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Abstract

In this paper, belief functions, defined on the lattice of intervals partitions of
a set of objects, are investigated as a suitable framework for combining mul-
tiple clusterings. We first show how to represent clustering results as masses
of evidence allocated to sets of partitions. Then a consensus belief function is
obtained using a suitable combination rule. Tools for synthesizing the results
are also proposed. The approach is illustrated using synthetic and real data
sets.
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1. Introduction

Ensemble clustering methods [20, 16, 19] consist in combining multiple clus-
tering solutions into a single one, called the consensus. The aim is to produce
a more accurate and robust clustering of the data. Over several years a num-
ber of studies have been published on this topic1. The recent interest of the
machine learning and artificial intelligence communities in ensemble techniques
for clustering can be explained by the success of such ensemble techniques in
a supervised setting. Moreover, some recent practical applications have shown
the utility of such an approach in different contexts such as, e.g. in medical
diagnosis [13, 18], gene expression microarray data clustering [28, 1], image
segmentation [33]. Fundamental issues to be addressed when using ensemble
clustering methods include: i) how to construct a set of individual solutions (or
how to choose the base “clusterers”); and ii) how to combine the results of the
ensemble into a single one.

This paper focuses on the second issue. Recent approaches to the problem
of aggregating multiple clusterings include: voting schemes [8, 10], graph-based

1see, for example, the special issue of the Journal of Classification devoted to the “Com-
parison and Consensus of Classifications” published in 1986 [6]
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approaches [37, 13], parameters estimation in a mixture of multinomial dis-
tributions [38], evidence accumulation clustering (EAC) [14, 15, 18]. This last
approach is one of the most popular and will be shown to have some connections
with the method proposed in this paper. In EAC, the collection of partitions
is mapped onto a square co-association matrix where each cell (i, j) represents
the fraction of times the pair of objects (xi, xj) has been assigned to the same
cluster. This matrix is then considered as a similarity matrix which can in turn
be clustered. A hierarchical clustering algorithm is often used for this purpose.

In this paper, which is an extension of [27], we address the problem of finding
a consensus clustering as an information fusion problem in the general frame-
work of uncertain reasoning. In fact, each clustering algorithm can be considered
as a source, partially reliable, providing an opinion about the true, unknown,
partition of the objects. The reliability of each source is assumed to be described
by a confidence degree, either assessed by an external agent or evaluated using
internal indices. An important point to consider is that, in some cases, the
output of a clusterer does not provide evidence in favor of a single partition
but supports naturally a set of possible hypotheses. This situation can occur
in various circumstances, depending on the way the ensemble is generated, for
example:

1. Distributed clustering: in that case, it is assumed that the whole data set
is not available in a centralized location. Each clusterer has only a partial
view (of small dimension) of the data and the combination is performed in
a central location using only high level information such as cluster labels
[37].

2. Random subspaces, random hyperplanes: for clustering high-dimensional
data, some authors [12, 1] have proposed to generate their ensemble by
randomly projecting the data on several low dimensional spaces. A simi-
lar approach is considered by Topchy et al. [39] who propose to combine
multiple weak clusterings obtained by splitting the data by random hy-
perplanes.

3. Complex shape clusters: one way to generate a cluster ensemble is to split
the data into a large number of small clusters [14]; different decomposi-
tions can be obtained by using different clustering algorithms or the same
algorithm while varying a characteristic of the method (starting values,
number of clusters, hyperparameter, order of presentation of the samples
for on-line algorithms). The search for a partition compatible with all
individual clusterings is a way to detect complex shape clusters.

In the first two cases, if a small number c of clusters is discovered in a given
subspace, it seems natural to consider that the true number of clusters in the
whole space is at least c. In other words, the information provided by each
clusterer can be expressed as the set of all partitions that are at least as fine as
the output of the clusterers. The third case correspond to the opposite situation:
multiple clusterings of this type may be reconciled by assuming that the true
unknown partition belongs to sets of partitions coarser than the individual ones.
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There is thus a need to represent and manipulate information expressed as
sets of partitions, possibly associated to confidence degrees. In this context,
belief functions, a theory which has been successfully applied to many fusion
and pattern recognition problems in recent years (sensors fusion, expert opinion
pooling, classification), appear as a suitable framework for representing and
combining the opinion of several clusterers. In this framework, a straightforward
approach would be to consider, as the set of possible hypotheses (the frame of
discernment), the set P of all possible partitions of the set to be clustered.
Unfortunately, this approach requires algebraic manipulation of the elements of
2P and this can be intractable in the case where the number of partitions is
high.

However, it is possible to work with a particular class of subsets of 2P (inter-
vals of partitions), which will be shown to have a lattice structure. Some recent
works ([17], [2]) have shown the possibility of defining and manipulating belief
functions on any lattice. The use of a lattice structure allows us to dramatically
limit the complexity when allocating belief masses to sets of partitions.

The rest of the paper is organized as follows. Section 2 gives the necessary
background about lattices and belief functions. Section 3 focuses on partition
lattices. Our approach is developed in Section 4. Some experimental results are
presented in section 5. Finally, Section 6 concludes this paper.

2. Belief functions on general lattices

Lattices have recently attracted a great interest due to their high number of
potential applications in computer science (databases, data mining, distributed
computing, scheduling applications). This section begins with a short introduc-
tion to lattices. Section 2.2 gives the necessary background on belief functions
which are classically defined on a Boolean lattice. Then the extension of belief
functions to general lattices is presented.

2.1. Lattices

The following presentation follows [17]. Only the main definitions will be
recalled. A more complete description on lattice theory can be found in [29].

A poset is a set P endowed with a partial order � (a reflexive, antisymmetric,
transitive relation). A lattice is a poset (P ,�) such that for any x, y ∈ P , their
least upper bound x∨y and their greatest lower bound x∧y exist. The element
x∨ y, is called the supremum or join of x and y and x∧ y is called the infimum
or meet of x and y. For finite lattices, there exist a greatest element, denoted
⊤, and a least element, denoted ⊥. We say that y covers x if x � y and there is
no z such that x � z � y. An element x is an atom if it covers only one element
and this element is ⊥. It is a co-atom if it is covered by a single element and
this element is ⊤.

A lattice is distributive if (x∨y)∧z = (x∧z)∨(y∧z) holds for all x, y, z ∈ P .
A lattice (P,�) is said to be complemented if any x ∈ P has a complement x′

defined by x ∧ x′ = ⊥ and x ∨ x′ = ⊤. A lattice is Boolean if it is distributed
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and complemented. For any set Ω, the collection of all subsets of Ω, 2Ω, ordered
via subset inclusion, forms a lattice under the operations ∨ = ∪ (set union) and
∧ = ∩ (set intersection).

2.2. Belief functions on a Boolean lattice

Dempster-Shafer theory of evidence (or belief functions theory) [34], like
probability or possibility theories, is a theoretical framework for reasoning with
partial and unreliable information. In this section, only the main concepts of
this theory are recalled.

Let us consider a variable ω taking values in a finite set Ω called the frame
of discernment. Partial knowledge regarding the actual value taken by ω can be
represented by a basic belief assignment (bba) [34, 36], defined as a function m
from 2Ω to [0, 1], verifying:

∑

A⊆Ω

m(A) = 1. (1)

The subsets A of Ω such that m(A) > 0 are the focal elements of m. Each
focal set A is a set of possible values for ω, and the quantity m(A) can be
interpreted as the measure of the belief that is committed exactly to ω ∈ A
on the basis of a given evidential corpus. Complete ignorance corresponds to
m(Ω) = 1 (vacuous mass function), whereas perfect knowledge of the value of ω
is represented by the allocation of the whole mass of belief to a unique singleton
of Ω (m is then called a certain bba). A bba with nested focal elements is said
to be consonant. A bba m is said to be of simple support if there exists A ⊂ Ω
and w ∈ [0, 1] such that m(A) = 1 − w and m(Ω) = w, all other masses being
equal to zero. A bba m such that m(∅) = 0 is said to be normal. The bba m can
be equivalently represented by a credibility function bel, a plausibility function
pl, and a commonality function q defined, respectively, by:

bel(A) ,
∑

∅6=B⊆A

m(B) ∀A ⊆ Ω , (2)

pl(A) ,
∑

B∩A 6=∅

m(B) ∀A ⊆ Ω , (3)

q(A) ,
∑

B⊇A

m(B) ∀A ⊆ Ω . (4)

When the reliability of a source is doubtful, the mass provided by this source
can be discounted using the following operation (discounting process):

{

mα(A) = (1− α)m(A) ∀A 6= Ω,
mα(Ω) = (1− α)m(Ω) + α,

(5)

where 0 ≤ α ≤ 1 is the discount rate. This discount rate is related to the
confidence held by an external agent in the reliability of the source [35]. It can
be interpreted as the plausibility that the source is unreliable. When α is equal
to 1, the vacuous mass function is obtained. When α=0, m remains unchanged.
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Two bbas m1 and m2 induced by distinct items of evidence on Ω can be com-
bined using the conjunctive rule of combination. The resulting mass function
m1 ∩©m2 is defined by:

(m1
∩©m2)(A) ,

∑

B∩C=A

m1(B)m2(C) ∀A ⊆ Ω. (6)

This conjunctive rule transfers the product of the masses m1(B) and m2(C)
to the intersection of B and C. It can be expressed in a simple way using
commonalities:

(q1
∩©q2)(A) = q1(A)q2(A) ∀A ⊆ Ω, (7)

where q1(A) and q2(A) denote, respectively, the commonalities associated to
m1 and m2.

2.3. Extension to general lattices

As recalled in the previous section, belief functions are classically defined on
the Boolean lattice 2Ω. However, following initial investigations of Barthélemy
[2], Grabisch [17] has shown that it is possible to extend these notions to the case
where the underlying structure is no more a Boolean lattice, but any lattice:
most results from Dempster-Shafer theory transfer to this general setting. Let
(P,�) denote a lattice endowed with a ∨-meet and a ∧-join operations. A basic
belief assignment (bba) is defined as a mass function m from P to [0,1] verifying:

∑

x∈P

m(x) = 1. (8)

The bba m can be equivalently represented by a credibility function bel, and a
plausibility function q defined, respectively, by:

bel(x) ,
∑

x′�x

m(x′) ∀x ∈ P, (9)

pl(x) ,
∑

x∧x′ 6=⊥

m(x′) ∀x ∈ P. (10)

The conjunctive rule of combination is rewritten as:

(m1
∩©m2)(x) =

∑

x′∧x′′=x

m1(x′)m2(x′′) ∀x ∈ P, (11)

with the following relation between the commonalities:

(q1
∩©q2)(x) = q1(x)q2(x) ∀x ∈ P. (12)
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3. Lattices of partitions

In this section, we focus on a particular lattice structure on which belief
functions may be defined: the lattice of partitions of a finite set. We first recall
basic definitions about partitions and orders on partitions. The section ends
with the presentation of another lattice derived from the previous one. This
lattice, which seems particularly suitable in the context of consensus clustering,
is composed of intervals of partitions. This makes it possible to manipulate sets
of partitions with an acceptable level of complexity.

3.1. Partitions of a Finite Set

Let E denote a finite set of n objects. A partition p is a set of non empty
subsets E1,...,Ek of E such that:

1) the union of all elements of p, called clusters, is equal to E;

2) the elements of p are pairwise disjoint.

Every partition p can be associated to an equivalence relation (i.e., a reflexive,
symmetric, and transitive binary relation), on E, denoted by Rp, and charac-
terized, for all (x, y) ∈ E2, by:

Rp(x, y) =

{

1 if x and y belong to the same cluster in p,
0 otherwise.

Example. Let E = {1, 2, 3, 4, 5}. A partition p of E, composed of two clusters
{1, 2, 3} and {4, 5} will be denoted as p = (123/45). The associated equivalence
relation is:

Rp =













1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1













.

The set of all partitions of E, denoted by PE , can be partially ordered using
the following ordering relation: a partition p is said to be finer than a partition
p′ on the same set E (or, equivalently p′ is coarser than p) if the clusters of p
can be obtained by splitting those of p′ (or equivalently, if each cluster of p′ is
the union of some clusters of p). In, this case, we write:

p � p′.

This partial ordering can be alternatively defined using the equivalence relations
associated to p and p′:

p � p′ ⇔ Rp(x, y) ≤ Rp′(x, y) ∀(x, y) ∈ E2.

The notation � will be used for the reverse relation defined by:

p′ � p⇔ p � p′,
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and that ≺, and ≻ will denote the restrictions of � and �, respectively, to pairs
of distinct elements:

p ≺ p′ ⇔ p � p′ and p 6= p′,

p ≻ p′ ⇔ p � p′ and p 6= p′.

The finest partition (⊥) in the order (PE ,�), denoted p0 = (1/2/.../n), is
the partition in which each object is a cluster. The coarsest partition (⊤) is
pE = (123..n), in which all objects are put in the same cluster. Each partition
precedes in this order every partition derived from it by aggregating two of
its clusters. Similarly, each partition succeeds (covers) all partitions derived
by subdividing one of its clusters in two clusters. The atoms of (PE ,�) are the
partitions preceded by p0. There are n(n−1)/2 such partitions, each one having
(n− 1) clusters with one and only one cluster composed of two objects. Atoms
are associated with matrices Rp with only one off-diagonal entry equal to 1.

3.2. Lattice of Partitions

The set PE endowed with the �-order has a lattice structure [29]. Meet (∧)
and join (∨) operations can be defined as follows. The partition p ∧ p′, the
infimum of p and p′, is defined as the coarsest partition among all partitions
finer than p and p′. The clusters of p ∧ p′ are obtained by considering pairwise
intersections between clusters of p and p′. The equivalence relation Rp∧p′ is
simply obtained by taking the minimum of Rp and Rp′ . The partition p ∨ p′,
the supremum of p and p′, is similarly defined as the finest partition among the
ones that are coarser than p and p′. The equivalence relation Rp∨p′ is given by
the transitive closure of the maximum of Rp and Rp′ . Figures 1 and 2 show
examples of partition lattices in the case where E is composed of three and four
objects.

1/2/3

12/3 1/23 13/2

123

Figure 1: Lattice of partitions of a set of three elements.

3.3. Lattices of intervals of partitions

To enable the manipulation of sets of partitions, the previous framework has
to be further extended in the following way. In PE , a closed interval of lattice
elements is defined as:

[p, p] = {p ∈ PE | p � p � p}. (13)
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1/2/3/4

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

14/23 13/241/234 124/3 123/4 134/2 12/34

1234

Figure 2: Lattice of partitions of a set of four elements.

An interval [p, p] in PE is thus a particular set of partitions, namely the set of
all partitions finer than p and coarser than p.

We consider now the set IE of all intervals of PE , including the empty set of
PE (denoted by ∅PE

). The intersection of two intervals is also an interval:

[p
1
, p1] ∩ [p

2
, p2] =

{

[p
1
∨ p

2
, p1 ∧ p2], if p

1
∨ p

2
� p1 ∧ p2

∅PE
otherwise

. (14)

So the set IE is a closure system and, as shown by [29], is also a lattice, endowed
with the inclusion relation:

[p
1
, p1] ⊆ [p

2
, p2]⇔ p

2
� p

1
and p1 � p2. (15)

The meet operation is the intersection and the join of two elements [p
1
, p1]

and [p
2
, p2] in IE is defined as:

[p
1
, p1] ⊔ [p

2
, p2] = [p

1
∧ p

2
, p1 ∨ p2]. (16)

Note that the meet of two intervals corresponds exactly to the intersection of
the corresponding sets of partitions, whereas the join of two intervals may be
larger than the union of the sets of partitions.

In this lattice, the least element ⊥IE
is ∅PE

and the greatest element ⊤IE
is

PE . The atoms of IE are the singletons of PE . The co-atoms are of the form
[p0, p] with p a co-atom of (PE ,�) or [p, pE ] with p an atom of (PE ,�). An
example of such a lattice, in the case where E is composed of three objects, is
shown in Figure 3.

Within this framework, several kinds of imprecise knowledge about a par-
tition can be expressed. For example, the intervals [p0, p] and [p, pE ] represent
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the set of partitions finer and coarser, respectively, than a partition p. Sup-
pose now that we know that the elements of a set A ⊆ E are in the the same
cluster. This external information is referred to as “must-link” constraints (see
e.g. [40]) between the elements of A and can be translated as an interval of IE

as follows. Let pA denote the partition in which the only elements which are
clustered together are the elements of A:

pA = {A} ∪
{

{x}/x ∈ Ā
}

.

Then the interval [pA, pE ] represents the set of all partitions in which the ele-
ments of A are clustered together. Note that “cannot link” constraints also used
in constrained clustering, which specify that elements must not be clustered in
the same class, can not be expressed in the proposed framework.

= [1/2/3,123]PE

P
E

{1/2/3} {12/3} {13/2} {23/1} {123}

[1/2/3,12/3] [1/2/3,23/1] [13/2,123] [23/1,123][1/2/3,13/2] [12/3,123]

Figure 3: Lattice of intervals of partitions of a set composed of three elements.

4. Ensemble Clustering with partitions lattices

Belief functions defined on lattices of intervals of partitions, as introduced in
the previous sections, offer a general framework for combining and synthesizing
the results of several clustering algorithms. Note that an approach using the
lattice of partitions (and not lattices of intervals of partitions, as it is proposed
in this paper) for finding a consensus partition has been already suggested in the
80’s by by Neumann and Norton [30]. Their approach works well for ensembles
with little diversity. In case of strong conflicting opinions of the clusterers,
their way of deriving a strict consensus, using meet and join operations on
the lattice, can lead to very non informative results (the most trivial result is
obtained when the meet is the set of singletons and the join is the partition
with one cluster). This poor behavior is partly explained by the fact that, in
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this theoretical setting, the outputs of the clusterers are categorical opinions
which are pooled together without the possibility of weighting them using mass
functions.

We propose to use the following strategy for ensemble clustering:

1) Mass generation: Given r clusterers, build a collection of r bbas m1,m2,...,mr

on the lattice of intervals;

2) Aggregation: Combine the r bbas into a single one using the conjunctive
rule of combination;

3) Synthesis: Provide a summary of the results.

These steps are discussed in detail below.

4.1. Basic belief assignment

A credal clustering ensemble is a collection of r bbas C = {m1, ...,mr}. The
way of choosing the focal elements and allocating the masses from the results of
several clusterers depends mainly on the applicative context and on the nature
of the clusterers in the ensemble. Two representative examples are given below.

The simplest situation is encountered when a given clusterer l produces
a single partition pl of the data set (using for example the hard or fuzzy c-
means algorithm). To account for the uncertainty of the clustering process,
this categorical opinion can be transformed into a simple support mass function
using the discounting operation (5). Let αl denote the discounting factor of
clusterer l (note that it is proposed in the experimental section to relate αl to
to an internal indice of validity of the partition). If the true unknown partition
is considered to be at least as fine as pl, the following mass allocation can be
used:

{

ml1 = ml([p0, pl]) = 1− αl

ml2 = ml([p0, pE ]) = αl.
(17)

On the contrary, if the true unknown partition is considered to be at least as
coarse as the individual partition, then the following allocation may be consid-
ered:

{

ml1 = ml([pl, pE ]) = 1− αl

ml2 = ml([p0, pE ]) = αl.
(18)

Note that only two mass allocations are presented in this paper because
they correspond to the practical cases mentioned in the introduction like com-
plex shape clustering or random subspace clustering, but many other clustering
methods could be described in the same framework. For instance, fuzzy equiva-
lence relations, used for cluster analysis [4], or hierarchical clusterings, could be
naturally represented by belief functions on the lattice of intervals of partitions.

The result of this mass allocation step is a collection of r bbas ml which are
defined, in the most general case, as a set of nl focal elements [pl

s
, pl

s] with a

mass ml
s = ml([pl

s
, pl

s]) (s = 1, ..., nl):

ml = {([pl
s
, pl

s],m
l
s), s = 1, nl}
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The equivalence relations associated to pl
s

and pl
s will be denoted Rl

s and R
l

s,
respectively.

Two particular cases of ensembles will be of interest in the sequel. Type I
ensembles will refer to ensembles composed exclusively of bbas ml of the form:

ml = {([p0, p
l
s],m

l
s), s = 1, nl},

whereas type II ensembles will refer to ensembles composed of bbas ml of the
form:

ml = {([pl
s, pE ],ml

s), s = 1, nl}.

4.2. Combination

Once the results provided by the r clusterers have been converted into r
bbas, they can be aggregated into a single bba m∗ = m1 ∩©m2 ∩©... ∩©mr using
the conjunctive rule of combination (11) with the meet operation defined by
(14). The combination algorithm is summarized in appendix (algorithms 1 to
3).

The result of this combination is a bba m∗, i.e. a set of K intervals, associ-
ated with belief masses:

m∗ = {([p∗
k
, p∗k],m∗

k) k = 1,K}.

The associated equivalence relations of p∗
k

and p∗k will be denoted R∗
k and R

∗
k,

respectively, in the sequel. Similarly, the credibility and plausibility functions
related to m∗ will be denoted bel∗ and pl∗, respectively.

4.3. Synthesizing the results

The interpretation of the results is a difficult problem, since, depending
on the number of clusterers in the ensemble, on their nature, on the conflict
between them, and on the combination rule, a potentially high number K of
focal elements may be found. If the number of focal elements in the combined
bba is too high to be explored, a first way to proceed is to select only the focal
elements associated with the highest masses. We propose also another approach
which is explained below.

Let pij denote the partition with (n− 1) clusters, in which the only objects
which are clustered together are objects i and j (partition pij is an atom in the
lattice (PE ,�)). Then, the interval [pij , pE ] represents the set of all partitions
in which objects i and j are put in the same cluster. Our belief in the fact
that i and j belongs to the same cluster can be characterized by two quantities,
namely, the plausibility and the credibility of [pij , pE ]. They can be simply
computed as follows:
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Plij = pl∗([pij , pE ]) =
∑

[pij ,pE ]∩[p∗

k
,p∗

k
] 6=∅PE

m∗
k (19)

=
∑

p∗

k
�pij

m∗
k (20)

=
K
∑

k=1

m∗
kR

∗
k(i, j), (21)

Belij = bel∗([pij , pE ]) =
∑

[p∗

k
,p∗

k
]⊆[pij ,pE ]

m∗
k (22)

=
∑

p∗

k
�pij

m∗
k (23)

=

K
∑

k=1

m∗
kR∗

k(i, j). (24)

Note that, in case of a type I ensemble, the meet of any two focal elements
[p0, p

l
s] and [p0, p

l′

s′ ] is equal to [p0, p
l
s∧pl′

s′ ] so the combined bba m∗ is such that:

p∗
k

= p0 ∀k = 1,K.

In that case, one has:

Belij = bel∗([pij , pE ]) =

K
∑

k=1

m∗
kR0(i, j) = 0, ∀i 6= j,

where R0 denotes the equivalence relation associated to p0. In case of a type II
ensemble, the meet of any two focal elements [pl

s, pE ] and [pl′

s′ , pE ] is equal to

[pl
s ∨ pl′

s′ ; pE ] so the combined bba m∗ is such that:

p∗k = pE ∀k = 1,K.

In that case, one has:

Plij = pl∗([pij , pE ]) =

K
∑

k=1

m∗
kRE(i, j) = 1, ∀i 6= j,

where RE denotes the equivalence relation associated to pE .
Matrices Pl = (Plij) and Bel = (Belij) can be considered as new similarity

matrices and can be in turn clustered using, for instance, a hierarchical cluster-
ing algorithm. If a partition is needed, the classification tree can be cut at a
specified level or so as to insure a user-defined number of clusters.
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4.4. Special case of type I ensembles

In case of type I ensembles, the computation of Plij can be further simplified.
In fact, the particular shape of the focal elements of m∗ allows us to write Plij
as:

Plij = pl∗([pij , pE ]) = q∗([p0, pij ]), (25)

where q∗ denotes the commonality function associated to m∗. As it is recalled in
Section 2.3 in Eq. (12), q∗ can be expressed as the product of the commonalities
q1,· · · ,qr associated to m1,· · · ,mr, respectively:

Plij =
r
∏

l=1

ql([p0, pij ]). (26)

We have:

ql([p0; pij ]) =
∑

pl
s�pij

ml
s =

nl
∑

s=1

ml
sR

l
s(i, j). (27)

Thus:

lnPlij =

r
∑

l=1

ln

(

nl
∑

s=1

ml
sR

l
s(i, j)

)

. (28)

Equation (28) shows that, in case of type I ensembles, it is not necessary
to compute the result of the conjunctive rule of combination, because each Plij
can be simply computed from the initial bbas of the ensemble.

4.5. Link with the EAC approach

We assume in this section that the ensemble is of type I and that all bbas ml

are simple mass functions obtained by discounting categorical opinions given by
the clusterers. We further assume that the discount factor is equal to α for all
clusterers, so that:

ml = {([p0, p
l], 1− α), ([p0, pE ], α)}.

In that case, the following equations hold:

ql([p0, pij ]) =

{

1 if pl � pij

1− α if pl ≺ pij
, (29)

and

Plij =
∏

{l/pl�pij}

1
∏

{l′/pl′≺pij}

(1− α) = (1− α)






r −

r
∑

l=1

Rl(i, j)







,

or, equivalently:

lnPlij =

(

r −
r
∑

l=1

Rl(i, j)

)

ln(1− α). (30)
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One can see that ln Plij is an increasing function of the fraction of times
where i and j have been assigned to the same cluster by the individual cluster-
ers. Consequently, clustering matrices Pl or 1

r

∑

l R
l using the single or complete

linkage hierarchical clustering algorithm will yield the same results. This partic-
ular case is thus equivalent to the evidence accumulation approach. A weighted
version of EAC, that weights differently the partitions in the co-association ma-
trix, has also been proposed in [9]. It turns out that it is equivalent to our
approach when each clusterer has its own discount rate αl, as it can easily be
shown that:

lnPlij =
r
∑

l=1

ln(1− αl)
(

1−Rl(i, j)
)

. (31)

4.6. Toy example

Let E = {1, 2, 3, 4, 5, 6, 7} be a set of 7 objects. We assume that two
clustering algorithms have produced partitions p1 = (123/45/67) and p2 =
(12/345/67). As it can be seen, the partitions disagree on the third element
which is clustered with {1, 2} in p1 and with {4, 5} in p2. As proposed in Sec-
tion 4, we construct two simple mass functions by discounting each clusterer l
by a factor αl. In a first situation, we consider that we have an equal confidence
in the two clusterers, so we fix α1 = α2 = 0.1. Moreover, we assume that the
unknown partition is finer than p1 and p2 (type I assignment). We have:

m1([p0, p1]) = m2([p0, p2]) = 0.9, m1([p0, pE ]) = m2([p0, pE ]) = 0.1.

Applying Dempster’s rule of combination (11) leads to the following combined
bba m∗ = m1 ∩©m2:

Focal elements mass m∗ bel∗

[p0, p1 ∧ p2] 0.81 0.81
[p0, p1] 0.09 0.90
[p0, p2] 0.09 0.90
[p0, pE ] 0.01 1

with p1 ∧ p2 = (12/3/45/67).
A type II assignment, corresponding to the hypothesis that the true partition

is coarser than the individual ones leads to the following combined mass m∗:

Focal elements mass m∗ bel∗

[p1 ∨ p2, pE ] 0.81 0.81
[p1, pE ] 0.09 0.90
[p2, pE ] 0.09 0.90
[p0, pE ] 0.01 1

with p1 ∨ p2 = (12345/67). The matrices Pl and Bel computed from m∗

are represented in the upper part of Figure 4. Logically, the type I assignment
leads to a partition of the set into 4 clusters, whereas the type II assignment
shows a structure into 2 clusters.
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Suppose now that the confidence in the second clusterer is less than in the
first one. Two situations are considered: we first fix α1 = 0.1 and α2 = 0.5
and then α1 = 0.1 and α2 = 0.9. The corresponding matrices Pl and Bel
are represented in the middle and lower parts of Figure 4. As expected, the
more the opinion of the second clusterer is discounted, the closer the combined
partitions, whatever their type, to the partition given by the first clusterer.

Bel (type II ensemble)

m
1
=m

2
=0.9

2 4 6

2

4

6

Pl (type I ensemble)

m
1
=m

2
=0.9

2 4 6

2

4

6

m
1
=0.9;m

2
=0.5

2 4 6

2

4

6

m
1
=0.9;m

2
=0.5

2 4 6

2

4

6

m
1
=0.9;m

2
=0.1

2 4 6

2

4

6

m
1
=0.9;m

2
=0.1

2 4 6

2

4

6

Figure 4: Plausibility and belief matrices for the toy example (white=1, black=0).
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5. Some examples of applications

5.1. Preamble: discount rates

When a mass allocation such as (17) or (18) is used, fixing the discount rates
αl is a major issue. Each discounting factor has to reflect the confidence held in
the clusterer. A way to automatically determine these factors is to relate them
to a cluster validity index. The notion of cluster validation refers to concepts and
methods for the quantitative evaluation of the output of a clustering algorithm.

Various cluster validity indices have been proposed to measure the quality
of clustering results. They can be broadly divided into external and internal
indices. External validity indices assess the agreement between a clustering
solution and a predefined reference clustering. One of the most popular is the
Rand Index [31], which determines the similarity between two partitions as a
function of positive and negative agreements in pairwise cluster assignments.
The Adjusted Rand index [21] (AR) introduces a normalization in order to
yield values close to zero for random partitions. It is computed as follows. Let

• p1 and p2 be two partitions of a set E;

• a denote the number of pairs of elements in E that are in the same cluster
in p1 and in the same cluster in p2;

• b denote the number of pairs of elements in E that are in different clusters
in p1 and in different clusters in p2;

• c denote the number of pairs of elements in E that are in the same cluster
in p1 and in different clusters in p2;

• d denote the number of pairs of elements in E that are in different clusters
in p1 and in the same cluster in p1.

The Adjusted Rand index, AR, is defined as:

ARI(p1, p2) =
2(ab− cd)

(a + d)(d + b) + (a + c)(c + b)
. (32)

This index belongs to [-1,1] and is close to 1 when the two partitions are in
good agreement. In real-life unsupervised tasks, there is no reference clustering,
so that such criterion is not directly applicable for deriving a discounting factor.
However, the Adjusted Rand index will be used in the experiments to evaluate
the quality of the final clustering with respect to known labels (when they are
known) and also in the definition of an internal validity criterion as explained
below.

Internal validation methods compare different solutions based on the good-
ness of fit between each clustering and the data by using combined notions of
compactness, separation, and connectedness of the clusters. Examples of such
indices are Dunn’s index [11], the Davies-Bouldin index [5], and the Silhouette
score [32]. However, these indices can only make comparisons between clus-
terings generated using the same metric. When, for example, a situation of
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distributed clustering is considered, these indices are not applicable. More re-
cent approaches to the problem of cluster validation suggest to use the stability
of a partitioning as an internal validation measure. In particular, we adopt
the approach of [24, 3] based on the idea that a clustering algorithm should
produce consistent results when applied to data sampled from the same source.
The general principle is to repeatedly draw two overlapping subsamples of the
same dataset. Each subsample is clustered individually, and the two resulting
partitions are compared by applying an external validation index (we use the
AR index) to the partial partitions obtained for the overlapping shared set of
points. The average of the AR index over several repetitions is retained as a
stability index of the clusterer (note that the AR index has been truncated to
zero considering that negative AR values were associated to bad agreements
between partitions). The detailed algorithm for computing the stability index
is given in appendix (algorithm 4). This stability index has been used in all the
experiments reported below (with a number of bootstrap samples nboot = 30
and a sampling ration S = 0.9), by defining the discount rate of each clusterer
as one minus the stability index.

5.2. Distributed clustering: first experiment

In a distributed computing environment, the data set is spread into a num-
ber of different sites. In that case, each clusterer has access to a limited number
of features and the distributed computing entities share only higher level infor-
mation describing the structure of the data such as cluster labels. The problem
is to find a clustering compatible with what could be found if the whole set
of features was considered. To illustrate this point, we used a dataset named
8D5K, described in [37]. This dataset is composed of five Gaussian clusters of
200 points in dimension 8. Three 2D views of the data were created by selecting
three pairs of features for which a clear cluster structure appeared. The fuzzy
c-means algorithm (FCM) was applied in each view after selecting by hand the
number of desired clusters to obtain three hard partitions computed from the
fuzzy partitions. These partitions are represented in Figure 5. The left col-
umn shows the partitions in the 2D views, and the right one shows the same
partitions projected onto the first two principal components of the data. An
ensemble of three mass functions of type I was constructed by considering that
the true unknown partition is at least as fine as the individual ones: each clus-
terer, discounted according the stability of the partition, was represented by a
mass function with two focal elements. A “consensus” clustering was obtained
by applying the conjunctive rule of combination, computing the matrix ln(Pl)
and the associated tree using Ward linkage, and cutting the tree to obtain five
clusters. The consensus clustering and the dendrogram are presented in Figure
6. It may be seen that a clear structure in five clusters is highlighted by the
tree and that a very good clustering is obtained. The AR index between the
true partition and the result of the ensemble is equal to 0.95.
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5.3. Distributed clustering: second experiment

In this section, we illustrate the interest of the discounting process applied to
the clusterers according to their stability. We used the same data set as in the
previous section and we progressively added to the previous ensemble “noisy”
clusterers (from one to nine additional clusterers). Each noisy clusterer was
constructed by running the fuzzy c-means algorithm with new pairs of features
and by randomly perturbing the labels of the points according to a given noise
level (namely 0%, 25%, 50%, 75% and 100%). The results of the ensemble
are judged using the Adjusted Rand index between the true partition and the
partition into five clusters found by the ensemble. This experiment was repeated
50 times to report errors bars. Our method is compared to the EAC approach.

We can see in Figure 7 that the discount process allows our method to be
remarkably stable. On the contrary, the performance of the EAC approach is
highly variable and decreases when the number of noisy clusterers added in the
ensemble grows.
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Figure 5: 8D5K data set [37]. The ensemble is composed of three individual clustering solu-
tions obtained from three 2D views of the data. The left column shows the partition obtained
in each two-dimensional features space and the right one shows the corresponding partition
in the plane spanned by the two first principal components.
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Figure 6: 8D5K data set. Ward’s linkage (left) computed from ln(Pl) and derived consensus
partition (right).
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Figure 7: 8D5K data set. Influence of noisy clusterers on the performances of the ensemble
(squares: proposed method; circles: EAC approach).
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5.4. Discovering non spherical clusters

This section is intended to show the ability of the proposed approach to
detect clusters with complex shapes. Two experiments are presented. The first
data set is the half-ring data set which is inspired from [14]. It consists of two
clusters of 100 points each in a two-dimensional space. To build the ensemble,
we used the fuzzy c-means algorithm with a varying number of clusters (from 6
to 11). The hard partitions computed from the soft partitions are represented
in Figure 8.

As in the previous example, each partition was discounted according to the
stability index and six mass functions with two focal elements each were com-
bined using the conjunctive rule of combination. The mass functions were chosen
of type II since the true partition is supposed to be coarser than each individual
one. A tree was computed from matrix Bel using Ward’s linkage. This tree,
represented in the left part of Figure 9, indicates a clear separation in two clus-
ters. Cutting the tree to obtain two clusters gives the partition represented in
the right part of Figure 9. We can see that the natural structure of the data is
perfectly recovered.
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Figure 8: Half-rings data set. Individual partitions.
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Figure 9: Half-rings data set. Ward’s linkage computed from Bel and derived consensus.

The second experiment was conducted with the Iris data set, which is a real
data set composed of 3 classes of 50 points each in a four dimensional space. This
data set is represented in Figure 10. An ensemble of 4 clusterers was constructed
using the same approach as before: the fuzzy c-means algorithm was run with
a varying number of clusters (8 to 11). The corresponding hard partitions were
discounted according to the stability criterion and four mass functions of type
II were built. These mass function were combined using the conjunctive rule of
combination and matrix Bel was computed. The corresponding tree obtained
using Ward’s linkage, which shows a cut in 2 or 3 classes, is represented in the
top left of Figure 12. The partition computed from this tree in three classes is
shown in the top right of Figure 12. The adjusted Rand index is equal to 0.922.

As a matter of comparison, the tree computed using Ward’s linkage from the
co-association matrix of the EAC approach and the related partition into three
classes are shown in the bottom of Figure 12. It may be seen from the figure
that the EAC approach does not give a clear indication about the number of
clusters to be chosen and that the partition does not reflect the natural structure
of the data (note that the EAC approach and our approach are equivalent only
in case of type I assignments). The co-association matrix and the Bel matrix
are displayed in Figure 12. This representation confirms that the structure of
the data is better described by matrix Bel.

We also give in Table 1 the averaged Adjusted Rand index and its standard
deviation obtained over 100 repetitions of four methods: our method, the EAC
approach, and a direct application of a hierarchical clustering (Ward’s method)
and FCM on the original features. Note that the variability of the results for
the first two methods comes, on the one hand, from the variability of the results
of FCM (which occurs when the number of clusters is high) and, one the other
hand, from the resampling process in the computation of the validity indices.
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Belief ens. EAC approach Hierarc. FCM (3 clusters)

0.8821 ± 0.11 0.6139 ± 0.07 0.7312 ± 0 0.7294 ± 0

Table 1: Iris data set. Adjusted Rand Index over 100 repetitions of four approaches.
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Figure 10: Iris data set. True partition in the plane spanned by the first two principal
components.

6. Conclusion

We have proposed in this paper a new approach for aggregating multiple
clusterings. This approach is based on the use of belief functions defined on a
lattice of sets of partitions. Belief functions theory has been already successfully
applied to unsupervised learning problems [23, 7, 25, 26]. In those methods, be-
lief functions are defined on the set of possible clusters, the focal elements being
subsets of this frame of discernment. The idea suggested here is radically differ-
ent. Each clustering algorithm is considered as a source providing an opinion,
potentially unreliable, about the unknown partition of the objects. The infor-
mation of the different sources are converted into masses of evidence allocated
to sets of partitions. These masses are then combined and synthesized using
some generalizations of classical tools of the belief functions theory. A popu-
lar clustering ensemble approach, namely the EAC approach and its weighted
version, are recovered as a special case of the method.

Several ways of defining the masses have been suggested in this paper. In
particular, type I and type II masses appear as natural expressions of partial
knowledge about an unknown partition. We have chosen to relate the masses
to a stability index of the partition. This stability index has the advantage of
being independent of the feature space and on the clusterer type. Experimental
results have shown the ability of the method to recover correct partitions from
partial information provided by simple clustering algorithms. Moreover, the
robustness of the method against noisy clusterers has been demonstrated in one
of the experiments.
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Figure 11: Iris data set. Top: Ward’s linkage computed from Bel and derived consensus.
Bottom: Ward’s linkage using the EAC approach and derived consensus.
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Appendix

Algorithm 1 CombineEnsemble

Input: C = {m1,m2, ...,mr}
Output: m∗

m← m1

for l = 2 to r do

m′ ← ml

m← CombineTwoClusterers(m,m′);
end for

m∗ ← m
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Algorithm 2 CombineTwoClusterers

Input: Two bbas m1 = {[p
1s

, p1s],m1s)},m
2 = {[p

2s
, p2s],m2s)}

Output: m1 ∩©m2 = {[p
k
, pk],mk)}

k ← 1
for s = 1 to n1 do

for s′ = 1 to n2 do

% p
k
← p

1s
∨ p

2s′

Rpk
← max(R1s, R2s′)

Rpk
← TransClos(Rpk

)

% pk ← p1s ∧ p2s′

Rpk
← min(R1s, R2s′)

if Rp ≥ Rp then

Ak ← [p
k
; pk]

else

Ak ← ∅PE

end if

mk ← m1sm2s′

k ← k + 1

end for

end for

Algorithm 3 TransClos

Input: A binary relation R
Output: T = Transitive closure of R
Continue = True
S = R
while Continue = True do

R← R ∗R
R← R > 0
if R = S then

Continue = False
end if

S = R
end while

T = R
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Algorithm 4 Validity Index

Input: A data set X , a sampling ratio 0.7 ≤ S ≤ 0.9, a number nboot of
bootstrap samples
Output: C = Cluster Stability Index
for i = 1 to nboot do

Draw two bootstrap samples X1 and X2 from X with a sampling ratio S.
p1 : partition obtained from X1

p2 : partition obtained from X2

I = X1 ∩ X1

S(i)← max (0, AR(p1(I), p2(I)))
end for

C ←
1

nboot

nboot
∑

i=1

S(i)
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