of the procedure, hence the constants declaration. The second abbreviation is a "jump with parameters" to the end of the block annotated with the label given as argument. Note that the output variables are important only for typing purpose (since the jump never returns), they are thus written as a subscript. 

Imperative delimited continuations

As a concluding example we show how to encode delimited continuation operators shift and reset [START_REF] Danvy | A functional abstraction of typed contexts[END_REF] in ID c . This example is generic since it was shown by Filinski [START_REF] Filinski | Representing monads[END_REF][START_REF] Filinski | Representing layered monads[END_REF] that any representable monad can be encoded using shift and reset. We also refer the reader to [START_REF] Wadler | Monads and composable continuations[END_REF] for a detailed analysis of various type systems for shift and reset in the monadic framework, to [3] for a type-theoretic study of delimited continuations and to [4] for a generalization of Danvy and Filinski's type system to allow for polymorphic delimited continuations.

Our encoding follows [START_REF] Filinski | Representing monads[END_REF] which contains the proof that shift and reset can themselves be implemented using callcc, throw and one global mutable variable storing the meta-continuation. The idea behind this encoding is best understood at the type level. First recall that the orignal semantics of these operators was given in terms of a double CPS-transform [START_REF] Danvy | A functional abstraction of typed contexts[END_REF] (indeed, a single CPS transform is not enough to obtain a term whose semantics is independent of the evaluation strategy). The first transform corresponds to a parameterized continuation monad [6]:

M (α, β , γ) = (γ → β) → α
The second transform corresponds to the usual continuation monad, with a fixed output type o :

∇σ = (σ → o) → o
Composing both transforms [START_REF] Liang | Monad transformers and modular interpreters[END_REF] yields the following parameterized monad:

(γ → ∇β) → ∇α ((γ × (β → o)) → o) → ((α → o) → o) (α → o) → (((γ × (β → o)) → o) → o) = (α → o) → ∇(γ × (β → o))
Up to simple type isomorphisms, we recognize the parameterized state monad transformer applied to the continuation monad. This monad correspond thus exactly to composing the state passing style transform (where the state is a continuation) with a CPS transform. This is the type isomorphism which exploited in [START_REF] Filinski | Representing monads[END_REF] to encode shift et reset in direct style with a global state (always containing a continuation, called the meta-continuation) and callcc/throw.

Relying on higher-order mutable variables and the abbreviations for global variables from section 3.5, Filinski's implementation can thus be almost mechanically translated in ID c (the are given in Appendix D. Of course, the image of those procedures by translation yields functional terms typable in FD c . Those terms are given in Appendix E in Standard ML syntax [START_REF] Milner | The Definition of Standard ML[END_REF]. The SML signature CONT is slightly different from [32] but they are equivalent (see [START_REF] Filinski | Representing monads[END_REF] for an implementation of a similar signature in SML/NJ [START_REF] Appel | Standard ML of new jersey[END_REF]). Their functional types are reproduced here:

reset : (¬α ⇒ β ∧ ¬β) ∧ ¬γ ⇒ α ∧ ¬γ shift : ((α ∧ ¬β ⇒ γ ∧ ¬β) ∧ ¬δ ⇒ ε ∧ ¬ε) ∧ ¬δ ⇒ α ∧ ¬γ
These types could be made a little more readable by using a parameterized state monad. However, we recognize the type of shift and reset from [START_REF] Danvy | A functional abstraction of typed contexts[END_REF] where (α ∧ ¬σ) ⇒ (β ∧ ¬τ ) is written in the form α/τ → β/σ. Our encoding thus provides a formulas-as-types interpretation of the full type system from [START_REF] Danvy | A functional abstraction of typed contexts[END_REF] in a dependentlytyped framework.

Example

In [START_REF] Wadler | Monads and composable continuations[END_REF], Wadler presents several simple examples using shift and reset, and its third example, which requires the full type system from [START_REF] Danvy | A functional abstraction of typed contexts[END_REF] to type check, is the following:

let g = (reset (if (shift λf .f ) then 2 else 3)) in (g True) + (g False)
Walder explains informally the semantics of his example as follows: "Here f (and hence g) is bound to the function that returns 2 if passed True, and 3 if passed False, hence the value of the given term is 5."

Now the question is "how to prove formally the correctness of this program?". The solution we propose consists in first translating the expression into an imperative program (with shift/reset defined as above) and then proving its correctness by deriving the expected specification in ID c . We thus obtain following imperative program (where the conditional is simulated by a for-loop): cst q = proc(; out r ) mk { cst p = proc(in f ; out h) mk { h : = f ; } var b; shift(p; b) mk ; r : = 3; for i : = 0 until b { r : = 2; } r,mk ; }; var g; reset(q; g) mk ; var x ; g(0; x ) mk ; var y; g(1; y) mk ; add (x , y; z ) mk ;

It is then possible to show that z: s z: nat(f 32 (0) + f 32 (1)) is derivable in ID c where f 32 is defined by the equations:

f 32 (0) = 3 f 32 (S(i)) = 2
We shall not detail the type derivation since it is rather technical. However, we have formally specified ID c , FD c , the translation and our encoding of shift and reset in Twelf [START_REF] Pfenning | System description: Twelf -a meta-logical framework for deductive systems[END_REF]. Moreover, thanks to Twelf logic programming engine, those specifications are executable and we have mechanically checked the correctness of the above example (together with a few others from [START_REF] Wadler | Monads and composable continuations[END_REF]). The interested reader is referred to [START_REF] Crolard | A formally specified program logic for higher-order procedural variables and non-local jumps[END_REF] for more details. 

Appendix A Properties of I and F

A.2 Translation from F to I and retraction

Definition A.1. We define the translation of any term t of F into a term t of L by the following equations:

x = x () = () S n (0) = S n (0) S n (t) = let x = t in let x = succ(x) in let x = succ(x) in x (λx.t) = λx.t pred(t) = let x = t in let x = pred(x) in x rec(t 1 , t 2 , t 3 ) = let a = t 1 in let b = t 2 in let c = t 3 in let z = rec(a, b, λx.λy.let d = c x in let e = d y in e) in z (t u) = let x = t in let y = u in let r = x y in r (let x = u in t) = let y = u in let x = y in t (t 1 , , t n ) = let x 1 = t 1 in let x n = t n in (x 1 , , x n ) Proposition A.2.
For any term t of F, we have t ∈ L.

Proof. Straightforward induction on t.

Lemma A.3. Given a term t ∈ L and a fresh mutable variable tuple r we have r FV(((t) r ) r ).

Proof. By induction on t.

• ((w ) r ).

•

((let x = w w in u) r ) r = (var z ; w (w ; z ); cst x = z ; (u) r ) r = (let z = (w ) (w ) in let x 1 = z 1 in let x n = z n in ((u) r ) r )[()/z ] = let z = (w ) (w ) in let x 1 = z 1 in let x n = z n in ((u) r ) r
By induction hypothesis, r FV(((u) r ) r ), and r does not occur in (w ) and (w ) .

•

((let x = t in u) r ) r = (var z ; {(t) z } z ; cst x = z ; (u) r )) r = (let z = ((t) z ) z in let x 1 = z 1 in let x n = z n in ((u) r ) r )[()/z ] = let z = ((t) z ) z in let x 1 = z 1 in let x n = z n in ((u) r ) r
By induction hypothesis, r FV(((u) r ) r ), and r does not occur in ((t) z ) z ).

Definition A.4. We define the reduction relation as the reflexive, transitive and contextual closure of the reduction for arbitrary contexts.

Proposition. We prove the following properties, which clearly implies ((t) r ) r ≈ t and if w = S n (0) or w = * then w = w else w ≈ w.

• Given a term t ∈ L and a fresh mutable variable r we have ((t) r ) r t.

• Given a value v ∈ W, if w = S n (0) or w = * then w = w else w w.

Proof. By mutual induction.

• (S n (0) ) = n ¯ = S n (0).

• (y ) = y = y.

• (() ) = * = ().

•

((λx .t) ) = (proc(in x ; out z ) {(t) z } z ) = λx .((t) z ) z [()/z ] = λx .((t) z ) z since z FV(((t) z ) z
) by Lemma A. Proof. By induction on z : τ (s, µ) Ω.

• s ≡ ε: then we are in the first case. ), µ ).

• s ≡ ({s 1 } z ; s 2 ), µ) (({s 1 } z ; s 2 ), µ ).

• s ≡ (inc(y); s 1 ): by definition we s ), µ) ((y q + 1; s 1 ), µ).

• the case for dec is similar to inc. Proof. Straightforward induction on t.

x: τ ∈ Γ; Ω Γ; Ω x: τ (t.env) Γ; Ω q ¯: nat(s q (0)) (t.num) 

E

Figure 2 . 1 .

 21 Figure 2.1. Syntax and context semantics of Language F

  {s} x | for y 0 until e {s} x | y e | inc(y) | dec(y) | e(e ; y ) (sequence) s ::= ε | c ; s | cst y = e; s | var y e; s (expression) e ::= y | * | q ¯| (e ) | proc (in y ; out z ) {s} z Notation 2.3. (values). Imperative values are closed expressions, i.e. the singleton value, natural numbers, procedures and tuples of values. We shall use w as a syntactica category for values whenever we will need to distinguish between expressions and values.

Figure 2 . 2 .Notation 2 . 9 .

 2229 Figure 2.2. Transition semantics Notation 2.9. Let µ be a store. We write (µ[y ← w]) for the store update, i.e. µ[y ← w](x) = µ(x) if x y and µ[y ← w](y) = µ(y). We write (µ, y ← w) for the store extension with the new variable y mapped to w.

Definition 2 . 11 .

 211 For any expression e, sequence s and variables x, the translations e and (s) x into terms of language F are defined by mutual induction as follows: n ¯ = S n (0) y = y - * = () -(e 1 , , e n ) = (e 1 , , e n ) -(proc (in y ; out z ){s} z ) = λy .(s) z [()/z ] -(ε) x = x -(var y e; s) x = (s) x [e /y] -(cst y = e; s) x = let y = e in (s) x -(y e; s) x = let y = e in (s) x -(inc(y); s) x = let y = succ(y) in (s) x -(dec(y); s) x = let y = pred(y) in (s) x -(p(e ; z ); s) x = let z = p (e ) in (s) x -({s 1 } z ; s 2 ) x = let z = (s 1 ) z in (s 2 ) x -(for y 0 until e {s 1 } z ; s 2 ) x = let z = rec(e , z , λy.λz .(s 1 ) z ) in (s 2 ) x

Proposition 2 . 14 .Notation 2 . 15 .Definition 2 . 16 .

 214215216 For any sequence s, any expression e and any variables x = (x 1 , , x n ), (s) x ∈ L and e ∈ V. Proof. Straightforward mutual induction on s and e. In the sequel, we shall use the following abbreviations: var y ; s = var y 1 * ; ; var y n * ; s var y w ; s = var y 1 w 1 ; ; var y n w n ; s cst y = z ; s = cst y 1 = z 1 ; ; cst y n = z n ; s y w ; s = y 1 w 1 ; ; y n w n ; s For any value w ∈ W and any term t ∈ L n , the translation w and t r are defined by mutual induction, where r = (r 1 , , r n ), z and z = (z 1 , , z n ) are fresh variables, as follows: -() = * -S n (0) = n y = y -(λx.t) = proc (in x; out z) {t z } z -(w ) = (w ) -(w) r = r w; ε -(let y = w in u) r = cst y = w ; (u) r -(let y = succ(w) in u) r = var z w ; inc(z); cst y = z; (u) r -(let y = pred(w) in u) r = var z w ; dec(z); cst y = z; (u) r -(let x = w w in u) r = var z ; w (w ; z ); cst x = z ; (u) r -(let x = rec(w, w , λi.λy .t) in u) r = var z w ; for i 0 until w {cst y

Definition 2 . 18 .

 218 We define the reduction relation ≈ as the reflexive, symmetric, transitive and contextual closure of the reduction for arbitrary contexts. Proposition 2.19.

Figure 3 . 1 .

 31 Figure 3.1. Functional type system FS The type system is summarized in Figure 3.1.

Figure 3 . 2 .

 32 Figure 3.2. Imperative type system

Definition 3 . 2 .

 32 (store typing). We say that a store µ is typable of output typing environment Ω = z 1 : τ 1 , , z n : τ n , denoted µ Ω if and only if z ∈ dom(µ) and for all (z i , w i ) ∈ µ we have ∅; ∅ w i : τ i . Definition 3.3. (state typing). We say that a state (s, µ) is typable of output typing environment Ω for a restriction of the store to the variables z : τ, which we write as z : τ (s, µ) Ω , if and only if µ z : τ and ∅; z : τ s Ω .

Theorem 3 . 7 .Theorem 3 . 8 .

 3738 proc (in σ ; out τ ) Proposition 3.6. (retraction at the type level). 1. For any type σ ∈ Σ IS , we have σ = σ. 2. For any type σ ∈ Σ FS , we have σ = σ. Proof. Straightforward induction on the translations σ and σ . For any environments Γ and Ω, any expression e, any sequence s we have: • Γ; Ω e: τ in IS implies Γ , Ω e : τ in FS. • Γ; Ω s z : σ in IS implies Γ , Ω (s) z : σ in FS. Proof. By induction on the typing derivation. For any state (s, µ), if z : τ (s, µ) Ω in IS with z : σ ⊂ Ω, then (s) z [µ(x ) /x ]: σ in FS. Proof. By definition of state typing, z : τ (s, µ) Ω implies ∅; z : τ s Ω and for all (z i , µ(z i )) ∈ µ, ∅; ∅ µ(z i ): τ i . By Theorem 3.7, on one hand ∅; z : τ s Ω implies z : τ (s) z : σ , and on the other hand ∅; ∅ µ(z i ): τ i implies µ(z i ) : τ i . Since (s) z is well typed in the environment z : τ , the variables in x which are not in z are not free in (s) z . Hence, by the substitution lemma, (s) z [µ(x ) /x ]: σ . Theorem 3.9.

Theorem 3 . 10 .

 310 (preservation). For any state (s, µ), if z : τ (s, µ) Ω in IS and (s, µ) (s , µ ) then there exists τ such that z : τ (s , µ ) Ω, in the simple type system.Proof. By induction on the transition, and by case analysis on the typing derivation (see Appendix B.3).Lemma 3.11. (progress).For any state (s, µ), if z : τ (s, µ) Ω in IS then either s = ε and no more evaluation step can occur, or there is a unique state (s , µ ) such that (s, µ) (s , µ ).Proof. By induction on the typing derivation (see Appendix B.4).

  proc(in x ; out y ) z {s} y ,z = proc(in x , z ; out y , z ){z z ; s} y ,z p(e ; y ) z = p(e , z ; y , z )

  (n + u) S(z): nat(s(n + u)) S(z): nat(n + s(u)) by (2) rec(y, x, λi.λz.S(z)): nat(n + m) λy.rec(y, x, λi.λz.S(z)): ∀m(nat(m) ⇒ nat(n + m)) λx.λy.rec(y, x, λi.λz.S(z)): ∀n(nat(n) ⇒ ∀m(nat(m) ⇒ nat(n + m))) E n = m Γ (): (n = m) (equal) Γ t: τ [n/i] Γ v: (n = m) Γ t: τ [m/i] (subst) * where ı FV(Γ) in (abs), ı FV(Γ, τ ) in (let) and i FV(Γ) in (rec)

Figure 4 . 1 .

 41 Figure 4.1. Functional dependent type system

Figure 4 . 2 (

 42 where denotes n = n for some n and E n = m means that either n = m or m = n is an instance of E).

  equal) Γ; Ω e1: τ1[m/ı ] Γ; Ω en: τn[m/ı ] Γ; Ω (e 1 , , e n ): ∃ı (τ 1 , , τ n ) (t.tuple) z ∅ Γ, y : σ ; z : s z : τ Γ; Ω proc (in y ; out z ){s} z : proc ∀ı (in σ ; out τ ) (t.proc) * Γ; Ω e : τ [n/i] Γ;Ω e: n = m Γ; Ω e : τ [m/i] (t.subst-i) Γ; Ω s Ω [n/i] Γ;Ω e: n = m Γ; Ω s Ω [m/i] (t.subst-ii) Γ; Ω, Ω ε Ω (t.empty) Γ; Ω, x : σ c x : τ Γ; Ω, x : τ s Ω Γ; Ω, x : σ c; s Ω (t.seq) Γ; Ω e: τ Γ, y: τ ; Ω s Ω Γ; Ω cst y = e; s Ω (t.cst) Γ; Ω e: τ Γ; Ω, y: τ s Ω y Ω Γ; Ω var y e; s Ω (t.var) Γ; Ω, y : σ e: ∃ı (τ1, , τn) Γ;Ω, y1: τ1, , yn: τn s Ω Γ; Ω, y : σ y e; s Ω (t.assign) * Γ; x : τ s x : σ Γ; Ω, x : τ {s} x x : σ (t.block) Γ; Ω, y: nat(n) inc(y) y: nat(s(n)) (t.inc) Γ; Ω, y: nat(n) dec(y) y: nat(p(n)) (t.dec) Γ; Ω, x : σ [0/i] e: nat(n) Γ, y: nat(i); x : σ s x : σ [s(i)/i] Γ; Ω, x : σ [0/i] for y 0 until e {s} x x : σ [n/i] (t.for) * Γ; Ω, r : ω p: proc ∀ı (in σ ; out τ ) Γ;Ω, r : ω e : σ [m/ı ] Γ; Ω, r : ω p(e ; r ) r : τ [m/ı ] (t.call)

Figure 4 . 2 .

 42 Figure 4.2. Imperative dependent type system

Theorem 4 . 8 .Theorem 4 . 9 .

 4849 (Soundness for ID). For any environments Γ and Ω, any expression e, any sequence s we have: -Γ; Ω e: τ in ID implies Γ , Ω e : τ in FD. -Γ; Ω s z : σ in ID implies Γ , Ω (s) z : σ in FD. Proof. See Appendix C.3. For any state (s, µ), if z : τ (s, µ) z : σ in ID then (s) z [µ(x ) /x ]: σ in FD. Proof. By definition of state typing, z : τ (s, µ) z : σ implies ∅; z : τ s z : σ and for all (z i , µ(z i )) ∈ µ, ∅; ∅ µ(z i ): τ i . By theorem 4.8, on one hand ∅; z : τ s z : σ implies z : τ (s) z : σ , and on the other hand ∅; ∅ µ(z i ): τ i implies µ(z i ) : τ i . Since (s) z is well typed in the environment z : τ , the variables in x which are not in z are not free in (s) z . Hence, by the substitution lemma, (s) z [µ(x ) /x ]: σ .

Corollary 4 . 10 .

 410 (representation theorem for ID). Given an equational system E and an n-ary function symbol f, ifp: proc ∀n (in nat(n ); out nat(f (n )))is derivable in ID then p represents f. Proof. Indeed, p : ∀n .nat(n ) ⇒ nat(f (n )) is derivable in FD, and thus p represents f by proposition 4.3. Since by Proposition 4.6, p: proc(in nat; out nat) is derivable in IS, we know that p always terminates by lemma 3.12 and computes p by proposition 2.12.

2 .

 2 For any type σ ∈ Σ FD , we have σ = σ. Proof. Straightforward induction on translations σ and σ . Proposition 4.13. (erasure and translation commute). For any imperative dependent type σ we have κ(σ ) = (κσ) .

Remark 4 . 15 .

 415 Translation is only defined above for terms of L. Translating an arbitrary term (typable in FD) into an imperative program (typable in ID), just requires to put the term in monadic normal form. More details are given in Appendix C.5.

Definition 5 . 1 .

 51 (translation of dependent types from FD c to FD) nat(n

Remark 5 . 2 .Definition 5 . 3 .

 5253 If we instantiate the monad, and restrict ourselves to relativized quantifiers we obtain as expected Murthy's variant[START_REF] Murthy | Extracting Constructive Content from Classical proofs[END_REF][START_REF] Murthy | An evaluation semantics for classical proofs[END_REF] of Kuroda's translation[START_REF] Kuroda | Intuitionistische untersuchungen der formalistischen logik[END_REF]. For any value v ∈ V and any term t ∈ L possibly containing callcc and throw, the call-byvalue CPS-transform v • and t • are defined by mutual induction as follows:

Proposition 6 . 1 .

 61 callcc : proc (in proc (in ¬σ ; out σ ); out σ ) throw : proc (in ¬σ , σ ; out τ ) Note that the type of callcc is exactly ((¬σ ⇒ σ ) ⇒ σ ) and the type of throw is exactly ((¬σ ∧ σ ) ⇒ τ ) . If we assume that callcc and throw are mapped by to their functional counterpart, we have the following properties by construction: For any environments Γ and Ω, any expression e, any sequence s, possibly containing procedures callcc and throw, we have: -Γ; Ω e: τ in ID c implies Γ , Ω e : τ in FD c . -Γ; Ω s z : σ in ID c implies Γ , Ω (s) z : σ in FD c . Proposition 6.2.

Corollary 6 . 3 .

 63 Given an equational system E and an n-ary function symbol f, if p: proc({n }in nat(n ); out nat(f (n ))) is derivable in ID c then p represents f. Proof. Since p : ∀n .nat(n ) ⇒ nat(f (n ))) is derivable in FD c and by Theorem 5.8, p represents f .

Proposition 6 . 4 .

 64 The following typing rules are derivable in ID c . Γ, k: ¬σ ; z : τ s z : σ Γ; Ω, z : σ s Ω Γ; Ω, z : τ k: {s} z ; s Ω Γ; Ω, z : τ k: ¬σ Γ; Ω, z : τ e : σ Γ; Ω, z : τ jump(k, e ) z z : τ Proof. See Appendix C.7.

  4): reset : proc(in proc(in ¬α; out β, ¬β), ¬γ; out α, ¬γ) reset = proc(in p; out r) mk { k: { cst m = mk ; mk proc(in r; out z){jump (k, r, m) z ; } z ; var y; p(; y) mk ; jump (mk , y) r,mk ; } r,mk ; } r,mk ; shift : proc(in proc(in proc(in α, ¬β; out γ, ¬β), ¬δ; out , ¬), ¬δ; out α, ¬γ) shift = proc(in p; out r) mk { k: {proc q(in v; out r) mk { reset (proc(out z) mk {jump (k, v, mk ) z,mk ; } z,mk ; r) mk ; } r,mk ; var y; p(q; y) mk ; jump (mk , y) r,mk ; } r,mk ; } r,mk

A. 1

 1 Basic properties of I Definition. The sets FI(s), FI(c) and FI(e) of free identifiers (including both variable and constant identifiers) of a sequence, a command and an expression are defined by mutual induction as follows: -FI(y) = {y } -FI( * ) = FI(q ¯) = ∅ -FI(e 1 , , e n ) = FI(e 1 ) ∪ ∪ FI(e n ) -FI(proc (in y ; out z ) {s} z ) = FI(s) \ (y ∪ z ) -FI(inc(y)) = FI(dec(y)) = {y } -FI({s} x ) = FI(s) ∪ x -FI(y e) = {y } ∪ FI(e) -FI(p(e ; y )) = y ∪ FI(e ) ∪ FI(p) -FI(for y 0 until e {s} x ) = FI(e ) ∪ (FI(s) \ {y }) ∪ x -FI(ε) = ∅ -FI(c ; s) = FI(c) ∪ FI(s) -FI(cst y = e; s) = FI(var y e; s) = FI(e ) ∪ (FI(s) \ {y })

  ) r = (r w ; ) r = let r 1 = (w 1 ) in let r n = (w n ) in r We easily conclude since r does not occur in (w ) . • ((let y = w in u) r ) r = (cst y = w ; (u) r ) r = let y = (w ) in ((u) r ) r By induction hypothesis, r FV(((u) r ) r ), and r does not occur in (w ) . • ((let y = succ(w) in u) r ) r = (var z w ; inc(z); cst y = z; (u) r ) r = (let z = succ(z) in let y = z in ((u) r ) r )[(w ) /z] = (let z = succ((w ) ) in let y = z in ((u) r ) r ) By induction hypothesis, r FV(((u) r ) r ), and r does not occur in (w ) . • The case of pred is similar to succ. • ((let x = rec(w, w , λi.λy .t) in u) r ) r = (var z w ; for i 0 until w {cst y = z ; (t) z } z ; cst x = z ; (u) r ) r = let z = rec((w ) , z , λi.λz .let y = z in ((t) z ) z ) in let x = z in ((u) r ) r )[(w ) /z ] = let z = rec((w ) , (w ) , λi.λz .let y = z in ((t) z ) z ) in let x = z in ((u) r ) r ) By induction hypothesis, r FV(((u) r ) r ), and r does not occur in (w ) , (w ) and ((t) z ) z

  3 λx .t by induction hypothesis. • ((w ) r ) r = (r w ; ) r = let r 1 = (w 1 ) in let r n = (w n ) in r n (w ) w by induction hypothesis. • ((let y = w in u) r ) r = (cst y = w ; (u) r ) r = let y = (w ) in ((u) r ) r let y = w in u by induction hypothesis. • ((let y = succ(w) in u) r ) r = (var z w ; inc(z); cst y = z; (u) r ) r = (let z = succ(z) in let y = z in ((u) r ) r )[(w ) /z] = (let z = succ((w ) ) in let y = z in ((u) r ) r ) (let y = succ((w ) ) in ((u) r ) r ) since z FV((u) r ) r ) let y = succ(w) in u by induction hypothesis. • The case of pred is similar to succ. • ((let x = rec(w, w , λi.λy .t) in u) r ) r = (var z w ; for i 0 until w {cst y = z ; (t) z } z ; cst x = z ; (u) r ) r = let z = rec((w ) , z , λi.λz .let y = z in ((t) z ) z ) in let x = z in ((u) r ) r )[(w ) /z ] = let z = rec((w ) , (w ) , λi.λz .let y = z in ((t) z ) z ) in let x = z in ((u) r ) r ) let z = rec((w ) , (w ) , λi.λz .((t) z ) z /y ]) r ) r /x = rec(w, w , λi.λz .t[z /y ]) in u[z /x ] by induction hypothesis = let x = rec(w, w , λi.λy .t) in u modulo α-conversion. • ((let x = w w in u) r ) r = (var z ; w (w ; z ); cst x = z ; (u) r ) r = (let z = (w ) (w ) in letx 1 = z 1 in let x n = z n in ((u) r ) r )[()/z ] = let z = (w ) (w ) in let x 1 = z 1 in let x n = z n in ((u) r ) r let z = (w ) (w ) in ((u) r ) r [z /x ] let z = w w in u[z /x ]by induction hypothesis = let x = w w in u modulo α-conversion. • ((let x = t in u) r ) r = (var z ; {(t) z } z ; cst x = z ; (u) r )) r = (let z = ((t) z ) z in let x 1 = z 1 in let x n = z n in ((u) r ) r )[()/z ] = (let z = ((t) z ) z in let x 1 = z 1 in let x n = z n in ((u) r ) r ) let z = ((t) z ) z in ((u) r ) r [z /x ] let z = t in u[z /x ] by induction hypothesis = let x = t in u modulo α-conversion.

Figure B. 1 .

 1 Figure B.1. Alternative imperative pseudo-dynamic type system

•

  s ≡ (cst y = e; s 1 ): if e ≡ x then by definition of state typing, x ∈ dom(µ) ; we then have ((cst y = e; s 1 ), µ) (s 1 [y ← ϕ µ (e)], µ)). • s ≡ (var y e; s 1 ): if e ≡ x then by definition of state typing, x ∈ dom(µ) ; by induction hypothesis on z : τ , y: τ (s 1 , (µ, y ← ϕ µ (e))) Ω, y: τ , we have either s 1 ≡ ε or (s 1 , (µ, y ← ϕ µ (e))) (s 1 , (µ , y ← w )) ; in the first case, we have ((var y e; ε), µ) (ε, µ), and in the second case we have ((var y e; s 1 ), µ) ((var y w ; s 1

s 2 )

 2 : by induction hypothesis on z : σ (s 1 , µ) z : σ , we have either s 1 ≡ ε or (s 1 , µ) (s 1 , µ ) ; in the first case, we have (({} z ; s 2 ), µ) (s 2 , µ), and in the second case we have (({s 1 } z ;

•B. 5 ExpressivenessDefinition B. 5 .Proposition B. 6 .

 556 s ≡ (y e; s 1 ): if e ≡ x then by definition of state typing, x ∈ dom(µ), hence e = µ (w) can always be derived ; we have ((y e; s 1 ), µ) (s 1 , µ[y ← w ]). • s ≡ (p(e ; r ); s 1 ): if e i ≡ x then by definition of state typing, x ∈ dom(µ), similarly for p ; we have ((p(e ; r ); s), µ) (({s [y ← w][z r ]} r ; s), µ[r ← * ]). • s ≡ (for y 0 until e { s 1 } z ; s 2 ): if e ≡ x then by definition of state typing, x ∈ dom(µ) ; either e = µ 0 ¯and ((for y 0 until e {s 1 } z ; s 2 ), µ) (s 2 , µ), or e µ 0 ¯and ((for y 0 until e {s 1 } z ; s 2 ),µ) (({for y 0 until q ¯{s 1 } z ; s 1 [y ← q ¯]} z ; s 2 ), µ). The translation of a type τ ∈ Σ FS into a type τ ∈ Σ FS is defined by the following rules:nat = nat unit = unit (σ → τ ) = σ → τ (τ 1 × × τ n ) = (τ 1 × × τ n) For any functional term t, if Γ t: τ in FS then Γ t : τ in FS.

Figure C. 1 .

 1 Figure C.1. Alternative imperative dependent type system Indeed, Γ, Ω e : τ [u /ı ] Γ, Ω e : ∃ (τ ) • (t.subst-i) Γ; Ω e : τ [n/i] Γ;Ω e: n = m Γ; Ω e : τ [m/i]

Table of contents

 of 

x: τ ∈ Γ Γ x: τ (ident) Γ 0: nat (zero) Γ t: nat Γ S(t): nat (succ) Γ t: nat Γ pred(t): nat (pred) Γ t1: τ1 Γ tn: τn Γ (t 1 , , t n ): τ 1 × × τ n (tuple) Γ (): unit (unit) Γ, x1: τ1, , xn: τn t: τ Γ u: τ1 × × τn Γ let (x 1 , , x n ) = u in t: τ (let) Γ, x: τ t: σ Γ λx.t : τ → σ (abs)

x: τ ∈ Γ Γ x: τ (ident) Γ 0: nat(0) (zero)Γ t: nat(n) Γ S(t): nat(s(n)) (succ) Γ t: nat(n) Γ pred(t): nat(p(n)) (pred) Γ t1: τ1[m/ı ] Γ tk: τk[m/ı ] Γ (t 1 , , t k ): ∃ı (τ 1 ∧ ∧ τ k ) (tuple) Γ, x1: τ1, , xk: τk t: τ Γ u: ∃ı (τ1 ∧ ∧ τk) Γ let (x 1 , , x k ) = u in t: τ (let) Γ, x: τ t: σ Γ λx.t : ∀ı (τ ⇒ σ) (abs) Γ t1: ∀ı (σ ⇒ τ ) Γ t2: σ[n /ı ] Γ t 1 t 2 : τ [n /ı ] (app) Γ t1: nat(n) Γ t2: τ [0/i] Γ, x: nat(i), y: τ t3: τ [s(i)/i] Γ rec(t 1 , t 2 , λx.λy.t 3 ): τ [n/i] (rec)

Indeed,Γ • , x: ϕ • x: ϕ • • (equal) E n = m Γ (): (n = m) Indeed, E n = m Γ • (): (n = m) • (subst) Γ t: ϕ[n/i] Γ v: (n = m) Γ t: ϕ[m/i] Indeed, Γ • t • : ∇ϕ • [n/i] Γ • v • : (n = m) Γ • t • : ∇ϕ • [m/i] • (zero) Γ 0: nat(0) Indeed, Γ • 0: nat(0) • (succ) Γ v: nat(n) Γ S(v): nat(sn) Indeed, Γ • v • : nat(n) Γ • S(v • ): nat(sn) • (abs) where ı FV(Γ) Γ, x: ϕ u: ψ Γ λx.u: ∀ı (ϕ ⇒ ψ) Indeed, Γ • , x: ϕ • u • : ∇ψ • Γ • λx.u • : ∀ı (ϕ • ⇒ ∇ψ • ) • (app) Γ v 1 : ∀ı (ϕ ⇒ ψ) Γ v 2 : ϕ[n /ı ] Γ (v 1 v 2 ): ψ[n /ı ] Indeed, Γ v 1 • : ∀ı (ϕ • ⇒ ∇ψ • ) Γ • v 2 • : ϕ • [n /ı ] Γ (v 1 • v 2 • ): ∇ψ • [n /ı ] • (tuple) Γ v 1 : ϕ 1 [n /ı ] Γ v k : ϕ k [n /ı ] Γ (v 1 , , v k ): ∃ı (ϕ 1 ∧ ∧ ϕ k ) Indeed, Γ • v 1 • : ϕ 1 • [n /ı ] Γ • v k • : ϕ k • [n /ı ] Γ • (v 1 • , , v k • ): ∃ı (ϕ 1 • ∧ ∧ ϕ k • ) • (let) where n FV(Γ, ψ) Γ t: ∃ı (ϕ 1 ∧ ∧ ϕ k ) Γ, x 1 : ϕ 1 [n /ı ], , x k : ϕ k [n /ı ] u: ψ Γ let (x 1 , , x k ) = t in u: ψ Indeed, since n FV(Γ • , ψ • ) Γ • t: ∇(∃ı (ϕ 1 • ∧ ∧ ϕ k • )) Γ • t: ∃ı (ϕ 1 • ∧ ∧ ϕ k • ) Γ • , x 1 : ϕ 1 • [n /ı ], , x k : ϕ k • [n /ı ] u • : ∇ψ • Γ • let (x 1 , , x k ) = y in u • : ∇ψ • Γ • let val y = t • in let (x 1 , , x k ) = y in u • : ∇ψ • 20 •(rec) where i FV(Γ) Γ v: nat(n) Γ u: ϕ[0/i] Γ, x: nat(i), y: ϕ t: ϕ[s(i)/i] Γ rec(v, u, λx.λy.t): ϕ[n/i]Indeed, since i FV(Γ • ) Γ • v • : nat(n) Γ • u • : ∇ϕ • [0/i] Γ • , r: ∇ϕ • r: ∇ϕ • Γ • , x: nat(i), y: ϕ • t • : ∇ϕ • [s(i)/i] Γ • , x: nat(i), r: ∇ϕ • let val y = r in t • : ∇ϕ • [s(i)/i] Γ •, x: nat(i) λr.let val y = r in t • : ∇ϕ • ⇒ ∇ϕ • [s(i)/i] Γ • rec(v • , u • , λx.λr.let val y = r in t • ): ∇ϕ • [n/i] • (pred) Γ v: nat(n) Γ pred(v): nat(pn)

Proof. By mutual induction on Γ t: σ and Γ v: σ, and by case analysis of the translation.• x = x x: σ ∈ Γ Γ x: σ Indeed, x: σ ∈ Γ Γ ; Ω x: σ • (S n (0)) = n ¯Γ 0: nat(0)Γ S n (0): nat(s n (0)) Indeed, Γ ; Ω n ¯: nat(s n (0))

Example: the addition procedure

Complete type derivations in ID are tedious. In the following examples, we prefer instead to provide only some type annotations on the right-hand side of the program. Although we did not formally define this syntax, we believe that it is self-explanatory and contains enough information to reconstruct the complete type derivation in ID. For instance, here is the procedure add which computes the addition together with the sketch of its type derivation: (add : proc ∀x, y(in nat(x), nat(y); out nat(x + y)))

Example: the Ackermann procedure

We recall the equations which define a variant the Ackermann function [START_REF] Leivant | Intrinsic reasoning about functional programs I: first order theories[END_REF]:

(1) a(0, n) = s(n) (2) a(s(z), 0) = s(s(0)) (3) a(s(z), s(u)) = a(z, a(s(z), u))

Similarly, from a proof of ∀m, n(nat(m) ∧ nat(n) ⇒ nat(a(m, n))) in FD in monadic normal form, by applying translation by hand, we obtain a procedure which computes a(m, n) (the functional typing derivation is in Appendix D. 3.1). Here is the definition of the procedure ack with its typing annotations. 

Translation from ID to FD

We show that translation preserves dependent types.

Definition 4.7. (translation of dependent types). For any imperative dependent type τ, the corresponding functional dependent type τ is defined inductively as follows:

Appendix B Properties of IS and FS B.1 Alternative pseudo-dynamic type system

We first present in Figure B.1 a different (but equivalent) formulation of the pseudo-dynamic type system which is easier to deal with when proving properties by induction on sequences. • (s.for-ii): we have µ ∆, x : σ and ∅; ∆, x: σ e: nat y: nat; x : σ s x : σ ∅; ∆, x : σ s ∆ ∅; ∆, x: σ for y 0 until e {s} x ; s ∆ By Lemma B.1, y: nat; x : σ s x : σ and ∅; ∅ q ¯: nat implies ∅; x : σ s[y ← q ¯] x : σ . We can then build the following typing derivation to conclude:

B.2 Preliminary properties

∅; ∆, x : σ q ¯: nat y: nat; x : σ s x : σ ∅; x : σ s[y ← q ¯] x : σ ∅; x : σ for y 0 until q ¯{s} x ; s[y ← q ¯] x : σ ∅; ∆, x : σ s ∆ ∅; ∆, x : σ {for y 0 until q ¯{s} x ; s[y ← q ¯]} x ; s ∆ Appendix C Properties of ID (c) and FD (c)

C.1 Alternative dependent type system

We first present in Figure C.1 a different (but equivalent) formulation of the imperative dependent type system which is easier to deal with when proving properties by induction on sequences. 

C.2 Preliminary properties

C.3 Translation from ID to FD

Theorem. (Soundness for ID). For any environments Γ and Ω, any expression e, any sequence s we have:

Proof. We proceed by induction on the typing derivation: 

Γ

, Ω e : τ Γ , y: τ , Ω (s) z : σ 

Proof. By induction on t ∈ L n .

• t ≡ v ∈ L n : by definition of v ∈ L n , we have v = (w 1 , , w n ), hence the typing derivation of Γ v: τ ends with:

we have Γ u: (σ 1 ∧ ∧ σ n ) and the typing derivation of t ends with: 

C.5 Expressiveness

Definition C.7. The translation of a type τ ∈ Σ FD c into a type τ ∈ Σ FD c is defined by the following rules:

Proof. Straightforward induction on t.

C.6 CPS translation

Lemma C.9. The following typing rules are derivable in FD:

Lemma C.10. Abbreviations callcc and throw are typable FD as

Appendix D Examples of imperative programs

In this appendix, we adopt Prawitz style natural deduction for proof trees. Moreover, we will use the substitution rule (in both functional and imperative typing derivations) without explicitly displaying the equations, but only its number.

To begin with, we recall usual axioms of Peano's arithmetic for + , × :

D.1 Multiplication

D.1.1 Multiplication in FD

Let D s be the derivation:

Then: 

(mult : proc ∀x, y(in nat(x), nat(y); out nat(x × y)))

D.2 Factorial

Here follows the equations defining the factorial function:

Factorial in FD

Let D s be the derivation:

Then:

x: nat(p) 

D.3 Ackermann function

Here follows the equations defining a version of the Ackermann function (from [START_REF] Leivant | Intrinsic reasoning about functional programs I: first order theories[END_REF]):

(1) a(0, n) = s(n) (2) a(s(z), 0) = s(s(0)) (3) a(z, a(s(z), u)) = a(s(z), s(u))

D.3.1 Ackermann function in FD

Here follows an annotated version of the proof given in [START_REF] Leivant | Intrinsic reasoning about functional programs I: first order theories[END_REF]. Let D s be the derivation: