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SPECTRAL ANALYSIS OF RESTRICTED CALL AND PUTOPERATORS AND APPLICATION TO STABLE RISK-NEUTRALDENSITY RECOVERYJEAN-BAPTISTE MONNIER∗Abstra
t. In this paper, we propose a new method for estimating the 
onditional risk-neutraldensity (RND) dire
tly from a 
ross-se
tion of put option bid-ask quotes. More pre
isely, we proposeto view the RND re
overy problem as an inverse problem. We �rst show that it is possible tode�ne restri
ted put and 
all operators that admit a singular value de
omposition (SVD), whi
h we
ompute expli
itly. We subsequently show that this new framework allows to devise a simple and fastquadrati
 programming method to re
over the smoothest RND whose 
orresponding put pri
es lieinside the bid-ask quotes. This method is termed the spe
tral re
overy method (SRM). Interestingly,the SVD of the restri
ted put and 
all operators sheds some new light on the RND re
overy problem.The SRM improves on other RND re
overy methods in the sense that 1) it is fast and simple toimplement sin
e it requires to solve one single quadrati
 program, yet being fully nonparametri
;2) it takes the bid ask quotes as sole input and does not require any sort of 
alibration, smoothing orprepro
essing of the data; 3) it is robust to the pau
ity of pri
e quotes; 4) it returns the smoothestdensity giving rise to pri
es that lie inside the bid ask quotes. The estimated RND is therefore aswell-behaved as 
an be; 5) it returns a 
losed form estimate of the RND on the interval [0, B] of thepositive real line, where B is a positive 
onstant that 
an be 
hosen arbitrarily. We thus obtain boththe middle part of the RND together with its full left tail and part of its right tail. We 
onfront thismethod to both real and simulated data and observe that it fares well in pra
ti
e. The SRM is thusfound to be a promising alternative to other RND re
overy methods.Key words. Risk-neutral density; Nonparametri
 estimation; Singular value de
omposition;Spe
tral analysis; Quadrati
 programming.AMS subje
t 
lassi�
ations. 91G70, 91G80, 45Q05, 62G051. Introdu
tion.1.1. The setting. Over the last four de
ades, the no-arbitrage assumption hasproved to be a fruitful starting point that paved the way for the elaboration of ari
h theoreti
al framework for derivatives pri
ing known today as arbitrage pri
ing
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2 JEAN-BAPTISTE MONNIERtheory. Among its numerous a
hievements, the arbitrage pri
ing theory has set forthtwo fundamental theorems. The First Fundamental Theorem of Asset Pri
ing (see[21, p.72℄) proves that a market is arbitrage-free if and only if there exists a measure
Q equivalent to the histori
al (or statisti
al) measure P, whi
h turns the underlyingpri
e pro
ess into a martingale. Q is therefore referred to as a martingale measure.The Se
ond Fundamental Theorem of Asset Pri
ing (see [21, p.73℄) proves in turn thatthis martingale measure is unique if and only if the market is 
omplete (see [21, p.300℄for terminology). Let us denote by Sτ the positive valued pri
e of the underlying at adeterministi
 future date τ and by π(Sτ ) the payo� of a 
ontingent 
laim maturing attime τ . Let us moreover denote by q the marginal density of Sτ under Q with respe
tto the Lebesgue measure on the positive real line, assuming that it exists. As initiallyproved in [10℄, the arbitrage pri
e of this derivative se
urity writes as its dis
ountedexpe
ted payo� under Q, that is,

e−rτEQπ(Sτ ) = e−rτ

∫

x≥0

π(x)Q(Sτ ∈ dx) = e−rτ

∫

x≥0

π(x)q(x)dx,where r stands for the 
ontinuously 
ompounded risk-free rate. It is a widely a
knowl-edged fa
t that �nan
ial markets are in
omplete, shall it only be due to the presen
eof jumps in the underlying pri
e pro
ess. In su
h a setting, and as des
ribed above,there exist eventually very many qs, and therefore, very many 
orresponding systemsof arbitrage-free pri
es. Let us denote by Q the 
orresponding set of valid densities
q. The elements q of Q are most often referred to as risk-neutral densities (RNDs)and we will sti
k to this terminology in the sequel.RNDs are of 
ru
ial interest for Central Banks and, in fa
t, most institutions andpeople 
on
erned with �nan
ial markets sin
e they represent the market sentimentabout a given underlying pri
e pro
ess at a future point in time (see [3℄). They arealso of 
ru
ial interest to the �nan
ial derivatives industry sin
e the knowledge of
q allows to pri
e new derivative se
urities in an arbitrage-free way with respe
t totraded ones. For these reasons, the literature related to risk-neutral density estima-



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 3tion is very extensive, the bulk of it dating ba
k to the late 90's and early 2k's. It isnot our purpose here to present an exhaustive review of this literature. Ex
ellent andup-to-date reviews 
an in fa
t be found in [14, 17℄. Older but still relevant ones 
anbe found in [9, 3℄.Among derivative se
urities, 
all and put options play a very parti
ular role sin
ethey are a
tively traded in the market and thus believed to be e�
iently pri
ed. Letus re
all that a 
all of strike ξ and maturity τ gives its holder the right to buy theunderlying se
urity at maturity time τ at pri
e ξ. It is an insuran
e against a risein the pri
e of the underlying. Its payo� writes π(Sτ , ξ) = θ(Sτ , ξ) = (Sτ − ξ)+,where we have written (x)+ = max(x, 0) for x ∈ R. Conversely, a put option givesthe right to sell the underlying se
urity. It is an insuran
e against a fall in the un-derlying pri
e and its payo� writes θ∗(Sτ , ξ) = (ξ − Sτ )
+. Here and in what follows,we denote the strike pri
e by ξ and not by k, whi
h will stand for a running index in N.A

ording to the 
elebrated Breeden-Litzenberger formula, the se
ond derivative ofput and 
all pri
es with respe
t to their strike pri
e both equal the dis
ounted RND

e−rτq (see [6℄). Therefore, if a 
ontinuum of put or 
all pri
es were available in themarket, we would have dire
t a

ess to the RND by the latter formula. However, thisis not the 
ase and only a few strike pri
es around the forward pri
e are quoted anda
tively traded at ea
h maturity date. Depending on the market, we overall re
konfrom 5 to 50 quotes at a given maturity date τ . To 
ompli
ate the matter even more,quotes do not appear as a single pri
e. Dealers quote in fa
t a bid pri
e, at whi
h theyo�er to buy the se
urity, and an ask pri
e, at whi
h they o�er to sell the se
urity. Thedi�eren
e between both pri
es is referred to as the bid-ask spread. For an interestinginsight into the nature of option quotes and sour
es of error in them, the reader isreferred to, say, [16, p.786℄.1.2. The problem and brief literature review. As detailed above, if tradedputs and 
alls at a given maturity τ are arbitrage free, they must write as their ex-pe
ted dis
ounted payo� with respe
t to a single RND q drawn from the set Q. Given



4 JEAN-BAPTISTE MONNIERthe pau
ity of quoted option pri
es at a given maturity τ and the presen
e of a bid-ask spread, it is 
lear that many RNDs 
ould in fa
t be hidden behind quoted optionpri
es. Therefore, the RND quest is not that mu
h about estimating the true RNDthat is used by the market for pri
ing purpose, sin
e the nature of the quotes does notallow to identify it uniquely. It is rather more about re
overing a valid RND, meaningan a
tual density fun
tion, to be 
hosen a

ording to a 
riterion typi
ally related toits smoothness or information 
ontent. Histori
ally, three main routes have been usedto re
over a RND from quoted option pri
es: parametri
 methods, nonparametri
methods and models of the underlying pri
e pro
ess. Ea
h of them have their prosand 
ons. Parametri
 methods are well adapted to small data sets and always re
overa density. However, they 
onstrain the RND to belong to a given parametri
 family.On the other hand, models of the underlying pri
e pro
ess have been the �rst greatsu

ess of arbitrage pri
ing theory with the 
elebrated geometri
 Brownian motion(see [4, 20℄). However, the limitation of the log-normal distribution is now widelya
knowledged and no satisfying sto
hasti
 pro
ess has yet been proposed that bothreprodu
e a

urately the dynami
s of the underlying pri
e pro
ess and be analyti
allytra
table. Nonparametri
 methods 
ir
umvent both of these problems in the sensethat they do not require any stringent assumption on the pro
ess generating the data(they are model-free) and 
an re
over all possible densities. As a main drawba
k,these methods are often data intensive.Let us brie�y 
ome ba
k on some 
ontributions to the nonparametri
 literature whi
hare relevant to the present paper. We 
an 
lassify nonparametri
 methods as follows.
• The expansion methods. It in
ludes the Edgeworth (see [19℄) and 
umu-lant expansions (see [22℄), whi
h allow to estimate a �nite number of RND
umulants. It also in
ludes orthonormal basis methods su
h as Hermite poly-nomials (see [1℄), whi
h rely on well known Hilbert spa
e te
hniques and givea

ess to the middle part of the RND.
• The kernel regression methods. As a re
ent example, [2℄ have introdu
eda shape 
onstrained lo
al polynomial estimator of the RND. Noti
e that it



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 5performs estimation on the average quoted pri
es (that is, the average of thebid-ask quotes) and requires therefore to pre-pro
ess them in order to makethem arbitrage-free. Moreover, the returned RND depends on the kernel
hosen and it is not 
lear how it relates to the other valid RNDs in term ofinformation 
ontent or smoothness.
• The maximum entropy method. It is introdu
ed in [8, 23℄, where the RND q isobtained via the maximization of an entropy 
riterion. A

ording to [9, p.19℄,this method often gives bumpy (multimodals) estimates sin
e it imposes nosmoothness restri
tion on the estimated density. In addition, it is said in [18,p.1620℄, that this method presents 
onvergen
e issues.
• Other methods, whi
h do not belong to any of the three 
ategories above.Among them, we 
an refer to the positive 
onvolution approximation (PCA)of [5℄. In pra
ti
e, it �ts a �nite (but large) 
onvex linear 
ombination ofnormal densities to the average quoted put pri
es and approximates the RNDby the weights of the linear 
ombination. It thus presents similarities with[18℄, sin
e it ultimately �ts a dis
rete set of probabilities to the average quotedpri
es. We 
an also refer to the smoothed implied volatility smile method(SML) as in [14℄. This method uses the Bla
k-S
holes formula as a non-lineartransform. It 
onsists in �tting a polynomial through the implied volatilitiesobtained from average quoted pri
es, and using the 
ontinuum of option pri
esobtained in that way to get the RND via the Breeden-Litzenberger formula.[14℄ re�nes this method by taking the bid-ask quotes into a

ount at theimplied volatility �t stage. The SML method gives a

ess to the middle partof the RND. [14℄ proposes in addition a method for appending generalizedextreme value (GEV) tail distributions to it. The SML method is 
umbersomeand 
an seem a bit odd sin
e it requires going from pri
e spa
e to impliedvolatility spa
e, ba
k and forth. It is 
laimed that it is outperformed in termof a

ura
y and stability by simpler parametri
 methods in [7℄.1.3. Our results. In this paper, we propose to view the RND re
overy problemas an inverse problem. We �rst show that it is possible to de�ne restri
ted put and



6 JEAN-BAPTISTE MONNIER
all operators that admit a singular value de
omposition (SVD), whi
h we 
omputeexpli
itly. We subsequently show that this new framework allows to devise a simpleand fast quadrati
 programming method to re
over the smoothest RND that is 
on-sistent with market bid-ask quotes.To be more pre
ise, let us denote by I the segment [0, B] of the positive real line. Wede�ne the restri
ted put and 
all operators, denoted by γ∗ and γ, from L2I into itself(see eq. (2.1) and eq. (2.2) below) and show that they are 
onjugates of one another.We prove that the resulting self-adjoint operator γ∗γ is 
ompa
t. As a 
onsequen
eof the spe
tral theorem (see [15℄), γ∗ admits a singular value de
omposition withpositive de
reasing singular values. We prove that the 
orresponding singular basesare 
omplete in L2I (see Theorem 3.1, item 3)) and 
ompute them expli
itly togetherwith their singular values (see Figure 1.1). To �x notations, we will write (ϕk)k≥0 and
(ψk)k≥0 the two orthonormal families of L2I su
h that γ∗γϕk = λ2kϕk, γγ∗ψk = λ2kψk,where (λk)k≥0 is a positive de
reasing sequen
e of singular values. Pre
isely, we obtainexpli
itly,

λk =

(

B

ρk

)2

,where
ρk =

π

2
+ kπ + (−1)kβk, k ∈ N,and, for all k ∈ N, βk is the smallest positive solution of the following �xed pointequation in u,

exp(π/2 + kπ + (−1)ku) =
1 + cos(u)

sin(u)
.Interestingly, the positive sequen
e (βk) de
reases exponentially fast toward zero asdetailed in Lemma 6.8. Therefore, the sequen
e of singular values (λk)k≥0 tendsasymptoti
ally toward zero at a rate of order k−2. The RND re
overy problem is
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Figure 1.1. Here, we plot the �rst four elements of both singular bases. At the top we plot
ϕk, k = 0, . . . , 3. At the bottom, we plot ψk, k = 0, . . . , 3.



8 JEAN-BAPTISTE MONNIERtherefore said to be mildly ill-posed with a degree of ill-posedness equal to 2 (see [13,p.40℄). Furthermore, for all ξ ∈ I, we obtain,
ϕk(ξ) =

(

ak,1e
ρkξ/B + ak,2e

−ρkξ/B
)

+
(

ak,3 cos(ρkt/B) + ak,4 sin(ρkξ/B)
)

,

ψk(ξ) =
(

ak,1e
ρkξ/B + ak,2e

−ρkξ/B
)

−
(

ak,3 cos(ρkt/B) + ak,4 sin(ρkξ/B)
)

.where the 
oe�
ients ak,i, i = 1, . . . , 4 are su
h that,
ak,1 =

1√
B

(−1)k

eρk + (−1)k
,

ak,2 = (−1)keρkak,1 =
1√
B

1

1 + (−1)ke−ρk

,

ak,3 = − 1√
B
,

ak,4 =
1√
B

1− (−1)ke−ρk

1 + (−1)ke−ρk

.Based on this new framework, we propose a spe
tral approa
h to RND re
overy. Itis fully nonparametri
 and 
an re
over the restri
tion of any density to the interval
I. To that end, we noti
e that the singular bases fun
tions ϕk and ψk are in fa
tos
illations hk,2 at frequen
y ρk/B 
arried by the exponential trend hk,1 (see eq. (6.2)and eq. (6.1) for notations). Conveniently, smooth densities are therefore essentially
aptured by low singular spa
es. The idea of re
overing the smoothest density amongthe valid ones was initially suggested in [18℄. Subsequently, [9℄ rightfully pointed outthat the smoothness 
riterion 
an be debated as it is di�
ult to give it an e
onomi
or even information theoreti
 meaning. Our spe
tral approa
h sheds some new lighton this issue and makes it 
lear that the smoothness 
riterion is justi�ed by the fa
tthat the restri
ted 
all and put operators behave as low-pass frequen
y �lters. It istherefore illusory to look for high frequen
y information about the RND in a set ofquoted options pri
es, sin
e this information has been drasti
ally attenuated by theoperator. The smoothness 
riterion arises therefore as a by-produ
t of the spe
tralnature of the restri
ted put and 
all operators and might well not be an intrinsi
property of the true RND. Interestingly, smooth densities are also easier to re
over



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 9by nonparametri
 means.In what follows, we exploit the ri
h framework o�ered by the SVD of the restri
tedput and 
all operators to re
over the smoothest RND that is 
ompatible with marketquotes. As detailed in eq. (7.1) below, the dis
ounted restri
ted put operator 
oin
ideswith the put pri
e fun
tion (as a fun
tion of the strike) on I. We therefore proposeto re
over the smoothest RND su
h that its image by the dis
ounted restri
ted putoperator e−rτγ∗ lies in-between the bid-ask quotes (see eq. (7.1)). Conveniently, thesingular bases present the property of being image of one another by se
ond derivationmodulo a multipli
ation by the 
orresponding singular value of γ∗ (see Theorem 6.1).This allows us to 
hara
terize the smoothness of the estimated RND dire
tly in termof a quadrati
 form of the 
oe�
ients of the estimated put pri
e fun
tion, whi
hdepends on the singular values of the restri
ted put operator (see Proposition 7.1).This 
ru
ial feature allows to re
over the smoothest RND as the solution of a simplequadrati
 program, whi
h takes the bid ask quotes as sole input. Our estimationmethod improves on existing ones in several ways, whi
h we sum up here.
• It is fast and simple to implement sin
e it requires to solve one single quadrati
program, yet being fully nonparametri
.
• It is robust to the pau
ity of pri
e quotes sin
e the smaller the number ofquotes, the less 
onstrained the quadrati
 program and thus the easier tosolve.
• It takes the bid ask quotes as sole input and does not require any sort ofsmoothing or prepro
essing of the data.
• It returns the smoothest density giving rise to pri
e quotes that lie inside thebid ask quotes. The estimated RND is therefore as well-behaved as 
an be.
• It returns a 
losed form estimate of the RND on I. We thus obtain boththe middle part of the RND together with its left tail and part of its righttail. Interestingly, the left tail 
ontains 
ru
ial information about marketsentiments relative to a potential forth
oming market 
rash.It is noteworthy that the singular ve
tors ϕ0 and ψ0 
orresponding to the largest



10 JEAN-BAPTISTE MONNIERsingular value λ0 of γ and γ∗ look themselves very mu
h like 
ross se
tions of put and
all pri
es, respe
tively (see Figure 1.1). In that sense, they will be able to 
apturethe bulk of the shape of a 
ross se
tion of option pri
es, while the subsequent sin-gular ve
tors will add 
orre
tions to this general behavior. This is a 
ru
ial featureof this SVD that leads us to think that the singular bases of the restri
ted pri
ingoperators are appropriate tools to re
over the RND q. Interestingly, the performan
eof our quadrati
 programming algorithm on real data is indeed quite 
onvin
ing (seeSe
tion 8 for details).Readers interested in appending a full right tail to this estimated RND are referredto [14℄, who proposes a simple method for smooth pasting of parametri
 GEV taildistributions to an estimated RND.Here is the paper layout. We introdu
e the restri
ted 
all and put operators, γ and
γ∗, and operators derived thereof in Se
tion 2. We detail the properties of operators
γ∗γ and γγ∗ on the one hand, and γ and γ∗ on the other hand, in Se
tion 3 andSe
tion 4, respe
tively. Other results relative to these four operators are reported inSe
tion 5. Se
tion 6 gives expli
it expressions for the (λk), (ϕk) and (ψk). The SRMis detailed in Se
tion 7. Finally, we run a simulation study in Se
tion 8. An Appendixregroups some additional useful results.2. De�nitions and setting. Let us de�ne the restri
ted 
all operator on theinterval I = [0, B] as the operator γ from L2I into L2I su
h that,

(γf)(ξ) =

∫

I

θ(ξ, x)f(x)dx, ξ ∈ I, f ∈ L2I, (2.1)
θ(ξ, x) = (x− ξ)+.It is a trivial fa
t that γf belongs indeed to L2I. Let's denote by 〈., .〉 the usual s
alarprodu
t on L2I and by ‖.‖L2I the asso
iated norm. Now, it is enough to noti
e that



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 11for all ξ, x ∈ I, |θ(ξ, x)| ≤ B and apply Cau
hy-S
hwartz inequality to obtain,
‖γf‖2L2I ≤

∫

I

dξ

(
∫

I

dx|θ(ξ, x)||f(x)|
)2

≤ B4‖f‖2L2I <∞.The adjoint operator γ∗ of γ is su
h that, for all f, g ∈ L2I,
〈γ∗f, g〉 = 〈f, γg〉

=

∫

I

duf(u)

∫

I

dxθ(u, x)g(x)

=

∫

I

dxg(x)

∫

I

duθ(u, x)f(u).Hen
e
γ∗f(ξ) =

∫

I

θ∗(ξ, x)f(x)dx, ξ ∈ I, f ∈ L2I, (2.2)
θ∗(ξ, x) = θ(x, ξ).So that γ∗ is nothing but the restri
ted put operator on the interval I. In parti
ular,we 
an write
γ∗γf(ξ) =

∫

I

ϑ1(ξ, x)f(x)dx, ξ ∈ I, f ∈ L2I, (2.3)
γγ∗f(ξ) =

∫

I

ϑ2(ξ, x)f(x)dx, ξ ∈ I, f ∈ L2I, (2.4)where
ϑ1(ξ, x) =

∫

I

duθ∗(ξ, u)θ(u, x)

=

∫

I

du(ξ − u)+(x− u)+ =

∫ ξ∧x

0

du(ξ − u)(x− u)

= ξx(ξ ∧ x) − (ξ + x)(ξ ∧ x)2/2 + (ξ ∧ x)3/3,



12 JEAN-BAPTISTE MONNIERand
ϑ2(ξ, x) =

∫

I

duθ(ξ, u)θ∗(u, x)

=

∫

I

du(u− ξ)+(u− x)+ =

∫ B

ξ∨x

du(u− ξ)(u− x)

= ξx(B − ξ ∨ x)− (ξ + x)(B − ξ ∨ x)2/2 + (B − ξ ∨ x)3/3.Let us now turn to the detailed inspe
tion of these operators.3. Results relative to γ∗γ and γγ∗. Let us denote by R(κ) the range ofan operator κ of L2I and by N (κ) its null spa
e (see [12, p.23℄). Obviously both
γ∗γ and γγ∗ are self-adjoint. This translates into the fa
t that their kernels aresymmetri
 (meaning ϑi(ξ, x) = ϑi(x, ξ)). In addition, both ϑ1 and ϑ2 are 
ontinuouson the bounded square I×I. Therefore, the asso
iated operators are 
ompa
t (see [12,Ex. 4.8.4, p.172℄). As su
h, they verify the spe
tral theorem (see [12, Th. 4.10.1, 4.10.2,p.187-189℄).Theorem 3.1. Given the operators γ∗γ and γγ∗ de�ned in eq. (2.3) and eq. (2.4)above, we have the following results.1) The operators γ∗γ and γγ∗ are 
ompa
t and self-adjoint. As su
h, they admit
ountable families of orthonormal eigenve
tors (ϕk) and (ψk) asso
iated to thesame positive de
reasing sequen
e of eigenvalues λ2k, whi
h are 
omplete in R(γ∗γ)and R(γγ∗), respe
tively.2) Besides, we have

R(γ∗γ) ⊂ L2I ∩ C4I,

R(γ∗γ) ⊂ L2I ∩ C4I,where C4I stands for the set of four times di�erentiable fun
tions on I.3) Furthermore, the orthonormal families (ϕk) and (ψk) are 
omplete in L2I. In



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 13other words, they are both orthonormal bases of L2I. In fa
t, we 
an write
L2I = R(γ∗γ) = Span{ϕk, k ∈ N},

= R(γγ∗) = Span{ψk, k ∈ N},where R(γ∗γ) stands for the 
losure of R(γ∗γ) in L2I (see [12, p.16℄) and Span{ϕk, k ∈

N} for the set of (potentially in�nite) linear 
ombinations of elements ϕk.4) Therefore, γ∗γ and γγ∗ are both invertible and admit the fourth order di�erentialoperator ∂4ξ as an inverse (see [12, p.155℄ for terminology). More pre
isely, wehave got
∂4ξγ

∗γf = f, ∀f ∈ L2I,

γ∗γ∂4ξf = f, ∀f ∈ R(γ∗γ),and idem for γγ∗.5) Finally, we have the following spe
tral de
ompositions,
f =

∑

k≥0

〈f, ϕk〉ϕk, f ∈ L2I,

γ∗γf =
∑

k≥0

λ2k〈f, ϕk〉ϕk, f ∈ L2I,and
f =

∑

k≥0

〈f, ψk〉ψk, f ∈ L2I,

γγ∗f =
∑

k≥0

λ2k〈f, ψk〉ψk, f ∈ L2I.

Proof. As detailed above, 1) follows dire
tly from the spe
tral theorem. 2) followsdire
tly from the kernel representations in eq. (2.3) and eq. (2.4). It 
an also beseen from the fa
t that, for any f ∈ L2I, both γf and γ∗f are twi
e di�erentiable,
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h follows by simple inspe
tion of eq. (2.1) and eq. (2.2). 3) follows dire
tly fromProposition 5.1 below. 4) is a dire
t 
onsequen
e of Lemma 8.3 below. Finally, 5)follows dire
tly from 1) and 3).4. Results relative to γ and γ∗. The following theorem details the propertiesof the restri
ted put and 
all operators. It builds upon Theorem 3.1 above.Theorem 4.1. Given operators γ and γ∗ de�ned in eq. (2.1) and eq. (2.2) above, wehave the following results.1) Consider the sequen
e of positive de
reasing singular values λk and singular ve
tors
(ϕk) and (ψk) de�ned in Theorem 3.1 above. The restri
ted put and 
all operators
γ∗ and γ are su
h that, for all k ≥ 0,

γϕk = λkψk, γ∗ψk = λkϕk.2) Besides, we have
R(γ∗) ⊂ L2I ∩ C2I,

R(γ) ⊂ L2I ∩ C2I,where C2I stands for the set of two times di�erentiable fun
tions on I.3) In addition, we have L2I = R(γ∗) = R(γ). So that both γ and γ∗ are invertible andadmit the se
ond order partial di�erential operator ∂2ξ as an inverse. In parti
ular,we obtain
∂2ξγf(ξ) = ∂2ξγ

∗f(ξ) = f(ξ), ∀f ∈ L2I. (4.1)So that the knowledge of γf or/and γ∗f allows to re
over f dire
tly as their se
-ond derivative. This is nothing but the so-
alled Breeden-Litzenberger formularestri
ted to the interval I.
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tral de
ompositions,
f =

∑

k≥0

〈f, ϕk〉ϕk, f ∈ L2I,

γf =
∑

k≥0

λk〈f, ϕk〉ψk, f ∈ L2I,and
f =

∑

k≥0

〈f, ψk〉ψk, f ∈ L2I,

γ∗f =
∑

k≥0

λk〈f, ψk〉ϕk, f ∈ L2I.5) Finally, we have a put-
all parity on the interval that 
an be written as follows
(γ − γ∗)f(ξ) = m̄1(f)− ξm̄0(f),where we have de�ned m̄k(f) :=

∫

I
xkf(x)dx.Proof. The proof of 1) follows dire
tly from [13, p.37℄. 2) follows by simple inspe
tionof eq. (2.2) and eq. (2.1). The �rst part of 3) follows from the fa
ts thatR(γ) = R(γγ∗)and R(γ∗) = R(γ∗γ) (see 1) above) and Theorem 3.1, item 3). The se
ond part of3) follows partly from Lemma 8.3 below (see Appendix) and partly from the obviousfa
t that f = γ∗∂2ξf for all f ∈ R(γ∗) (idem for γ). 4) follows dire
tly from 1) and3). Finally, 5) follows immediately from the following obvious 
omputations,

(γ − γ∗)f(ξ) = γf(ξ)− γ∗f(ξ)

=

∫

I

[θ(ξ, x) − θ∗(ξ, x)]f(x)dx

=

∫

I

(x− ξ)f(x)dx

= m̄1(f)− ξm̄0(f).



16 JEAN-BAPTISTE MONNIERWe regroup other results relative to the above operators in the following se
tion.5. Other results relative to γ∗γ, γγ∗, γ∗ and γ. We prove here that bothorthonormal families (ϕk) and (ψk) are 
omplete in L2I. Other interesting results areto be found in the Appendix. Some of them are purely te
hni
al, while some othersare of more general interest.Proposition 5.1. We have got,
L2I = R(γ∗γ) = Span{ϕk, k ≥ 0},

= R(γγ∗) = Span{ψk, k ≥ 0},where R(γ∗γ) stands for the 
losure of R(γ∗γ) in L2I (see [12, p.16℄) and Span{ϕk, k ∈

N} for the set of (potentially in�nite) linear 
ombinations of elements ϕk.Proof. We know from [13, �2.3.℄ that,
L2I = R(γ∗γ)⊕⊥ N (γ∗γ),

= R(γγ∗)⊕⊥ N (γγ∗).Therefore, it is enough to show that both null-spa
es redu
e to the zero element. Thekernel N (γ∗γ) of γ∗γ is 
onstituted by the fun
tions f ∈ L2I that are solutions of
0 = γ∗γf(ξ), ∀ξ ∈ I.Deriving four times with respe
t to ξ and applying Lemma 8.3 (see Appendix) leadsto f(ξ) = 0, ξ ∈ I. So that N (γ∗γ) = {0}. Now it is enough to noti
e that N (γ∗γ) =

N (γ). However, we know from Lemma 8.4 that f ∈ N (γ) if and only if f̆ ∈ N (γ∗)(see eq. (8.1) for notation). Therefore N (γγ∗) = N (γ∗) = N̆ (γ) = N̆ (γ∗γ) = {0},where by N̆ , we mean {f̆ , f ∈ N}.6. Expli
it 
omputation of (λk), (ϕk) and (ψk).6.1. Main result. In this se
tion, we give expli
it expressions for the singularbases and singular ve
tors of the restri
ted 
all and put operators. The results are



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 17gathered below in Theorem 6.1. Let us write
fk,1(ξ) = eρkξ/B, fk,2(ξ) = e−ρkξ/B ,

fk,3(ξ) = cos(ρkt/B), fk,4(ξ) = sin(ρkξ/B),where
ρk =

π

2
+ kπ + (−1)kβk, k ∈ N, (6.1)and, for all k ∈ N, βk is the smallest positive solution of the following �xed pointequation in u,

exp(π/2 + kπ + (−1)ku) =
1 + cos(u)

sin(u)
.Interestingly, the positive sequen
e (βk) de
reases exponentially fast toward zero asdetailed in Lemma 6.8. In addition, we write,

hk,1 = ak,1fk,1 + ak,2fk,2, hk,2 = ak,3fk,3 + ak,4fk,4, (6.2)where the 
oe�
ients ak,i, i = 1, . . . , 4 are su
h that,
ak,1 =

1√
B

(−1)k

eρk + (−1)k
,

ak,2 = (−1)keρkak,1 =
1√
B

1

1 + (−1)ke−ρk

,

ak,3 = − 1√
B
,

ak,4 =
1√
B

1− (−1)ke−ρk

1 + (−1)ke−ρk

.Then, we have the following theorem.Theorem 6.1. The eigenve
tors (ϕk) of γ∗γ and (ψk) of γγ∗ are su
h that
ϕk = hk,1 + hk,2, ψk = hk,1 − hk,2. (6.3)



18 JEAN-BAPTISTE MONNIERThey are related by the following relationships,
γϕk = λkψk, γ∗ψk = λkϕk, (6.4)where we have written

λk =

(

B

ρk

)2

, (6.5)and ρk is de�ned in eq. (6.1). They verify ‖ϕk‖L2I = ‖ψk‖L2I = 1. Moreover, wehave
ψk(B) = ψ′

k(B) = 0, ϕk(0) = ϕ′
k(0) = 0, (6.6)together with

ψ̆k = (−1)kϕk, ϕ̆k = (−1)kψk, (6.7)where we have written ψ̆k(ξ) = ψk(B − ξ). And �nally, we obtain as a dire
t 
onse-quen
e of eq. (4.1) above that
λk∂

2
ξψk = ∂2ξγϕk = ϕk,

λk∂
2
ξϕk = ∂2ξγ

∗ψk = ψk.

Proof. Noti
e readily that eq. (6.6), eq. (6.7) and the fa
t that both ϕk and ψk areunit normed are straightforward 
onsequen
es of eq. (6.3). In addition, eq. (6.4) is arepetition of Theorem 4.1, item 1). So that we are in fa
t left with proving eq. (6.3)and eq. (6.5). Ea
h eigenve
tor f of γ∗γ asso
iated to the eigenvalue r4 is solution ofthe problem,
r4f = γ∗γf, (6.8)



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 19for some r 6= 0 and f ∈ L2I. After di�erentiating four times the latter equationwith respe
t to ξ (assuming that f ∈ L2I ∩ C4I) and applying Lemma 8.3, we obtainthat the solutions of eq. (6.8) are also solutions of the following fourth order ordinarydi�erential equation,
r4d4ξf − f = 0,where d4ξ stands for the fourth order ordinary di�erential operator. Its 
hara
teristi
polynomial admits four roots ±r−1 and ±ir−1. Consequently, the real solutions ofthe above ordinary di�erential equation are of the form

f(ξ) = b1e
ξ/r + b2e

−ξ/r + b3 cos(ξ/r) + b4 sin(ξ/r). (6.9)The ϕks are thus of this form. Plugging this generi
 solution ba
k into eq. (6.8) leadsin turn, after tedious but straightforward 
omputations, to
Mb = 0, (6.10)where b is a 4× 1 ve
tor su
h that bT =

[

b1 b2 b3 b4

] and M is the 4× 4 matrixde�ned by
M(r, B) =



















r−1eB/r −r−1e−B/r r−1 sin (B/r) −r−1 cos (B/r)

−r−2eB/r −r−2e−B/r r−2 cos (B/r) r−2 sin (B/r)

r−3 −r−3 0 r−3

r−4 r−4 r−4 0



















. (6.11)
There exists a non-trivial solution to eq. (6.10) if and only if r is su
h that thedeterminant of M 
an
els, that is Det(r,M) = 0. As detailed in Proposition 6.2, theroots of Det(r,M) = 0 are exa
tly the rm = B/νm where νm is de�ned in eq. (6.16).In addition, we prove in Proposition 6.3 that the system M(rm, B)b = 0 admits theunique solution bm. Reading o� eq. (6.9), we obtain that the eigenve
tor of γ∗γ
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iated to eigenvalue r4m writes as αm = ηm,1 + ηm2
where both ηm,1 and ηm,2 arede�ned in eq. (6.15). Now, it is enough to noti
e that, given the properties of thesequen
e (νm) detailed in Proposition 6.5, r42k+1 = r42k and r42k+2 < r42k+1, k ∈ N. Inaddition, we know from Lemma 6.4 that α2k+1 = α2k. This allows us to 
on
lude thatthe eigenvalues of γ∗γ are, without redundan
y, the λ2k, k ∈ N, de�ned in eq. (6.5)and the asso
iated eigenspa
es are unit-dimensional and respe
tively spanned by theeigenve
tors ϕk, k ∈ N, de�ned in eq. (6.3).Computing ψk = λ−1

k γϕk leads, after tedious but straightforward 
omputations to
ψk = hk,1 − hk,2 and 
on
ludes the proof.

6.2. Additional results. This se
tion 
ontains a series of results that are usedthroughout the proof of Theorem 6.1 above. In this se
tion we make use of the map
E : N 7→ N su
h that E(2k + 1) = E(2k) = k for all k ∈ N.Proposition 6.2. Let M(r, B) be the 4 × 4 matrix de�ned in eq. (6.11). The setof solutions r to the problem DetM(r, B) = 0 is 
ountable. Let us denote them by
rm,m ∈ N. For any m ∈ N, the solution rm 
an be written as

rm =
B

νm
,where νm is de�ned in eq. (6.16). We obtain in fa
t that,DetM(rm, B) = 0 ⇔ eνm = −1 + (−1)E(m) sin(νm)

cos(νm)
.Besides, the following relationships hold true

cos νm := − 2

eνm + e−νm
= − 1

cosh νm
, (6.12)

sin νm := −(−1)E(m) + (−1)E(m) 2

1 + e−2νm
. (6.13)
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omputations that,DetM(r, B) = 2e−B/r

(

cos (B/r)
(

eB/r
)2

+ 2eB/r + cos (B/r)

)

. (6.14)Let us write ν := B/r and noti
e that if cos(ν) = 0, then DetM(r, B) = 2 6= 0 sothat we must have cos ν 6= 0 for eq. (6.10) to admit a non-trivial solution. To be morespe
i�
 DetM(r, B) = 0 redu
es to P (eν) = 0 where P (x) := cos (ν)x2 +2x+cos (ν).However the roots of P are given by
δ±(ν) :=

−1± sin(ν)

cos(ν)
.Hen
eforth, r = B/ν 
an
els DetM(r, B) if and only if ν is solution of anyone of thetwo following �xed point equations,

eν =
−1 + sin(ν)

cos(ν)
, eν =

−1− sin(ν)

cos(ν)
.The proof follows now dire
tly from Proposition 6.5.Proposition 6.3. For any rm solution of the equation DetM(rm, B) = 0 (see Propo-sition 6.2 above), the null spa
e of M(rm, B) is of dimension 1 and is spanned by theve
tor

bTm =

[

bm,1 bm,2 bm,3 bm4

]

,where we have written,
bm,1 =

1√
B

(−1)E(m)

eνm + (−1)E(m)
,

bm,2 = (−1)E(m)eνmam,1 =
1√
B

1

1 + (−1)E(m)e−νm
,

bm,3 = − 1√
B
,

bm,4 =
1√
B

1− (−1)E(m)e−νm

1 + (−1)E(m)e−νm
,



22 JEAN-BAPTISTE MONNIERand νm is de�ned in eq. (6.16).Proof. It is a matter of straightforward linear algebra and thus left to the reader.Noti
e however, that it relies on the use of both eq. (6.12) and eq. (6.13).Lemma 6.4. Let us write
ζm,1(ξ) = eνmξ/B, ζm,2(ξ) = e−νmξ/B,

ζm,3(ξ) = cos(νmξ/B), ζm,4(ξ) = sin(νmξ/B),where νm is de�ned in eq. (6.16). In addition, we write,
ηm,1 = bm,1ζm,1 + bm,2ζm,2, ηm,2 = bm,3ζm,3 + bm,4ζm,4, (6.15)where the 
oe�
ients bm,i, i = 1, . . . , 4 are de�ned in Proposition 6.3. For all k ∈ N,we have the following relationships

η2k+1,1 = η2k,1, η2k+1,2 = η2k,2

Proof. It follows from straightforward 
omputations using the fa
t that ν2m+1 =

−ν2m.Proposition 6.5. Let us de�ne the map E : N 7→ N su
h that E(2k) = E(2k+1) = kfor k ∈ N. Let us write
g(ν) =

−1 + sin ν

cos ν
, h(ν) =

−1− sin ν

cos ν
,and 
onsider the �xed point equations eν = g(ν) and eν = h(ν). The set of 
orre-sponding solutions is exhausted by the sequen
e

νm = (−1)m
(π

2
+ E(m)π + (−1)E(m)βE(m)

)

, m ∈ N. (6.16)



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 23where (βm) is de�ned in Lemma 6.8. In parti
ular, noti
e that ν2k+1 = −ν2k and
|νm1

| < |νm2
| for all m1,m2 ∈ N su
h that E(m1) < E(m2). Noti
e in addition that,by 
onstru
tion, νm is solution of

eνm = −1 + (−1)E(m) sin νm
cos νm

.This latter result, together with the fa
t that DetM(B/νm, B) = 0 (see eq. (6.14)),leads straightforwardly to the following relationships,
cos νm := − 2

eνm + e−νm
= − 1

cosh νm
,

sin νm := −(−1)E(m) + (−1)E(m) 2

1 + e−2νm
.

Proof. Consider the �xed point equation g(ν) = eν . Given the properties of g detailedin Proposition 6.6, two 
ases arise depending whether ν is positive or negative. Inthe 
ase where ν is positive, the exponential map meets g at points of the form
pm = 3π

2 + 2mπ − um for m ∈ N = {0, 1, 2, . . .} and some small but positive ums.A dire
t appli
ation of Lemma 6.7 shows that the negative solutions are exa
tly the
−pm,m ∈ N.The se
ond �xed point equation h(ν) = eν 
an be rewritten as g(−ν) = eν . Thepositive solutions are of the form qm = π

2 +2mπ+ vm,m ∈ N. And, from Lemma 6.7again, the 
orresponding negative solutions are the −qm,m ∈ N.Let us write tm = π
2 +mπ+(−1)mβm,m ∈ N. It is 
lear that t2k = qk and t2k+1 = pkfor k ∈ N. In parti
ular, tm is solution of

etm = −1 + (−1)m sin tm
cos tm

(6.17)Let us de�ne the map E : N 7→ N su
h that E(2k + 1) = E(2k) = k for all k ∈ N.We de�ne νm,m ∈ N su
h that νm = (−1)mtE(m), that is ν2k = tk and ν2k+1 = −tk,
k ∈ N. By 
onstru
tion, νm exhausts the set of solutions of both �xed point equations
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eν = g(ν) and eν = h(ν). In fa
t, νm is solution of

eνm = −1 + (−1)E(m) sin νm
cos νmProposition 6.6. Noti
e readily that h(ν) = g(−ν), so that it is enough to study theproperties of g alone. We have the following results,1. g is de�ned on the domain Dg = R\{ 3π

2 + 2mπ,m ∈ Z};2. g is 2π periodi
 and su
h that, for all ν ∈ Sg = (−π
2 ,

3π
2 ), g(ν+2mπ) = g(ν);3. Finally, g is stri
tly in
reasing on Sg and su
h that,

lim
ν→⊕−π

2

g(ν) = −∞, g(
π

2
) = 0, lim

ν→⊖
3π
2

g(ν) = +∞.where we write →⊕ (resp. →⊖) to mean the limit from the above (resp.below).4. Noti
e that R\Dg (resp. R\Dh) 
orresponds exa
tly to the set of all the zerosof h (resp. g). Thus Dg ∩ Dh is the subset of R 
ontaining all the pointswhere both g and h are well de�ned and di�erent from zero.Proof. Let us �rst fo
us on the domain of g. It is de�ned on R\{π
2 +mπ,m ∈ Z}.However, g 
an be extended by 
ontinuity to be worth zero at points π
2 +2mπ,m ∈ Z.Noti
e indeed that for any small positive u and ℓ ∈ N, one has got

g(
π

2
+ (−1)ℓu) =

−1 + cosu

−(−1)ℓ sinu

=
−u2

2 +O(u4)

−(−1)ℓu+O(u3)
= (−1)ℓ

u

2
+O(u3).With a slight abuse of notations, we denote the latter extension by g. So that g isa
tually de�ned on R\{ 3π

2 + 2mπ,m ∈ Z}. The other properties are straightforward.Lemma 6.7. Re
all that Dg and Dh are de�ned in Proposition 6.6. Noti
e �rst that
Dg ∩ Dh is symmetri
, meaning that if ν ∈ Dg ∩ Dh, then −ν ∈ Dg ∩ Dh. For any
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ν ∈ Dg ∩ Dh, we have the following results,1. If ν is solution of the �xed point equation eν = g(ν), then −ν is also asolution.2. If ν is solution of the �xed point equation eν = h(ν), then −ν is also asolution.Proof. Noti
e �rst that we have the identity h(ν)g(ν) = 1 for any ν ∈ Dg ∩ Dh. Itsproof is immediate. And therefore, for any ν ∈ Dg ∩ Dh solution of eν = g(ν), weobtain g(−ν) = h(ν) = g(ν)−1 = e−ν. And idem for the solutions of eν = h(ν).Lemma 6.8. The sequen
e (βk) is su
h that, for all k ∈ N, βk is the smallest positivesolution of the following �xed point equation in u,

exp(π/2 + kπ + (−1)ku) =
1 + cos(u)

sin(u)
.In addition, the approximation βk ≈ 2e−

π

2
−kπ holds true with a large degree of a

u-ra
y from k = 1 onward.Proof. Let us write tk = π

2 + kπ+ (−1)ku, for some small but positive u su
h that tkis solution of eq. (6.17). Noti
e that
cos

(π

2
+ kπ + (−1)ku

)

= − sin(u) = −u+O(u3),

sin
(π

2
+ kπ + (−1)ku

)

= (−1)k cos(u) = (−1)k +O(u2),

exp
(π

2
+ kπ + (−1)ku

)

= e
π

2
+kπ(1 + (−1)ku+O(u2)).So that eq. (6.17) redu
es to

exp(π/2 + kπ + (−1)ku) =
1 + cos(u)

sin(u)
.Plugging-in the Taylor expansions above, we obtain

e
π

2
+kπ(1 + (−1)ku+O(u2)) =

2 +O(u2)

u+O(u3)
=

1

u
(2 + O(u2)),
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h 
an be rewritten as
u = e−

π

2
−kπ(2 +O(u)). (6.18)It 
an be veri�ed numeri
ally that 2e−
π

2
−kπ is a very good approximation of βk assoon as k ≥ 1 in the sense that eq. (6.17) holds true with a very large degree ofa

ura
y.7. The spe
tral re
overy method (SRM). In this Se
tion, we �rst des
ribehow γ and γ∗ relate to the bid-ask quotes. We then show that the SVD of therestri
ted pri
ing operators des
ribed above 
an be used to design a simple quadrati
program that re
overs the smoothest RND 
ompatible with market quotes.7.1. From γ and γ∗ to 
all and put pri
es. Let us denote by P (ξ) and C(ξ)the put and 
all pri
es at strike ξ and by q the 
orresponding risk neutral density.Let us furthermore write Ī = R+\I = (B,∞). We assume that the restri
tion q|I tothe interval I of q is in L2I. For all ξ ∈ I, the following relationships are immediate.

erτP (ξ) = γ∗q(ξ), (7.1)
erτC(ξ) = γq(ξ) +

∫ ∞

B

(x− ξ)q(x)dx

= γq(ξ) +m1(q)− ξm0(q), (7.2)where we have de�ned,
mk(f) =

∫

Ī

xkf(x)dx.Noti
e in parti
ular that
m0(q) = Q(Sτ ≥ B) = 1− m̄0(q),

m1(q) = EQ(Sτ |Sτ ≥ B)Q(Sτ ≥ B) = EQSτ − m̄1(q).
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es dire
tly relate to the restri
ted put operator. From anestimation perspe
tive, this is a 
ru
ial feature that will allow us to re
over the RNDdire
tly from market put quotes. Unfortunately, the situation is slightly di�erent for
all pri
es. As shown from eq. (7.2), 
all pri
es relate to the restri
ted 
all operatorvia m1(q) and m0(q), whi
h are both unknown. Although, they 
ould be estimatedand give rise to an estimator of the RND based on quoted 
all pri
es, we wont pursuethis route here, but rather fo
us on the simpler relation given by eq. (7.1).7.2. A refresher on no-arbitrage 
onstraints. For a detailed review of model-free no-arbitrage 
onstraints, the reader is referred to [21, p.32, � 1.8℄ and [11℄. Let usdenote by S0 the pri
e today of the underlying sto
k. Let us moreover assume that itpays a 
ontinuous dividend yield δ. Let us denote by r the 
ontinuously 
ompoundedshort rate and by τ the time to maturity. Let us re
all �rst that, by no-arbitrage, putand 
all pri
es are related by the put-
all parity.
C(ξ)− P (ξ) = S0e

−δτ − ξe−rτ . (7.3)Besides C(0) = S0 and P (0) = 0. Let us now fo
us on put pri
es. We have,
max(0, ξe−rτ − S0e

−δτ ) ≤ P (ξ) ≤ ξe−rτ , (7.4)
0 ≤ ∂ξP (ξ) ≤ e−rτ , (7.5)
0 ≤ ∂2ξP (ξ). (7.6)Assume we are given an in
reasing sequen
e of n strikes ξ1 < ξ2 < ... < ξn and a setof 
orresponding put pri
es m1, . . . ,mn. As des
ribed in [2℄, the above no-arbitragerelationships translate into a �nite set of a�ne 
onstraints on the latter put pri
es.These 
onstraints 
an in fa
t be written in matrix form as Am ≤ bp, where A standsfor a 2n× n matrix, m is the n× 1 ve
tor su
h that mT =

[

m1 . . . mn

] and bp isa 2n× 1 ve
tor. More pre
isely, eq. (7.6) translates into n− 2 
onstraints as,
[Am]i :=

mi+1 −mi

ξi+1 − ξi
− mi+2 −mi+1

ξi+2 − ξi+1
≤ 0 := [bp]i, i = 1, 2, . . . , n− 2



28 JEAN-BAPTISTE MONNIERMoreover, the left-hand-side of eq. (7.4) is fully 
aptured in-sample by adding thefollowing additional n 
onstraints,
[Am]i+n−2 := −mi ≤ −max(0, ξie

−rτ − S0e
−δτ ) := [bp]i+n−2, i = 1, . . . , n (7.7)The right-hand-side of eq. (7.4) need not be taken into a

ount at this stage. It isindeed less stringent than the upper-bound 
onstraints we will impose in the nextse
tion. Finally, given the �rst n− 2 
onstraints, eq. (7.5) redu
es to two additional
onstraints,

[Am]2n−1 :=
mn −mn−1

ξn − ξn−1
≤ e−rT := [bp]2n−1,

[Am]2n := m1 −m2 ≤ 0 := [bp]2n.Finally, let us re
all that if the forward pri
e F0 of the underlying sto
k is observabletoday, then, by no-arbitrage, it must be equal to S0e
(r−δ)τ .7.3. Bid-ask spread 
onstraints. Let us assume that the market provides uswith an in
reasing sequen
e of strike pri
es ξ1 < ξ2 < . . . < ξs, where s is small.Typi
ally s ranges from 5 to 50 depending on the underlying. In addition, the marketprovides us with a 
orresponding sequen
e of bid ask quotes for put options. Let usdenote them by yAsk

1 , . . . , yAsk
s and yBid

1 , . . . , yBid
s . We want the 
orresponding �ttedput pri
es (mi) to lie inside the bid ask quotes. This 
orresponds to the following 2sa�ne 
onstraints,

mi ≤ yAsk
i , −mi ≤ −yBid

i , i = 1, . . . s. (7.8)The quoted strikes might eventually span a very small portion of the segment I onwhi
h we want to re
over the RND. In order to improve the quality of our estimator,we 
an 
onstrain it to verify the above no-arbitrage 
onstraints on a denser set ofstrikes than the quoted ones. Let us denote by ξ1 < ξ2 < . . . < ξn this new set ofstrike pri
es, su
h that ξ1 = 0, ξn = B and in
luding the initial quoted strikes. For
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Figure 7.1. This graph sums up the set of 
onstraints veri�ed by estimated put pri
es, whi
hare solutions of the quadrati
 optimization problem des
ribed in eq. (P1). Estimated put pri
es
m1, . . . , mn on the �dense� grid ξ1, . . . , ξn are displayed as bla
k dots. They must lie in-betweenthe bid-ask quotes, whi
h are represented by thi
k red dots ranging over quoted strikes ξi1 , . . . , ξis ,whi
h 
orrespond to a sparse subset of the underlying dense grid ξ1, . . . , ξn. In addition, extremeput pri
es m1 and mn are bounded above by yAsk

1 = 0 and yAsk
n , respe
tively, where the valueof yAsk

n is given in Se
tion 7.3. Both yAsk
1 and yAsk

n appear as thi
k blue dots at strikes ξ1 = 0and ξn = B, respe
tively. m1, . . . ,mn must also verify the in-sample 
onstraints des
ribed by thelhs of eq. (7.4). In parti
ular, the lhs of eq. (7.4) ensures that the mis are lower-bounded by the
(ξie

−rτ − S0e−δτ )+s, whi
h appear as thi
k blue dots. Sin
e this lower-bound is worth 0 for i = 1,this, together with the upper-bound yAsk
1 = 0 a
tually impose m1 = 0. Finally, m1, . . . ,mn verifyboth eq. (7.5) and eq. (7.6) above. The latter 
onstraint imposes in-sample 
onvexity.later referen
e, we denote by I = {i1, . . . , is} the subset of {1, . . . , n} 
orrespondingto the indexes of the initial quoted strikes. We know that, in any 
ase, we musthave 0 = P (0) = m1, so that we 
an de�ne yAsk

1 = 0. Furthermore, we know fromeq. (7.5) that P (ξ) 
annot grow at a rate faster than e−rτ , so that we 
an de�ne yAsk
nto be the 
orresponding linear extrapolation of the right-most market quote yAsk
is ,meaning yAsk

n = yAsk
is

+ e−rτ(ξn− ξis). In summary, the requirement that the mis fallin-between the bid-ask quotes translates into 2s+ 2 additional 
onstraints, whi
h we
an write as follows
mi ≤ yAsk

i , i ∈ I ∪ {1, n}, (7.9)
−mi ≤ −yBid

i , i ∈ I. (7.10)All previously mentioned 
onstraints are summarized in Figure 7.1.
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 program. Fix N ∈ N. The 
hoi
e of N will be dis
ussedin the next Se
tion. Let us denote by PN the estimator of the put pri
e P on I builtupon the ϕk's up to level N and by e−rτqN the 
orresponding inverse image by γ∗.We have expli
itly, from eq. (7.1) and Theorem 4.1, item 4),
PN = γ∗e−rτqN ,

PN =

N
∑

k=0

ωkϕk,

qN = erτ
N
∑

k=0

λ−1
k ωkψk,for some ωT =

[

ω0 . . . ωN

]

∈ RN+1. Furthermore for a given matrix M , we willdenote by [M ]I,J the sub-matrix obtained by extra
ting the rows of M at indexes in
I and the 
olumns of M at indexes in J . When extra
ting all the 
olumns, we willwrite [M ]I,•, and similarly for the rows. And we will naturally write [M ]I in the 
asewhere M is a ve
tor. The SRM estimator ω⋆ is obtained as a solution of a quadrati
program. It 
orresponds (modulo res
aling by the λks and the dis
ount fa
tor) tothe 
oe�
ients of the smoothest density that veri�es the no-arbitrage and bid-ask
onstraints above. To that end, noti
e that the L2I-norm of the se
ond derivativeof qN , namely SN = ‖∂2ξ qN‖2L2I

, quanti�es its smoothness. SN is often used as asmoothness penalty and has been widely used in the 
ontext of smooth RND re
overy.Obviously, the smoother qN , the smaller SN . As detailed in Proposition 7.1, SN 
anbe dire
tly expressed as a quadrati
 form of ω involving the N +1 �rst eigenvalues ofthe restri
ted put operator γ∗. As a 
onsequen
e, ω⋆ is solution of,
arg min

ω∈RN+1
‖∂2ξqN‖2L2

subje
t to 













































[PN ]I∪{1,n} ≤ yAsk
I∪{1,n},

−[PN ]I ≤ −yBid
I ,

APN ≤ bp,

qN (0) = 0.

(P1')



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 31where, with a slight abuse of notations, we have written PT
N =

[

PN (ξ1) . . . PN (ξn)

],
yBid
I stands for the ve
tor of initial put bid quotes and yAsk

I∩{1,n} stands for the ve
-tor of initial put ask quotes augmented with the no arbitrage bounds yAsk
1 = 0 and

yAsk
n = yAsk

is + e−rτ (ξn − ξis). Noti
e that we have added the 
onstraint qN (0) = 0,whi
h does not arise as a natural property of the ψks.Denote by ϕ0,N (ξ)T =

[

ϕ0(ξ) . . . ϕN (ξ)

] and, similarly, write ψ0,N (ξ)T . Then wehave [PN ]i = ϕ0,N (ξi)
Tω and qN (ξ) = ψ0,N(ξ)TΩNω, where ΩN is de�ned below inProposition 7.1. Let us �nally denote by Φ the matrix whose rows are 
onstituted bythe ϕ0,N (ξi)

T , i = 1, . . . , n and write ΦI = [Φ]I,•. With these notations, eq. (P1') 
anbe rewritten in 
anoni
al form as
arg min

ω∈RN+1

1

2
ωTΩ4

Nω subje
t to 













































ΦI∪{1,n}ω ≤ yAsk
I∪{1,n},

−ΦIω ≤ −yBid
I ,

AΦω ≤ bp,

ψ0,N(0)TΩNω = 0.

(P1)
whi
h is nothing but a quadrati
 program in ω. This result is due to the followingProposition.Proposition 7.1. Let us write fN =

∑N
k=0 λ

−1
k ωkψk and

ΩN = Diag(λ−1
0 , . . . , λ−1

N ), (7.11)whi
h stands for the (N + 1) × (N + 1) diagonal matrix whose diagonal entries arethe λ−1
k for k = 0, . . . , N . Then

‖∂2ξfN‖2L2I = ωTΩ4
Nω.

Proof. Noti
e indeed that ∂2ξfN = ωTΩN∂
2
ξψ0,N . However, as demonstrated above inTheorem 6.1, ∂2ξψk = λ−1

k ϕk. Hen
e, using the property that the ϕks 
onstitute an
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‖∂2ξfN‖2L2I =

N
∑

k=0

λ−4
k ω2

k = ωTΩ4
Nω.

7.5. Properties of eq. (P1) and 
hoi
e of the spe
tral-
uto� N . A �rstquestion that arises is whether this quadrati
 program eventually admits a solution?In that perspe
tive, it is straightforward to noti
e that eq. (P1) admits a solution ifand only if Span{ϕi, 0 ≤ i ≤ N} admits an element whi
h satis�es the 
onstraints.Let us denote by D the subset of L2I whi
h satis�es the 
onstraints des
ribed ineq. (P1') and assume that D 6= ∅. Obviously, eq. (P1) admits a solution as soon as
N is large enough, sin
e (ϕi) is 
omplete in L2I (see Proposition 5.1). On the otherhand, it admits no solution when D = ∅, that is when the 
onstraints are in
ompat-ible. This latter situation might result from the presen
e of spurious data, sin
e thepresen
e of an arbitrage in the bid-ask quotes 
orresponds to a real arbitrage in themarket, whi
h would 
ertainly be arbitraged away by pra
titioners.A se
ond natural question that arises, is how to 
hoose the spe
tral 
uto� N? As de-tailed in eq. (P1), we aim at re
overing the smoothest density qN built upon ψ0, . . . ψN
ompatible with pri
e quotes. As des
ribed in Theorem 6.1, ψk is 
onstituted of aperiodi
 
omponent hk,2 os
illating at frequen
y ρk/B around an exponential trend
hk,1, where ρk grows roughly speaking like k. It is therefore natural to think that thesmaller N , the smoother the singular basis fun
tions and thus the smoother the den-sity qN built upon them (although this needs not be the 
ase, rigorously speaking).This intuitive observation, is justi�ed through simulations (see Figure 8.3, bottomgraph). In pra
ti
e, we therefore suggest to 
hoose N to be the smallest N su
h thateq. (P1) admits a solution. This is what we a
tually do in the forth
oming simulationstudy.Finally, let us point out that we 
ould have 
hosen to impose a positivity 
onstrainton qN at ea
h point of the underlying dense grid ξ1, . . . , ξn, as an alternative to thein-sample 
onvexity 
onstraints on the (mi)s des
ribed in eq. (P1). However, we have
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ed via numeri
al simulations that results obtained in that way are less satisfyingthan with the 
onvexity 
onstraints on the mis. We therefore opted for the 
onvexity
onstraints.8. Simulation study. We run a simulation study both on real and simulateddata. The purpose of the estimation on simulated data is mostly to show that theSRM returns a valid RND estimator in extreme 
ases, when as little as 5 marketquotes are available.Re
all from Lemma 6.8 that, from k = 1 onward, we 
an write βk ≈ 2e−
π

2
−kπ ineq. (6.1) above. This approximation is not valid for k = 0. In that 
ase, however, we
an solve eq. (6.17) numeri
ally to obtain ρ0 = 1.875104069. This is the value of ρ0we use in the following simulation study.Table 8.1S&P 500 put option pri
es, Jan. 5, 2005. S&P 500 Index 
losing level = 1183.74; Optionexpiration = 03/18/2005 (72 days); r = 2.69%; δ = 1.70%.Strike pri
e 500 550 600 700 750 800 825 850 900 925Best bid 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.20Best o�er 0.05 0.05 0.05 0.10 0.15 0.20 0.25 0.50 0.50 0.70Strike pri
e 950 975 995 1005 1025 1050 1075 1100 1125 1150Best bid 0.50 0.85 1.30 1.50 2.05 3.00 4.50 6.80 10.10 15.60Best o�er 1.00 1.35 1.80 2.00 2.75 3.50 5.30 7.80 11.50 17.20Strike pri
e 1170 1175 1180 1190 1200 1205 1210 1215 1220 1225Best bid 21.70 23.50 25.60 30.30 35.60 38.40 41.40 44.60 47.70 51.40Best o�er 23.70 25.50 27.60 32.30 37.60 40.40 43.40 46.60 49.70 53.40Strike pri
e 1250 1275 1300 1325 1350Best bid 70.70 92.80 116.40 140.80 165.50Best o�er 72.70 94.80 118.40 142.80 167.508.1. Real data. We use the bid ask quotes reported in [14, Table 1℄ for putoptions on the S&P 500 Index on January 5, 2005. For 
ompleteness, we reprodu
ethe table here in Table 8.1. We 
hoose B = 2 ∗ S0e

(r−δ)τ , whi
h 
orresponds totwo times the Forward pri
e on the underlying sto
k. This 
hoi
e is arbitrary andprodu
es an interval I, whi
h is symmetri
 around the forward pri
e. We observe fromour simulation that the result is largely independent of the 
hoi
e of B. However, thehigher B, the higher we will need to go into the spe
trum of γ∗, sin
e the smoothestRND that �ts the data will be more and more 
on
entrated around the 
enter of theinterval I. As regards the 
onstraints, we 
hoose the grid ξ1, . . . , ξn to be su
h that
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ξk = k − 1, k = 1, . . . , ⌊B⌋ + 1 and if ⌊B⌋ < B, we add ξ⌊B⌋+2 = B. Of 
ourse, thisgrid 
ontains the initial 35 quoted strike pri
es sin
e they are integer valued. With theabove 
hoi
e of B, the quadrati
 program given in eq. (P1) �nds a feasible solutionfrom spe
tral 
uto� 66 onward. We report q⋆66 below in Figure 8.3. For the sakeof 
omparison, we plot on the same �gure the log-normal distribution obtained byleast-square �t to the put pri
es obtained as average of the bid-ask quotes. The onlyparameter of the log-normal distribution that must be �tted is σ (see Proposition 8.1),and we �nd σopt = 0.143. Interestingly, q⋆66 displays a small bump at the beginningof its left-tail, whi
h does not appear in [14, Fig. 8℄ and 
ould hardly be a

ountedfor by parametri
 methods. Noti
e the small blip next to B in Figure 8.3. Thisboundary e�e
t is due to the fa
t that all the ψks and their �rst derivative are worth
0 in B. In order to show that the 
hoi
e of B has very little impa
t, we 
omputethe RND estimator for B = 1.4 ∗ S0e

(r−δ)τ . Results are reported in Figure 8.1. Aswas expe
ted, �rst feasible points appear at mu
h lower spe
tral 
uto�s, namely fromspe
tral 
uto� 26 onward. Therefore, we plot q⋆26. As 
an be seen from Figure 8.2,the put pri
es P⋆

26 arising from eq. (P1) lie inside the bid ask quotes, while the onesprodu
ed by the �tted log-normal density lie outside.
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Figure 8.1. Here we plot the RND q⋆26 (solid line) estimated from the real pri
e quotes reportedin Table 8.1. We 
hoose B = 1.4 ∗ F0 = 1.4 ∗ S0 ∗ e(r−δ)τ = 1660 for that plot. In addition, weplot the best log-normal �t (in a least-square sense) to the average pri
e quotes (dashed line). It isobtained for σopt = 0.143. At the top, we display the full left tail of the RND q⋆26. At the bottom,we zoom in on the fat left tail of the estimated RND distribution.
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Figure 8.2. Here we plot the �tted put pri
es obtained from the setting des
ribed above inFigure 8.1. The solid line 
orresponds to the �tted pri
es P⋆

26, while the dashed line 
orresponds tothe �tted pri
es obtained from a log-normal distribution. The stars and dots 
orrespond to marketask and bid quotes, respe
tively. At the top, we give a large view of the �ts. At the bottom we zoomin to show that P⋆

26 lies inside the market quotes, while the �tted log-normal pri
es lie outside.
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Figure 8.3. Here we plot the RND q⋆66 (solid line) estimated from the real pri
e quotes reportedin Table 8.1. We 
hoose B = 2 ∗ F0 = 2 ∗S0 ∗ e(r−δ)τ = 2372 for that plot. In addition, we plot thebest log-normal �t (in a least-square sense) to the average pri
e quotes (dashed line). It is obtainedfor σopt = 0.143. At the top, we display the full left tail of the RND q⋆66 and its full right tail upto B. At the bottom, we superimpose q⋆66 (solid line) with q⋆26 (dashed line) obtained in Figure 8.1for an other 
hoi
e of B. Noti
e the strong agreement between both densities, whi
h highlights thestability of the SRM with respe
t to the 
hoi
e of B. Interestingly, q⋆66 is slightly more bumpy than
q⋆26 at the level of its left fat-tail. This reinfor
es our argument that smoothness goes hand in handwith low spe
tral 
uto�.



38 JEAN-BAPTISTE MONNIER8.2. Simulated data. As regards the simulated data, we work in the Bla
k-S
holes setting. In that 
ontext the pri
e of a put option admits a 
losed form solutionand the RND is log-normal (see Proposition 8.1). We model the bid-ask spread asa random noise around the true pri
e given by the Bla
k-S
holes formula. Morepre
isely, for a given set of quoted strikes ξ1 < . . . < ξs and 
orresponding putpri
es P (ξ1), . . . , P (ξs), we write yAsk
i = P (ξi) + zi/2 and yBid

i = P (ξi)− zi/2, where
zi = max(1,min(3, ̟|ξi|)), the ξi's are iid standard normal random variables and
̟ = 0.1max1≤i≤s P (ξi). The bounds 1 and 3 are 
hosen by analogy with the realdata quotes in Table 8.1. Of 
ourse, the bid-ask quotes we obtain in that way arenot arbitrage free. However, they 
ontain the true put pri
e P (ξ), whi
h, given thenature of the quadrati
 program des
ribed in eq. (P1) above, is all that matters toapproximate the true RND. For the sake of simpli
ity, we 
hoose r = 0, δ = 0, τ = 1,
S0 = 100, and σ = 0.3 and B = 2 ∗ F0 = 2 ∗ S0. In addition we set a �rst strike pri
eat ⌊F0⌋ and spread the others on its left and right sides at unit length distan
e awayfrom ea
h other until we obtain s strikes. More pre
isely, the se
ond strike would be
⌊F0⌋ − 1, the third ⌊F0⌋ + 1, the fourth ⌊F0⌋ − 2 and so on and so forth. We plotthe results for the �rst two spe
tral 
uto�s at whi
h a feasible point is found belowin Figure 8.4 in the 
ase where there are as little as s = 5 bid ask quotes and inFigure 8.5 in the 
ase where there are as many as s = 50 of them. In any 
ase, we 
ansee that we obtain a smooth density that resembles the log-normal density generatingthe initial quoted pri
es and that the estimate is stable from one spe
tral 
uto� toanother. Of 
ourse, the more strikes we have, the better the �t. Besides, we observeas expe
ted from an other simulation not reported here that, the smaller the bid-askspread, the better the �t. Noti
e on
e again that the �tted right-tail rea
hes zero in
B, while the true one is stri
tly positive at that point. As before, this is due to thefa
t that ψk(B) = 0.
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Figure 8.4. Here we are in the 
ase of 5 simulated bid ask quotes and with B = 2 ∗ F0 = 200.The �rst two plots display q⋆5 and q⋆6 (dashed line), the true log-normal RND used to gener-ate the pri
es (dashed-dotted line) and the orthogonal proje
tion of the true log-normal RND on
{ψ0, . . . , ψN} for N = 5 and N = 6 (solid line), respe
tively. The last two plots display the �ttedput pri
es, that is P⋆

5 and P⋆

6 (dashed line) together with the true pri
es (dashed-dotted line).
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Figure 8.5. Here, we repeat the same plots as in Figure 8.5 in the 
ase of 50 simulated bid-askquotes.
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k-S
holes model. This is a well-known result of math-emati
al �nan
e.Proposition 8.1. Let us denote by S0 the pri
e today of a sto
k paying dividends
ontinuously over time at a 
onstant rate δ and by r the 
ontinuously 
ompoundedrisk-free rate. The arbitrage pri
e today of a put option on that sto
k maturing attime τ is given by the following 
losed form formula,
P (ξ) = ξe−rτN (−d2)− S0e

−δτN (−d1),with
d1 =

ln(S0/ξ) + [(r − δ) + 1
2σ

2]τ

σ
√
τ

, d2 = d1 − σ
√
τ,where σ stands for the volatility of the sto
k and N for the standard normal 
umulativedistribution. In addition, the RND is log-normal and writes as

q(x) =
1√

2πστx
exp

(

− [ln(x/S0)− (r − δ)τ + 1
2σ

2τ ]2

2σ2τ

)

.

Proof. These results 
an be found in see [21, p.117℄, for example.Additional results relative to γ and γ∗. We now present three results relativeto γ and γ∗, whi
h are either used in the 
ore of the paper or of interest in their ownright.Proposition 8.2. The operators γ and γ∗ admit no eigenve
tors.Proof. Suppose f is an eigenve
tor of γ asso
iated to eigenvalue λ, then denote by
f̆(t) = f(B − ξ), (8.1)
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e that for all ξ ∈ I, a dire
t appli
ation of Lemma 8.4 allows to write
λf̆(B − ξ) = λf(ξ) = γf(ξ) = γ∗f̆(B − ξ).Thus f̆ must be an eigenve
tor of γ∗. However, it is well known that γ∗ admits noeigenvalue sin
e, for any λ 6= 0,

λf(ξ) = γ∗f(ξ) =

∫ ξ

0

θ∗(ξ, x)f(x)dx, ξ ∈ I,de�nes a homogeneous Volterra equation in f , whose unique trivial solution is f = 0(see [12, p.239, Th. 5.5.2℄).Finally, let us point out the two following useful lemmas.Lemma 8.3. Let us denote by ∂kξ the kth order partial di�erential operator with respe
tto ξ. Then, for any f ∈ L2I, we have the following results.
f = ∂2ξγf, f = ∂2ξγ

∗f,

f = ∂4ξγ
∗γf, f = ∂4ξγγ

∗f.

Proof. Noti
e indeed that
∂ξγf(ξ) = ∂ξ

∫ B

ξ

(x− ξ)f(x)dx = −
∫ B

ξ

f(x)dx,

∂ξγ
∗f(ξ) = ∂ξ

∫ ξ

0

(ξ − x)f(x)dx =

∫ ξ

0

f(x)dx.Therefore, we obtain immediately
f = ∂2ξγf = ∂2ξγ

∗f.The remaining of the proof follows dire
tly from these �rst results. Noti
e indeed
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∂4ξγ

∗γf = ∂2ξ [∂
2
ξγ

∗](γf) = ∂2ξγf = f.whi
h 
on
ludes the proof.Lemma 8.4. For any f ∈ L2I and ξ ∈ I, we have γf(ξ) = γ∗f̆(B − ξ) (see eq. (8.1)for notations).Proof. Perform the 
hange of variable u = B − x to obtain
γf(ξ) =

∫ B

ξ

(x− ξ)f(x)dx

=

∫ B−ξ

0

([B − ξ]− u)f̆(u)du = γ∗f̆(B − ξ).

Relation between the (ϕk)s and the (ψk)s. We believe that m0(q) and m1(q)
ould be readily estimated from the data, so that eq. (7.2) 
ould be used to 
onstru
ta se
ond estimator of the RND based on the restri
ted 
all operator. This se
ondestimator 
ould eventually be 
ombined with the one obtained from the SRM above.To that end, and for the sake of 
ompleteness, we 
ompute the s
alar produ
ts betweenelements of the two singular bases. Results are reported in the following proposition.Proposition 8.5. Let us write
pk,m(x, y) = (−x3 + x2y)(−1)m+k − xy2 + y3,

qk,m(x, y) = (x3 + x2y)(−1)k + (y3 + y2x)(−1)m.Then, we have the following relationships,
〈ϕk, ψm〉

= 4
pk,m(ρk, ρm)e−ρk−ρm − qk,m(ρk, ρm)e−ρk + qk,m(ρm, ρk)e

−ρm + pk,m(ρm, ρk)

(ρ4k − ρ4m)(1 + (−1)me−ρm)(1 + (−1)ke−ρk)
, k 6= m,
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〈ϕk, ψk〉 =

−e−2ρk (ρk + 2) + 2ρk(−1)ke−ρk − ρk + 2

(e−ρk + (−1)k)2ρk
.On the way, we obtain,

〈hk,1, hm,1〉

= ((−1)k + (−1)m)
(ρk + ρm)(e−ρm − e−ρk) + (−1)k(ρk − ρm)(1− e−(ρk+ρm))

(ρ2k − ρ2m)(1 + (−1)ke−ρk)(1 + (−1)me−ρm)
, k 6= m,

〈hk,1, hm,2〉

= ((−1)k − (−1)m)
(ρk + ρm)(e−ρm + e−ρk)− (−1)k(ρk − ρm)(1 + e−(ρk+ρm))

(ρ2k + ρ2m)(1 + (−1)me−ρm)(1 + (−1)ke−ρk)
, k 6= m,

〈hk,1, hk,1〉 =
1− e−2ρk + 2(−1)kρke

−ρk

ρk((−1)k + e−ρk)2
,

〈hk,1, hk,2〉 = 0,

〈hk,2, hm,2〉 = δk,m − 〈hk,1, hm,1〉.

Proof. Re
all that, for all k,m, we have de�ned
hk,1 = ak,1fk,1 + ak,2fk,2, hk,2 = ak,3fk,3 + ak,4fk,4,

ϕk = hk,1 + hk,2, ψk = hk,1 − hk,2.Besides, we have that
〈ϕk, ϕm〉 = δk,m = 〈hk,1, hm,1〉+ 〈hk,2, hm,2〉+ 〈hk,1, hm,2〉+ 〈hk,2, hm,1〉,

〈ψk, ψm〉 = δk,m = 〈hk,1, hm,1〉+ 〈hk,2, hm,2〉 − 〈hk,1, hm,2〉 − 〈hk,2, hm,1〉.



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 45Therefore, we obtain the following relationships,
δk,m = 〈hk,1, hm,1〉+ 〈hk,2, hm,2〉,

0 = 〈hk,1, hm,2〉+ 〈hk,2, hm,1〉.Whi
h leads to
〈ϕk, ψm〉 = 〈hk,1, hm,1〉 − 〈hk,2, hm,2〉 − 〈hk,1, hm,2〉+ 〈hk,2, hm,1〉,

= 2(〈hk,1, hm,1〉 − 〈hk,1, hm,2〉)− δk,m.Now, it remains to 
ompute 〈hk,1, hm,1〉 and 〈hk,1, hm,2〉. The results follow fromlengthy and tedious but straightforward 
omputations and are therefore not reportedhere.From the RND q of Sτ to the density of lnSτ . Some authors have 
hosento fo
us on the estimation of the density of logSτ rather than on the density of Sτitself. Both densities relate by a simple transformation, as des
ribed in the followingproposition. In our 
ase, this transformation 
an be readily applied sin
e the SRMreturns an analyti
 expression for the estimated RND.Proposition 8.6. If X admits f(x) for density on R, then Y = exp(X) admits
1
y f(ln y) for density on R+. Conversely, if Y admits f(y) for density on R+, then
X = ln(Y ) admits exf(ex) for density on R.A
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