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Abstract

Our aim is to estimate the unknown slope function in the functional linear model
when the response Y is real and the random function X is a second order station-
ary and periodic process. We obtain our estimator by minimizing a standard (and
very simple) mean-square contrast on linear finite dimensional spaces spanned by
trigonometric bases. Our approach provides a penalization procedure which allows
to automatically select the adequate dimension, in a non-asymptotic point of view.
In fact, we can show that our penalized estimator reaches the optimal (minimax)
rate of convergence in the sense of the prediction error. We complete the theoretical
results by a simulation study and a real example which illustrate how the procedure
works in practice.

Keywords. Functional linear model, penalized contrast estimator, mean squared
prediction error, minimax rate.
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1 Introduction
Functional data analysis have known recent advances in the past two decades. In many
practical situations, we aim to predict values of a scalar response by using functional
predictors, or roughly speaking, curves. Many fields of applications are concerned with
this kind of data, such as medicine, chemometrics or econometrics. This is especially the
case when people have to predict electric consumption from a daily temperature curve,
or in medicine when spectrometric signals are used to detect abnormality. We refer to
Ferraty and Vieu (2006) and Ramsay and Silverman (2005) for detailed examples and
to Preda and Saporta (2005) for application in econometrics. In this paper, we focuse on

∗Corresponding author : ebrunel@math.univ-montp2.fr

1



the functional linear model, where the dependence between a scalar response Y and the
functional random predictor X is given by:

Y =

∫ 1

0

β(t)X(t)dt+ ε, (1)

where the centred random variable ε stands for a noise term with variance σ2 and is inde-
pendent of X. Our aim is to estimate the unknown slope function β from an independent
and identically distributed (i.i.d.) sample (Xi, Yi), for i = 1, · · · , n. In the sequel, we
suppose that the random function X takes value in L2(A) with A a compact set and for
sake of simplicity, we fix A = [0, 1]. We recall that the usual inner product 〈., .〉 in L2[0, 1]

is defined by 〈f, g〉 =
∫ 1

0
f(u)g(u)du for all f, g ∈ L2[0, 1]. The random curve X will be

supposed to be centred and periodic, that is to say the function s 7→ E[X(s)] is identically
equal to zero and X(0) = X(1). This context matches the description of circular data
considered in Comte and Johannes (2010).

By multiplying both sides of Equation (1) by X(s) and by taking expectation, we
easily obtain:

E[Y X(s)] =

∫ 1

0

β(t)E[X(t)X(s)]dt =: Γβ(s), for all s ∈ [0, 1], (2)

where Γ is the covariance operator associated to the random function X. Then, the
problem of the estimation of β is related to the inversion of the covariance operator Γ or
of its empirical version:

Γn :=
1

n

n∑
i=1

〈Xi, .〉Xi.

Many authors have studied the functional linear model. Strategies using regression on
functional principal components have been proposed by Bosq (2000), Cardot et al. (1999)
or Cardot et al. (2007) among others. The estimator of the slope function is usually
obtained on the linear space spanned by the first eigenfunctions associated to the greatest
eigenvalues of the empirical covariance operator Γn. Although the resulting estimator
is shown to be convergent, its behaviour is often erratic in simulation studies, thus a
smooth version by using splines has been proposed by Cardot et al. (2003). Smoothing
splines estimator minimizing a standard least squares criterion has been improved by
Crambes et al. (2009) with a slight modification of the usual penalty. The authors have
shown that rates of convergence for the risk defined by the mean squared prediction error
depend on both the smoothness of the slope function and the structure of the covariance
operator (in particular, the decreasing rate of the eigenvalues). They also prove that
the obtained rates are minimax over large classes of slope functions. In a different way,
Cardot and Johannes (2010) propose a thresholded projection estimator to circumvent
instability problems, which can reach optimal convergence rate for the risk associated with
the mean squared prediction error. Their techniques based on dimension reduction follow
inverse problems ideas starting from Efromovich and Koltchinskii (2001) and covered
more recently by Hoffmann and Reiss (2008). But all theses procedures depend on one
or more tuning parameters, which is a difficult problem to solve in practice.

Earlier, Goldenshluger and Tsybakov (2001) have considered the problem of optimal
prediction under the canonical multiple linear regression model with a random design

2



and infinitely many parameters. The performance is characterized by the mean square
prediction error. They construct predictors based on a weighted regularized least squares
estimator. Moreover, under the normality of the random noise sequence, the predictor is
asymptotically minimax over ellipsoids in `2. However, in their setting, the regressors are
uncorrelated and their common variance is supposed to be one, so that the application
of their results requires to standardize the regressors. Consequently, one needs to fully
know the covariance operator and this cannot be directly compared to our context. More
recently, Verzelen (2010) has proposed an adaptive estimation procedure for the slope
coefficient, say θ ∈ Rp, in the context of high dimensional regression models. He has
obtained an oracle-inequality for the risk associated with the prediction error on Rp,
which remains true when p >> n. Any knowledge on the covariance matrix of the design
is required but his results are obtained under the assumption that both the design and
the noise are gaussian. We can also mention the different but related works of the inverse
problem community such as Cavalier and Hengartner (2005) among others.

Cai and Hall (2006) addressed the problem of prediction from an estimator of the slope
function. Recently, Yuan and Cai (2010) have developped a smoothness regularization
method for functional linear regression and provided a unified treatment for both the
prediction and estimation problems. They obtained sharper results on the minimax rates
of convergence and showed that smoothness regularized estimators achieve the optimal
rates of convergence for both prediction and estimation. Again, in these works, the choice
of the tuning parameter plays an important role in the performance of the regularized
estimators. The usual practical strategy of empirically choosing the smoothing parameter
value is performed through the generalized cross validation.

But nonasymptotic results providing adaptive data-driven estimators were missing up
to the recent paper by Comte and Johannes (2010). They have proposed a model selection
procedure for the orthogonal series estimator introduced by Cardot and Johannes (2010).
The resulting estimator is completely data-driven and it is shown to achieve optimal
minimax rates for general weighted L2-risks. The dimension is selected by minimization
of a penalized contrast which requires the knowledge of the sequence of weights defining
the risk, the aim being to estimate accurately the slope function and its derivatives. In
this sense their work is more general than ours. Nevertheless, we explain hereafter why
their data-driven estimation procedure cannot encompass the prediction error, which can
be seen as a particular weighted risk whose weights are the unknown eigenvalues of the
covariance operator.

At a first sight, our penalized estimator may look like a special case of the Comte
and Johannes’s one in the case of the prediction error, but it is definitely not since their
penalty term involves the weights defining the risk, that is to say the unknown eigenvalues.
In our paper, even though a less general risk is handled, we propose a very simple data-
driven procedure to select the adequate dimension of the functional space over which the
standard mean square contrast is minimized. We want to emphasize that the prediction
error is of particular interest in applications and thus takes an important place in most
of the papers related to functional linear models. Though, our goal differs mainly from
Comte and Johannes (2010) but the tools are those of model selection as well, developed
in a general framework by Barron et al. (1999), recently outlined in Massart (2007)
and in the multivariate regression setting by Baraud (2002). The estimation procedure
is presented in Section 3. Then, in Section 4, the resulting penalized estimator is proved
to satisfy an oracle-type inequality for the risk associated to the prediction error and to
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reach optimal rates for slope functions belonging to Sobolev classes. Finally a simulation
study and a real data set example are presented in Section 5.

Most of proofs are relegated to Appendix A.

2 Theoretical framework

2.1 Properties of the covariance operator

We give here some useful properties of the covariance operator Γ defined by (2).
The operator Γ is a self-adjoint operator. Even though it is not essential in the sequel,

let us mention that it is also nuclear with square integrable kernel function and thus
Hilbert-Schmidt and compact. By the Spectral Theorem (see Theorem 6.11 of Brezis
(2011) or Halmos (1963)), there exists an orthonormal basis (ϕj)j≥1 of L2([0, 1]) where
the ϕj’s are the eigenfunctions of Γ. For j ≥ 1, we denote by λj the eigenvalue associated
to the eigenfunction ϕj.

We have λj ≥ 0, for all j ≥ 1. We suppose in addition that the λj’s are positive
numbers: this condition is necessary for the model to be identifiable. Indeed, if there
exists j0 ≥ 1 such that λj0 = 0, we have:

0 = λj0‖ϕj0‖2 =< Γϕj0 , ϕj0 >= E
[
< X,ϕj0 >

2
]
,

and < X,ϕj0 >= 0 almost surely. By consequence, if the slope function β satisfies
Equation (1), then any slope function of the form β + cϕj0 , with c ∈ R, satisfies also
Equation (1): it is clearly impossible to identify the slope function with our sample in
that case. However this condition is not sufficient, for more details on the problem of
identifiability in functional linear models see e.g. Section 2 in Cardot et al. (2003).

As the curve X is supposed to be periodic and second-order stationary, the eigenfunc-
tions of the covariance operator are the functions of the Fourier basis (see
Comte and Johannes (2010)) and we can assume that:

ϕ1 ≡ 1, ϕ2j(·) =
√

2 cos(2πj·) and ϕ2j+1(·) =
√

2 sin(2πj·). (3)

In this context, we only have to estimate the unknown eigenvalues of the covariance
operator.

2.2 Risk—Prediction error

The quality of our estimator will be evaluated in terms of mean squared prediction
error. The prediction error of an estimator β̂ is the error made by predicting a new
value Yn+1, given a new curve Xn+1 independent of the sample, by using the predictor
Ŷn+1 :=< β̂,Xn+1 >. This quantity can be written:

E

[(
Ŷn+1 − E[Yn+1|Xn+1]

)2

|X1, ..., Xn

]
= < Γ(β̂ − β), β̂ − β > .

Then we define a new scalar product on L2([0, 1]) by:

< f, g >Γ:=< Γf, g >=
∞∑
j=1

λj〈f, ϕj〉〈g, ϕj〉, for all f, g ∈ L2([0, 1]),
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and its associated norm ‖ · ‖Γ. With our assumption on the positivity of the eigenvalues
λj, the form 〈·, ·〉Γ satisfies the positive-definite property, otherwise we would only have a
semi-norm ‖ · ‖Γ on L2([0, 1]).

3 Estimation procedure

3.1 Definition of one estimator

LetNn ∈ N∗ andMn := {1, ..., Nn}. Form ∈Mn we denote by Sm := span{ϕ1, ..., ϕ2m+1},
the linear space, called model, spanned by the trigonometric basis defined by (3), and of
finite dimension Dm := 2m+ 1.
Remark 1. Note that the models Sm are nested i.e. for m ≤ m′, Sm ⊂ Sm′ . Hence, the
space Sn := SNn contains all the models.

We define — in case that this definition makes sense — the least squares estimator
β̂m of β in Sm by:

β̂m := arg minf∈Smγn(f), (4)

where

γn(f) :=
1

n

n∑
i=1

(Yi− < f,Xi >)2.

The function f =
∑Dm

j=1 αjϕj minimizes the contrast γn on Sm if and only if the vector
(α1, ..., αDm) ∈ RDm minimizes the convex function

F (t1, ..., tDm) :=
1

n

n∑
i=1

(
Yi −

Dm∑
j=1

tj < ϕj, Xi >

)2

on RDm . Let us define the matrix

Φm :=

(
1

n

n∑
i=1

< ϕj, Xi >< ϕk, Xi >

)
1≤j,k≤Dm

(5)

and the vector

b :=

(
1

n

n∑
i=1

Yi < ϕj, Xi >

)′
1≤j≤Dm

,

we have:
∇F (t) = −2b+ 2Φmt,

with t = (t1, · · · , tDm)′ ∈ RDm .
Therefore, we have existence and uniqueness of the least squares estimator β̂m on Sm

if and only if the matrix Φm is invertible. In that case, the estimator is given by:

β̂m =
Dm∑
j=1

αjϕj,

with α = Φ−1
m b.
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3.2 Penalized estimator

Let λ̂m be the minimal eigenvalue of Φm, we define for all m ∈Mn, the set

Gm := {λ̂m ≥ sn},

with sn := 2
n2

(
1− 1√

lnn

)
. We also define the set:

Ḡ :=
⋂

m∈Mn

Gm. (6)

For all m, on the set Gm, the matrix Φm is symmetric, positive and by consequence
invertible. Then, by definition (6), we can compute on Ḡ the least squares estimator β̂m
of β on Sm for all m ∈Mn. Then we can define an integer

m̂ ∈ arg minm∈Mn

(
γn(β̂m) + pen(m)

)
, (7)

with
pen(m) := 4θ(1 + 2δ)Dm

σ2

n
(8)

where θ > 8 and δ are two positive constants.
Finally the penalized estimator is defined by:

β̃ :=

{
β̂m̂ on Ḡ
0 on Ḡc.

(9)

4 Main result—Risk Bound

4.1 Oracle inequality

We will denote by (HMom) the following assumption:

(HMom): There exist two positive constants v and c such that for all j = 1, ..., DNn and
for all q ≥ 2:

E

∣∣∣∣∣< ϕj, X >√
λj

∣∣∣∣∣
2q
 ≤ q!

2
v2cq−2. (10)

Then, we can bound the risk as follows:

Theorem 1. Suppose that there exists p > 6 such that τp := E[|ε|p] < ∞, moreover
suppose that E[〈β,X1〉4] < +∞ and that Assumption (HMom) is verified. In addition, if
both conditions are satisfied:

min
1≤j≤DNn

λj ≥ 2/n2 and DNn ≤ K

√
n

ln3 n
, (11)

with K a numerical constant, then we have, for all slope function β ∈ L2([0, 1]):

E[‖β̃ − β‖2
Γ] ≤ C

(
min
m∈Mn

(
inf
f∈Sm

‖β − f‖2
Γ + pen(m)

)
+

1

n
(1 + ‖β‖2

Γ + E[〈β,X1〉4]1/2)

)
, (12)
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where pen(m) is defined by (8) and with C a constant depending only on K, Γ, p, τp, σ2,
c, v, θ and δ.

Remark 2. The lower bound on min1≤j≤DNn λj in (11) can be expressed as a bound on
the dimension DNn provided we give some explicit condition on the λj’s, see for instance
the polynomial and exponential cases in Theorem 2 in the next paragraph. In practice,
we have to choose a maximal bound for DNn such that the event Ḡ defined by (6) occurs,
see Section 5 for its practical choice. In addition, we propose in paragraph 5.4, a random
penalty to deal with the case of unknown variance σ2.

Proof. Recall that Sn = SNn . We define an empirical semi-norm naturally associated to
our estimation problem by:

‖f‖2
n =

1

n

n∑
i=1

< f,Xi >
2, for all f ∈ L2([0, 1]).

We define the set
∆n := {∀f ∈ Sn, ‖f‖2

Γ ≤ ρ0‖f‖2
n}, (13)

where 1 ≤ ρ0 < θ/8. The following inequality holds:

E[‖β̃ − β‖2
Γ] ≤ E[‖β̂m̂ − β‖2

Γ1∆n∩Ḡ] + E[‖β̃ − β‖2
Γ1∆c

n
] + ‖β‖2

ΓP(Ḡc) (14)

The second and the third terms in the right-hand side of Inequality (14) can be easily
controlled by lemmas 5 and 6 deferred in Appendix A. Thus the end of the proof will be
devoted to upper bound the first term in the right-hand-side of (14).

Let βm be the orthogonal projection with respect to the scalar product < ·, · >Γ, of β
over Sm. By definition (4) of β̂m we have γn(β̂m) ≤ γn(βm), and by definition (7) of m̂,

γn(β̂m̂) + pen(m̂) ≤ γn(β̂m) + pen(m). (15)
We can write:

γn(β̂m̂)− γn(βm) = ‖β̂m̂ − β‖2
n − ‖βm − β‖2

n − 2νn(β̂m̂ − βm), (16)

with νn an empirical linear centred process defined by

νn(f) :=
1

n

n∑
i=1

εi < f,Xi >, for all f ∈ Sm. (17)

We deal first with the linear process νn, as θ > 0:

2νn(β̂m̂ − βm) ≤ 2‖β̂m̂ − βm‖Γ sup
f∈SΓ

m∨m̂

(νn(f))

≤ 1

θ
‖β̂m̂ − βm‖2

Γ + θ sup
f∈SΓ

m∨m̂

(νn(f))2, (18)

with SΓ
m∨m̂ := {f ∈ Sm∨m̂, ‖f‖Γ = 1}. Then to control the random term ‖β̂m̂ − β‖2

n

we can see that, on the set ∆n, ‖β̂m̂ − βm‖2
n ≥ ρ−1

0 ‖β̂m̂ − βm‖2
Γ. After several use of the

triangular inequality and by gathering (15), (16) and (18) we obtain:(
1

4ρ0

− 2

θ

)
‖β̂m̂ − β‖2

Γ1∆n∩Ḡ ≤ 2‖βm − β‖2
n +

(
1

2ρ0

+
2

θ

)
‖βm − β‖2

Γ

+θ sup
f∈SΓ

m∨m̂

(νn(f))2 + pen(m)− pen(m̂).
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Remark that E[‖βm − β‖2
n] = E[< βm − β,X >2] = ‖βm − β‖2

Γ, thus by taking the
expectation of both sides, we have

E

[∥∥∥β̂m̂ − β∥∥∥2

Γ
1∆n∩Ḡ

]
≤ 4θρ0

θ − 8ρ0

E[pen(m)− pen(m̂)]

+
8ρ0 + 8θρ0 + 2θ

θ − 8ρ0

‖βm − β‖2
Γ +

4θ2ρ0

θ − 8ρ0

E

[
sup

f∈SΓ
m∨m̂

(νn(f))2

]

≤ 8ρ0 + 8θρ0 + 2θ

θ − 8ρ0

‖βm − β‖2
Γ +

8θρ0

θ − 8ρ0

pen(m)

+
4θ2ρ0

θ − 8ρ0

∑
m′∈Mn

E

( sup
f∈SΓ

m∨m′

(νn(f))2 − p(m,m′)

)
+

 ,
with p(m,m′) := 4(1 + 2δ)Dm∨m′σ

2/n. The last inequality above comes from p(m,m′) ≤
pen(m) + pen(m′)), for all m,m′ ∈ Mn. Then, the following lemma allows us to control
the last term of the bound which completes the proof:

Lemma 1. Suppose that there exists p > 6 such that τp := E[|ε|p] <∞. Let νn be the pro-
cess defined by Equation (17) and p(m,m′) = 4(1 + 2δ)Dm∨m′

σ2

n
, then under Assumption

(Hmom), there exists a constant C depending only on p, τp, σ2 and δ such that:

∑
m′∈Mn

E

( sup
f∈SΓ

m∨m′

(νn(f))2 − p(m,m′)

)
+

 ≤ C

n
.

The proof of this lemma is presented in Appendix A and relies on Talagrand’s Inequal-
ity.

4.2 Convergence rates over Sobolev spaces

Given an integer k and a positive real number L, we define the periodic Sobolev space
W per(k, L) as follows:

W per(k, L) := {f ∈ W k
2 (L), ∀j = 0, ..., k − 1, f (j)(0) = f (j)(1)}, (19)

with

W k
2 (L) := {f : [0, 1]→ R, f (k−1) is absolutely continuous and ‖f‖ ≤ L}.

From Theorem 1, a uniform risk bound over W per(k, L) can be derived. We consider
here as in Comte and Johannes (2010) or Cardot and Johannes (2010) two types of
decreasing rate of the sequence (λj)j≥1.

Theorem 2. Assume that the assumptions of Theorem 1 are verified. For all k ∈ N∗

and L > 0 :

Polynomial case. If there exist two constants c > 0 and a > 1/2 such that, for all
j ≥ 1, j−2a/c ≤ λj ≤ cj−2a, we have:

sup
β∈Wper(k,L)

E‖β̃ − β‖2
Γ] ≤ CPn

−(2k+2a)/(2k+2a+1); (20)
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Exponential case. If there exist two constants c > 0 and a > 0 such that, for all j ≥ 1,
exp(−j2a)/c ≤ λj ≤ c exp(−j2a), we have:

sup
β∈Wper(k,L)

E[‖β̃ − β‖2
Γ] ≤ CEn

−1(lnn)1/2a, (21)

with CP and CE independent of n.

Remark 3. Those bounds coincide with the minimal bounds which can be found in Cardot
and Johannes (2010) under the assumption that the noise ε is Gaussian. Hence, in that
case, the rate of convergence is optimal. We can also mention that the bounds (20)
and (21) are the same to those obtained in Cardot and Johannes (2010) and are very
similar to those presented in Crambes et al. (2009).

Proof. First we suppose that we are in the polynomial case, we have:

‖β − βm‖2
Γ =

∑
j≥Dm+1

λj < β, ϕj >
2≤ c

∑
j≥Dm+1

j−2a < β, ϕj >
2 . (22)

By lemma A.3 of Tsybakov (2004) we have that f ∈ W per(k, L) if and only if∑
j≥1

c2
j < f, ϕj >

2≤ L2

π2k
,

with cj = jk if j is an even number and cj = (j − 1)k otherwise. Then, by equation (22),
we obtain:

‖β − βm‖2
Γ ≤ c′D−2a−2k

m ,

with c′ = 2−2aL2/π2k and by Theorem 1:

E[‖β̃ − β‖2
Γ] ≤ C

(
min
m∈Mn

(
c′D−2a−2k

m + 4θ(1 + 2δ)Dm
σ2

n

)
+

1

n
(1 + ‖β‖2

Γ + E[< β,X1 >
4]1/2)

)
.

The minimum is reached for Dm ∼ n1/(2a+2k+1) and is of order n−(2a+2k)/(2a+2k+1).
The proof in the exponential case is quite similar and thus omitted.

5 Simulation study

5.1 Sample simulation

In the sequel, we generate samples (Xi, Yi)
n
i=1 from model (1) and we consider the following

slope functions:
β1(t) = log(15t2 + 10) + cos(4πt), β2(t) = 12 sin(

√
2πt) + 7 cos(13πt),

β3(t) = t(t− 1), β4(t) = 1t∈[1/2;3/4].
The function β1 is the same as the one used in the simulation study presented in Cardot
et al. (2003). The function β3 is in W per(1, 1).
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Figure 1: Approximated prediction error Ênest versus κ for βi, i = 2, 3, 4 and λ ∈
{λ(P ), λ(E)}. On the right-hand-side each plot is linearly transformed. (n = 1000)

For the simulation of the curve X we can remark that, as (ϕj)j≥ is an orthonormal
basis of L2([0, 1]),

X =
∑
j≥1

< X,ϕj > ϕj, (23)

and, for all j ≥ 1, < X,ϕj > is a centred random variable of variance λj ; this decom-
position is called the Karhunen-Loeve decomposition of X. In the same way as Hall and
Horowitz (2007) and Hall and Hosseini-Nasab (2006), we have truncated the sum of
Equation (23):

X(t) =
2J+1∑
j=1

ξjϕj(t), for all t ∈ [0, 1],

with {ξ1, ..., ξ2J+1} a sequence of independent centred random variables such that, for all
j = 1, ..., 2J + 1, Var(ξj) = λj. We choose here J = 500 and ξj ∼ N (0, λj).

We also take two sequences of covariance operator eigenvalues, corresponding respec-
tively to the polynomial and exponential cases of Theorem 2: λ(P ) := (1/j2)j≥1 and
λ(E) := (exp(−

√
j))j≥1. The sequence λ(P ) decreases with the same rate as the eigenval-

ues of the covariance operator of the Brownian motion (see Ash and Gardner (1975)),
then the corresponding curve X should have the same regularity. To our knowledge, the
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case where the sequence (λj)j≥1 decreases exponentially has never been treated by sim-
ulations. The parameter a appearing in Theorem 2 should not be too large otherwise
the sequence (exp(−j2a))j≥1 is quickly too small to be treated numerically, the choice
(a = 1/4) seems to be reasonable. The noise ε has been chosen Gaussian with variance
σ2 = 0.01.

In practice, the maximum dimension DN̂n
:= 2N̂n + 1 is chosen as follows, we denote

by N̂n the highest integer such that the event Ḡ occurs i.e. N̂n := maxN∈N∗{∀m ≤
N, λ̂m > sn}. The heuristic of such a choice makes sense and it is not really a problem in
practice since the selection of the optimal dimension is not very sensitive to the maximal
dimension which has to be chosen neither too small nor too large.

5.2 Rough calibration of the constant appearing in the penalty

Recall that the constant κ = 4θ(1 + 2δ) is a (unknown) numerical constant involved in
the penalty term defined by (8). In practice, we have to fix the value of κ for any slope
function and any rate of decrease of the covariance operator eigenvalues. Our strategy
consists in choosing κ so as to minimize the risk E[‖β̃ − β‖2

Γ] for our choice of slope
functions and rates of decrease of the eigenvalues defined in Paragraph 5.1. As it cannot
be calculated, we have to approach it by a Monte-Carlo method: we simulate nest = 500
independent samples {(X(j)

i , Y
(j)
i ), i = 1, ..., n} and we compute, for all j = 1, ..., nest,

β̃(j) the corresponding estimator. For all j ≥ 1, according to Paragraph 2.2, the quantity
‖β̃(j) − β‖2

Γ can be approached by:

ê(β̃(j)) :=
2J+1∑
j=1

λj < β̃(j) − β, ϕj >2 .

Then the mean squared error of prediction can be approximated by:

Ênest :=
1

nest

nest∑
j=1

ê(β̃(j)).
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Figure 2: Plot of β1 (bold, dashed) and β̃1 computed for 10 independent samples of size
n = 2000.
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Table 1: Mean and median for 1000 Monte-Carlo replications of ê(β̃(j))
β1 β2

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

λ(P ) mean (×10−3) 0.54 0.17 0.090 1.5 0.74 0.47
median (×10−3) 0.54 0.14 0.087 1.5 0.74 0.46

λ(E) mean (×10−3) 0.57 0.23 0.13 2.9 0.88 0.45
median (×10−3) 0.56 0.21 0.13 2.9 0.87 0.44

β3 β4

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

λ(P ) mean (×10−3) 0.51 0.086 0.037 0.56 0.20 0.12
median (×10−3) 0.54 0.060 0.034 0.56 0.18 0.12

λ(E) mean (×10−3) 0.50 0.10 0.044 0.60 0.27 0.15
median(×10−3) 0.50 0.075 0.040 0.59 0.24 0.15

On Figure 1-left, we plot the approximated risk curves Ênest versus κ, corresponding
to β2, β3, β4 and the eigenvalues sequences λ(P ), λ(E). We also present on Figure 1-right,
the risk curves linearly transformed to avoid the scale effect. We can see that, although
the minimum is not achieved at the same point for all the curves, the value κ = 3.5 seems
to be a good compromise, this is the value used hereafter in the simulations. Remark that
the Mallows’ Cp criterion, translated to our context, (see Mallows (1973)) would amount
to set κ = 2 in our penalty. However the estimation is unstable with this value of κ which
suggests, as already noticed by Massart (2007) in the case of Gaussian model selection
for linear models, that the Mallows’ Cp underpenalizes. The methodology we used here
for the calibration should be improved with sharper tools, but this is out of the scope of
the paper.

5.3 Results
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Figure 3: Plot of β2 (bold, dashed) and β̃2 computed for 10 independent samples of size
n = 2000.
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Figure 4: Plot of β3 (bold, dashed) and β̃3 computed for 10 independent samples of size
n = 2000.
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Figure 5: Plot of β4 (bold, dashed) and β̃4 computed for 10 independent samples of size
n = 2000.

On Figures 2 and 3, we can see that the estimators β̃1 and β̃2 are reasonably close to
the estimated functions β1 and β2. Figures 4 and 5 show that the quality of the estimation
is not as good for β3 and β4. This is due to the difficulty to approximate polynomials
and piecewise continuously differentiable functions (Gibbs phenomenon) with the Fourier
basis. All the figures show the quality of the estimation to be better when λ = λ(E),
which is coherent with the theoretical results given in Theorem 2. Moreover, we observe
in Table 1 a decreasing of the empirical version of the mean squared prediction error when
the size n of the sample increases in all cases. Note that it is difficult to compare the
rate of decrease on Table 1 for the different curves since the approximated mean squared
prediction error Ênest depends on the value of λ (λ(E) or λ(P )). Moreover, there is also a
size effect due to the range of the functions β we have chosen. This makes the comparison
between the different examples difficult.

We also try to quantify the rate of decrease of the prediction error as shown on Figure
6 and 7. For all the curves, except for β2, we observe quite the same behaviour: this is
why we only show the results for β1 and β2 on Figure 6 and 7. On Figure 6, we can notice
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Figure 6: On the left-side : Plots of the empirical mean (blue line), median (black dotted
line) and first and last deciles (red lines) of the mean square prediction error Ênest versus
n, for the curve β1; on the right-side : logarithmic transformation of the mean of Ênest
(in blue) and linear mean-square approximation (red, dashed); for both choices of λ(P )

(left-top) and λ(E) (left-bottom).

the fast decrease of the prediction error (mean, median and deciles computed over the
1000 independent replications) both for the sequences λ(P ) (at top) or λ(E) (at bottom).
The logarithmic transformation of the mean prediction error on Figure 6-right makes
appear a linear trend (red line). This corresponds to the theoretical rate of convergence
in Theorem 2. As we can see on Figure 7, the behaviour of the mean squared prediction
error for β2 is less obvious: there is a fast decrease of the prediction error for small sample
sizes before reaching a rate of decrease similar to that of the function β1. This can be
explained by the fact that β2 has a non-homogeneous behaviour (multiple monotonicity
changing) and hence can be approximated accurately only by fonctions belonging to a
space of sufficiently high dimension. Though, the adequate dimension can be achieved
only if the size of the sample is sufficiently large.
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Figure 7: On the left-side : Plots of the empirical mean (blue line), median (black dotted
line) and first and last deciles (red lines) of the mean square prediction error Ênest versus
n, for the curve β2; on the right-side : logarithmic transformation of the mean of Ênest
(in blue); for both choices of λ(P ) (left-top) and λ(E) (left-bottom).

5.4 Case of unknown noise variance

When the noise variance σ2 is unknown, we can select the dimension by minimizing the
data-driven criterion

ĉrit(m) := γn(β̂m)

(
1 + 4θ(1 + 2δ)

Dm

n

)
,

obtained by replacing the term σ2 appearing in Equation (8) by a plug-in estimator

σ̂2
m :=

1

n

n∑
i=1

(
Yi− < β̂m, Xi >

)2

.

While this estimator is biased, the prediction error does not seem to be affected by this
new penalty, as evidenced by the simulation results given in Table 2.
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β1 β3

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000
Mean (×10−3) uv 0.56 0.17 0.090 0.54 0.094 0.037

kv 0.54 0.17 0.090 0.51 0.086 0.037

Table 2: Comparison of the mean for 1000 Monte-Carlo replications of ê(β̃(j)) when the
variance σ2 is supposed to be known (kv) or not (uv) . We fix here λj = j−2, for all j ≥ 1.

5.5 Application to the prediction of ozone peaks

We apply our estimation procedure to the concentration ozone data collected by the
ORAMIP1 and studied previously by Aneiros-Pérez et al. (2004), Cardot et al. (2007)
and Crambes et al. (2009).

The data consist in N = 474 daily measurements of ozone concentration and the
peak the day after. We denote by Xi the curve of ozone concentration of day i and Yi
the maximum concentration of ozone of day i + 1. The ozone concentration is measured
hourly and we have access to the data {Xi(tj), j = 1, ..., p}, with tj = j/24 and p = 24.
The data is preliminary centred, namely we define, for all i = 1, ..., N , for all j = 1, ..., p :

X̃i(tj) = Xi(tj)−
1

N

N∑
k=1

Xk(tj) and Ỹi = Yi −
1

N

N∑
k=1

Yk.

We separate then randomly the sample {(X̃1, Ỹ1), ..., (X̃N , ỸN)} into two sub-samples:

• A sub-sample {(X̃(E)
1 , Ỹ

(E)
1 ), ..., (X̃

(E)
n , Ỹ

(E)
n ) with n = 373 used to calculate the

estimator;

• The remainder sample {(X̃(T )
1 , Ỹ

(T )
1 ), ..., (X̃

(T )
101 , Ỹ

(T )
101 )} is kept to evaluate the perfor-

mance of the estimator.

With our method we obtain an estimator β̃ of β, where β is supposed to be the function
such that, for all i = 1, ..., N :

Ỹi =

∫ 1

0

X̃i(t)β(t)dt+ ε. (24)

Then we compute, for all i = 1, ..., 101, the prediction ˆ̃Y
(T )
i of Ỹ (T )

i by approaching the
integral

∫ 1

0
X̃i(t)β̃(t)dt with the composite trapezoidal rule.

The ozone peak predicted is then given by

Ŷ
(T )
i := ˆ̃Y

(T )
i +

1

N

N∑
k=1

Yk.

Although the curves {Xi, i = 1, ..., n} do not verify the condition of periodicityXi(0) =
Xi(1), the ozone concentration has a nearly seasonal behaviour and the calculation of the
estimator does not pose any problem. Figure 8-left shows that the prevision method works
in practice (as we are quite close to the line y = x) even if, as shown in Figure 8-right,
the accuracy of the prediction could be ameliorated.

1Observatoire Régional de l’Air en Midi-Pyrénées
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Figure 8: Left: plot of the points (Ŷ
(T )
i , Y

(T )
i ), i = 1, ..., 101 and of the line y = x. Right:

boxplot of residuals {Ŷ (T )
i − Y (T )

i , i = 1, ..., 101}.

A Technical lemmas and proofs
Proof of Lemma 1. The proof relies on the following integrated version of Talagrand In-
equality which can be found in Comte et al. (2006):

Lemma 2. Let T1, ..., Tn be i.i.d random variables and F a denombrable class of measur-
able functions. For all f ∈ F we define rn(f) := 1

n

∑n
i=1(f(Ti)− E[f(Ti)]). We have, for

all δ > 0:

E

[
sup
f∈F
|rn(f)|2 − 2(1 + 2δ)H2

]
+

≤ 6

K1

V

n
exp

(
−K1δ

nH2

V

)
+

8M2
1

K1n2C2(δ)
exp

(
−K1C(

√
δ)
√
δ√

2

nH

M1

)
,

where C(δ) =
√

1 + δ2 − 1, K1 is a universal constant and with

sup
f∈F
‖f‖∞ ≤M1, E

[
sup
f∈F
|rn(f)|

]
≤ H and sup

f∈F
Var(f(T1)) ≤ V.

We separate the linear process νn into a bounded process ν(1)
n we can control by

Lemma 2 and a non-bounded process ν(2)
n null with large probability. Namely νn = ν

(1)
n + ν

(2)
n

with:

ν(1)
n (f) :=

1

n

n∑
i=1

εi < f,Xi > 1Ωεi,Xi
− E

[
ε1 < f,X1 > 1Ωεi,Xi

]
,

ν(2)
n (f) :=

1

n

n∑
i=1

εi < f,Xi > 1Ωcεi,Xi
− E

[
ε1 < f,X1 > 1Ωcεi,Xi

]
,
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and:

Ωε,X :=

{
|ε| ≤ κn,

∣∣∣∣∣< X,ϕj >√
λj

∣∣∣∣∣ ≤ bn

}
;

where κn := n2/(p−2) and bn := K1
C(
√
δ)
√
δ

2
√

2

√
n/ lnn

n2/(p−2) . For all m′ ∈Mn, we have:

E

( sup
t∈SΓ

m∨m′

(νn(f))2 − p(m,m′)

)
+

 ≤ 2E

( sup
f∈SΓ

m∨m′

(ν(1)
n (f))2 − p(m,m′)

2

)
+


+2E

( sup
f∈SΓ

m∨m′

(ν(2)
n (f))

)2
 (25)

Control of ν(1)
n : For all f ∈ SΓ

m∨m′ , we define a function gf : R × L2([0, 1]) → R
by gf (x,X ) = x < f,X > 1Ωx,X , we denote by F = {gf , f ∈ SΓ

m∨m′}. Usual density
arguments allows us to apply Lemma 2 to the non denombrable family of functions F , by
taking T = (ε,X), rn(gf ) = ν

(1)
n (f) and provided that we can find the quantities M1, H

and V such that:

sup
g∈F
‖g‖∞ ≤M1, E

[
sup
g∈F
|rn(g)|

]
≤ H and sup

g∈F
Var(g(T1)) ≤ V.

For all f ∈ SΓ
m∨m′ , for all X ∈ L2([0, 1]), we have that:

< f,X >=

Dm∨m′∑
j=1

√
λj < f, ϕj >

< ϕj,X >√
λj

.

Then by Cauchy-Schwarz Inequality, for all x ∈ R:

|x < f,X > |1Ωx,X ≤ κn
√
Dm∨m′b2

n‖f‖Γ.

Hence, as ‖f‖Γ = 1 and by definition of g ∈ F :

sup
g∈F
‖g‖∞ ≤ κnbn

√
Dm∨m′ =: M1.

By linearity of ν(1)
n , for all f ∈ SΓ

m∨m′ :

(
ν(1)
n (f)

)2
=

(
Dm∨m′∑
j=1

√
λj < f, ϕj > ν(1)

n

(
ϕj√
λj

))2

≤
Dm∨m′∑
j=1

(
ν(1)
n

(
ϕj√
λj

))2

,

and

E

(ν(1)
n

(
ϕj√
λj

))2
 = Var

(
1

n

n∑
i=1

εi
< ϕj, Xi >√

λj
1Ωεi,Xi

)

≤ σ2

n
E

[
< ϕj, X1 >

2

λj

]
,
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as E[< ϕj, X1 >
2] =< Γϕj, ϕj >= λj, we obtain:

E

[
sup
g∈F
|rn(g)|

]2

= E

[
sup

f∈SΓ
m∨m′

∣∣ν(1)
n (f)

∣∣]2

≤ Dm∨m′
σ2

n
=: H2.

Finally, for all f ∈ SΓ
m∨m′ , E[< f,X1 >

2] = ‖f‖2
Γ = 1, then we have:

sup
g∈F

Var(g(ε1, X1)) ≤ sup
f∈SΓ

m∨m′

E[ε2
1 < f,X1 >

2] = σ2 =: V.

Then by Lemma 2, we have, for all δ > 0 and with p(m,m′) = 4(1 + 2δ)σ2Dm∨m′/n:

E

( sup
f∈SΓ

m∨m′

|ν(1)
n (f)|2 − p(m,m′)

2

)
+

 ≤ 6σ2

K1n
exp (−K1δDm∨m′)

+C1Dm∨m′
κ2
nb

2
n

n2
exp

(
−C2

√
n

κnbn

)
,

with C1 := 8/(K1C
2(δ)), C2 := (K1σC(

√
δ)
√
δ)/
√

2. This leads to the following bound:

∑
m′∈Mn

E

( sup
f∈SΓ

m∨m′

|ν(1)
n (f)|2 − p(m,m′)

2

)
+

 ≤ C̃

n
,

with C̃ depending exclusively on σ2 and δ.

Control of ν(2)
n By Cauchy-Schwarz Inequality we have, for all f ∈ SΓ

m∨m′ :

|ν(2)
n (f)|2 ≤

Dm∨m′∑
j=1

ν(2)
n

(
ϕj√
λj

)2

‖f‖2
Γ,

then:

E

[
sup

f∈Sm∨m′
|ν(2)
n (f)|2

]
≤

Dm∨m′∑
j=1

E

ν(2)
n

(
ϕj√
λj

)2
 .

By independence of X and ε:

E

ν(2)
n

(
ϕj√
λj

)2
 =

1

n
Var

(
ε
< ϕj, X >√

λj
1Ωcε,X

)

≤ 1

n
E
[
ε21{|ε|>κn}

]
E

[
< ϕj, X >2

λj

]
+

1

n
E[ε2]E

[
< ϕj, X >2

λj
1{∣∣∣∣<X,ϕj>√

λj

∣∣∣∣>bn}
]

≤ 1

n

(
τp

κp−2
n

+
σ2/2

b2q−2
n

q! v2cq−2

)
,
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by using Assumption (Hmom) with q an integer greater than 2(p−2)
p−6

+ 1. We obtain then:

∑
m′∈Mn

E

[
sup

f∈Sm∨m′
|ν(2)
n (f)|2

]
≤ Nn

Dm∨m′

n

(
τp

κp−2
n

+
σ2

b2q−2
n

q! v2cq−2

)
≤ Č

n
,

with Č depending exclusively on p, τp, v, c and δ. Inequality (25) allows to conclude the
proof.

The demonstration of lemmas 5 and 6 requires some technical results about the eigen-
values of Gram matrices given in the following lemma:

Lemma 3. For m ∈ Mn, let λ̂m be the smallest eigenvalue of the matrix Φm defined by
(5) and µ̂m be the smallest eigenvalue of the matrix

Ψm :=

(
1

n

n∑
i=1

< ϕj, Xi >√
λj

< ϕk, Xi >√
λk

)
1≤j,k≤Dm

. (26)

Then:

1.
λ̂m
ρ(Γ)

≤ µ̂m ≤ λ̂m

(
min

1≤j≤Dm
λj

)−1

,

with ρ(Γ) the spectral radius of the operator Γ.

2. If, in addition, µ̂Nn > 0:

µ̂Nn = inf
f∈Sn\{0}

‖f‖2
n

‖f‖2
Γ

.

Proof of Assertion 1. Let m ∈Mn, and:

Λm :=


√
λ1

. . . √
λDm

 .

We have:
Φm = ΛmΨmΛm.

Hence, µ̂m = 0 if and only if λ̂m = 0, and in case µ̂m = 0, the assertion is true. On the
other hand, if µ̂m > 0 then both Φm and Ψm are invertible and we have:

µ̂m = ρ
(
Ψ−1
m

)−1 and λ̂m = ρ
(
Φ−1
m

)−1
.

Denote by ||| · ||| the matrix norm induced by the usual euclidean norm on RDm denoted
by | · |2. We recall that:

|||A||| = sup
|a|2=1

|Aa|2, for all square matrix A.

If A is symmetric, ρ(A) = |||A|||, then we have:
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ρ
(
Φ−1
m

)
= |||Φ−1

m ||| = |||Λ−1
m Ψ−1

m Λ−1
m |||

≤ |||Λ−1
m |||2|||Ψ−1

m ||| = ρ
(
Λ−1
m

)2
ρ
(
Ψ−1
m

)
.

Hence:
λ̂m ≥ min

1≤j≤Dm
λj µ̂m.

In the same way, as Ψ−1
m = ΛmΦ−1

m Λm, we have that:

µ̂−1
m ≤ max

1≤j≤Dm
λj λ̂

−1
m ≤ ρ(Γ)λ̂−1

m ,

which gives the result.
Proof of Assertion 2.
Let f =

∑DNn
j=1 αjϕj ∈ Sn\{0} :

‖f‖2
n =

DNn∑
j,k=1

αjαk
1

n

n∑
i=1

< ϕj, Xi >< ϕk, Xi >

=

DNn∑
j,k=1

√
λj
√
λkαjαk

1

n

n∑
i=1

< ϕj, Xi >√
λj

< ϕk, Xi >√
λk

= t(Λmα)ΨNnΛmα.

We have:

‖f‖2
Γ =

DNn∑
j=1

λjα
2
j = |Λmα|22.

Consequently:

inf
Sn\{0}

‖f‖2
n

‖f‖2
Γ

= inf
a∈RDNn ,|a|2=1

taΨNna.

On the condition µ̂Nn = min Sp(ΨNn) > 0 the symmetric matrix ΨNn is also positive.
Then there exists an orthogonal matrix U such that tUΨNnU is a diagonal matrix whose
main diagonal entries are the eigenvalues of ΨNn . Then we have:

inf
a∈RDNn ,|a|2=1

taΨNna = inf
a∈RDNn ,|a|2=1

ta tUΨNnUa = µ̂Nn .

The following lemma allows us to control the minimal eigenvalue of Ψm:

Lemma 4. Let τ be a real number such that 0 < τ < 1. For m ∈ Mn, consider
the smallest eigenvalue µ̂m of the matrix Ψm defined by (26), then, under Assumption
(Hmom):

P(µ̂m < τ) ≤ 2D2
m exp

(
−n (1− τ)2

4D2
m max(2v2, c)

)
.
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Proof. We have:
{µ̂m < τ} = {1− µ̂m > 1− τ} .

As 1− τ > 0,

{1− µ̂m > 1− τ} ⊂ {|1− µ̂m| > 1− τ} ⊂ {ρ (Ψm − I) > 1− τ} .

We know that the trace of a matrix is equal to the sum of its eigenvalues (counted
according to their algebraic multiplicities), then:

ρ(Ψm − I)2 ≤ tr((Ψm − I)2) = tr( t(Ψm − I)(Ψm − I)), (27)

as Ψm − I is symmetric. The last term of the inequality being equal to the sum of the
squared coefficient of Ψm − I.
Define, for j, k = 1, ..., Dm :

Z
(j,k)
i =

< ϕj, Xi >√
λj

< ϕk, Xi >√
λk

,

we have, for all, j, k, E
[
Z

(j,k)
i

]
= δj,k. Hence, by (27) :

ρ(Ψm − I)2 ≤
∑

1≤j,k≤Dm

(
1

n

n∑
i=1

Z
(j,k)
i − E

[
Z

(j,k)
i

])2

.

This gives:

P (µ̂m < τ) ≤ P

 ∑
1≤j,k≤Dm

(
1

n

n∑
i=1

Z
(j,k)
i − E

[
Z

(j,k)
i

])2

> (1− τ)2


≤ P

 ⋃
1≤i,j≤Dm


(

1

n

n∑
i=1

Z
(j,k)
i − E

[
Z

(j,k)
i

])2

>
(1− τ)2

D2
m




≤
∑

1≤j,k≤Dm

P

( 1

n

n∑
i=1

Z
(j,k)
i − E

[
Z

(j,k)
i

])2

>
(1− τ)2

D2
m


≤

∑
1≤j,k≤Dm

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(j,k)
i − E

[
Z

(j,k)
i

]∣∣∣∣∣ > 1− τ
Dm

)

≤
∑

1≤j,k≤Dm

P

(
1

n

n∑
i=1

Z
(j,k)
i − E

[
Z

(j,k)
i

]
>

1− τ
Dm

)

+ P

(
− 1

n

n∑
i=1

Z
(j,k)
i + E

[
Z

(j,k)
i

]
>

1− τ
Dm

)
. (28)

Assumption (Hmom) allows us to apply Bernstein’s Inequality (we use here the particu-
lar form which can be found in Birgé and Massart (1998)) to the sequence Z(j,k)

1 , ..., Z
(j,k)
n ,

for all j, k = 1, ..., Dm. We obtain, for all x > 0 :

P

(
1

n

n∑
i=1

Z
(j,k)
i − E

[
Z

(j,k)
i

]
> v
√

2x+ cx

)
≤ exp(−nx),
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and in the same way, for all x > 0 :

P

(
− 1

n

n∑
i=1

Z
(j,k)
i + E

[
Z

(j,k)
i

]
> v
√

2x+ cx

)
≤ exp(−nx),

by applying Bernstein’s Inequality to the sequence −Z(j,k)
1 , ...,−Z(j,k)

n .
Taking x = (1−τ)2

4D2
m max(2v2,c)

, we have that:

v
√

2x+ cx ≤ 1− τ
Dm

( √
2v/2√

max(2v2, c)
+

1− τ
4Dm

c

max(2v2, c)

)
≤ 1− τ

Dm

,

and by (28) :
P (µ̂m < τ) ≤ 2

∑
1≤j,k≤Dm

exp(−nx) ≤ 2D2
m exp(−nx).

This concludes the proof.

Lemma 5. Under Assumption (HMom), if DNn ≤ K
√
n/ ln3 n and if E[〈β,X1〉4] < +∞,

there exists a constant C ′ depending only on ρ0, K, c and v such that:

E[‖β̃ − β‖2
Γ1∆c

n
] ≤ C ′

n
(E[< β,X1 >

4]1/2 + ‖β‖2
Γ + 1).

Proof. First, by triangular inequality,

E[‖β̃ − β‖2
Γ1∆c

n
] ≤ 2E

[(
‖β̃‖2

Γ + ‖β‖2
Γ

)
1∆c

n

]
= 2E

[
‖β̂m̂‖2

Γ1∆c
n∩Ḡ

]
+ 2‖β‖2

ΓP(∆c
n). (29)

With Lemma 3, it is easy to see that Ḡ ⊂ {λ̂Nn > sn} ⊂ {µ̂Nn > sn/ρ(Γ)} and that for
any function f ∈ Sn\{0}, on the set Ḡ, we have:

‖f‖2
Γ <

ρ(Γ)‖f‖2
n

sn
.

By taking f = β̂m̂, we obtain:

E
[
‖β̂m̂‖2

Γ1∆c
n∩Ḡ

]
≤ ρ(Γ)

sn
E
[
‖β̂m̂‖2

n1∆c
n∩Ḡ

]
(30)

Now, since β̂m is a mean-square-type estimator, the vector (〈β̂m, X1〉, · · · , 〈β̂m, Xn〉)′ can
be seen as the orthogonal projection (w.r.t the Euclidean scalar product on Rn) of the
vector (Y1, · · · , Yn)′ on the subspace {(〈f,X1〉, · · · , 〈f,Xn〉)′, f ∈ Sm}. Since the squared
empirical norm ‖ · ‖2

n corresponds to the Euclidean norm up to the multiplicative factor
1/n, we deduce that:

n‖β̂m‖2
n ≤

n∑
i=1

Y 2
i , for all m,
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as the norm of the vector (Y1, · · · , Yn)′ is larger than the norm of its projection. Then,
we can use that Yi = 〈β,Xi〉+ εi and have:

‖β̂m̂‖2
n ≤ 2‖β‖2

n +
2

n

n∑
i=1

ε2
i .

By gathering the last inequality and inequalities (29) and (30), we obtain:

E[‖β̃ − β‖2
Γ1∆c

n
] ≤ 4ρ(Γ)

sn
E

[(
‖β‖2

n +
1

n

n∑
i=1

ε2
i

)
1∆c

n∩Ḡ

]
+ 2‖β‖2

ΓP(∆c
n).

The εi’s are independent of the Xi’s, and the set ∆c
n depends only on the Xi’s so that:

E

[
1

n

(
n∑
i=1

ε2
i

)
1∆c

n

]
= σ2P(∆c

n)

On the other hand, by Cauchy-Schwarz Inequality, we have:

E
[
‖β‖2

n1∆c
n∩Ḡ
]
≤ E[‖β‖4

n]1/2
√

P(∆c
n)

=

(
1

n
E[〈β,X1〉4] +

n− 1

n
‖β‖4

Γ

)1/2√
P(∆c

n)

≤
(

1√
n

[E〈β,X1〉4]1/2 + ‖β‖2
Γ

)√
P(∆c

n)

As P(∆c
n) ≤

√
P(∆c

n) and sn ≤ 2, we get:

E[‖β̃ − β‖2
Γ1∆c

n
] ≤

4
√

P(∆c
n)

sn

(
ρ(Γ)

[
1√
n

[E〈β,X1〉4]1/2 + ‖β‖2
Γ + σ2

]
+ ‖β‖2

Γ

)
.

To end the proof, we study the term
√

P(∆c
n)/sn. The definition of ∆n and the Assertion

2 of Lemma 3 gives us the following inclusions:

∆c
n ⊂

{
inf

f∈Sn\{0}

‖f‖2
n

‖f‖2
Γ

< ρ−1
0

}
⊂ {µ̂Nn < ρ−1

0 }.

Then by Lemma 4 and by the assumption DNn ≤ K
√
n/ ln3(n), we can easily see that:√

P(∆c
n)

sn
≤ K/

√
2

1− 1/
√

lnn
(lnn)−3/2n5/2 exp

(
− (1− ρ−1

0 )2 ln3 n

8K2 max{2v2, c}

)
≤ C exp

(
5

2
lnn− C ′ ln3 n

)
≤ C ′′

n
.

with C, C ′ and C ′′ depending only on K, ρ0, v and c.

Lemma 6. Under Assumption (HMom) and if min1≤j≤DNn λj ≥ 2/n2 we have:

P(Ḡc) ≤ D3
Nn exp

(
− n

2 lnnD2
Nn

max{2v2, c}

)
.
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Proof.

P(Ḡc) = P

( ⋃
m∈Mn

Gc
m

)
≤
∑
m∈Mn

P
(
λ̂m < sn

)
. (31)

By Assertion 1 of Lemma 3 we have that:

P
(
λ̂m < sn

)
≤ P

(
µ̂m <

sn
min1≤j≤Dm λj

)
.

Since min1≤j≤DNn λj ≥ 2/n and by definition of sn, we have:

sn
min1≤j≤Dm λj

≤ n2sn
2

= 1− 1√
lnn

,

by applying Lemma 4 with τ = 1− 1/
√

lnn, we obtain:

P
(
λ̂m < sn

)
≤ 2D2

m exp

(
−n 1

4 lnnD2
m max(2v2, c)

)
.

As Dm ≤ DNn and Nn ≤ DNn
2

,

∑
m∈Mn

P
(
λ̂m < sn

)
≤ D3

Nn exp

(
−n 1

4 lnnD2
Nn

max(2v2, c)

)
.

Then Inequality (31) allows us to complete the proof.
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