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Abstract

When combining classifiers in the Dempster-Shafer framework, Dempster’s rule is
generally used. However, this rule assumes the classifiers to be independent. This
paper investigates the use of other operators for combining non independent classifiers,
including the cautious rule and, more generally, t-norm based rules with behavior
ranging between Dempster’s rule and the cautious rule. Two strategies are investigated
for learning an optimal combination scheme, based on a parameterized family of t-
norms. The first one learns a single rule by minimizing an error criterion. The second
strategy is a two-step procedure, in which groups of classifiers with similar outputs are
first identified using a clustering algorithm. Then, within- and between-cluster rules
are determined by minimizing an error criterion. Experiments with various synthetic
and real data sets demonstrate the effectiveness of both the single rule and two-step
strategies. Overall, optimizing a single t-norm based rule yields better results than
using a fixed rule, including Dempster’s rule, and the two-step strategy brings further
improvements.

Keywords: Classification, Pattern Recognition, Machine-Learning, classifier en-
semble, Dempster-Shafer theory, theory of evidence, Transferable Belief Model, belief
functions, cautious rule.



1 Introduction

The use of multiple classifiers, also called classifier ensembles, is now recognized as
a practical and efficient solution for solving complex pattern recognition problems
[29, 4, 18, 49, 62]. The idea behind classifier ensembles is that different classifiers may
potentially offer complementary information about patterns to be classified, allowing
for potentially higher classification accuracy. Optimizing a classifier ensemble gener-
ally involves two main tasks [2]: creating a pool of classifiers, and combining their
outputs. Before focusing on the latter issue, which is the main topic of this paper, we
will first provide a brief survey of work related to the former one, which has received
a lot of attention until now.

A lot of studies (e.g. [54, 33, 34]) have provided experimental evidence that ensem-
bles could be more accurate than individual classifiers when the predictions of their
members share a low level of dependence, or at least reflect some level of diversity.
This concept of diversity is generally thought as the ability of the classifiers to make
different errors on new data points [17, 25]. From a theoretical point of view, Tumer
and Ghosh [60] have shown that reducing the correlation among classifiers that are
combined increases the accuracy of the ensemble. For ensembles of classification trees,
Breiman found that an upper bound of the ensemble error depends on the average
pairwise correlation between members of the ensemble [5]. Measuring the diversity
of an ensemble has thus become a challenging issue and several measures have been
proposed. Most of them are reviewed in [34]. These measures are used to select
members of the ensemble, using forward algorithms that add one classifier at a time,
or using backward algorithms, which prune classifiers from a large set if the removal
is not harmful [61]. Another approach consists in clustering the classifiers according
to their diversity and retaining only one representative classifier in each cluster [22].
Until now, however, it is not quite clear what is the most suitable diversity measure
and how diversity measures relate to the overall performance of the ensemble.

Whereas the measurement of diversity is still an open question, there is a general
agreement on the ways of enforcing the diversity in an ensemble, among them [60, 18,
17, 7]:

• Using different classifiers: hybrid ensembles composed of various types of classi-
fiers (e.g., neural networks with various architectures, k-nearest neighbors, de-
cision trees, quadratic Bayes classifier) are likely to produce classifiers with dif-
ferent specialties and accuracies in different regions of the space;

• Resampling the training data: the most popular techniques are bagging [4],
boosting [52] and cross-validation. All these methods operate by taking a base
classifier and training it with different data sets obtained by resampling the
original data set. The instability of the base classifier, i.e., the property that
small changes in the training set will cause large changes in the learned classifier,
is usually required to expect some diversity.

• Using different features: in some problems, it is possible to extract different
groups of features and to train a separate classifier for each group. If the features
from different groups are not too correlated, the combined classifiers can be
expected to have high diversity. Another approach proposed in [17] is called
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input decimation. It consists in selectively pruning some input features according
to their effect of the output of the classifier.

• Injecting randomness: another way for generating diversity is to inject random-
ness into the learning algorithm [18, 3]. For example, in neural networks, the
initial configuration of weights is chosen at random. If the algorithm is applied
with the same training data but different initial weights, the resulting classifiers
can be quite different. For decision trees, Dietterich proposed a procedure in-
troducing randomness in the selection of the best split at each internal node,
thereby introducing diversity in an ensemble of decision trees.

The second task in classifier ensembles, which is the focus of the paper, is the
combination of the outputs from a pool of classifiers. Depending on the form of the
information delivered by individual classifiers, a variety of schemes has been proposed
for deriving a combined decision from individual ones, such as majority voting [51],
Bayes combination [63, 32], fuzzy integrals [8, 44], multilayered perceptrons [64], or
the Dempster-Shafer theory of belief functions [36, 63, 49, 39, 35, 45, 2, 46, 48]. We
have chosen this latter formalism because it provides, as will be shown, powerful tools
for representing and combining uncertain information. The starting point of our work
is the following: since there is no real way to quantify the level of dependence between
the members of the ensemble, it seems desirable to optimize the combination rule so
as to automatically adapt to the level of dependence between the classifiers.

Most of the works based on belief functions use Dempster’s rule of combination
[59, 56] for fusing individual classifier outputs. Indeed, Dempster’s rule plays a central
role in the theory of belief functions. However, a major limitation of this rule comes
from the requirement that the combined items of evidence be independent, or distinct
[59]. As remarked by Dempster [9], the real-world meaning of this notion is difficult
to grasp. The general idea is that, in the combination process, no elementary item
of evidence should be counted twice. Thus, non overlapping random samples from a
population are clearly distinct items of evidence, whereas “opinions of different people
based on overlapping experiences could not be regarded as independent sources” [9].
Classifiers trained on non-overlapping data sets and based on independent features
can thus be considered as independent. In contrast, classifiers trained on the same
or overlapping datasets (using, e.g., different learning algorithm and/or resampling
techniques) as well as classifiers based on correlated features cannot be considered as
independent sources of information. Consequently, Dempster’s rule may not be the
best suited to combine the outputs from such classifiers.

The need for a rule allowing the combination of information coming from depen-
dent sources has led to the introduction of the cautious rule of combination [13, 14],
which avoids double counting the same information provided by overlapping bodies
of evidence. It was also pointed out that both Dempster’s rule and the cautious rule,
when restricted to separable mass functions, may be seen as extreme elements of in-
finite families of combination rules based on triangular norms, or t-norms for short
[14, 42, 43]. A parameterized family of combination rules can be defined, based on a
corresponding family of t-norms. In this paper, we propose to select a rule among such
a family by optimizing the classification performance of the ensemble. This approach
is clearly in line with the conclusions of Ruta and Gabrys [50] for whom the classifica-
tion accuracy of an ensemble is the only adequate measure of diversity. Additionally,
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using an approach similar to that proposed by Gatnar [22], a two-step procedure is also
proposed, in which classifiers are clustered according to the similarity of their outputs;
a within-cluster rule and a between-cluster rule are then determined simultaneously.

The rest of this paper is organized as follows. The background on belief functions
is first recalled in Section 2. The combination rule optimization methods are then
presented in Section 3, and experimental results are reported in Section 4. Section 5
concludes the paper.

2 Background on Belief Functions

This section presents the necessary notions of the theory of belief functions used in
the rest of the paper. The basic definitions are first recalled in Section 2.1. Sections
2.2 and 2.3 then present, respectively, the canonical decomposition of a belief function
and the Least Commitment Principle. These two notions are at the origin of the
cautious rule and its extensions, introduced in Sections 2.4 and 2.5, respectively.

2.1 Basic Definitions

Let Ω denote a finite set of answers to some question, called the frame of discernment.
A body of evidence about the question under consideration may be quantified by a
mass function m, defined as a mapping from 2Ω to [0, 1] such that

∑
A⊆Ω m(A) = 1

(here, 2Ω denotes the power set of Ω). Any subset A ⊆ Ω such that m(A) > 0 is
called a focal set of m. A mass function is said to be normalized if ∅ is not a focal
set. Any mass function m such that m(∅) < 1 can be normalized by the following
transformation: 




m∗(A) =

m(A)

1 − m(∅)
, ∀A ⊆ Ω, A 6= ∅;

m∗(∅) = 0.
(1)

A mass function m has several equivalent representations [53]. Two of those are
the plausibility and commonality functions defined, respectively, as:

pl(A) =
∑

B∩A 6=∅

m(B), ∀A ⊆ Ω,

q(A) =
∑

B⊇A

m(B), ∀A ⊆ Ω.

Conversely, m can be recovered from pl or q. For instance, the following equality
holds:

m(A) =
∑

A⊆B

(−1)|B|−|A|q(B), ∀A ⊆ Ω. (2)

If the focal sets of m are nested, m is said to be consonant. The following relation
then holds [53]:

pl(A ∪ B) = max(pl(A), pl(B)), ∀A,B ⊆ Ω.

In particular,
pl(A) = max

ω∈A
pl({ω}), ∀A ⊆ Ω.
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The function ω → pl({ω}) is referred to as the contour function [53].
Two mass functions m1 and m2, provided by independent sources may be com-

bined using the conjunctive rule of combination, also referred to as the unnormalized
Dempster’s rule of combination ∩© [56]. This rule is defined as follows:

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω. (3)

Let q1 ∩©q2 denote the commonality function corresponding to m1 ∩©m2. It can be
computed from q1 and q2, the commonality functions associated to m1 and m2, as
follows:

(q1 ∩©q2)(A) = q1(A) · q2(A), ∀A ⊆ Ω.

Let us now assume we learn that m2 was provided by a spurious source of information,
so that it should be subtracted from m1 ∩©m2. If m2 is nondogmatic, i.e., if m2(Ω) > 0
or, equivalently, q2(A) > 0 for all A ⊆ Ω, then q1 can be recovered as follows:

q1(A) =
(q1 ∩©q2)(A)

q2(A)
, ∀A ⊆ Ω.

Following Smets [58], we may write:

m1 = (m1 ∩©m2) 6∩©m2,

where 6∩© is a “decombination” operator. It should be noted, however, that m1 6∩©m2

may not be a mass function, depending on the choice of m1 and m2.
In [59], Smets proposed a two-level model, called the Transferable Belief Model

(TBM), in which items of evidence are quantified by mass functions and combined
at the credal level, while decisions are made at the pignistic level (from the Latin
word pignus meaning a bet). Once a decision has to be made, a mass function m is
thus transformed into a pignistic probability distribution BetP . The pignistic trans-
formation consists in normalizing m, and then distributing each mass m∗(A) equally
between the atoms ωk ∈ A:

BetP (ωk) =
∑

{A⊆Ω,ωk∈A}

m∗(A)

|A|
, ∀ωk ∈ Ω. (4)

2.2 Canonical Decomposition of a Belief Function

According to Shafer [53], a mass function is said to be simple if it has the following
form

m(A) = 1 − w0

m(Ω) = w0,

for some A ⊂ Ω and some w0 ∈ [0, 1]. Let us denote such a mass function as Aw0 .
The vacuous mass function may thus be noted A1 for any A ⊂ Ω. It is clear that

Aw0 ∩©Aw′
0 = Aw0w′

0 .
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A mass function may be called separable if it can be obtained as the result of the
conjunctive combination of simple mass functions. It can then be written:

m = ∩©A⊆ΩAw(A),

with w(A) ∈ [0, 1] for all A ⊂ Ω.
Smets [58] showed that any non dogmatic mass function m may be uniquely ex-

pressed as the decombination of two separable mass functions:

m =
(

∩©A⊂ΩAwC(A)
)

6∩©
(

∩©A⊂ΩAwD(A)
)

(5)

with wC(A) ∈ (0, 1], wD(A) ∈ (0, 1] and max(wC(A), wD(A)) = 1 for all A ⊂ Ω.
Equation (5) is referred to as the (conjunctive) canonical decomposition of m. Let w
denote the mapping from 2Ω \ {Ω} to (0,+∞) defined as

w(A) =
wC(A)

wD(A)
, ∀A ⊂ Ω.

If m is separable, then wD(A) = 1 and w(A) ≤ 1 for all A ⊂ Ω. Function w is
called the conjunctive weight function associated to m [14]. It is a new equivalent
representation of a non dogmatic mass function, which may be computed directly
from m as follows:

w(A) =
∏

A⊆B

q(B)(−1)|B|−|A|+1

, ∀A ⊆ Ω, (6)

or, equivalently:

ln w(A) = −
∑

A⊆B

(−1)|B|−|A| ln q(B), ∀A ⊆ Ω. (7)

We notice the similarity with (2). Hence, as pointed out in [14], any procedure suitable
for transforming q to m can be used to compute ln w from − ln q.

Function w may have a simpler expression if m has a special form. For instance,
let us consider a consonant mass function m. Let us denote plk = pl({ωk}) for k =
1, . . . ,K, and let us assume, without loss of generality, that the ωk are ordered in such
a way that

1 ≥ pl1 ≥ pl2 ≥ · · · ≥ plK > 0.

Then the corresponding weight function w was shown in [14] to be defined by

w(A) =






pl1 if A = ∅,
plk+1

plk
if A = {ω1, . . . , ωk}, 1 ≤ k < K,

1 otherwise.

(8)

Finally, we note that function w has a simple property with respect to the un-
normalized Dempster’s rule. Let w1 and w2 be two weight functions, and let w1 ∩©w2

denote the result of their ∩©-combination (i.e., the weight function corresponding to
m1 ∩©m2). Then the following relation holds:

(w1 ∩©w2)(A) = w1(A)w2(A), ∀A ⊂ Ω. (9)
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2.3 Least Commitment Principle

The Least Commitment Principle (LCP) plays a central role in the theory of belief
functions [57]. This principle states that, if several mass functions are compatible with
some constraints, then the least committed (informative) one should be selected. To
apply this principle, some informational ordering between mass functions has to be
chosen. Several such orderings have been defined [19]. For instance, the q-ordering
is defined as follows: we say that m1 is q-more committed than m2, and we note
m1 ⊑q m2, if

q1(A) ≤ q2(A), ∀A ⊆ Ω. (10)

In [14], an alternative ordering, called w-ordering, was defined based on the con-
junctive weight function: m1 is w-more committed than m2 (noted m1 ⊑w m2) if

w1(A) ≤ w2(A), ∀A ⊂ Ω. (11)

This ordering is stronger than the q-ordering, i.e.,

m1 ⊑w m2 ⇒ m1 ⊑q m2

for all m1 and m2; this implication is strict.
As an illustration of the LCP, let us assume that we want to guess an unknown

mass function m from its pignistic probability distribution BetP . Obviously, there
exist infinitely many solutions. However, using the LCP, we may consider the q-
least committed element in the set of mass functions m whose pignistic probability
distribution is BetP . As shown in [20], this problem admits a unique solution, which
is the consonant mass function with the following contour function:

pl({ωk}) =

K∑

ℓ=1

pk ∧ pℓ, (12)

where ∧ denotes the minimum operator, and pk = BetP (ωk), k = 1, . . . ,K. The
corresponding mapping from probability distributions to mass functions is referred to
as the inverse pignistic transformation. The corresponding weight function can be
computed from (8).

Another important application of the LCP using the w-ordering is recalled in the
next section.

2.4 Cautious Rule

Let us assume that we receive two non dogmatic mass functions m1 and m2 from two
information sources considered to be reliable. Our state of belief, after receiving these
two pieces of information, should then be represented by a mass function m12 more
informative than both m1 and m2.

Let us assume that the w-ordering is chosen to compare the information content
of two mass functions. Let us denote by Sw(m) the set of mass functions m′ such that
m′ ⊑w m. We should then have m12 ∈ Sw(m1) and m12 ∈ Sw(m2) or, equivalently,
m12 ∈ Sw(m1) ∩ Sw(m2). According to the LCP, the w-least committed element in
Sw(m1)∩Sw(m2) should be chosen, if it exists. It was shown in [14] that this element

6



exists and is unique. It is the non dogmatic mass function m12 with the following
weight function:

w12(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω. (13)

This defines a new rule, called the cautious rule and noted ∧©. We have

m12 = m1 ∧©m2 = ∩©A⊂ΩAw1(A)∧w2(A).

As shown in [14], this rule is commutative, associative, and idempotent: for all m,

m ∧©m = m.

Additionally, Dempster’s rule ∩© is distributive over ∧©, i.e.,

(m1 ∩©m2) ∧©(m1 ∩©m3) = m1 ∩©(m2 ∧©m3), (14)

for all m1, m2 and m3. This property explains why the cautious rule can be consid-
ered to be more relevant than Dempster’s rule when combining overlapping items of
evidence: if two sources provide mass functions m1 ∩©m2 and m1 ∩©m3 having some
evidence m1 in common, the shared evidence is not counted twice.

2.5 T-norm Based Rules

By comparing Equations (9) and (13), we notice that the unnormalized Dempster’s
rule is based on the product of weights, whereas the cautious rule is based on the
minimum. In [0, 1], these two operators are t-norms [31]. If we consider only separable
mass functions, for which w(A) ∈ [0, 1] for all A ⊂ Ω, it is thus possible to generalize
both the ∩© and ∧© rules by using any t-norm instead of the product or the minimum
[13, 14, 42]. As the minimum is the largest t-norm, the cautious rule is the w-least
committed of all these rules when combining separable mass functions.

A family of combination operators generalizing Dempster’s rule and the cautious
rule was recently proposed in [28], based on a generalized discounting process. Another
approach, which will be adopted here, is to consider a parameterized family of t-norms
containing both the product and the minimum as special cases [14]. For instance, we
may consider Frank’s family of t-norms [31, page 108]:

x ⊤s y = logs

(
1 +

(sx − 1) (sy − 1)

s − 1

)
, (15)

where logs defines the logarithm function with base s > 0. Here, each value of pa-
rameter s defines a t-norm: the minimum is retrieved in the limit as s → 0, and the
product as s = 1. To each value of s corresponds a t-norm ⊤s and a combining rule
⊤©s defined by:

m1 ⊤©sm2 = ∩©A⊂ΩAw1(A) ⊤s w2(A), (16)

where m1 and m2 are separable mass functions. Obviously, ⊤©0 = ∩© and ⊤©1 =
∧©. All these rules inherit important properties from t-norms: they are commutative
and associative, and they admit the vacuous mass function as neutral element (if we
consider only their restriction to separable mass functions).

As pointed out in [14], classifiers often provide separable belief functions in real-
world applications. While this property is assumed in this paper, our approach is
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not limited to this particular case. A non-separable mass function is characterized by
a canonical decomposition with some weights w(A) > 1. In this case, combination
rules may still be defined. In [43], the notion of t-norm is extended to (0;+∞). Such
an operator may then be applied to the conjunctive weights of non-separable bbas to
combine them.

3 Application to Classifier Combination

In this section, we come back to the classifier combination problem introduced in
Section 1. We assume that we have q classifiers C(1), . . . , C(q). When presented with
an input pattern, each classifier computes a mass function m(j). This mass function is
directly available if classifier C(j) is an evidential classifier as introduced in [10, 12]. In
the case of probabilistic classifiers, we propose to convert the output probabilities into
consonant belief functions using the inverse pignistic transform (12). This approach
is supported by both practical and theoretical arguments:

1. The cautious rule and other t-norm based rules cannot be directly applied to
probabilities because they are dogmatic belief functions; applying the inverse
pignistic transformation yields non dogmatic, separable belief functions. Fur-
thermore, the method does not depend on any parameter.

2. If the outputs from probabilistic classifier are interpreted as betting probabilities,
then under the TBM any belief function whose pignistic probability distribution
equates the classifier output can be considered consistent with this output. The
LCP can then be invoked to select the least informative of these belief functions
(see [1] for a more detailed analysis of this argument).

Once the outputs of all classifiers have been converted into separable belief func-
tions, an overall mass function ms is finally computed by combining the q classifier
output mass functions using a t-norm based rule ⊤©s defined by (15) and (16):

ms = m(1) ⊤©sm(2) ⊤©s . . . ⊤©sm(q).

This scheme is represented graphically in Figure 1.
If the classifiers are assumed to be independent, then Dempster’s rule should be

chosen, corresponding to s = 0. If the classifiers are not independent, then other
rules, such as the cautious rule or other t-norm based rules as introduced in Section
2.5, could yield better performances. In the affirmative, the question arises of how to
optimize the rule so as to obtain the best performances. These questions are addressed
in this section.

In Section 3.1, we will first present a preliminary experiment showing that Demp-
ster’s rule may indeed be outperformed by the cautious rule or other t-norm based
rules when combining non independent classifiers. A method for learning a single com-
bination rule will then be introduced in Section 3.2. Finally, a more complex two-step
combination scheme involving two rules will be described in Section 3.3.
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Figure 1: Classifier fusion using a single t-norm based rule.

3.1 Preliminary Experiment

To study the influence of classifier dependencies on the relative performances of various
combination rules, we considered a classification problem with K = 2 classes and 10
features. Each feature is used as input to a separate classifier, so that we have 10
single-input classifiers. The conditional distribution of feature vector (X1, . . . ,X10) in
class ωk was assumed to be multivariate normal with mean µ1 = (0, . . . , 0) in class ω1

and µ2 = (1, . . . , 1) in class ω2, and with common variance matrix:

Σ =




1 ρ ρ . . . ρ 0
ρ 1 ρ . . . ρ 0

ρ ρ
. . .

...
...

...
...

. . . ρ
...

ρ ρ . . . ρ 1 0
0 0 . . . . . . 0 1




,

with ρ ∈ [0, 1]. Conditionally on each class, the last feature X10 was thus assumed
to be independent from all other features, whereas the correlation coefficient between
any two features Xi and Xj , i, j ∈ {1, . . . , 9} was equal to ρ.

This experimental framework is intended to mimic a real-world situation where we
have q − 1 dependent classifiers C(1), . . . , C(q−1) and a q-th classifier C(q) independent
from the others. As Dempster’s rule assumes independence between the first q − 1
classifiers, it is likely to give them too much weight in the decision.. Hence, using
this rule is likely to give too much weight to the first q − 1 classifiers. In contrast,
the cautious rule gives more importance, relatively, to the q-th independent classifier,
which can be expected to result in better performance when the degree of dependence
between classifiers C(1), . . . , C(q−1) is high. The purpose of this experiment is to seek
an experimental confirmation of these intuitions.
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For that purpose, we used a separate logistic regression classifier for each feature.
We thus defined q = 10 classifiers C(1), . . . , C(10). For each input, the output probability
distribution from each classifier was converted to a consonant mass function using the
inverse pignistic transform (12). The 10 resulting mass functions were then combined
using the ⊤©s combination rule defined by (15) and (16).

The errors were measured as follows. Let ms
i denote the combined mass function

for example i and BetP s
i the corresponding pignistic probability distribution. The

error for example i was defined as:

Es
i =

K∑

k=1

(BetP s
i (ωk) − δi,k)

2, (17)

where δi,k = 1 if pattern i belongs to class ωk, and 0 otherwise. The average error
over n patterns is then

Es =
1

n

n∑

i=1

Es
i . (18)

Each classifier was trained on a learning set of 2000 examples, and the error was
evaluated on a test set of the same size. The simulations were repeated ten times, and
the average error over the ten repetitions was computed. Figures 2 (a-c) display this
error plotted as a function of s, for datasets generated using correlation coefficients
ρ = 0.1, ρ = 0.5 and ρ = 0.9. In these figures, Dempster’s rule and the cautious rule
correspond to the rightmost and the leftmost points of the x axis, respectively.

We can see that the best results were obtained for a rule close to Dempster’s rule
in the case where classifiers C(1), . . . , C(9) have low correlation (ρ = 0.1), whereas the
cautious rule is optimal in the case of highly dependent classifiers (ρ = 0.9). When
ρ = 0.5, the smallest error is obtained for an intermediate rule. Overal, no single rule
is optimal in all cases, which points to the necessity of adapting the combination rule
to the data. This problem will be addressed in the next subsection.

3.2 Learning a Combination Rule

The previous experiment has shown that, depending on the degree of dependence
between classifiers, Dempster’s rule may not be the best suited among t-norm based
rules, and other operators such as the cautious rule or intermediate rules may have
better classification performances. Assuming that the performances of different clas-
sifiers can be assessed on common data, it may be possible to learn a combination
rule by minimizing an error criterion such as (17)-(18). This idea is investigated in
this paper.

More specifically, assume that we have q classifiers C(1), . . . , C(q) already trained
using some learning sets, and let Es be the error of the combined rule with t-norm
parameter s evaluated on an independent validation set. Then, we choose the value ŝ
of s with minimum validation error, i.e.,

ŝ = arg min
0<s≤1

Es. (19)

As the minimization of Es is performed with respect to a single parameter in a bounded
domain, a very simple search procedure can be used.

10
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Figure 2: Error as a function of s for ρ = 0.1 (a), ρ = 0.5 (b) and ρ = 0.9 (c).
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Figure 3: Classifier fusion using within-cluster and between-cluster t-norm based rules.

If no validation set is available or if there are too few learning examples to partition
the data into a learning set and a validation set, we propose to estimate the error for
each value of s using cross-validation. In that case, we partition the data into C
subsets. Each of the C subsets then plays in turn the role of a validation set, while
the union of the remaining C − 1 subsets plays the role of a learning set and is used
to train the classifiers. The cross-validation error for each value of s is then defined
as the average of the C validation errors. As before, the value ŝ of s minimizing the
cross-validation estimate of the error is finally selected.

Before presenting experimental results with this single-rule learning strategy in
Section 4, a refined combination strategy that attempts to identify groups of dependent
classifiers will now be introduced.

3.3 Two-step Combination Procedure

The method presented in Section 3.2 relies on a single rule for combining q classifiers.
However, we have seen in Section 3.1 that Dempster’s rule yields better results in the
case of independent classifiers, whereas an operator close to the cautious rule is prefer-
able in the case of highly dependent classifiers. Therefore, using a single rule may be
too restrictive. A better strategy might be to identify clusters of “dependent” classi-
fiers, and to use two rules: a within-cluster rule for combining dependent classifiers
inside each cluster, and a between-cluster rule for pooling the combined outputs from
each cluster. This fusion architecture with two clusters of three and two classifiers is
depicted in Figure 3.

The idea of using a hierarchical fusion scheme based on a grouping of information
sources has been explored by other researchers. In a study about climate sensitivity,
Ha-Duong [24] proposed to combine expert opinions within given “schools of thought”
using the cautious rule, and to use a disjunctive combination rule across different
groups. Klein et al. [30] also employed two different rules in a computer vision
application based on a grouping of sensors. None of these authors, however, considered
the problem of automatically learning the optimal pair of rules from data.

12



The proposed clustering procedure will first be described in Section 3.3.1, and the
learning procedure for learning the within and between-cluster rules will be presented
in Section 3.3.2.

3.3.1 Clustering Classifiers

Meaningful groups of classifiers may be identified in different ways. Intuitively, classi-
fiers should be grouped in such a way that there is more diversity between groups than
there is inside each group. This brings us back to the issue of measuring diversity,
which was discussed in Section 1. In this study, two approaches have been compared.

A first approach is to use a pairwise measure of diversity, as reviewed in [34]. In
the experiments reported below, we have used the disagreement measure proposed
in [55]. The disagreement Disk,ℓ between two classifiers C(k) and C(ℓ) is defined as
the percentage of observations for which one classifier is correct and the other one is
incorrect.

Assuming that classifiers yielding similar outputs are more likely to be based on
overlapping information, another approach consists in computing a distance measure
between classifier output mass functions. The most widely used distance measure
between mass functions was proposed by Jousselme [27]. It is defined as follows:

dJ(m1,m2) =

√√√√√
1

2

∑

∅6=A⊆Ω
∅6=B⊆Ω

|A ∩ B|

|A ∪ B|
(m1(A) − m2(A)) (m1(B) − m2(B)), (20)

where m1 and m2 are two normalized mass functions. The distance Dk,ℓ between two
classifiers C(k) and C(ℓ) may be defined as the average distance between the output
mass functions computed for the training patterns:

Dk,ℓ =
1

n

n∑

i=1

dJ(m(k),i,m(ℓ),i), (21)

where m(k),i and m(ℓ),i denote the mass functions for example i provided by classifiers
k and ℓ, respectively.

Once pairwise dissimilarities between classifiers have been computed, a clustering
algorithm can be used to identify groups of classifiers providing similar outputs. In
this paper, we have used a hierarchical clustering algorithm (see, e.g. [26]), because
this approach makes it possible to determine the number of clusters in a relatively
easy way. However, other relational clustering techniques such as, e.g., the EVCLUS
and RECM algorithms [15, 37] could be used.

As an illustration, Figure 4 shows the dendrogram [26] representing a hierarchy
for the glass dataset. Choosing a cut value then allows us to find a partition of the
set of classifiers. For instance, in Figure 4, cutting at level 0.3 yields three clusters:
{C(1), C(5), C(6), C(7), C(9)}, {C(2), C(8)}, and {C(3), C(4)}.

We may notice that the dendrogram representation makes it possible to detect
outlying classifiers quite easily. If such an outlier is included in the pool of classifiers
and if it performs poorly, then it may degrade the overall performance. The impact
of such classifiers on the global performance should thus be studied.
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3.3.2 Learning Within and Between-Cluster Rules

After the classifiers have been clustered, we propose to combine the classifier outputs
in two steps. First, their outputs are combined in the various clusters, and then the
resulting bodies of evidence are pooled together.

Thus, two combination rules need now be learnt: a within-cluster rule for pro-
cessing combination within each cluster, defined by a parameter value sw; and a
between-cluster rule for computing the final mass function, defined by a parameter
value sb. Taking the glass data as an example (Figure 4), the outputs of C(1), C(5),
C(6), C(7), C(9) are first combined using ŝw, as well as those of C(2), C(8), and those of
C3, C4; the three resulting mass functions are then pooled using ŝb.

We propose to compute the pair of values (ŝw, ŝb) that minimizes the cross-
validation error as follows. For each dataset, C-fold cross-validation is used to form
training/validation sets from the original training set. Candidate values a1, . . . , ar

equally spaced on a logarithmic scale, with a1 ≈ 0 and ar ≈ 1 are picked for sb;
for each ai, candidate values a1, . . . , ai are considered for sw, so that the resulting
within-cluster rule is w-less committed than the between-cluster rule associated with
sb. Finally, we retain the pair of parameter values (ŝb, ŝw) = (ai∗ , aj∗) that minimizes
the error criterion (19) (averaged over the C validation sets). The number of evalua-
tions of the error using C-fold cross-validation is thus Cr(r−1)/2. In our simulations,
we used C = 5 and r = 17.

Note that more sophisticated learning schemes could be considered, such as learn-
ing a distinct rule within each cluster. This could be done either by maximizing a
global performance criterion, or by maximizing the performances of each cluster in-
dependently. While the former approach would be very time consuming and data
demanding, the latter is easier to implement but may be sub-optimal. The investiga-
tion of such fusion schemes and learning strategies is left for further research.

4 Experimental Results

We performed three series of experiments. First, the performances of various combina-
tion rules were compared to those of classifiers trained using a single feature as input.
We then studied the behavior of the same rules applied to classifiers trained using
randomly selected subsets of features. In a third series of experiments, we addressed
the problem of hybrid classifier fusion, by combining three different classification al-
gorithms, each one trained using the entire training set. The experimental setup will
be described in Section 4.1, and the results will be presented and discussed in Sections
4.2 to 4.4.

4.1 Experimental setup

The datasets1 used in these experiments are summarized in Table 1. Throughout
the experiments, for each test pattern x, each classifier C(k) provided a probability
distribution p(k) that was transformed into a mass function m(k) using the inverse

1These datasets may be found in the UCI Machine Learning repository at
http://archive.ics.uci.edu/ml.
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Table 1: Description of the datasets used in the experiments.

dataset # classes # features number of patterns
K p training test

glass 6 9 139 75
optdigits 10 64 2908 1797

pageblocks 5 10 3284 2189
pendigits 10 16 5640 3498
satimage 6 36 2921 2573
segment 7 19 1400 910
vowel 11 10 528 462

waveform 3 21 1491 3509

pignistic transformation (12). This output transformation has the advantage of pro-
ducing separable mass functions that can be easily combined using the t-norm based
rules introduced in Section 2.5.

For the single rule scheme described in Section 3.2 (hereafter referred to as OPT1),
5-fold cross validation was used to determine the optimal t-norm parameter. To
implement the two-step combination procedure introduced in Section 3.3, two different
measures were used for computing the dissimilarity between two classifiers: the average
Jousselme distance (21) and the disagreement measure, both presented in Section
3.3.1. Hereafter, the corresponding rules will be referred to as OPT2 and OPT3,
respectively. The classifiers were then grouped as explained in Section 3.3.1 using
hierarchical clustering with Ward’s criterion [26]. Optimal parameter values were
selected by testing a grid of candidate values for each parameter.

The mass functions were combined using the average operator:

mmean =
1

q

q∑

k=1

m(k)

as well as the conjunctive operators studied in this paper: Dempster’s rule, the cau-
tious rule, the single rule OPT1, and the two-step rules OPT2 and OPT3. Decisions
were made based on the combined mass functions using the rule of maximum pignistic
probability [11], except for the optdigits and pendigits datasets, where the rule of max-
imum plausibility was used because of computational issues. Finally, the probabilities
provided by the classifiers were also combined using the average operator.

4.2 Classifiers trained using a single feature

In this section, we compare the performances of the various combination rules for
classifiers trained using a single feature as input. There were thus as many classifiers
as features. In this case, we employed logistic regression (see, e.g., [38]) as base
classification method. Clustering results based on Jousselme’s distance are displayed
as dendrograms in Appendix A (Figures 4 to 11). Test error rates are shown in Table 2
for the glass, letter, optdigits and pageblocks datasets, and in Table 3 for the pendigits,
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Table 2: Test error rates for the glass, optdigits, pageblocks and pendigits datasets.
The best results are underlined; results that are not significantly different are printed
in bold. For the OPT1, OPT2 and OPT3 methods, optimal parameter values are
indicated in parentheses under the error rates.

data Glass Optdigits Pageblocks Pendigits

Dempster 49.33 11.96 10.19 18.58

OPT1 (ŝ) 45.33 11.13 8.59 18.55

(0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

OPT2 (ŝw, ŝb) 45.33 11.13 8.59 18.55

(0.0e+00,0.0e+00) (0.0e+00,0.0e+00) (0.0e+00,1.0e-11) (0.0e+00,1.0e-15)

OPT3 (ŝw, ŝb) 45.33 11.13 8.59 18.52

(0.0e+00,0.0e+00) (0.0e+00,0.0e+00) (0.0e+00,1.0e-11) (1.0e-15,1.0e+00)

cautious 45.33 11.13 8.59 18.55

averaging 52.00 14.69 10.23 23.24
proba. averaging 52.00 21.09 10.23 32.56

vote 66.67 85.70 10.23 58.06

segment, vowel and waveform datasets. The significance of the results was evaluated
using a McNemar test [16] at the 5% level: the best result over all rules is underlined,
and printed in bold together with results that are not significantly different. The
analysis of the results presented in Tables 2 and 3 leads to the following comments.

First, we observe that Dempster’s rule never gives the best results as a single rule
for combining all the classifiers, whereas the cautious rule yields the best results in four
cases: for the glass, optdigits, pageblocks and segment data sets. The OPT1 method
recovers the cautious rule for all datasets but waveform where an intermediate rule
(with 0 < ŝ < 1) is obtained. Overall, the OPT1 method never performed significantly
worse than Dempster’s rule or the cautious rule. These results show that the OPT1
method is generally a good strategy if a single combination rule is sought.

The results presented in Tables 2 and 3 also show that the OPT2 and OPT3
two-rule schemes generally yield the best results over the seven fusion methods in-
vestigated. In three cases (for the Pendigits, Satimage and Waveform data), the best
results are obtained using a hierarchical combination scheme. The OPT2 and OPT3
schemes generally give almost identical results. Overall, the OPT1 method thus per-
forms better than the other single rule schemes investigated, and the OPT2 and OPT3
methods bring further improvement (although the differences with OPT1 are not sig-
nificantly different). This demonstrates the usefulness of the classifier combination
approach introduced in this paper.

We may wonder how the classifier combination scheme studied in this section
compares with single classifiers trained using all the features. Table 4 shows the
test error rates obtained using logistic regression, the CART decision tree generation
algorithm [6], and the evidential neural network [12]. By comparing these results
with those reported in Tables 2 and 3, we can see that the single-feature combination
strategy yields higher error rates than those obtained by the classifiers trained using all
the features at once. However, a potential advantage of the fusion scheme investigated
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Table 3: Test error rates for the satimage, segment, vowel and waveform datasets.
The best results are underlined; results that are not significantly different are printed
in bold. For the OPT1, OPT2 and OPT3 methods, optimal parameter values are
indicated in parentheses under the error rates.

data Satimage Segment Vowel Waveform

Dempster 24.45 17.91 56.06 16.90
OPT1 (ŝ) 21.80 15.16 56.93 15.22

(0.0e+00) (0.0e+00) (2.4e-05) (5.4e-02)

OPT2 (ŝw, ŝb) 21.69 15.49 56.49 15.10

(1.0e-14,1.0e-07) (0.0e+00,1.0e-03) (1.0e-14,1.0e-04) (1.0e-03,1.0e-03)

OPT3 (ŝw, ŝb) 21.69 15.16 56.49 15.19

(1.0e-14,1.0e-07) (0.0e+00,0.0e+00) (1.0e-14,1.0e-03) (1.0e-04,1.0e-01)

cautious 21.80 15.16 56.93 16.59
averaging 28.92 23.74 52.60 20.52

proba. averaging 28.92 23.74 52.60 20.52
vote 42.32 44.29 75.97 27.02

here is better robustness to missing feature values: when only a subset of features is
available, we may only combine the classifiers corresponding to available features. To
study this effect, the following experiment was carried out.

For each dataset, we randomly selected a chosen amount of the test data that
were considered as missing. For the single classifiers trained using all the features at
once, each missing value was replaced by the average of the corresponding feature,
computed over the training set. For each dataset, the procedure was repeated 100
times.

Results obtained with the combination rules and individual classifiers are presented
in Tables 5-6 (25% of missing test data), and in Tables 7-8 (50% of missing data).
Confidence intervals computed over the 100 trials are reported.

When 25% of the data are missing, the best results are still obtained using a single
classifier in six cases. The performances of Dempster’s rule, the cautious rule, or the
OPT1, OPT2 or OPT3 schemes are affected by the missing data, but the decrease is
overall less important than for the other methods. When 50% of the data are missing,
the best results are obtained using the cautious rule or the OPT1, OPT2 or OPT3
strategies in six cases, using probability averaging in one case (Vowel dataset) and
using a single decision tree in one case (Pageblocks dataset). These results definitely
confirm the interest of using the cautious rule, the single t-norm based rule or the
two-step combination procedure introduced in this paper in a multiple sensor fusion
scheme.

4.3 Classifiers trained using random subsets of features

We now study the combination of decision trees trained using subsets of the input
data. Table 9 reports the total number of classifiers trained for each dataset. We
used the CART algorithm [6] to train the decision trees. We randomly selected the
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Table 4: Test error rates of the individual classifiers trained with all the features:
logistic regression (LR), CART and evidential neural network (ENN). The best results
are underlined; results that are not significantly different are printed in bold.

data Glass Optdigits Pageblocks Pendigits

LR 44.00 7.96 4.02 7.43

CART 41.33 16.42 3.06 9.61
ENN 45.33 8.85 10.23 16.64

data Satimage Segment Vowel Waveform

LR 14.26 18.02 51.30 13.94
CART 14.34 6.70 55.19 24.68
ENN 13.91 16.92 47.84 13.28

Table 5: Test error rates for the Glass, Optdigits, Pageblocks and Pendigits datasets;
25% of the test data are missing. The best results are underlined; results that are not
significantly different are printed in bold.

data Glass Optdigits Pageblocks Pendigits

Dempster 53.32 14.08 10.14 22.24
[ 52.67 ; 53.97 ] [ 14.00 ; 14.16 ] [ 10.13 ; 10.15 ] [ 22.17 ; 22.31 ]

OPT1 48.85 13.44 9.03 22.01
[ 48.19 ; 49.52 ] [ 13.35 ; 13.52 ] [ 9.01 ; 9.05 ] [ 21.94 ; 22.08 ]

OPT2 48.85 13.44 9.03 22.03
[ 48.19 ; 49.52 ] [ 13.35 ; 13.52 ] [ 9.01 ; 9.05 ] [ 21.96 ; 22.10 ]

OPT3 48.85 13.44 9.03 22.13
[ 48.19 ; 49.52 ] [ 13.35 ; 13.52 ] [ 9.01 ; 9.05 ] [ 22.06 ; 22.20 ]

cautious 48.85 13.44 9.03 22.01
[ 48.19 ; 49.52 ] [ 13.35 ; 13.52 ] [ 9.01 ; 9.05 ] [ 21.94 ; 22.08 ]

averaging 53.09 16.84 10.23 26.19
[ 52.47 ; 53.71 ] [ 16.74 ; 16.94 ] [ 10.23 ; 10.23 ] [ 26.11 ; 26.26 ]

proba. averaging 53.09 22.68 10.23 34.51
[ 52.47 ; 53.71 ] [ 22.58 ; 22.78 ] [ 10.23 ; 10.23 ] [ 34.43 ; 34.58 ]

vote 64.05 85.13 10.23 60.04
[ 63.34 ; 64.76 ] [ 85.08 ; 85.19 ] [ 10.23 ; 10.23 ] [ 59.95 ; 60.13 ]

LR 56.33 17.29 8.64 38.61
[ 55.28 ; 57.39 ] [ 17.17 ; 17.42 ] [ 8.56 ; 8.72 ] [ 38.47 ; 38.74 ]

CART 54.13 42.52 5.05 40.78
[ 53.23 ; 55.04 ] [ 42.32 ; 42.72 ] [ 4.99 ; 5.11 ] [ 40.63 ; 40.92 ]

ENN 49.83 12.42 10.23 21.28

[ 49.04 ; 50.61 ] [ 12.31 ; 12.52 ] [ 10.23 ; 10.23 ] [ 21.20 ; 21.35 ]
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Table 6: Test error rates for the Satimage, Segment, Vowel and Waveform datasets;
25% of the test data are missing. The best results are underlined; results that are not
significantly different are printed in bold.

data Satimage Segment Vowel Waveform

Dempster 24.69 21.52 62.37 18.29
[ 24.66 ; 24.73 ] [ 21.35 ; 21.70 ] [ 62.03 ; 62.71 ] [ 18.22 ; 18.36 ]

OPT1 21.93 19.04 62.93 17.48

[ 21.89 ; 21.97 ] [ 18.86 ; 19.21 ] [ 62.59 ; 63.27 ] [ 17.41 ; 17.55 ]

OPT2 21.90 19.34 62.85 17.51

[ 21.86 ; 21.94 ] [ 19.16 ; 19.51 ] [ 62.50 ; 63.20 ] [ 17.43 ; 17.58 ]

OPT3 21.90 19.04 62.78 17.56
[ 21.86 ; 21.94 ] [ 18.86 ; 19.21 ] [ 62.44 ; 63.12 ] [ 17.48 ; 17.63 ]

cautious 21.93 19.04 62.65 18.55
[ 21.89 ; 21.97 ] [ 18.86 ; 19.21 ] [ 62.30 ; 62.99 ] [ 18.47 ; 18.64 ]

averaging 29.53 24.92 59.91 21.64
[ 29.48 ; 29.58 ] [ 24.75 ; 25.09 ] [ 59.56 ; 60.25 ] [ 21.57 ; 21.70 ]

proba. averaging 29.53 24.92 59.91 21.64
[ 29.48 ; 29.58 ] [ 24.75 ; 25.09 ] [ 59.56 ; 60.25 ] [ 21.57 ; 21.70 ]

vote 42.57 46.47 78.61 29.86
[ 42.50 ; 42.64 ] [ 46.31 ; 46.62 ] [ 78.39 ; 78.83 ] [ 29.76 ; 29.96 ]

LR 36.10 73.84 62.59 18.31
[ 35.93 ; 36.26 ] [ 73.55 ; 74.12 ] [ 62.22 ; 62.96 ] [ 18.20 ; 18.41 ]

CART 32.26 29.39 65.49 32.37
[ 32.12 ; 32.40 ] [ 29.11 ; 29.67 ] [ 65.15 ; 65.83 ] [ 32.25 ; 32.50 ]

ENN 16.95 33.92 55.83 17.34

[ 16.88 ; 17.02 ] [ 33.67 ; 34.16 ] [ 55.51 ; 56.15 ] [ 17.25 ; 17.44 ]
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Table 7: Test error rates for the Glass, Optdigits, Pageblocks and Pendigits datasets;
50% of the test data are missing. The best results are underlined; results that are not
significantly different are printed in bold.

data Glass Optdigits Pageblocks Pendigits

Dempster 55.60 18.17 10.08 28.95
[ 54.76 ; 56.44 ] [ 18.04 ; 18.29 ] [ 10.06 ; 10.10 ] [ 28.84 ; 29.07 ]

OPT1 53.16 17.69 9.44 28.79

[ 52.27 ; 54.05 ] [ 17.56 ; 17.82 ] [ 9.41 ; 9.47 ] [ 28.68 ; 28.90 ]

OPT2 53.16 17.69 9.45 28.81

[ 52.27 ; 54.05 ] [ 17.56 ; 17.82 ] [ 9.42 ; 9.48 ] [ 28.70 ; 28.91 ]

OPT3 53.16 17.69 9.44 28.88

[ 52.27 ; 54.05 ] [ 17.56 ; 17.82 ] [ 9.41 ; 9.48 ] [ 28.77 ; 29.00 ]

cautious 53.16 17.69 9.44 28.79

[ 52.27 ; 54.05 ] [ 17.56 ; 17.82 ] [ 9.41 ; 9.47 ] [ 28.68 ; 28.90 ]

averaging 54.91 21.08 10.27 31.99
[ 54.05 ; 55.77 ] [ 20.95 ; 21.22 ] [ 10.25 ; 10.28 ] [ 31.88 ; 32.10 ]

proba. averaging 54.91 26.67 10.27 39.31
[ 54.05 ; 55.77 ] [ 26.53 ; 26.81 ] [ 10.25 ; 10.28 ] [ 39.20 ; 39.41 ]

vote 62.47 84.04 10.26 63.91
[ 61.59 ; 63.34 ] [ 83.95 ; 84.13 ] [ 10.24 ; 10.28 ] [ 63.80 ; 64.02 ]

LR 58.36 34.41 10.69 62.40
[ 57.29 ; 59.43 ] [ 34.19 ; 34.64 ] [ 10.60 ; 10.77 ] [ 62.24 ; 62.56 ]

CART 60.04 64.54 6.93 63.07
[ 59.06 ; 61.02 ] [ 64.35 ; 64.72 ] [ 6.88 ; 6.99 ] [ 62.91 ; 63.22 ]

ENN 56.16 24.73 10.23 36.73
[ 55.33 ; 56.99 ] [ 24.57 ; 24.89 ] [ 10.23 ; 10.23 ] [ 36.59 ; 36.87 ]
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Table 8: Test error rates for the Satimage, Segment, Vowel and Waveform datasets;
50% of the test data are missing. The best results are underlined; results that are not
significantly different are printed in bold.

data Satimage Segment Vowel Waveform

Dempster 24.99 26.30 68.72 21.67
[ 24.93 ; 25.05 ] [ 26.12 ; 26.48 ] [ 68.36 ; 69.08 ] [ 21.57 ; 21.77 ]

OPT1 22.42 25.27 68.83 21.33

[ 22.36 ; 22.47 ] [ 25.10 ; 25.44 ] [ 68.44 ; 69.23 ] [ 21.22 ; 21.43 ]

OPT2 22.46 25.37 68.89 21.49

[ 22.40 ; 22.52 ] [ 25.19 ; 25.54 ] [ 68.50 ; 69.28 ] [ 21.38 ; 21.60 ]

OPT3 22.46 25.27 68.84 21.43

[ 22.40 ; 22.52 ] [ 25.10 ; 25.44 ] [ 68.46 ; 69.22 ] [ 21.32 ; 21.54 ]

cautious 22.42 25.27 68.82 22.16
[ 22.36 ; 22.47 ] [ 25.10 ; 25.44 ] [ 68.44 ; 69.20 ] [ 22.04 ; 22.28 ]

averaging 30.14 28.96 67.52 23.99
[ 30.07 ; 30.21 ] [ 28.78 ; 29.13 ] [ 67.18 ; 67.87 ] [ 23.90 ; 24.08 ]

proba. averaging 30.14 28.96 67.52 23.99
[ 30.07 ; 30.21 ] [ 28.78 ; 29.13 ] [ 67.17 ; 67.87 ] [ 23.90 ; 24.08 ]

vote 42.81 50.11 81.45 34.27
[ 42.73 ; 42.90 ] [ 49.92 ; 50.30 ] [ 81.20 ; 81.71 ] [ 34.16 ; 34.39 ]

LR 54.96 82.41 73.07 25.83
[ 54.79 ; 55.13 ] [ 82.18 ; 82.64 ] [ 72.76 ; 73.38 ] [ 25.70 ; 25.96 ]

CART 47.53 50.18 75.82 41.56
[ 47.36 ; 47.69 ] [ 49.91 ; 50.46 ] [ 75.55 ; 76.09 ] [ 41.43 ; 41.69 ]

ENN 29.86 55.00 69.36 24.86
[ 29.75 ; 29.97 ] [ 54.72 ; 55.28 ] [ 68.99 ; 69.73 ] [ 24.72 ; 25.00 ]
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Table 9: Number of features and of classifiers for each dataset (classification trees).

dataset # features # classifiers

glass 9 5
optdigits 64 32

pageblocks 10 5
pendigits 16 8
satimage 36 18
segment 19 10
vowel 10 5

waveform 21 11

same amount of features to train each classifier, so that each feature was used at least
once. We first trained decision trees from three features each, and then from seven
features each. The classifiers were clustered automatically. For each dendrogram,
the inconsistency coefficient of each link was computed. This coefficient characterizes
the link by comparing its height with the average height of the links below it in the
dendrogram. If the difference is high, the link is said to be inconsistent with the links
below it. We chose to cut a link if its consistency was higher than 0.75.

The experiments were conducted on the Pageblocks, Satimage, Segment and Wave-

form datasets. For each dataset and each number of features per classifier, the ex-
periment was repeated ten times. The average error rates are shown in Tables 10
(three features per classifier) and 11 (seven features per classifier). The significance
of the results was evaluated using confidence intervals, in order to take into account
the randomness in training the classifiers.

When the classifiers are trained from three features each, the best results are
obtained by the hierarchical combination schemes in two cases out of four (for the
Segment and Waveform datasets). In the other two cases, the averaging or voting
operators achieve slightly better performances. When seven features are selected for
each decision tree, the best results are always obtained using the averaging operator,
although this is only statistically significant in one case.

These results may be explained by the nature of the combination strategies com-
pared here. The rules in the conjunctive family are well suited to combine complemen-
tary information, which is obviously the case in the previous experiment. When the
number of input features for each classifier increases, the accuracy of each classifier
and the degree of overlap between the training data of the classifiers also increase. In
such case, the conjunctive operators studied in this paper do not seem to offer any
significant advantage over consensus operators such as averaging or majority voting.

4.4 Hybrid classifier fusion

In this last experiment, we combined three different learning algorithms (logistic re-
gression, CART, and the evidential neural network [12]), each one trained using the
whole sets of features. Here, the diversity in the ensemble stems from the nature of
the algorithms employed.
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Table 10: Test error rates and 95% confidence intervals for the pageblocks, satimage,
segment and waveform datasets (decision trees trained using three features each). The
best results are underlined; results that are not significantly different are printed in
bold.

data Pageblocks Satimage Segment Waveform

Dempster 4.71 13.85 7.77 21.18

[ 4.43 ; 4.99 ] [ 13.60 ; 14.10 ] [ 6.95 ; 8.58 ] [ 20.56 ; 21.80 ]

OPT1 4.74 13.95 7.73 21.29

[ 4.44 ; 5.04 ] [ 13.68 ; 14.22 ] [ 6.93 ; 8.54 ] [ 20.66 ; 21.93 ]

OPT2 4.72 14.13 7.78 21.21

[ 4.44 ; 4.99 ] [ 13.74 ; 14.51 ] [ 7.07 ; 8.48 ] [ 20.45 ; 21.98 ]

OPT3 4.72 14.04 7.77 21.17

[ 4.44 ; 5.00 ] [ 13.74 ; 14.34 ] [ 7.07 ; 8.46 ] [ 20.45 ; 21.90 ]

cautious 5.09 14.78 7.82 25.80
[ 4.81 ; 5.38 ] [ 14.39 ; 15.18 ] [ 7.04 ; 8.61 ] [ 24.57 ; 27.04 ]

averaging 4.27 13.64 8.88 21.89

[ 4.02 ; 4.52 ] [ 13.29 ; 13.99 ] [ 8.01 ; 9.74 ] [ 21.02 ; 22.75 ]

proba. averaging 4.27 13.64 8.88 21.89

[ 4.02 ; 4.52 ] [ 13.29 ; 13.99 ] [ 8.01 ; 9.74 ] [ 21.02 ; 22.75 ]

vote 4.00 14.43 10.73 24.68
[ 3.75 ; 4.25 ] [ 14.08 ; 14.78 ] [ 9.46 ; 11.99 ] [ 22.97 ; 26.40 ]

The test error rates obtained using the various single combination rules as well as
the individual classifiers are presented in Tables 12 and 13. Again, the significance of
the results was evaluated using a McNemar test [16] at the 5% level: the best result
over all rules is underlined, and printed in bold together with results that were not
judged significantly different.

The best results are obtained using the average operator in three cases, the voting
strategy in one case, Dempster’s rule in one case and a single classifier in three cases.
The differences between the various methods are not significant for the Glass dataset.
Dempster’s rule, the cautious rule, and the OPT1 combination strategy do not perform
significantly worse that the decision tree for the Pageblocks and Segment datasets; and
the OPT1 scheme does not perform significantly worse than Dempster’s rule for the
Satimage dataset.

These results confirm the observations made in the previous section. When dif-
ferent classifiers are trained using the same data, differences between their outputs
only occasionally arise in some particular regions of the input space. Complex fusion
schemes such as proposed in this paper may then not be justified, as compared to
simple consensus operators such as averaging or majority voting.

5 Conclusion

The problem of combining classifiers (or, more generally, information sources) has been
addressed within the framework of Dempster-Shafer theory. Although Dempster’s rule
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Table 11: Test error rates and 95% confidence intervals for the pageblocks, satimage,
segment and waveform datasets (decision trees trained using seven features each). The
best results are underlined; results that are not significantly different are printed in
bold.

data Pageblocks Satimage Segment Waveform

Dempster 3.37 12.68 6.31 20.90

[ 3.16 ; 3.57 ] [ 12.31 ; 13.05 ] [ 5.43 ; 7.18 ] [ 19.94 ; 21.87 ]

OPT1 3.36 12.82 6.36 20.87

[ 3.17 ; 3.55 ] [ 12.43 ; 13.21 ] [ 5.49 ; 7.23 ] [ 19.91 ; 21.83 ]

OPT2 3.51 13.07 6.04 20.89

[ 3.18 ; 3.84 ] [ 12.67 ; 13.47 ] [ 5.07 ; 7.02 ] [ 20.00 ; 21.77 ]

OPT3 3.48 13.08 6.18 20.78

[ 3.14 ; 3.82 ] [ 12.70 ; 13.45 ] [ 5.25 ; 7.12 ] [ 19.82 ; 21.73 ]

cautious 3.74 13.28 6.44 23.34
[ 3.46 ; 4.03 ] [ 12.86 ; 13.70 ] [ 5.32 ; 7.56 ] [ 22.59 ; 24.08 ]

averaging 3.17 12.06 5.79 20.00

[ 3.00 ; 3.33 ] [ 11.88 ; 12.23 ] [ 4.65 ; 6.93 ] [ 19.26 ; 20.74 ]

proba. averaging 3.17 12.06 5.79 20.00

[ 3.00 ; 3.33 ] [ 11.88 ; 12.23 ] [ 4.65 ; 6.93 ] [ 19.26 ; 20.74 ]

vote 3.20 12.12 6.13 20.45

[ 3.06 ; 3.35 ] [ 11.91 ; 12.32 ] [ 4.85 ; 7.42 ] [ 19.67 ; 21.23 ]

Table 12: Test error rates (hybrid classifier ensemble) for the Glass, Optdigits, Page-

blocks and Pendigits datasets. The best results are underlined; results that are not
significantly different are printed in bold. For the OPT1 method, optimal parameter
values are indicated in parentheses under the error rates.

data Glass Optdigits Pageblocks Pendigits

Dempster 38.67 12.30 3.65 6.86
OPT1 (ŝ) 38.67 12.35 3.70 6.58

(1.0e+00) (8.8e-01) (8.5e-01) (1.0e+00)

cautious 36.00 12.91 3.65 6.98
averaging 34.67 7.07 3.65 5.40

proba. averaging 34.67 7.51 3.65 5.77
vote 37.33 7.23 3.75 6.49

LR 44.00 7.96 4.02 7.43
CART 41.33 16.42 3.06 9.61
ENN 45.33 8.85 10.23 16.64
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Table 13: Test error rates (hybrid classifier ensemble) for the Satimage, Segment,
Vowel and Waveform datasets. The best results are underlined; results that are not
significantly different are printed in bold. For the OPT1 method, optimal parameter
values are indicated in parentheses under the error rates.

data Satimage Segment Vowel Waveform

Dempster 11.97 6.81 51.52 15.05
OPT1 (ŝ) 12.01 6.81 51.52 14.14

(6.1e-01) (8.2e-01) (1.0e+00) (0.0e+00)

cautious 12.86 6.92 51.73 14.14
averaging 12.16 6.92 48.05 14.53

proba. averaging 12.16 6.92 48.05 14.53
vote 12.32 8.57 44.37 13.71

LR 14.26 18.02 51.30 13.94
CART 14.34 6.70 55.19 24.68
ENN 13.91 16.92 47.84 13.28

plays a central role in this theory, it is well known that it relies on the assumption of
independence, or distinctness, of the items of information, a condition rarely met in
classification problems.

The cautious rule was recently introduced as an alternative to Dempster’s rule, for
combining non distinct items of evidence. If we restrict ourselves to the combination
of separable mass functions, both Dempster’s rule and the cautious rule may be seen
as particular members of a family of rules based on t-norms. By considering a param-
eterized family of t-norms, it is thus possible to define a corresponding parameterized
family of rules for combining separable mass functions. The problem of learning such
rules from data has been investigated in this paper.

Two strategies have been studied. In the first one, a single rule is determined
by minimizing an error criterion, computed either from validation data, or using a
cross-validation procedure. In the second strategy, classifiers are partitioned using a
hierarchical clustering algorithm, so that classifiers producing similar outputs belong
to the same clusters. Classifiers inside each cluster are then combined using a within-
cluster rule, and the combined results within each cluster are finally pooled using a
between-cluster rule. Both rules are taken from the same t-norm based family and
optimized simultaneously by minimizing an error criterion.

The strategies proposed in this article was compared to various combination rules
through numerous experiments. When the classifiers provide complementary infor-
mation, results demonstrate the effectiveness of the proposed scheme for learning a
single rule, the optimized rule often providing better results than any of the fixed rules
investigated, including Dempster’s rule, the cautious rule, and simple averaging. The
two-step strategy was shown to bring further improvements and was found to be the
best of the fusion schemes studied. Additionally, experiments clearly demonstrated
the robustness of the cautious rule, the t-norm-based combination strategy and the
hierarchical combination schemes to missing data. When combining highly redundant
information, such as the outputs of classifiers trained using highly overlapping or iden-
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tical data, then the sophisticated fusion rules investigated in this paper do not seem
to offer any significant advantage, in most cases, over simple consensus operators such
as averaging or majority voting.

Although Dempster-Shafer theory was recently enriched with new combination
rules, including the cautious rule and its extension, their interest had remained, until
now, mainly theoretical, and the practical usefulness of these rules remained to be
investigated. This paper has filled this gap by showing that these new rules can
indeed be used to develop more efficient classifier combination strategies.

This work could be expanded in several directions. More complex models involving
a separate within-cluster rule for each group of classifiers could be investigated. Beside
combination rules, the discounting operation [53] is an efficient mechanism within
Dempster-Shafer theory for taking into account the reliability of sources in information
fusion problems. Method for learning discount rates were studied in [21] and [23], and
the discounting operation was generalized in [41], [28] and [40]. More sophisticated
classifier fusion schemes could be devised by optimizing both the combination rules and
discount rates attached to each of the classifiers, making it possible to automatically
discard uninformative classifiers. Research in these directions will be reported in
future publications.
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[40] D. Mercier, E. Lefèvre, and F. Delmotte. Belief functions contextual discounting
and canonical decompositions. International Journal of Approximate Reasoning,
2010. To appear.

28



[41] D. Mercier, B. Quost, and T. Denœux. Refined modeling of sensor reliability in
the belief function framework using contextual discounting. Information Fusion,
9(2):246–258, 2008.

[42] F. Pichon and T. Denœux. T-norm and uninorm-based combination of belief
functions. In Proceedings of the International Conference of the North American
Fuzzy Information Processing Society (NAFIPS ’08), pages 19–22, 2008.

[43] F. Pichon and T. Denœux. The unnormalized Dempster’s rule of combination:
a new justification from the least commitment principle and some extensions.
Journal of Automated Reasoning, 45(1):61–87, 2010.

[44] N. J. Pizzi and W. Pedrycz. Aggregating multiple classification results using fuzzy
integration and stochastic feature selection. International Journal of Approximate
Reasoning (in press), 2010. doi:10.1016/j.ijar.2010.05.003.

[45] B. Quost, T. Denœux, and M.-H. Masson. Pairwise classifier combination using
belief functions. Pattern Recognition Letters, 28(5):644–653, April 2007.

[46] B. Quost, T. Denœux, and M.-H. Masson. Adapting a combination rule to non-
independent information sources. In L. Magdalena, M. Ojeda-Aciego, and J.L.
Verdegay, editors, Proceedings of the 12th International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU’08), pages 448–455, Málaga, Spain, 2008.

[47] B. Quost, M.-H. Masson, and T. Denœux. Refined classifier combination using
belief functions. In Proceedings of the 10th International Conference on Informa-
tion Fusion (Fusion’08), pages 776–782, Cologne, Germany, 2008.

[48] M. Reformat and R. Yager. Building ensemble classifiers using belief functions
and OWA operators. Soft Computing, 12(6):543–558, 2008.

[49] G. Rogova. Combining the results of several neural network classifiers. Neural
Networks, 7(5):777–781, 1994.

[50] D. Ruta and B. Gabrys. New measure of classifier dependency in multiple classi-
fier systems. In Multiple classifier systems,LNCS 2364, pages 127–136. Springer-
Verlag, Berlin, Heidelberg, 2002.

[51] D. Ruta and G. Gabrys. Classifier selection for majority voting. Information
Fusion, 6(1):63–81, 2005.

[52] R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: a
new explanation for the effectiveness of voting methods. Annals of statistics,
26(5):1651–1686, 1998.

[53] G. Shafer. A mathematical theory of evidence. Princeton University Press, Prince-
ton, NJ, 1976.

[54] A. J. C. Sharkey and Noel E. Sharkey. Combining diverse neural nets. The
Knowledge Engineering Review, 12:231–247, 1997.

29



[55] D. Skalak. The sources of increased accuracy for two proposed boosting algo-
rithms. In Proceedings of the American Association for Artificial Intelligence
(AAAI’96), Integrating Multiple Learned Models Workshop, pages 120–125, 1996.

[56] P. Smets. The combination of evidence in the Transferable Belief Model. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12:447–458, 1990.

[57] P. Smets. Belief functions: the disjunctive rule of combination and the generalized
Bayesian theorem. International Journal of Approximate Reasoning, 9(1):1–35,
1993.

[58] P. Smets. The canonical decomposition of a weighted belief. In Proceedings of
the International Joint Conferences in Artificial Intelligence, pages 1896–1901,
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A Dendrograms of single-feature classifiers

1 5 7 9 6 2 8 3 4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

indices of the classifiers

av
er

ag
e 

di
st

an
ce

 b
et

w
ee

n 
th

e 
ou

tp
ut

s 
of

 th
e 

cl
as

si
fie

rs

dendrogram, Glass dataset

cut level

Figure 4: Dendrogram: glass data set (logistic regression).

31



13 24 20 15  3  4 10 21 29  2  6 11  5  7 25 27 14 22 23 30 19 26 28 18  9  8 12 16 17  1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

indices of the classifiers

av
er

ag
e 

di
st

an
ce

 b
et

w
ee

n 
th

e 
ou

tp
ut

s 
of

 th
e 

cl
as

si
fie

rs

dendrogram, Optdigits dataset

cut level

Figure 5: Dendrogram: optdigits data set (logistic regression).
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Figure 6: Dendrogram: pageblocks data set (logistic regression).
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Figure 7: Dendrogram: pendigits data set (logistic regression).
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Figure 8: Dendrogram: satimage data set (logistic regression).
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Figure 9: Dendrogram: segment data set (logistic regression).
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Figure 10: Dendrogram: vowel data set (logistic regression).
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Figure 11: Dendrogram: waveform data set (logistic regression).
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