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Abstract

We model the term structure of the forward default intenaitg the default density by using Lévy
random fields, which allow us to consider the credit derxegtiwith an after-default recovery payment.
As applications, we study the pricing of a defaultable bamdii@present the pricing kernel as the unique
solution of a parabolic integro-differential equation.n&ly, we illustrate by numerical examples the
impact of the contagious jump risks on the defaultable baf@epn our model.

Key words: default density, Lévy random field, credit datives pricing, parabolic integro-differential
equation

1 Introduction

The term structure modelling in the interest rate and in tieelit risk modelling has been widely adopted
and extended since the original paper of Heath-Jarrow-dvioft6]. Notably, there have appeared many
important papers (e.g. [1, 4, 8, 9, 11, 12]) incorporatingnpudiffusions to describe the family of bond
prices or the forward curves as a generalization of the icl&¥V model.

In the credit risk modelling, the conditional survival pediility associated to the default time is an
important quantity for measuring default risk and studyirgguation of credit derivatives. Let be a
nonnegative random variable defined on a complete probalstiace((2, F,P) equipped with a filtra-
tion F = (F;):>0 satisfying the usual conditions. The conditional survigedbability (CSP) is defined
asS(0) = P(r > 0|F:), t,6 > 0. To describe the term structure of the CSP, we can use botthethsity
and the intensity point of view. On the one hand, as in El Keed@l [10], we assume that there exists a
family of F; @ B(R)-measurable functionsv, ) — a;(w, #) such that the CSP has the following additive
representation:

Si(0) = /000 a(v)dv. (1.1)

The family of random variables,(-) is called the conditionadlensityof the default timer given ;. On
the other hand, similarly to the definition of forward rates wan use the “intensity” point of view and the
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following multiplicative representation:

Sy(6) = exp (- /0 ' )\t(v)dv> (1.2)

where theF;, @ B(R ;. )-measurable functiofw, §) — A\;(w, €) is called thforward intensity It is equivalent
to assume the existence of the density or the intensity fqoaitive ¢ andf. We have the relationship:

au(0) = SO (0). (1.3)

In the interest rate models, the tirids always larger tham and the forward rate has no economic inter-
pretation forf < ¢. However, it is noted in [10] that to study what happens &teefault event, we need
the whole term structure of the conditional survival praligbthat is, for all positivet andé. One typical
example is a defaultable bond where the recovery paymeifffeistgated at a given maturity later than the
economic default date.

In this paper, we consider the whole term structure modetihCSP and the applications to the credit
derivative pricing. In the credit risk models, the defaulhtagion phenomenon is often modelled by positive
jumps in the intensity process. We take this point into miatetonsideration and propose a forward inten-
sity driven by Lévy random fields. In the existing Lévy testructure models, in Filipovic et al. [11, 12], the
authors consider forward curve evolutions as solution$@fitfinite dimensional Musiela parametrization
first-order hyperbolic stochastic differential equatiahs/en by n-independent Lévy processes or driven
by a Wiener process together with an independent Poissosureealn [9], Eberlein and Raible present a
class of bond price models that can be driven by a wide rangéwf processes with finite exponential mo-
ments. This model was further applied to describe the dtfialel Lévy term structure and explore ratings
and restructuring of the defaultable market. The drivingepss of the Lévy term structure model in [9] was
further extended to non-homogeneous Lévy processes.in [8]

Motivated by those existing Lévy term structure models #iedrandom field models which are widely
used to model various stochastic dynamics (e.g. [1, 5, 65,717, 18]), we suppose that the Lévy random
field in our model is a combination of a kernel-correlated €&#an field and an independent (central) Pois-
son random measure. The jump component described as Pomesasure is similar to that used in [12],
but it is not necessary to assume the exponential integyabindition for the characteristic measure under
our framework (see Section 2). The kernel-correlated Gawdield is more flexible compared to the Gaus-
sian components without kernel-correlation considereldny 17, 18]. In fact, we can choose appropriate
correlated-kernels of the Gaussian field so that the modeisidered in [9, 11, 12] can be covered (see
Remark 2.3). Note that it is not genetically tractable fdacipg of defaultable bonds under infinite dimen-
sional framework as in [11, 12]. Although we do not intend ¢msider the forward intensity under infinite
dimensional framework as in [11, 12], it has a close relatom between the (infinite dimensional) Wiener
process and the kernel-correlated Gaussian field. Indeedetrnel-correlated Gaussian field can product
a cylindrical Wiener process by establishing appropriailbétt spaces (see Proposition 2.5 in [7]). We
deduce the dynamics of the CSP and the associated dendtig ipetting. In particular, we emphasize on
a martingale condition, which can be viewed as an analogtieeofion-arbitrage condition in the classical
HJIM model.

For the pricing of credit derivatives, we follow the startlgeneral framework in Bielecki and Rutkowski
[3]. The global market information contains both the defafbrmation and the “default-free” market infor-
mation represented by the filtrati@ which is obtained by an enlargement of filtration. We ardipalarly
interested in an economic default case, that is, the deflm@ls not lead to the total bankruptcy of the un-
derlying firm and a partial recovery value is repaid at theuniigt date of the bond in case of default prior
to the maturity. To evaluate this “after-default” payment use the density approach in [10] and obtain
that the key quantities for the pricing of a defaultable bangl two pricing kernels, one depending on the
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interest rate and the default density, and the other depgradi additionally the recovery rate. We assume
that both the short interest rate and the default densityre@elled by the Lévy random field model and
are correlated between them. For the recovery rate, we zméhgtly the simple case where the recovery
rate is deterministic and then the random recovery case. hdle that the pricing kernel is related to the
solution of a second-order parabolic integro-differdrgiguation and we prove, based on a result of Garroni
and Menaldi [14], the existence and the uniqueness of theignlto the equation.

The rest of the paper is organized as follows. We present ageifrsetting in Section 2 and give the
martingale condition. We then analyze the dynamics of the @%d the conditional density in Section 3.
In Section 4, we discuss the pricing of credit derivatived mrparticular the defaultable zero-coupon bond.
The two sections 5 and 6 focus on the pricing kernels. Fineleypresent some numerical illustrations in
the last section 7.

2 Forward intensity driven by L évy random field

In this paper, we adopt a random field point of view to modelftimard intensity\;(¢) where botht and
9 are positive. We consider a Lévy random fieldlon x R? which is a combination of a Gaussian random
field Y& and a compensated Poisson random meastiréindependent t&’“. HereR_ denotes the time
space andR? is considered as a parameter space.

We assume that the covariance of the Gaussian randontffeli$ given by a kernel measureon R?
which has a continuous and symmetric densityRdn\ {0} with respect to the Lebesgue measure and such
thatc({0}) > 0. Namely for(¢1, ¢2) € C°(Ry x R)?,

E[Y (¢1)Y % (42)] / / P1(t, €1)@a(t, E2) (&1 — €2)dE1dEadt,

where by abuse of languag€$; — £2)d¢1dés denotes the measure @& x R the inverse image of the
measure: by the mapping fronR? x R to R? which sends(¢;, &) to & — &. The Gaussian random
field Y& defines a worthy martingale measure (see [20, p.289] and160}). LetF“ = (F&);~o be the
filtration satisfying the usual conditions which is genedaby

c(Y9([0,u] x A), u<t, Ae By(RY)), ¢>0,

whereB,(R?) denotes the set of all bounded Borel subset®bfLet P be the predictable-algebra on
Q) x R, associated t&“ and®, be the linear space of & © B(R?)-measurable functions such that

1/2

|Alle,r == E[/ / h(t, &)h(t, &2)|c(& — &)d&déadt| < 400

for anyT > 0. The stochastic integral- Y'“ is well defined for any, € ®.. Whenc is the Dirac distribution
concentrated on the origin, the stochastic integral:

Blto,...,ta) = YO ([0,t0] x -+~ x [0,t4]), (to,...,tq) € RT™ (2.1)

defines gd + 1)-parameter Brownian sheet. If in particutde= 0, it becomes a standard Brownian motion.
Denote the intensity measure of the compensated Poissoi fieby v(d¢)dt, (t,£) € R, x R?, where
v is ao-finite measure oiR?. LetF” = (F/);~o be the filtration satisfying the usual conditions generated
by
a(YP([0,u] x A), u<t, A€ By(RY), t>0



and P’ be the predictable-algebra orf) x R, associated t&”. Denote by¥, the linear space of all
PP ® B(R%)-measurable functions such that

lgllvr :ZIEUOT /Rd |g(t,£)|2y(d§)dt} < 400

for anyT > 0. The stochastic integrgl- Y* is well defined for any; € ,,.
LetF = (F;)s=0 be the natural filtration generated by the Lévy random fiedaelyF := F& v FX, We
describe the forward intensity by using the Lévy randonuféds the following additive HIM type model:

N O) = (o) + |

R

) o (0, )Y Y (dt, d€) + /

(0,077 (At o), (22)

where

1) p = (u(9); (t,0) € R2) is P @ B(R;)-measurable anngTEHMt(H)H dt < oo, whereP is the
predictables-algebra orf2 x R associated to the filtratioR,

(2) o = (04(6,8); (1,0,€) € Ry x Ry x RY) is P¢ @ B(R, x R?)-measurable and for ay ¢ R,
o.(0,-) € o,

(3) v = (14(0,0)=0; (t,0,¢) € Ry x Ry x RY) is PP @ B(R,. x R%)-measurable and for arfyc R,
v.(6,-) € U,

The model (2.2) can also be written in the integral form as

)\t(e):)\o(e)+/0 Ms(e)der/O /Rdas(e,g)yc’(ds,dg)+/O /Rd%(e,g)YP(ds,dg) (2.3)

where both stochastic integrals with respectto andY” are F-martingales with mean zeroy(-) is a
deterministic Borel function o .

Similarly to the classical HIM model, in the above Lévy fialddel (2.2), there exists a relationship
between the drift coefficient and the diffusion coefficients and~ due to the fact that, for an§y > 0, the
conditional survival probability procegss;(6) = exp (— foe At(v)dv), ¢ > 0) should be arf-martingale.
We call this relationship the martingale conditidi@). Let us introduce the following notation:

0 0 0
I,U«(t’e) = / :U't(v)dv’ IU(t,e’g) = / Ut(U,g)d’U, and I’Y(t,e,g) = / Wt(vag)dv’
0 0 0
where(t,0,¢) € Ry x Ry x R
Theorem 2.1 Forall @ > 0 andT > 0, one has

T
/ E(|1.(t,0)]dt < o0, I,(-,6,) € D, L,(-6,-)€¥,, and e ) _1¢cw, (2.4)
0

Moreover, the process famis;(6) = exp (— [¢ A(v)dv), ¢ > 0) is a family ofF-martingales if and
only if the following condition is satisfied:

(MC) Vo3>0, ut(e):/
R2

+ / (6,6)(1 — et (ag),
Rd

01(0,61)15(t,0,82)c(&1 — &2)d&1dEs
! (2.5)



Proof. The proofs for the first three statements in (2.4) are simil only provide the details for the third
one. Foranyl’ > 0, we have
2

//Eu (1,0, ) v d&dt—/ LE v(de)dt

[ [ [/ s, [ (e 0] gy
[ / / L B[00, OF + b2, O (@) duadunde
0 / / [ B, 0P vide)ara

which is finite sincey.(v, ) € ¥, for anyv > 0. For the last assertion in (2.4), note thatf,¢) > 0 and
thus

%vgdv

| /\

‘6714,(229,5) — 1‘ < |1,(t,0,8)],

forall (t,0,¢) € Ry x Ry x R4,
We now prove that the conditiofMC) is equivalent to the martingale condition f@;(0), ¢t > 0). In
fact

ds(6) _ B / G
St,(ﬂ) - I,U«(ta Q)dt Rd IU(t’a’g)Y (dt,dg)
1
+ 5/ o(t,0,61)15(t,0,&)c(€1 — &2)dErdEadt
R2d (2.6)
+ [ 00 - nyP(rag)
Rd
+ / (e E06) _ 1 4 I (¢,0,€))w(de)dt
Rd
so the martingale condition ¢5;(6), ¢ > 0) is thus equivalent to the following equality
1
— 5 [ 10,610 @)elb - @)dade
R2d
+ / TROOE 1 4 1 (t,0,))v(d8),
Rd
which is equivalent t¢MC). O

Remark 2.2 Consider the particular case whete= 0, c is the Dirac measure, and= 0. The condition
(MC) becomes

0
Vo = O, ,ut(H) = Ut(Q)A O't(?})dU.

This corresponds to the non-arbitrage condition in thesatat HIM model where the forward intensity is
driven by a standard Brownian motion.



Remark 2.3 There exist random field models in the literature. We makewelome comparisons. The
forward intensity model (2.2) can be extended to the foltayiorm:

N (O) = )+ |

[ a0.0ved+ [ e 0.vTandg

0<[¢I<1 2.7)

+ / S (60,€)(YP(dt, d€) + p(dE)dt),
|§]>1

whereo (0,-) € ®., 7.(0, )1 <1y and4.(0, )1 >1y € ¥, for each fixed) > 0. Under the model (2.7),
the corresponding martingale conditioM C) will be changed accordingly. We next consider a special
form of the predictable random filed with separable varigble

Ut(eag) = 525(9)5(4)7 725(975) = ﬁ/t(eag) = <§t(9)7£>> ¢ € Rda § € Ri

where(a¢(0); (t,0) € R%) is areal-valued predictable random fielg;(0) = (2 (0),...,7¢(0)); (¢, 0) €
R?) is aR¢ -valued predictable field ang(¢) is a deterministic measurable function BA. In this case,
the extended model (2.7) can be rewritten as

AN (0) = (11e(0) — a)dt + o (0)Y C (dt, () + (3:(0), dLy), (2.8)

wherea € R, (-,-) denotes the inner-product &f and

st = CLdt —+ /
0<|¢l<1

cyP(at, d¢) + / (VP (dt,de) + v(dE)dt)

l€1>1

is a non-Gaussian Lévy process if the characteristic nmeads a Lévy measure. h=1, thenYG(ll[OJ] X

gz~5(*)) becomes a Brownian motion when the correlated-kernel sdDi€hoose appropriate smooth function
5 as in the proof of Proposition 2.5 in [7], théﬁG(ll[OJ] X 5(*)) becomes a cylindrical Wiener process.
Thus we recover the Lévy interest rate term structure nsoclahsidered in [9, 11, 12], if the Lévy measure
v satisfies the exponential integrability condition. We ngxe a comparison of our Lévy random field
Y + Y introduced previously in this section with existing Lévgléls in literature.

1. Asin (2.1), the field’ + Y'* can be reduced to a Brownian sheet in Walsh [20], when theskern
is Dirac and the characteristic measure- 0 (henceY " = 0);

2. the fieldY® + Y becomes a so-called “colored” space-time white noise mestablished by [5],
when the kernet(¢) = |£|7“ with 0 < a < d andv = 0;

3. the fractional space-time white noise (fractional incgpand time in white) used in [19] corresponds
to the fieldY'“ + Y'¥" with the kernek(¢) = h(2h — 1)|¢[*"~2 with § < h < 1,d = 1 andv = 0;

4. the Poisson sheet in [1] corresponds to the fiéfd+ Y + v(d¢)dt with ¢ = 0 andv(€) = 201 (d€)
wherez > 0 is single point and; is the Dirac measure concentrated afThe Gamma sheet in [1]
ig the fieIQYG + YP 4 v(d¢)dt with ¢ = 0 andv(d¢) = %11{5>0}zd5 whered = 1andz > 0isa
single point.

3 Conditional survival probability and density

In this section, we concentrate on the conditional survprabability (S;(6), ¢t > 0) and the conditional
density(a;(0), t > 0). Here we specify a cadlag version of the martingdlg6), ¢ > 0) for any6 > 0.
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In fact, to show that the integr@ﬂf At(v)dw defines a cadlag process, we need a stronger assumptibe on t
process\(6) in order to apply Lebesgue’s theorem. The cadlag versiaf(®), if well defined, should have
a universal version of its predictable projection as foBow

Si—(0) = St(p) (0) = exp (— /09 )\t_(v)dv> .
Thus ,
S¢(0) := lim exp <—/O )\q_(v)dv> (3.1)

qeQ+
qlt

defines a universal cadlag version of the martingsie).
We observe from the equality (2.6) that, under the conditlefC), the conditional survival probability
admits the following dynamics:

dSi(0) B o s ,
S0 /Rd I,(t,0,8)Y (dt,d§)+/Rd(e )Y (dt,df), (3.2)

wheresSy(6) = exp(— [ Ao(v)dv).
For# > 0, we denote byl/(0) the martingale defined as

M, (0) = — /

I(t,0,6)YY(dt,d¢) + / (e~ =08 _ 1)y P(dt,de), My(0) = 0. (3.3)
Rd

Rd

With this notation,5(6)/Sy(6) is the Doléans-Dade exponential of the martingel&)). Moreover, denote
by m(6) the martingale defined by the dynamics:

dmy(6) = — / 01(6, )Y (dt, d§) — / Y- (0,€)e 0OV P (A dg), mo(0) =0.  (3.4)
Rd Rd
Observe that the following relation holds
0
Mt(ﬁ):/ my(u)du.
0
We then consider the dynamics of the conditional densityefdult given in (1.1).

Proposition 3.1 The conditional density procesgf) admits the dynamics:

day(0) = (0)dM(0) — Si—(0)dmy(0) (3.5)
or equivalently
dat(G) 1
= dM(0) — dmy(0).
a;(0) ) A (6) (0)
Proof. Keep the martingale conditioMC) in mind. The dynamics (3.5) is derived by employing It6’s
formula toa(0) = A(6)S(0) for each positive) fixed. O

An important property in the credit analysis is the immengiooperty, or the so called (H)-hypothesis,
which means that afi-martingale remains &-martingale. The (H)-hypothesis is satisfied if and only if
a(0) = ap(f) or equivalently\,(0) = N\g(6) for anyt > 6. In the random field setting, by (2.3), this is

equivalently to
t t
a _ P _
| [eeevia@sag = [ [ v.ovrasag o
7



for t > 6, or equivalently
Ut(ev g) = 0 and Vt(ev g) - 0 I/(df)'a.e.

for t > 0. Note that the martingale conditioMC) then implies thag(6) = 0 for ¢ > 6.
We recall that thé-intensity process of the default timer coincides with the diagonal forward inten-
sity, i.e. Ay = A\¢(t). Itis closely related to the Azéma supermartingale:

St = St(t) = P(T >t’ft),

which is also called the survival processrof

Proposition 3.2 Let M be thelF-martingale having the dynamics

dM, = — /R L (1Yt dg) + /R d (749 — 1)y P(at, dg).

t
S; = exp ( — / )\Sds>5(M)t,
0

where&(M) is the Dokans-Dade exponential af .

Then

Proof. The Azéma supermartingafehas a multiplicative decomposition of the foSp= L; exp(— fot Asds)
(see [10, Proposition 4.1]), whefeis anlF-martingale having the following dynamics

t
dL; = exp </ )\Sds> dL,
0

t
L, = —/ a(u) — ay (u)du.
0
By Proposition 3.1, together with (3.3) and (3.4),

t t
o o )
abi=- [ [ aes.gaveana - [ [ seooay"na).

with

where
A(t,0,8) = —ar—(0)1,(¢,0,€) + Si—(0)o (6, €),
B(t,0,) = ar(0) (e 70 — 1) 4 5, (0)y,— (0, €)e” 709,
By integration by part, we obtain

_ /t A(tj&,f)d& = —St—(t)la(t7t7§)v
0

t
—/ B(t, 9,5)(19 - Stf(t)(eflw(t*,t,ﬁ) _ 1)'
0

Moreover, the Doob-Meyer decomposition®fs given by

t
Sy =1+ L; — / oy, (u)du,
0

which implies that
dL, dL; dS;
Lo S S
By (3.1), one hass; = S;_(t). Hence the martingal& is the Doléans-Dade exponential bf and the
assertion follows. O

+ Adt.



4 The pricing of defaultable bonds

In this section, we focus on the pricing of credit derivagivén general, a credit sensitive contingent claim
can be represented by a triplgt, G, R) (see Bielecki and Rutkowski [3]) where tl¥é--measurable ran-
dom variableCr represents the maturity payment if no default occurs befoeematurity?’, andG is an
F-adapted continuous process of finite variation such ¢hat= 0 and represents the coupon payment.
Differently from the case where the default payment occtirs immediately, we assume that in the eco-
nomic default case, the default (or the recovery) paymewmstalace, after a period of legal proceedings,
at the maturity datd” later than the economic default dateand admits the fornRRr(7) where Ry (-) is
Fr ® B(R,)-measurable.

The global market information is described by the filtrat®r= (G;)>0, G: = F: V o(7 A t), which is
made to satisfy the usual conditions. The value at tirqeT" of the contingent clainiC, G, R) is given by
the following G;-conditional expectation:

T
Vi =Eq [(CTH{T>T} + / Iirsuye Jirsdsqay + ]I{TgT}RT(T))e* S rads
t

gt} . @

whereQ denotes a risk-neutral pricing probability measure andrterest rate- = (r4; t > 0) is anF-
adapted process. The following result computgsising F;-conditional expectations. The first two terms
result from [3] and the third one from [10]. With an abuse ofation, we denote in the following the-
conditional density of- under the risk-neutral probabilit{ by («;(0),t > 0). The general result on the
density under a change of probability measure is given inTh@orem 6.1].

Proposition 4.1 We suppose that the economic default tirredmits a conditional density w.r.t. the filtra-
tion IF, denoted byy,(-) under the risk-neutral probability measu@ Then the value of the credit sensitive
contingent claim C, G, R) is given by

B
Vi=1g5pn St

t

T T
Eg {(CTSTjL / Ry (u)ar(u)du) By + / S,B;1dG,
t t

OéT(H)
oat(H)

whereS; = Q(r > t|F) = [ ax()dd and B, = exp( [, r5ds).

]-"t]
(4.2)

+ Ngr<y BiEg {RT(H) B;l\ft] ‘

0=t

Proof. ThegG;-measurable random variaBlgcan be decomposed in two pavis= Il{T>t}Vt+11{T§t}X7;(r)

whereV, is F;-measurable antl;(-) is 7; ® B(R, )-measurable. On the sét > ¢}, we use Jeulin-Yor's
lemma (see [3]) and the conditional density to obtain

T
— T u
Vi=ZEq {(CTH{T>T} + Tjyarery R (1)) e Jo 724 +/ Lyoge” 0 904G,
t

St
7.

g

1 T T u
= gEQ |:(CTST +/ RT(H)O‘T(Q)(M)Q* LT rsds +/ Suefft rsdsdGs
t t .

On the sefr < ¢}, by [10, Thm 3.1], we have

= oo (') 7]

which complete the proof. O




Note that for the pricing of the two “before default” paymeéetms(C, GG), the quantity

Su v E(M),
g — [ Ad , t
S, exp ( /t s> g( )t u >

and hence the intensity play an important role. However, for the default recoverymant R (which
depends on), the “after-default” densityv, () wheret > 6 is needed. This point has been discussed in
[10]. In the following of this paper, we adopt the density eggzh for both the before-default and after-
default pricing.

We consider in particular a defaultable zero-coupon bonehaturity 7" with C' = 1 andG = 0. Its
price att < T is given by

Pt,T)=Eg {(n{DT} + ;< Ry (7)) exp (— /t ! rsds> ‘ gt] . (4.3)

The following result is a direct consequence of the previougposition. We first introduce the following
price kernels:

K (t,0) = SitE@ [aT(H) exp (- /t ' rsds> ‘]—"t] (4.4)
Ko(t,0) = %@E@ [RT(H)aT(H) exp <— /t ' rsds> ‘]—}} , (4.5)

wheret < T, andf > 0.

Corollary 4.2 Using the conditional density of under@, the price(4.3) of the defaultable zero-coupon
bond at time < T has the following representation:

00 T
PT) = Ty { /T K (t,0)d0 + /t KQ(t,a)O‘fg(e)

t

de] + Il{Tgt}KQ(t, 7). (4.6)

We will identify the above price kernels in the next two secs with different settings.

5 The first pricing kernel

In this section, we study in detail the pricing kernels (Al (4.5) when the random interest rate is de-
scribed as an extended Vasicek model. We suppose in thisrsdloe after-default recovery payment is
deterministic. The case where the after-default recovagyment is random will be considered in the next
section.

Firstly we recall the forward intensity model (2.2) and ameuthat theF-predictable random fields
(p, o, ) are deterministic in (2.2). We then express the instantaeuderest rate process= (ry,t > 0)
as the following extended Vasicek model under the riskna¢pricing measuré) :

dry = k(3 )t + / QY (dt dg) + / oY (dt, dg), (5.1)
R R
wherex > 0, > 0, andp.(-) and¢.(-) are deterministic volatility functions, assumed to belon@. and

U, respectively. In the particular case where- 0, ¢,(£) = 0 and the volatility functiorp.(-) = p > 0is
constant, the interest ratesatisfies the classical Brownian-driven Vasicek model:

dry = k(6 — r)dt + pd Wy, (5.2)

10



wherelV is a standard Brownian motion.
Similarly to the solution form of the Ornstein-Uhlenbeckdiastic differential equation, the extended

Vasicek model (5.1) also admits an explicit expression kevis:

re =roe” 4 5(1 — e ") / / K= o, (€)Y Y (du, dE)
R4

/ /R ) e " (Y (du, df),

wherery > 0 denotes the deterministic initial interest rate value.

Next we compute the first pricing kernel in (4.4). Rbr> 0, we introduce the following integro-
differential operatord, acting on functions with three variablész andy which are differential int and
second-order differentiable i, y) :

(5.3)

~ 0K 0K 2K
AgK (t,z,y) = r(6:(0) — x)%(tvxvy) + a(t,&)a—y(t,m,y) +a11(t) 5 952 (t,2,y)

2 2

0 0°K
+a22(t 0) t,x y) +a’12(t 6)8 a (t,l’,y)

a7
+ /Rd [K(t,x+¢t(£),y+%(9,g)) _ K(t,z,y)

- ) (t.9) — (0.5 (t.2.)] v(d),

(5.4)

where

~

5u0) =8+ 570 [ @In(.0.€)6(¢ ~ 9+ 17! [ au(@)(e 009 1o,

alt,0) = m(0) - /R L0161, 0,€)e(¢ — £)dcds - /R (0,001 = emh 0 ag),

1

ay(t) = 3 /uw pe(&1)pe(€2)c(€r — &2)dE1dEy,

an(t.0) = 5 [ 06000, @)eler — s
aa(t,0) = /Rw o1(0,&1)pe(§2)c(€1 — £2)dE1dEs.

Remark 5.1 Recall the martingale conditioM(C) given by (2.5) which has been assumed throughout the
paper. We have the coefficien(t, #) = 0 for the partial derivativ% under MC).

We introduce the following assumptions where we have fiked0.

Assumption 5.2 (1) There existg € (0, 1) such that

(i) the functionsai1(-), aza(-,¢) andais(-, ) are-Lipschitz on[0, T7,
(i) there exists a Borel functioti, on R? (which could depend of) such that

max {|¢¢(€) — ¢s(E), [7¢(6,€) — 7s(0,€)|} < Jy(E)]t — 5|7/

WP
/Rdlwq@ (d€) < co.

and

11



(2) o (&) and|y: (8, )| are uniformly bounded from above by a Borel functidy{§) such that

Jo(€)? y -
/Rdlwo(&) (d8) < +oo.

(3) There exists a constaftf) > 0 such that, for anyz, y) € R? and anyt € [0, 77, one has
a11(t)x® + 2a12(t,0)xy + ax(t, 0)y* > B(O)(x* + y?).
Then we have the main result of this section.

Theorem 5.3 Let# > 0 be fixed. Under Assumptidn2, the Cauchy problem

0K

E(t7x7y)_xK(t7w7y)+A9K(t7x7y) :07 K(T,.%',y) =Y (55)
has a unique solutiors, where the integro-differential operatody is defined in(5.4). Moreover, the
following equality holds

Eq [aT(G) exp (- /t Trsds> ‘]—}} = SHO)VK (t, 74, \(6)), (5.6)

where S;(0) = Q(r > 0|F;) is CSP and\.(0) is the corresponding forward intensity under the pricing
measure)).

Proof. The first assertion comes from a general result of GarroniNedaldi [14, Theorem 11.3.1]. Lej
be as in Assumption 5.2. We shall actually prove that the Bapcoblem (5.5) with a terminal conditién
K(T,-,-) = ¢ € C(R?) has a unique solution in the Holder spak™z2t7([0, T] x R?) by constructing
a contractible operator. The case of (5.5) with unboundeditel functiony(t, z,y) = y will be treated
by taking limits. We recall that'+3-2+4([0, T] x R2) denotes the vector subspacé 6f-2([0, 7] x R?)
of functions f such that

. b b
Hf”l+%,2+q = [ fll2 + E (07 070y >t,§(q+a+b+2c—1) + E : (07050Y") (2,4),q < +00,
1<a+b+2¢<2 a+b+2c=2

where for any functiory : [0, 7] x R? — R and any3 € (0, 1),

(9)t,3 = sup sup , (9) = sup :
’ 2€R2 5,t€[0,T] |s —t)° e tE%T] zwER? |2 —wl|?
s#L ’ zFwW

'The expressior?(R?) denotes the vector space of all bounded functiprm R? which are Holder continuous of order
(namely, such that f||sup + || fllq < +00), where

fllg = sup [MZ)=h(w)]
“ z,wERz |Z - wlq .
z#w

The expressio’*%(]0, T'] x R?) denotes the vector space of all continuous functipis [0, 7] x R? such that

£l =" > 107020 fsup < +o00.

a+b+2c<2

The vector spac€™([0, T] x R?) together with the norrfj - ||1,» form a Banach space.
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The vector spacée''+2:274([0, T] x R2) together with the nornjj - 1+ 4 244 form a Banach space.
Let Iy be the integro-differential operator defined as

@)t = [ Kt + 0O+ 2006.6) ~ Klt..9) = 0O G- 0,05 vias)

ForK e C'*2:214([0, 7] x R2) andy € C4(R?), let ©,(K) be the unique solution of the Cauchy problem

a@—f — .%'F+ A.g( ) IG(K)7 F(T,I‘,y) = 1/1(957y)7 (57)

where A, denotes the differential operator

2 2 2

9 d
an(t )8 5 +an(t, 9)8 ay + a(t, 9)8 3 — +a(t,0)—

+ k(6,(0) — ) o o

Denote byC'2:4([0, T] x R?) the vector space of functionson [0, 7] x R? such that

Hf”%,q = Hf”sup sup Hf x,y)Hg + sup Hf(t7 ) )Hq < +0o0
(z,y)ER? te[0,7

which is a Banach space with respect to the ngrr|g ,. Since K € C1+3:2+9(]0, T x R2), by the

Assumption 5.2 (1.ii) and (2), we obtain thB{ K') € Cqu([O,T] xR?) (see [14, Lemmall.1.5]). Therefore
the existence and uniqueness of the solutign(K) € C1*+2:214([0, T] x R?) to (5.4) comes from the
classical theory of parabolic partial differential eqoas (e.g. [13]). Moreover, the solution verifies the
following Holder estimate ([14, Theorem 1.2.1])

104(EL) — Ou(K)ll1sa 54q < CillTo(K1 — K2)a (5.8)

which holds for allK |, K5 € C*%24([0, T x R2) such that, (T, -,-) = Ko(T, -,-) = 1, whereC is a
constant independent of.

For arbitrarys > 0, the following estimate holds for any € C'*2:2+9([0, T] x R?) (see [14, Lemma
I1.1.5])

1K), < eIV Kl , + CE (1K1 + 1V Bl g.0). (5.9)

where the constari(¢) only depends on. Denote b)Cz the subset of functions iﬁ”%v”q([o, T] x R?)

whose restriction o7} x R? coincides withy. By choosings > 0 small enough, we obtain from (5.8)
and (5.9) thab,, is a contracting operator on the complete metric spo%&:,eprovided thatl” is sufficiently
small. Hence for sufficiently small', the operato©,, has a unique fixed point and therefore the Cauchy

problem
0K

ot (t x y) SCK(t,SE,y)—{-AgK(t,I,y) =0, K(T,Cﬂ,y) :7/)(5'3’9)
has a unique solution. For geneff) it suffices to divide[0, 7] into a finite union of small intervals and
resolve the Cauchy problem progressively.

For the terminal functionp(z,y) = y, we can take, for each integer> 1, a functiony,, € C§°(R?)
which coincides withy on the ballB,, of radiusn centered at0,0). For anyn > 1, let K,, be the unique
solution of the equation (5.5) with terminal conditiéty, (7, z,y) = ¥, (x,y). By a maximum principle
for the equation (5.5) (see [14, Theorem I1.2.15]), fob= m, K,, coincides withK,, on the ballB,,. By
taking K = K,, on [0,T] x B,, we obtain a global solution to the Cauchy problem (5.5). Tiigueness of
K also results from the maximum principle.

13



We now prove the second assertion thatsatisfies the equality (5.6). To this end, we compute the
denominator of the pricing kernel (4.4) by introducing arai of probability measure:

4Q’
dQ

()
Fi N SQ(Q)

(5.10)

By Bayes’ formula and (1.3), we have

Eq {aT(H) exp <_ /t ! rsds> ‘}}] — 5,(0)Eq {)\T(G) exp (- /t Trsds> ‘}}] .

Note that, by Girsanov’s theorem (see [4, Theorem 3.3])eutite probability measur@’,
YO(dt,d¢) := Y9(dt, dg) + ( / I,(t,0,8)e(C — §>d<> dédt
Rd

defines a Gaussian field with correlated kemneh R?, and
YP(dt,d¢) == YP(dt,de) + (1 — e DGOy (ag)at

defines a compensated Poisson random measure with préglictabpensatoe '+ (-?€)y(d¢)dt. Then the
dynamics (5.1) of the interest ratecan be rewritten as

dre = 6(3(6) =t + [ pOT (a0 + | 0T (at,de),
where

5:(0) :5—|—I€1/

R2d

P (t,0,€)e(¢ — )dCdg + 7 /R Lo — 1w(ag),

and the dynamics (2.2) of the forward intensity rate can baiten as

(O = o) + [

o1(0,)VC (dt, de) + / (0,67 (d, de)
Rd Rd

where

i) = m(®) - [

R

L0160, O)1o(t 0, €)c(C — £)Acds - /R (0,1 = e (dg).

Note that the forward intensity proces&) is a(Q, F)-martingale for each fixed. Assume that

Ege [AT(H) exp <— /t ! rsds> ‘}}} = K(t, 1, \(0)),

where the functior (¢, x, ) is sufficiently regular. Then Itd's formula applied to tf@’, F)-martingale

exp (— /Ot rsds> K(t,re, M (0))
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yields

(71 X(0) + 0) (170 0 (0)

0K ~ 0K
+ E(t,?"t, )\t(e)) + /i((St(H) — T't) or

— 1K (t,r, A (0))

2 2 2
+an(®) af(t v, M (0)) + ass(, 9)% 3 (170 M (6)) + ana(t,0) 5 g(t v 2 (6))
b [ (K @, 00) + 26,6 — Kt 70(0)
Rd

0K 0K
- ¢t(§) (t e, Mi(0)) — ’Yt(Q,E)a—y(tﬁt,At(Q)) v(d§) = 0.
Conversely, ifX is the solution to
0K

S~ oK+ AgK =0, K(T,z,y) =y,

then one has .
EQ |:04T(9) exXp (—/ T'Sd8> ‘ft:| St(H) (t Tt, )\t(H))
t
Thus we complete the proof of the theorem. O

Accordingly the pricing kernels (4.4) and (4.5) are given by
Se(6)

Ki(t,0) = th((t,rt, A (0)) (5.11)
Ko(t,0) = igRﬂ@KWMMWD (5.12)

wheret < T andf > 0. By Corollary 4.2, we obtain immediately the pricing forradbr the defaultable
zero-coupon bond.

Remark 5.4 Concerning the pricing kernel at the left side of the equdkt6), one possible alternative
way is to solve it directly by using the dynamics of the densit(f#). However, in view of (3.5), the
corresponding solutio (¢, r, S¢(0), A\¢(€)) will include three variables apart from time variable. The
main advantage of the change of probability method (5.1@as we obtain the solution function in the
form K (t,ry, S¢(0), A\:(6)) = Se(0)K (t,r:, \(0)). This indeed decreases the dimension of variables for
our pricing kernel function and is important in the numermamputation.

Remark 5.5 If the interest rate: is independent of the forward intensity, hence independgtite density,

then the computation of the pricing kernels is easier. DehgtB(¢,T") the price of the standard zero-

coupon bond, i.e.B(t,T) = Eglexp(— ft rsds)|F:]. Recall that we have assumed the recovery rate

deterministic in this section. Then

at(Q)B(t,T)
St ’

which implies that the time-value (4.6) of defaultable zero-coupon bond has the foligwepresentation:

P@#T) _ . [T (1= Ry (8))ay (6)d8
B(t,T) Y S,

K, (t>9) = K2(tv 9) = RT(Q)B(t7T)

) + ]I{Tgt}RT(T). (5.13)
This quantity serves to measure the default risk includiath the default probability and the loss given

default. We also notice in (5.13) that the recovery corragdgdo a “recovery of face value” since it can be
written as the quotient between the defaultable bond andjainadent default-free bond.
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Remark 5.6 The zero coupon pric&(t,T) := Eg [exp ( — ftT r5d3> ‘J—}] can be given in the form
K(t,r;) whereK (-, -) is the unique solution to the following integro-differeaitequation:

0K PK

—xK+aa—It(+/<(5—x)%+a11(t)W+/Rd [K(t,x+¢t(§))—K(taﬁﬂ)—ﬁst(g)aa—i((t’z) v(d§) =0

with the terminal conditiork (7', z) = 1. If there is no jumps in, i.e.,¢:(£) = 0, then the above equation
becomes

0K 0K 0?’K
— K+ — 0—x)— t)— =0.
x + ot +Ii( x) O +CL11( ) (31‘2 0
Its unique solution is

I?(t,m)zexp(l (5—x)—5(T—t)+/tTa11(u)<Lz(T_M>2du>,

K
whereay; (t) is given in (5.4). Thus we obtain the following equaliB(t, T") = K (¢, r¢), which is similar
to the classical case.

6 Random recovery rate and the second pricing kernel

In this section, we consider the general case for the prikergel (4.5), where the after-default recovery
payment is random as an extension to the previous section.

Bakshi et al. [2] assumed that the recovery rate is relatedgainderlying intensity as the following
form: R, = wo + wie ™, wo, w; = 0, wy +w; < 1 and\ is the intensity process of default. In a similar
manner, we assume th&t-(6) is of the form

Rr(0) = wo +wie A7) 9 >0 (6.1)

whereAr(0) is the forward intensity implied by (1.2) under the pricingasureQ, wy, w, satisfy the same
condition as above anflis a non-negative function which is locally Holder contiug of positive order.

Proposition 6.1 Let# > 0 be fixed. Under the Assumptiér®, the pricing kernel(4.5)is given by

Kz(t,a) = )\?EOH)K(tart,)\t(a)) +

w1

@ M), (62)

whereK and K are respectively solutions to the partial integro-diffieti@l equation:

0K

under the terminal condition& (T, z, ) = y and K (T, z, y) = ye /).

Proof. Similarly to Theorem 5.5, the equation (6.3) with the teratioondition K (7', z,y) = ye /)
admits a unique solutiok’. Moreover, by a change of probability measure we obtain

T ~
Eg ozT(H)e_fo‘T(e)) exp < - / rsds> ‘ft] = Sy(O0)K (t,re, \(0)).
t

Hence the formula (6.2) follows from the following relati(gee (4.4), (4.5) and (6.1)) :

Ky(t,0) = woSi Ky (t,0) + w1 E aT(H)e—f()\T(G)) exp [ — /TT ds ) | F
7 ar(0) a(0) p i

whereK (t, 0) is the first price kernel (4.4). O
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Corollary 6.2 Under the Assumptiob.2, the price of the defaultable zero-coupon bond is given by

P, T) =1 {/TOO st(,f)f((t,rt,)\t(ﬁ))dﬁ + /tT %?(wol?(t,rt,)\t(ﬁ)) + wll?(t,m,&(@)))de]

1 . ~
e (w0 (&, 70, M(7)) + wn K (87, M (7))

whereK and K are given in Propositior.1 respectively.

7 Numerical illustrations

In this section, we illustrate our previous results by nuoaiexamples. We are particularly interested in the
contagion phenomenon. More precisely, we shall analyzetaildhe the jump part in the default density
dynamics and its impact on the defaultable bond pricing.

In the numerical example, we consider the dynamics of theulledensity described by (3.5) and we let
the martingalen(¢) be given by

dmy(8) = —oy(0)dW, + /R Yo (0)ge €N =Y P (At de) m(0) = 0, (7.1)

with W = (W;; t > 0) being a standard Brownian motion independent of the Poisseasurey *.
Compared with (3.4), the corrected kernedf the Gaussian field @ is the Dirac measure antl= 1, the
volatility coefficientoy(0,&) = 0+(0) does not depend apand the jump amplitude coefficient is given by
Y(0,€) = 7(0)§1e~ 01 Wherey,(6) > 0. Recall in addition thad/,(0) = f(f my¢(u)du and

day(0) = ay—(0)dM(0) — Si—(0)dmy(6).

To illustrate the impact of the jump part on the defaultatdadprice P(¢,T') given by (4.6), we first
consider the case when the martingalé9) has no jumps, i.ey = 0. We then include the jump part in
the density dynamics. We use the initial default densitegity o (6) = Ae=? with X being a positive
constant.

In the coming tests, we suppose thatt) and~;(#) are deterministic and we use the following forms
of the coefficients and the characteristic measure in (7.1),

a(0) =c(@—t)", o >0,

W(0) = b —t)*, b>0,

v(d€) = £e7¢/lpogydé, ¢ >0, > 0.
We assume that both the recovery r&tes [0, 1] and the interest rateare constants and defid&(¢,7") =
e "(T=Y for 0 < t < T. By Remark 5.5, the defaultable bond prieét, T') given by (4.6) admits an explicit
form. Since the quotienP(¢,7")/B(t,T") equals the constarit on the sef{r < ¢} in this case, we only
study the pre-default part ofr > ¢} in (5.13), which is denoted b¥ (¢, T') henceforth and is given by

[ as(8)de

Pt,T) = B(t,T) (1 —(1- R)W> . (7.2)

The main task is then to approximate the integfal o (6)dé by a finite sumzﬁvz/ﬁAH A x oyt x A).

Here we choos@ = 1/100 and N = 10/\. We perform10* experiments to compute thiE-measurable
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random variableP (¢, T"). In each experiment, we first generate the underlying Brawmnotion and the
central compound Poisson process. Then for éaeh{iA;i = 1,2,..., N/A}, we computey, (¢) on
{t; =ilyi=1,2,...,t/A} with Ay = 1/100.

The preferred parameter values are as follows:

t=05 T=11r=005 R=04, b=1, (=10, A=0.1.

Figure 1 plots the kernel estimations of the densitie®@f T') given by

fr(z) =

x| =

k
> fule = Bi(t, 7)), (7.3)
=1

whereP;(t, T) is the price obtained in thieth experimentf, (z) = \/;_Wh exp (—%) ,andh = 1.06s,k1/°
is the bandwidth, withs;, being the sample standard deviation. From Figure 1, we fiadttie existence
of the jump risk will increases the decentrality of the pri@ée right tail of the price distribution becomes
fatter and fatter as the mean jump sizencreasing.

Figure 1: The (normal) kernel estimations of the price densitiesfor= 0,0.0002, 0.0006,0.001,0.002 ando =
0.001.
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Figure 2:P.(0.5,1) := E[P(0.5,1)] as a function ofo with A\ = 0.01,0.03, 0.1, 0.3 ando = 0.001.
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PtT)
PtT)

Figure 2 shows the mean of the pri€g(0.5,1) := E[P(0.5,1)] as a function ofo for different values
of A\. We observe that the defaultable bond price is a decreasimgién of the intensity\, and also of the
mean jump sizeo. Hence, when there is larger default risk of the underlyisggaitself (with largen), the
corresponding bond price is smaller. Furthermore, wheretleemore significant counterparty risks, that
is, when there is a larger contagious jump in the densitgéla®), then the bond price will also decrease.
Both observations correspond to the reality on the market.

Figure 3 shows the mean of the priég(¢,1) := E[P(t,1)] as a function of. It is noted that the
numerical illustration of the quantity’(¢,7)/B(t,T) discussed in Remark 5.5 is very similar to that of
P(t,T), sinceB(t,T) here is a deterministic functioB(¢, T') = e~"(T~*) which is close tal. We observe
similar results as in the previous test: the counterpanypjuisks in the density will decrease the bond
prices.

Figure 3:P.(t,1) := E[P(t,1)] as a function of. Right hand side is the relative priég (¢, 1) := E[P(t,1)]/B(t,1).
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In the last graph, we show the quoted bond price at the iritia ¢ = 0 as a function of the maturity
time T for different values of intensities. Again we observe tl bond price is decreasing when there is
larger default risks and for long term bonds.

Figure 4:P(0,T) as a function off".
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