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SPECTRAL ANALYSIS OF RESTRICTED CALL AND PUTOPERATORS AND APPLICATION TO STABLE RISK-NEUTRALDENSITY RECOVERYJEAN-BAPTISTE MONNIER∗Abstrat. In this paper, we propose a new method for estimating the onditional risk-neutraldensity (RND) diretly from a ross-setion of put option bid-ask quotes. More preisely, we proposeto view the RND reovery problem as an inverse problem. We �rst show that it is possible tode�ne restrited put and all operators that admit a singular value deomposition (SVD), whih weompute expliitly. We subsequently show that this new framework allows to devise a simple and fastquadrati programming method to reover the smoothest RND whose orresponding put pries lieinside the bid-ask quotes. This method is termed the spetral reovery method (SRM). Interestingly,the SVD of the restrited put and all operators sheds some new light on the RND reovery problem.The SRM improves on other RND reovery methods in the sense that 1) it is fast and simple toimplement sine it requires to solve one single quadrati program, yet being fully nonparametri;2) it takes the bid ask quotes as sole input and does not require any sort of alibration, smoothing orpreproessing of the data; 3) it is robust to the pauity of prie quotes; 4) it returns the smoothestdensity giving rise to pries that lie inside the bid ask quotes. The estimated RND is therefore aswell-behaved as an be; 5) it returns a losed form estimate of the RND on the interval [0, B] of thepositive real line, where B is a positive onstant that an be hosen arbitrarily. We thus obtain boththe middle part of the RND together with its full left tail and part of its right tail. We onfront thismethod to both real and simulated data and observe that it fares well in pratie. The SRM is thusfound to be a promising alternative to other RND reovery methods.Key words. Risk-neutral density; Nonparametri estimation; Singular value deomposition;Spetral analysis; Quadrati programming.AMS subjet lassi�ations. 91G70, 91G80, 45Q05, 62G051. Introdution.1.1. The setting. Over the last four deades, the no-arbitrage assumption hasproved to be a fruitful starting point that paved the way for the elaboration of arih theoretial framework for derivatives priing known today as arbitrage priing
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2 JEAN-BAPTISTE MONNIERtheory. Among its numerous ahievements, the arbitrage priing theory has set forthtwo fundamental theorems. The First Fundamental Theorem of Asset Priing (see[21, p.72℄) proves that a market is arbitrage-free if and only if there exists a measure
Q equivalent to the historial (or statistial) measure P, whih turns the underlyingprie proess into a martingale. Q is therefore referred to as a martingale measure.The Seond Fundamental Theorem of Asset Priing (see [21, p.73℄) proves in turn thatthis martingale measure is unique if and only if the market is omplete (see [21, p.300℄for terminology). Let us denote by Sτ the positive valued prie of the underlying at adeterministi future date τ and by π(Sτ ) the payo� of a ontingent laim maturing attime τ . Let us moreover denote by q the marginal density of Sτ under Q with respetto the Lebesgue measure on the positive real line, assuming that it exists. As initiallyproved in [10℄, the arbitrage prie of this derivative seurity writes as its disountedexpeted payo� under Q, that is,

e−rτEQπ(Sτ ) = e−rτ

∫

x≥0

π(x)Q(Sτ ∈ dx) = e−rτ

∫

x≥0

π(x)q(x)dx,where r stands for the ontinuously ompounded risk-free rate. It is a widely aknowl-edged fat that �nanial markets are inomplete, shall it only be due to the preseneof jumps in the underlying prie proess. In suh a setting, and as desribed above,there exist eventually very many qs, and therefore, very many orresponding systemsof arbitrage-free pries. Let us denote by Q the orresponding set of valid densities
q. The elements q of Q are most often referred to as risk-neutral densities (RNDs)and we will stik to this terminology in the sequel.RNDs are of ruial interest for Central Banks and, in fat, most institutions andpeople onerned with �nanial markets sine they represent the market sentimentabout a given underlying prie proess at a future point in time (see [3℄). They arealso of ruial interest to the �nanial derivatives industry sine the knowledge of
q allows to prie new derivative seurities in an arbitrage-free way with respet totraded ones. For these reasons, the literature related to risk-neutral density estima-



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 3tion is very extensive, the bulk of it dating bak to the late 90's and early 2k's. It isnot our purpose here to present an exhaustive review of this literature. Exellent andup-to-date reviews an in fat be found in [14, 17℄. Older but still relevant ones anbe found in [9, 3℄.Among derivative seurities, all and put options play a very partiular role sinethey are atively traded in the market and thus believed to be e�iently pried. Letus reall that a all of strike ξ and maturity τ gives its holder the right to buy theunderlying seurity at maturity time τ at prie ξ. It is an insurane against a risein the prie of the underlying. Its payo� writes π(Sτ , ξ) = θ(Sτ , ξ) = (Sτ − ξ)+,where we have written (x)+ = max(x, 0) for x ∈ R. Conversely, a put option givesthe right to sell the underlying seurity. It is an insurane against a fall in the un-derlying prie and its payo� writes θ∗(Sτ , ξ) = (ξ − Sτ )
+. Here and in what follows,we denote the strike prie by ξ and not by k, whih will stand for a running index in N.Aording to the elebrated Breeden-Litzenberger formula, the seond derivative ofput and all pries with respet to their strike prie both equal the disounted RND

e−rτq (see [6℄). Therefore, if a ontinuum of put or all pries were available in themarket, we would have diret aess to the RND by the latter formula. However, thisis not the ase and only a few strike pries around the forward prie are quoted andatively traded at eah maturity date. Depending on the market, we overall rekonfrom 5 to 50 quotes at a given maturity date τ . To ompliate the matter even more,quotes do not appear as a single prie. Dealers quote in fat a bid prie, at whih theyo�er to buy the seurity, and an ask prie, at whih they o�er to sell the seurity. Thedi�erene between both pries is referred to as the bid-ask spread. For an interestinginsight into the nature of option quotes and soures of error in them, the reader isreferred to, say, [16, p.786℄.1.2. The problem and brief literature review. As detailed above, if tradedputs and alls at a given maturity τ are arbitrage free, they must write as their ex-peted disounted payo� with respet to a single RND q drawn from the set Q. Given



4 JEAN-BAPTISTE MONNIERthe pauity of quoted option pries at a given maturity τ and the presene of a bid-ask spread, it is lear that many RNDs ould in fat be hidden behind quoted optionpries. Therefore, the RND quest is not that muh about estimating the true RNDthat is used by the market for priing purpose, sine the nature of the quotes does notallow to identify it uniquely. It is rather more about reovering a valid RND, meaningan atual density funtion, to be hosen aording to a riterion typially related toits smoothness or information ontent. Historially, three main routes have been usedto reover a RND from quoted option pries: parametri methods, nonparametrimethods and models of the underlying prie proess. Eah of them have their prosand ons. Parametri methods are well adapted to small data sets and always reovera density. However, they onstrain the RND to belong to a given parametri family.On the other hand, models of the underlying prie proess have been the �rst greatsuess of arbitrage priing theory with the elebrated geometri Brownian motion(see [4, 20℄). However, the limitation of the log-normal distribution is now widelyaknowledged and no satisfying stohasti proess has yet been proposed that bothreprodue aurately the dynamis of the underlying prie proess and be analytiallytratable. Nonparametri methods irumvent both of these problems in the sensethat they do not require any stringent assumption on the proess generating the data(they are model-free) and an reover all possible densities. As a main drawbak,these methods are often data intensive.Let us brie�y ome bak on some ontributions to the nonparametri literature whihare relevant to the present paper. We an lassify nonparametri methods as follows.
• The expansion methods. It inludes the Edgeworth (see [19℄) and umu-lant expansions (see [22℄), whih allow to estimate a �nite number of RNDumulants. It also inludes orthonormal basis methods suh as Hermite poly-nomials (see [1℄), whih rely on well known Hilbert spae tehniques and giveaess to the middle part of the RND.
• The kernel regression methods. As a reent example, [2℄ have introdueda shape onstrained loal polynomial estimator of the RND. Notie that it



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 5performs estimation on the average quoted pries (that is, the average of thebid-ask quotes) and requires therefore to pre-proess them in order to makethem arbitrage-free. Moreover, the returned RND depends on the kernelhosen and it is not lear how it relates to the other valid RNDs in term ofinformation ontent or smoothness.
• The maximum entropy method. It is introdued in [8, 23℄, where the RND q isobtained via the maximization of an entropy riterion. Aording to [9, p.19℄,this method often gives bumpy (multimodals) estimates sine it imposes nosmoothness restrition on the estimated density. In addition, it is said in [18,p.1620℄, that this method presents onvergene issues.
• Other methods, whih do not belong to any of the three ategories above.Among them, we an refer to the positive onvolution approximation (PCA)of [5℄. In pratie, it �ts a �nite (but large) onvex linear ombination ofnormal densities to the average quoted put pries and approximates the RNDby the weights of the linear ombination. It thus presents similarities with[18℄, sine it ultimately �ts a disrete set of probabilities to the average quotedpries. We an also refer to the smoothed implied volatility smile method(SML) as in [14℄. This method uses the Blak-Sholes formula as a non-lineartransform. It onsists in �tting a polynomial through the implied volatilitiesobtained from average quoted pries, and using the ontinuum of option priesobtained in that way to get the RND via the Breeden-Litzenberger formula.[14℄ re�nes this method by taking the bid-ask quotes into aount at theimplied volatility �t stage. The SML method gives aess to the middle partof the RND. [14℄ proposes in addition a method for appending generalizedextreme value (GEV) tail distributions to it. The SML method is umbersomeand an seem a bit odd sine it requires going from prie spae to impliedvolatility spae, bak and forth. It is laimed that it is outperformed in termof auray and stability by simpler parametri methods in [7℄.1.3. Our results. In this paper, we propose to view the RND reovery problemas an inverse problem. We �rst show that it is possible to de�ne restrited put and



6 JEAN-BAPTISTE MONNIERall operators that admit a singular value deomposition (SVD), whih we omputeexpliitly. We subsequently show that this new framework allows to devise a simpleand fast quadrati programming method to reover the smoothest RND that is on-sistent with market bid-ask quotes.To be more preise, let us denote by I the segment [0, B] of the positive real line. Wede�ne the restrited put and all operators, denoted by γ∗ and γ, from L2I into itself(see eq. (2.1) and eq. (2.2) below) and show that they are onjugates of one another.We prove that the resulting self-adjoint operator γ∗γ is ompat. As a onsequeneof the spetral theorem (see [15℄), γ∗ admits a singular value deomposition withpositive dereasing singular values. We prove that the orresponding singular basesare omplete in L2I (see Theorem 3.1, item 3)) and ompute them expliitly togetherwith their singular values (see Figure 1.1). To �x notations, we will write (ϕk)k≥0 and
(ψk)k≥0 the two orthonormal families of L2I suh that γ∗γϕk = λ2kϕk, γγ∗ψk = λ2kψk,where (λk)k≥0 is a positive dereasing sequene of singular values. Preisely, we obtainexpliitly,

λk =

(

B

ρk

)2

,where
ρk =

π

2
+ kπ + (−1)kβk, k ∈ N,and, for all k ∈ N, βk is the smallest positive solution of the following �xed pointequation in u,

exp(π/2 + kπ + (−1)ku) =
1 + cos(u)

sin(u)
.Interestingly, the positive sequene (βk) dereases exponentially fast toward zero asdetailed in Lemma 6.8. Therefore, the sequene of singular values (λk)k≥0 tendsasymptotially toward zero at a rate of order k−2. The RND reovery problem is
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Figure 1.1. Here, we plot the �rst four elements of both singular bases. At the top we plot
ϕk, k = 0, . . . , 3. At the bottom, we plot ψk, k = 0, . . . , 3.



8 JEAN-BAPTISTE MONNIERtherefore said to be mildly ill-posed with a degree of ill-posedness equal to 2 (see [13,p.40℄). Furthermore, for all ξ ∈ I, we obtain,
ϕk(ξ) =

(

ak,1e
ρkξ/B + ak,2e

−ρkξ/B
)

+
(

ak,3 cos(ρkt/B) + ak,4 sin(ρkξ/B)
)

,

ψk(ξ) =
(

ak,1e
ρkξ/B + ak,2e

−ρkξ/B
)

−
(

ak,3 cos(ρkt/B) + ak,4 sin(ρkξ/B)
)

.where the oe�ients ak,i, i = 1, . . . , 4 are suh that,
ak,1 =

1√
B

(−1)k

eρk + (−1)k
,

ak,2 = (−1)keρkak,1 =
1√
B

1

1 + (−1)ke−ρk

,

ak,3 = − 1√
B
,

ak,4 =
1√
B

1− (−1)ke−ρk

1 + (−1)ke−ρk

.Based on this new framework, we propose a spetral approah to RND reovery. Itis fully nonparametri and an reover the restrition of any density to the interval
I. To that end, we notie that the singular bases funtions ϕk and ψk are in fatosillations hk,2 at frequeny ρk/B arried by the exponential trend hk,1 (see eq. (6.2)and eq. (6.1) for notations). Conveniently, smooth densities are therefore essentiallyaptured by low singular spaes. The idea of reovering the smoothest density amongthe valid ones was initially suggested in [18℄. Subsequently, [9℄ rightfully pointed outthat the smoothness riterion an be debated as it is di�ult to give it an eonomior even information theoreti meaning. Our spetral approah sheds some new lighton this issue and makes it lear that the smoothness riterion is justi�ed by the fatthat the restrited all and put operators behave as low-pass frequeny �lters. It istherefore illusory to look for high frequeny information about the RND in a set ofquoted options pries, sine this information has been drastially attenuated by theoperator. The smoothness riterion arises therefore as a by-produt of the spetralnature of the restrited put and all operators and might well not be an intrinsiproperty of the true RND. Interestingly, smooth densities are also easier to reover



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 9by nonparametri means.In what follows, we exploit the rih framework o�ered by the SVD of the restritedput and all operators to reover the smoothest RND that is ompatible with marketquotes. As detailed in eq. (7.1) below, the disounted restrited put operator oinideswith the put prie funtion (as a funtion of the strike) on I. We therefore proposeto reover the smoothest RND suh that its image by the disounted restrited putoperator e−rτγ∗ lies in-between the bid-ask quotes (see eq. (7.1)). Conveniently, thesingular bases present the property of being image of one another by seond derivationmodulo a multipliation by the orresponding singular value of γ∗ (see Theorem 6.1).This allows us to haraterize the smoothness of the estimated RND diretly in termof a quadrati form of the oe�ients of the estimated put prie funtion, whihdepends on the singular values of the restrited put operator (see Proposition 7.1).This ruial feature allows to reover the smoothest RND as the solution of a simplequadrati program, whih takes the bid ask quotes as sole input. Our estimationmethod improves on existing ones in several ways, whih we sum up here.
• It is fast and simple to implement sine it requires to solve one single quadratiprogram, yet being fully nonparametri.
• It is robust to the pauity of prie quotes sine the smaller the number ofquotes, the less onstrained the quadrati program and thus the easier tosolve.
• It takes the bid ask quotes as sole input and does not require any sort ofsmoothing or preproessing of the data.
• It returns the smoothest density giving rise to prie quotes that lie inside thebid ask quotes. The estimated RND is therefore as well-behaved as an be.
• It returns a losed form estimate of the RND on I. We thus obtain boththe middle part of the RND together with its left tail and part of its righttail. Interestingly, the left tail ontains ruial information about marketsentiments relative to a potential forthoming market rash.It is noteworthy that the singular vetors ϕ0 and ψ0 orresponding to the largest



10 JEAN-BAPTISTE MONNIERsingular value λ0 of γ and γ∗ look themselves very muh like ross setions of put andall pries, respetively (see Figure 1.1). In that sense, they will be able to apturethe bulk of the shape of a ross setion of option pries, while the subsequent sin-gular vetors will add orretions to this general behavior. This is a ruial featureof this SVD that leads us to think that the singular bases of the restrited priingoperators are appropriate tools to reover the RND q. Interestingly, the performaneof our quadrati programming algorithm on real data is indeed quite onvining (seeSetion 8 for details).Readers interested in appending a full right tail to this estimated RND are referredto [14℄, who proposes a simple method for smooth pasting of parametri GEV taildistributions to an estimated RND.Here is the paper layout. We introdue the restrited all and put operators, γ and
γ∗, and operators derived thereof in Setion 2. We detail the properties of operators
γ∗γ and γγ∗ on the one hand, and γ and γ∗ on the other hand, in Setion 3 andSetion 4, respetively. Other results relative to these four operators are reported inSetion 5. Setion 6 gives expliit expressions for the (λk), (ϕk) and (ψk). The SRMis detailed in Setion 7. Finally, we run a simulation study in Setion 8. An Appendixregroups some additional useful results.2. De�nitions and setting. Let us de�ne the restrited all operator on theinterval I = [0, B] as the operator γ from L2I into L2I suh that,

(γf)(ξ) =

∫

I

θ(ξ, x)f(x)dx, ξ ∈ I, f ∈ L2I, (2.1)
θ(ξ, x) = (x− ξ)+.It is a trivial fat that γf belongs indeed to L2I. Let's denote by 〈., .〉 the usual salarprodut on L2I and by ‖.‖L2I the assoiated norm. Now, it is enough to notie that



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 11for all ξ, x ∈ I, |θ(ξ, x)| ≤ B and apply Cauhy-Shwartz inequality to obtain,
‖γf‖2L2I ≤

∫

I

dξ

(
∫

I

dx|θ(ξ, x)||f(x)|
)2

≤ B4‖f‖2L2I <∞.The adjoint operator γ∗ of γ is suh that, for all f, g ∈ L2I,
〈γ∗f, g〉 = 〈f, γg〉

=

∫

I

duf(u)

∫

I

dxθ(u, x)g(x)

=

∫

I

dxg(x)

∫

I

duθ(u, x)f(u).Hene
γ∗f(ξ) =

∫

I

θ∗(ξ, x)f(x)dx, ξ ∈ I, f ∈ L2I, (2.2)
θ∗(ξ, x) = θ(x, ξ).So that γ∗ is nothing but the restrited put operator on the interval I. In partiular,we an write
γ∗γf(ξ) =

∫

I

ϑ1(ξ, x)f(x)dx, ξ ∈ I, f ∈ L2I, (2.3)
γγ∗f(ξ) =

∫

I

ϑ2(ξ, x)f(x)dx, ξ ∈ I, f ∈ L2I, (2.4)where
ϑ1(ξ, x) =

∫

I

duθ∗(ξ, u)θ(u, x)

=

∫

I

du(ξ − u)+(x− u)+ =

∫ ξ∧x

0

du(ξ − u)(x− u)

= ξx(ξ ∧ x) − (ξ + x)(ξ ∧ x)2/2 + (ξ ∧ x)3/3,



12 JEAN-BAPTISTE MONNIERand
ϑ2(ξ, x) =

∫

I

duθ(ξ, u)θ∗(u, x)

=

∫

I

du(u− ξ)+(u− x)+ =

∫ B

ξ∨x

du(u− ξ)(u− x)

= ξx(B − ξ ∨ x)− (ξ + x)(B − ξ ∨ x)2/2 + (B − ξ ∨ x)3/3.Let us now turn to the detailed inspetion of these operators.3. Results relative to γ∗γ and γγ∗. Let us denote by R(κ) the range ofan operator κ of L2I and by N (κ) its null spae (see [12, p.23℄). Obviously both
γ∗γ and γγ∗ are self-adjoint. This translates into the fat that their kernels aresymmetri (meaning ϑi(ξ, x) = ϑi(x, ξ)). In addition, both ϑ1 and ϑ2 are ontinuouson the bounded square I×I. Therefore, the assoiated operators are ompat (see [12,Ex. 4.8.4, p.172℄). As suh, they verify the spetral theorem (see [12, Th. 4.10.1, 4.10.2,p.187-189℄).Theorem 3.1. Given the operators γ∗γ and γγ∗ de�ned in eq. (2.3) and eq. (2.4)above, we have the following results.1) The operators γ∗γ and γγ∗ are ompat and self-adjoint. As suh, they admitountable families of orthonormal eigenvetors (ϕk) and (ψk) assoiated to thesame positive dereasing sequene of eigenvalues λ2k, whih are omplete in R(γ∗γ)and R(γγ∗), respetively.2) Besides, we have

R(γ∗γ) ⊂ L2I ∩ C4I,

R(γ∗γ) ⊂ L2I ∩ C4I,where C4I stands for the set of four times di�erentiable funtions on I.3) Furthermore, the orthonormal families (ϕk) and (ψk) are omplete in L2I. In



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 13other words, they are both orthonormal bases of L2I. In fat, we an write
L2I = R(γ∗γ) = Span{ϕk, k ∈ N},

= R(γγ∗) = Span{ψk, k ∈ N},where R(γ∗γ) stands for the losure of R(γ∗γ) in L2I (see [12, p.16℄) and Span{ϕk, k ∈

N} for the set of (potentially in�nite) linear ombinations of elements ϕk.4) Therefore, γ∗γ and γγ∗ are both invertible and admit the fourth order di�erentialoperator ∂4ξ as an inverse (see [12, p.155℄ for terminology). More preisely, wehave got
∂4ξγ

∗γf = f, ∀f ∈ L2I,

γ∗γ∂4ξf = f, ∀f ∈ R(γ∗γ),and idem for γγ∗.5) Finally, we have the following spetral deompositions,
f =

∑

k≥0

〈f, ϕk〉ϕk, f ∈ L2I,

γ∗γf =
∑

k≥0

λ2k〈f, ϕk〉ϕk, f ∈ L2I,and
f =

∑

k≥0

〈f, ψk〉ψk, f ∈ L2I,

γγ∗f =
∑

k≥0

λ2k〈f, ψk〉ψk, f ∈ L2I.

Proof. As detailed above, 1) follows diretly from the spetral theorem. 2) followsdiretly from the kernel representations in eq. (2.3) and eq. (2.4). It an also beseen from the fat that, for any f ∈ L2I, both γf and γ∗f are twie di�erentiable,



14 JEAN-BAPTISTE MONNIERwhih follows by simple inspetion of eq. (2.1) and eq. (2.2). 3) follows diretly fromProposition 5.1 below. 4) is a diret onsequene of Lemma 8.3 below. Finally, 5)follows diretly from 1) and 3).4. Results relative to γ and γ∗. The following theorem details the propertiesof the restrited put and all operators. It builds upon Theorem 3.1 above.Theorem 4.1. Given operators γ and γ∗ de�ned in eq. (2.1) and eq. (2.2) above, wehave the following results.1) Consider the sequene of positive dereasing singular values λk and singular vetors
(ϕk) and (ψk) de�ned in Theorem 3.1 above. The restrited put and all operators
γ∗ and γ are suh that, for all k ≥ 0,

γϕk = λkψk, γ∗ψk = λkϕk.2) Besides, we have
R(γ∗) ⊂ L2I ∩ C2I,

R(γ) ⊂ L2I ∩ C2I,where C2I stands for the set of two times di�erentiable funtions on I.3) In addition, we have L2I = R(γ∗) = R(γ). So that both γ and γ∗ are invertible andadmit the seond order partial di�erential operator ∂2ξ as an inverse. In partiular,we obtain
∂2ξγf(ξ) = ∂2ξγ

∗f(ξ) = f(ξ), ∀f ∈ L2I. (4.1)So that the knowledge of γf or/and γ∗f allows to reover f diretly as their se-ond derivative. This is nothing but the so-alled Breeden-Litzenberger formularestrited to the interval I.



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 154) We have furthermore the following spetral deompositions,
f =

∑

k≥0

〈f, ϕk〉ϕk, f ∈ L2I,

γf =
∑

k≥0

λk〈f, ϕk〉ψk, f ∈ L2I,and
f =

∑

k≥0

〈f, ψk〉ψk, f ∈ L2I,

γ∗f =
∑

k≥0

λk〈f, ψk〉ϕk, f ∈ L2I.5) Finally, we have a put-all parity on the interval that an be written as follows
(γ − γ∗)f(ξ) = m̄1(f)− ξm̄0(f),where we have de�ned m̄k(f) :=

∫

I
xkf(x)dx.Proof. The proof of 1) follows diretly from [13, p.37℄. 2) follows by simple inspetionof eq. (2.2) and eq. (2.1). The �rst part of 3) follows from the fats thatR(γ) = R(γγ∗)and R(γ∗) = R(γ∗γ) (see 1) above) and Theorem 3.1, item 3). The seond part of3) follows partly from Lemma 8.3 below (see Appendix) and partly from the obviousfat that f = γ∗∂2ξf for all f ∈ R(γ∗) (idem for γ). 4) follows diretly from 1) and3). Finally, 5) follows immediately from the following obvious omputations,

(γ − γ∗)f(ξ) = γf(ξ)− γ∗f(ξ)

=

∫

I

[θ(ξ, x) − θ∗(ξ, x)]f(x)dx

=

∫

I

(x− ξ)f(x)dx

= m̄1(f)− ξm̄0(f).



16 JEAN-BAPTISTE MONNIERWe regroup other results relative to the above operators in the following setion.5. Other results relative to γ∗γ, γγ∗, γ∗ and γ. We prove here that bothorthonormal families (ϕk) and (ψk) are omplete in L2I. Other interesting results areto be found in the Appendix. Some of them are purely tehnial, while some othersare of more general interest.Proposition 5.1. We have got,
L2I = R(γ∗γ) = Span{ϕk, k ≥ 0},

= R(γγ∗) = Span{ψk, k ≥ 0},where R(γ∗γ) stands for the losure of R(γ∗γ) in L2I (see [12, p.16℄) and Span{ϕk, k ∈

N} for the set of (potentially in�nite) linear ombinations of elements ϕk.Proof. We know from [13, �2.3.℄ that,
L2I = R(γ∗γ)⊕⊥ N (γ∗γ),

= R(γγ∗)⊕⊥ N (γγ∗).Therefore, it is enough to show that both null-spaes redue to the zero element. Thekernel N (γ∗γ) of γ∗γ is onstituted by the funtions f ∈ L2I that are solutions of
0 = γ∗γf(ξ), ∀ξ ∈ I.Deriving four times with respet to ξ and applying Lemma 8.3 (see Appendix) leadsto f(ξ) = 0, ξ ∈ I. So that N (γ∗γ) = {0}. Now it is enough to notie that N (γ∗γ) =

N (γ). However, we know from Lemma 8.4 that f ∈ N (γ) if and only if f̆ ∈ N (γ∗)(see eq. (8.1) for notation). Therefore N (γγ∗) = N (γ∗) = N̆ (γ) = N̆ (γ∗γ) = {0},where by N̆ , we mean {f̆ , f ∈ N}.6. Expliit omputation of (λk), (ϕk) and (ψk).6.1. Main result. In this setion, we give expliit expressions for the singularbases and singular vetors of the restrited all and put operators. The results are



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 17gathered below in Theorem 6.1. Let us write
fk,1(ξ) = eρkξ/B, fk,2(ξ) = e−ρkξ/B ,

fk,3(ξ) = cos(ρkt/B), fk,4(ξ) = sin(ρkξ/B),where
ρk =

π

2
+ kπ + (−1)kβk, k ∈ N, (6.1)and, for all k ∈ N, βk is the smallest positive solution of the following �xed pointequation in u,

exp(π/2 + kπ + (−1)ku) =
1 + cos(u)

sin(u)
.Interestingly, the positive sequene (βk) dereases exponentially fast toward zero asdetailed in Lemma 6.8. In addition, we write,

hk,1 = ak,1fk,1 + ak,2fk,2, hk,2 = ak,3fk,3 + ak,4fk,4, (6.2)where the oe�ients ak,i, i = 1, . . . , 4 are suh that,
ak,1 =

1√
B

(−1)k

eρk + (−1)k
,

ak,2 = (−1)keρkak,1 =
1√
B

1

1 + (−1)ke−ρk

,

ak,3 = − 1√
B
,

ak,4 =
1√
B

1− (−1)ke−ρk

1 + (−1)ke−ρk

.Then, we have the following theorem.Theorem 6.1. The eigenvetors (ϕk) of γ∗γ and (ψk) of γγ∗ are suh that
ϕk = hk,1 + hk,2, ψk = hk,1 − hk,2. (6.3)



18 JEAN-BAPTISTE MONNIERThey are related by the following relationships,
γϕk = λkψk, γ∗ψk = λkϕk, (6.4)where we have written

λk =

(

B

ρk

)2

, (6.5)and ρk is de�ned in eq. (6.1). They verify ‖ϕk‖L2I = ‖ψk‖L2I = 1. Moreover, wehave
ψk(B) = ψ′

k(B) = 0, ϕk(0) = ϕ′
k(0) = 0, (6.6)together with

ψ̆k = (−1)kϕk, ϕ̆k = (−1)kψk, (6.7)where we have written ψ̆k(ξ) = ψk(B − ξ). And �nally, we obtain as a diret onse-quene of eq. (4.1) above that
λk∂

2
ξψk = ∂2ξγϕk = ϕk,

λk∂
2
ξϕk = ∂2ξγ

∗ψk = ψk.

Proof. Notie readily that eq. (6.6), eq. (6.7) and the fat that both ϕk and ψk areunit normed are straightforward onsequenes of eq. (6.3). In addition, eq. (6.4) is arepetition of Theorem 4.1, item 1). So that we are in fat left with proving eq. (6.3)and eq. (6.5). Eah eigenvetor f of γ∗γ assoiated to the eigenvalue r4 is solution ofthe problem,
r4f = γ∗γf, (6.8)



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 19for some r 6= 0 and f ∈ L2I. After di�erentiating four times the latter equationwith respet to ξ (assuming that f ∈ L2I ∩ C4I) and applying Lemma 8.3, we obtainthat the solutions of eq. (6.8) are also solutions of the following fourth order ordinarydi�erential equation,
r4d4ξf − f = 0,where d4ξ stands for the fourth order ordinary di�erential operator. Its harateristipolynomial admits four roots ±r−1 and ±ir−1. Consequently, the real solutions ofthe above ordinary di�erential equation are of the form

f(ξ) = b1e
ξ/r + b2e

−ξ/r + b3 cos(ξ/r) + b4 sin(ξ/r). (6.9)The ϕks are thus of this form. Plugging this generi solution bak into eq. (6.8) leadsin turn, after tedious but straightforward omputations, to
Mb = 0, (6.10)where b is a 4× 1 vetor suh that bT =

[

b1 b2 b3 b4

] and M is the 4× 4 matrixde�ned by
M(r, B) =



















r−1eB/r −r−1e−B/r r−1 sin (B/r) −r−1 cos (B/r)

−r−2eB/r −r−2e−B/r r−2 cos (B/r) r−2 sin (B/r)

r−3 −r−3 0 r−3

r−4 r−4 r−4 0



















. (6.11)
There exists a non-trivial solution to eq. (6.10) if and only if r is suh that thedeterminant of M anels, that is Det(r,M) = 0. As detailed in Proposition 6.2, theroots of Det(r,M) = 0 are exatly the rm = B/νm where νm is de�ned in eq. (6.16).In addition, we prove in Proposition 6.3 that the system M(rm, B)b = 0 admits theunique solution bm. Reading o� eq. (6.9), we obtain that the eigenvetor of γ∗γ



20 JEAN-BAPTISTE MONNIERassoiated to eigenvalue r4m writes as αm = ηm,1 + ηm2
where both ηm,1 and ηm,2 arede�ned in eq. (6.15). Now, it is enough to notie that, given the properties of thesequene (νm) detailed in Proposition 6.5, r42k+1 = r42k and r42k+2 < r42k+1, k ∈ N. Inaddition, we know from Lemma 6.4 that α2k+1 = α2k. This allows us to onlude thatthe eigenvalues of γ∗γ are, without redundany, the λ2k, k ∈ N, de�ned in eq. (6.5)and the assoiated eigenspaes are unit-dimensional and respetively spanned by theeigenvetors ϕk, k ∈ N, de�ned in eq. (6.3).Computing ψk = λ−1

k γϕk leads, after tedious but straightforward omputations to
ψk = hk,1 − hk,2 and onludes the proof.

6.2. Additional results. This setion ontains a series of results that are usedthroughout the proof of Theorem 6.1 above. In this setion we make use of the map
E : N 7→ N suh that E(2k + 1) = E(2k) = k for all k ∈ N.Proposition 6.2. Let M(r, B) be the 4 × 4 matrix de�ned in eq. (6.11). The setof solutions r to the problem DetM(r, B) = 0 is ountable. Let us denote them by
rm,m ∈ N. For any m ∈ N, the solution rm an be written as

rm =
B

νm
,where νm is de�ned in eq. (6.16). We obtain in fat that,DetM(rm, B) = 0 ⇔ eνm = −1 + (−1)E(m) sin(νm)

cos(νm)
.Besides, the following relationships hold true

cos νm := − 2

eνm + e−νm
= − 1

cosh νm
, (6.12)

sin νm := −(−1)E(m) + (−1)E(m) 2

1 + e−2νm
. (6.13)



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 21Proof. It follows from straightforward omputations that,DetM(r, B) = 2e−B/r

(

cos (B/r)
(

eB/r
)2

+ 2eB/r + cos (B/r)

)

. (6.14)Let us write ν := B/r and notie that if cos(ν) = 0, then DetM(r, B) = 2 6= 0 sothat we must have cos ν 6= 0 for eq. (6.10) to admit a non-trivial solution. To be morespei� DetM(r, B) = 0 redues to P (eν) = 0 where P (x) := cos (ν)x2 +2x+cos (ν).However the roots of P are given by
δ±(ν) :=

−1± sin(ν)

cos(ν)
.Heneforth, r = B/ν anels DetM(r, B) if and only if ν is solution of anyone of thetwo following �xed point equations,

eν =
−1 + sin(ν)

cos(ν)
, eν =

−1− sin(ν)

cos(ν)
.The proof follows now diretly from Proposition 6.5.Proposition 6.3. For any rm solution of the equation DetM(rm, B) = 0 (see Propo-sition 6.2 above), the null spae of M(rm, B) is of dimension 1 and is spanned by thevetor

bTm =

[

bm,1 bm,2 bm,3 bm4

]

,where we have written,
bm,1 =

1√
B

(−1)E(m)

eνm + (−1)E(m)
,

bm,2 = (−1)E(m)eνmam,1 =
1√
B

1

1 + (−1)E(m)e−νm
,

bm,3 = − 1√
B
,

bm,4 =
1√
B

1− (−1)E(m)e−νm

1 + (−1)E(m)e−νm
,



22 JEAN-BAPTISTE MONNIERand νm is de�ned in eq. (6.16).Proof. It is a matter of straightforward linear algebra and thus left to the reader.Notie however, that it relies on the use of both eq. (6.12) and eq. (6.13).Lemma 6.4. Let us write
ζm,1(ξ) = eνmξ/B, ζm,2(ξ) = e−νmξ/B,

ζm,3(ξ) = cos(νmξ/B), ζm,4(ξ) = sin(νmξ/B),where νm is de�ned in eq. (6.16). In addition, we write,
ηm,1 = bm,1ζm,1 + bm,2ζm,2, ηm,2 = bm,3ζm,3 + bm,4ζm,4, (6.15)where the oe�ients bm,i, i = 1, . . . , 4 are de�ned in Proposition 6.3. For all k ∈ N,we have the following relationships

η2k+1,1 = η2k,1, η2k+1,2 = η2k,2

Proof. It follows from straightforward omputations using the fat that ν2m+1 =

−ν2m.Proposition 6.5. Let us de�ne the map E : N 7→ N suh that E(2k) = E(2k+1) = kfor k ∈ N. Let us write
g(ν) =

−1 + sin ν

cos ν
, h(ν) =

−1− sin ν

cos ν
,and onsider the �xed point equations eν = g(ν) and eν = h(ν). The set of orre-sponding solutions is exhausted by the sequene

νm = (−1)m
(π

2
+ E(m)π + (−1)E(m)βE(m)

)

, m ∈ N. (6.16)



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 23where (βm) is de�ned in Lemma 6.8. In partiular, notie that ν2k+1 = −ν2k and
|νm1

| < |νm2
| for all m1,m2 ∈ N suh that E(m1) < E(m2). Notie in addition that,by onstrution, νm is solution of

eνm = −1 + (−1)E(m) sin νm
cos νm

.This latter result, together with the fat that DetM(B/νm, B) = 0 (see eq. (6.14)),leads straightforwardly to the following relationships,
cos νm := − 2

eνm + e−νm
= − 1

cosh νm
,

sin νm := −(−1)E(m) + (−1)E(m) 2

1 + e−2νm
.

Proof. Consider the �xed point equation g(ν) = eν . Given the properties of g detailedin Proposition 6.6, two ases arise depending whether ν is positive or negative. Inthe ase where ν is positive, the exponential map meets g at points of the form
pm = 3π

2 + 2mπ − um for m ∈ N = {0, 1, 2, . . .} and some small but positive ums.A diret appliation of Lemma 6.7 shows that the negative solutions are exatly the
−pm,m ∈ N.The seond �xed point equation h(ν) = eν an be rewritten as g(−ν) = eν . Thepositive solutions are of the form qm = π

2 +2mπ+ vm,m ∈ N. And, from Lemma 6.7again, the orresponding negative solutions are the −qm,m ∈ N.Let us write tm = π
2 +mπ+(−1)mβm,m ∈ N. It is lear that t2k = qk and t2k+1 = pkfor k ∈ N. In partiular, tm is solution of

etm = −1 + (−1)m sin tm
cos tm

(6.17)Let us de�ne the map E : N 7→ N suh that E(2k + 1) = E(2k) = k for all k ∈ N.We de�ne νm,m ∈ N suh that νm = (−1)mtE(m), that is ν2k = tk and ν2k+1 = −tk,
k ∈ N. By onstrution, νm exhausts the set of solutions of both �xed point equations
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eν = g(ν) and eν = h(ν). In fat, νm is solution of

eνm = −1 + (−1)E(m) sin νm
cos νmProposition 6.6. Notie readily that h(ν) = g(−ν), so that it is enough to study theproperties of g alone. We have the following results,1. g is de�ned on the domain Dg = R\{ 3π

2 + 2mπ,m ∈ Z};2. g is 2π periodi and suh that, for all ν ∈ Sg = (−π
2 ,

3π
2 ), g(ν+2mπ) = g(ν);3. Finally, g is stritly inreasing on Sg and suh that,

lim
ν→⊕−π

2

g(ν) = −∞, g(
π

2
) = 0, lim

ν→⊖
3π
2

g(ν) = +∞.where we write →⊕ (resp. →⊖) to mean the limit from the above (resp.below).4. Notie that R\Dg (resp. R\Dh) orresponds exatly to the set of all the zerosof h (resp. g). Thus Dg ∩ Dh is the subset of R ontaining all the pointswhere both g and h are well de�ned and di�erent from zero.Proof. Let us �rst fous on the domain of g. It is de�ned on R\{π
2 +mπ,m ∈ Z}.However, g an be extended by ontinuity to be worth zero at points π
2 +2mπ,m ∈ Z.Notie indeed that for any small positive u and ℓ ∈ N, one has got

g(
π

2
+ (−1)ℓu) =

−1 + cosu

−(−1)ℓ sinu

=
−u2

2 +O(u4)

−(−1)ℓu+O(u3)
= (−1)ℓ

u

2
+O(u3).With a slight abuse of notations, we denote the latter extension by g. So that g isatually de�ned on R\{ 3π

2 + 2mπ,m ∈ Z}. The other properties are straightforward.Lemma 6.7. Reall that Dg and Dh are de�ned in Proposition 6.6. Notie �rst that
Dg ∩ Dh is symmetri, meaning that if ν ∈ Dg ∩ Dh, then −ν ∈ Dg ∩ Dh. For any
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ν ∈ Dg ∩ Dh, we have the following results,1. If ν is solution of the �xed point equation eν = g(ν), then −ν is also asolution.2. If ν is solution of the �xed point equation eν = h(ν), then −ν is also asolution.Proof. Notie �rst that we have the identity h(ν)g(ν) = 1 for any ν ∈ Dg ∩ Dh. Itsproof is immediate. And therefore, for any ν ∈ Dg ∩ Dh solution of eν = g(ν), weobtain g(−ν) = h(ν) = g(ν)−1 = e−ν. And idem for the solutions of eν = h(ν).Lemma 6.8. The sequene (βk) is suh that, for all k ∈ N, βk is the smallest positivesolution of the following �xed point equation in u,

exp(π/2 + kπ + (−1)ku) =
1 + cos(u)

sin(u)
.In addition, the approximation βk ≈ 2e−

π

2
−kπ holds true with a large degree of au-ray from k = 1 onward.Proof. Let us write tk = π

2 + kπ+ (−1)ku, for some small but positive u suh that tkis solution of eq. (6.17). Notie that
cos

(π

2
+ kπ + (−1)ku

)

= − sin(u) = −u+O(u3),

sin
(π

2
+ kπ + (−1)ku

)

= (−1)k cos(u) = (−1)k +O(u2),

exp
(π

2
+ kπ + (−1)ku

)

= e
π

2
+kπ(1 + (−1)ku+O(u2)).So that eq. (6.17) redues to

exp(π/2 + kπ + (−1)ku) =
1 + cos(u)

sin(u)
.Plugging-in the Taylor expansions above, we obtain

e
π

2
+kπ(1 + (−1)ku+O(u2)) =

2 +O(u2)

u+O(u3)
=

1

u
(2 + O(u2)),



26 JEAN-BAPTISTE MONNIERwhih an be rewritten as
u = e−

π

2
−kπ(2 +O(u)). (6.18)It an be veri�ed numerially that 2e−
π

2
−kπ is a very good approximation of βk assoon as k ≥ 1 in the sense that eq. (6.17) holds true with a very large degree ofauray.7. The spetral reovery method (SRM). In this Setion, we �rst desribehow γ and γ∗ relate to the bid-ask quotes. We then show that the SVD of therestrited priing operators desribed above an be used to design a simple quadratiprogram that reovers the smoothest RND ompatible with market quotes.7.1. From γ and γ∗ to all and put pries. Let us denote by P (ξ) and C(ξ)the put and all pries at strike ξ and by q the orresponding risk neutral density.Let us furthermore write Ī = R+\I = (B,∞). We assume that the restrition q|I tothe interval I of q is in L2I. For all ξ ∈ I, the following relationships are immediate.

erτP (ξ) = γ∗q(ξ), (7.1)
erτC(ξ) = γq(ξ) +

∫ ∞

B

(x− ξ)q(x)dx

= γq(ξ) +m1(q)− ξm0(q), (7.2)where we have de�ned,
mk(f) =

∫

Ī

xkf(x)dx.Notie in partiular that
m0(q) = Q(Sτ ≥ B) = 1− m̄0(q),

m1(q) = EQ(Sτ |Sτ ≥ B)Q(Sτ ≥ B) = EQSτ − m̄1(q).



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 27Eq. (7.1) shows that put pries diretly relate to the restrited put operator. From anestimation perspetive, this is a ruial feature that will allow us to reover the RNDdiretly from market put quotes. Unfortunately, the situation is slightly di�erent forall pries. As shown from eq. (7.2), all pries relate to the restrited all operatorvia m1(q) and m0(q), whih are both unknown. Although, they ould be estimatedand give rise to an estimator of the RND based on quoted all pries, we wont pursuethis route here, but rather fous on the simpler relation given by eq. (7.1).7.2. A refresher on no-arbitrage onstraints. For a detailed review of model-free no-arbitrage onstraints, the reader is referred to [21, p.32, � 1.8℄ and [11℄. Let usdenote by S0 the prie today of the underlying stok. Let us moreover assume that itpays a ontinuous dividend yield δ. Let us denote by r the ontinuously ompoundedshort rate and by τ the time to maturity. Let us reall �rst that, by no-arbitrage, putand all pries are related by the put-all parity.
C(ξ)− P (ξ) = S0e

−δτ − ξe−rτ . (7.3)Besides C(0) = S0 and P (0) = 0. Let us now fous on put pries. We have,
max(0, ξe−rτ − S0e

−δτ ) ≤ P (ξ) ≤ ξe−rτ , (7.4)
0 ≤ ∂ξP (ξ) ≤ e−rτ , (7.5)
0 ≤ ∂2ξP (ξ). (7.6)Assume we are given an inreasing sequene of n strikes ξ1 < ξ2 < ... < ξn and a setof orresponding put pries m1, . . . ,mn. As desribed in [2℄, the above no-arbitragerelationships translate into a �nite set of a�ne onstraints on the latter put pries.These onstraints an in fat be written in matrix form as Am ≤ bp, where A standsfor a 2n× n matrix, m is the n× 1 vetor suh that mT =

[

m1 . . . mn

] and bp isa 2n× 1 vetor. More preisely, eq. (7.6) translates into n− 2 onstraints as,
[Am]i :=

mi+1 −mi

ξi+1 − ξi
− mi+2 −mi+1

ξi+2 − ξi+1
≤ 0 := [bp]i, i = 1, 2, . . . , n− 2



28 JEAN-BAPTISTE MONNIERMoreover, the left-hand-side of eq. (7.4) is fully aptured in-sample by adding thefollowing additional n onstraints,
[Am]i+n−2 := −mi ≤ −max(0, ξie

−rτ − S0e
−δτ ) := [bp]i+n−2, i = 1, . . . , n (7.7)The right-hand-side of eq. (7.4) need not be taken into aount at this stage. It isindeed less stringent than the upper-bound onstraints we will impose in the nextsetion. Finally, given the �rst n− 2 onstraints, eq. (7.5) redues to two additionalonstraints,

[Am]2n−1 :=
mn −mn−1

ξn − ξn−1
≤ e−rT := [bp]2n−1,

[Am]2n := m1 −m2 ≤ 0 := [bp]2n.Finally, let us reall that if the forward prie F0 of the underlying stok is observabletoday, then, by no-arbitrage, it must be equal to S0e
(r−δ)τ .7.3. Bid-ask spread onstraints. Let us assume that the market provides uswith an inreasing sequene of strike pries ξ1 < ξ2 < . . . < ξs, where s is small.Typially s ranges from 5 to 50 depending on the underlying. In addition, the marketprovides us with a orresponding sequene of bid ask quotes for put options. Let usdenote them by yAsk

1 , . . . , yAsk
s and yBid

1 , . . . , yBid
s . We want the orresponding �ttedput pries (mi) to lie inside the bid ask quotes. This orresponds to the following 2sa�ne onstraints,

mi ≤ yAsk
i , −mi ≤ −yBid

i , i = 1, . . . s. (7.8)The quoted strikes might eventually span a very small portion of the segment I onwhih we want to reover the RND. In order to improve the quality of our estimator,we an onstrain it to verify the above no-arbitrage onstraints on a denser set ofstrikes than the quoted ones. Let us denote by ξ1 < ξ2 < . . . < ξn this new set ofstrike pries, suh that ξ1 = 0, ξn = B and inluding the initial quoted strikes. For
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Figure 7.1. This graph sums up the set of onstraints veri�ed by estimated put pries, whihare solutions of the quadrati optimization problem desribed in eq. (P1). Estimated put pries
m1, . . . , mn on the �dense� grid ξ1, . . . , ξn are displayed as blak dots. They must lie in-betweenthe bid-ask quotes, whih are represented by thik red dots ranging over quoted strikes ξi1 , . . . , ξis ,whih orrespond to a sparse subset of the underlying dense grid ξ1, . . . , ξn. In addition, extremeput pries m1 and mn are bounded above by yAsk

1 = 0 and yAsk
n , respetively, where the valueof yAsk

n is given in Setion 7.3. Both yAsk
1 and yAsk

n appear as thik blue dots at strikes ξ1 = 0and ξn = B, respetively. m1, . . . ,mn must also verify the in-sample onstraints desribed by thelhs of eq. (7.4). In partiular, the lhs of eq. (7.4) ensures that the mis are lower-bounded by the
(ξie

−rτ − S0e−δτ )+s, whih appear as thik blue dots. Sine this lower-bound is worth 0 for i = 1,this, together with the upper-bound yAsk
1 = 0 atually impose m1 = 0. Finally, m1, . . . ,mn verifyboth eq. (7.5) and eq. (7.6) above. The latter onstraint imposes in-sample onvexity.later referene, we denote by I = {i1, . . . , is} the subset of {1, . . . , n} orrespondingto the indexes of the initial quoted strikes. We know that, in any ase, we musthave 0 = P (0) = m1, so that we an de�ne yAsk

1 = 0. Furthermore, we know fromeq. (7.5) that P (ξ) annot grow at a rate faster than e−rτ , so that we an de�ne yAsk
nto be the orresponding linear extrapolation of the right-most market quote yAsk
is ,meaning yAsk

n = yAsk
is

+ e−rτ(ξn− ξis). In summary, the requirement that the mis fallin-between the bid-ask quotes translates into 2s+ 2 additional onstraints, whih wean write as follows
mi ≤ yAsk

i , i ∈ I ∪ {1, n}, (7.9)
−mi ≤ −yBid

i , i ∈ I. (7.10)All previously mentioned onstraints are summarized in Figure 7.1.



30 JEAN-BAPTISTE MONNIER7.4. The quadrati program. Fix N ∈ N. The hoie of N will be disussedin the next Setion. Let us denote by PN the estimator of the put prie P on I builtupon the ϕk's up to level N and by e−rτqN the orresponding inverse image by γ∗.We have expliitly, from eq. (7.1) and Theorem 4.1, item 4),
PN = γ∗e−rτqN ,

PN =

N
∑

k=0

ωkϕk,

qN = erτ
N
∑

k=0

λ−1
k ωkψk,for some ωT =

[

ω0 . . . ωN

]

∈ RN+1. Furthermore for a given matrix M , we willdenote by [M ]I,J the sub-matrix obtained by extrating the rows of M at indexes in
I and the olumns of M at indexes in J . When extrating all the olumns, we willwrite [M ]I,•, and similarly for the rows. And we will naturally write [M ]I in the asewhere M is a vetor. The SRM estimator ω⋆ is obtained as a solution of a quadratiprogram. It orresponds (modulo resaling by the λks and the disount fator) tothe oe�ients of the smoothest density that veri�es the no-arbitrage and bid-askonstraints above. To that end, notie that the L2I-norm of the seond derivativeof qN , namely SN = ‖∂2ξ qN‖2L2I

, quanti�es its smoothness. SN is often used as asmoothness penalty and has been widely used in the ontext of smooth RND reovery.Obviously, the smoother qN , the smaller SN . As detailed in Proposition 7.1, SN anbe diretly expressed as a quadrati form of ω involving the N +1 �rst eigenvalues ofthe restrited put operator γ∗. As a onsequene, ω⋆ is solution of,
arg min

ω∈RN+1
‖∂2ξqN‖2L2

subjet to 













































[PN ]I∪{1,n} ≤ yAsk
I∪{1,n},

−[PN ]I ≤ −yBid
I ,

APN ≤ bp,

qN (0) = 0.

(P1')



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 31where, with a slight abuse of notations, we have written PT
N =

[

PN (ξ1) . . . PN (ξn)

],
yBid
I stands for the vetor of initial put bid quotes and yAsk

I∩{1,n} stands for the ve-tor of initial put ask quotes augmented with the no arbitrage bounds yAsk
1 = 0 and

yAsk
n = yAsk

is + e−rτ (ξn − ξis). Notie that we have added the onstraint qN (0) = 0,whih does not arise as a natural property of the ψks.Denote by ϕ0,N (ξ)T =

[

ϕ0(ξ) . . . ϕN (ξ)

] and, similarly, write ψ0,N (ξ)T . Then wehave [PN ]i = ϕ0,N (ξi)
Tω and qN (ξ) = ψ0,N(ξ)TΩNω, where ΩN is de�ned below inProposition 7.1. Let us �nally denote by Φ the matrix whose rows are onstituted bythe ϕ0,N (ξi)

T , i = 1, . . . , n and write ΦI = [Φ]I,•. With these notations, eq. (P1') anbe rewritten in anonial form as
arg min

ω∈RN+1

1

2
ωTΩ4

Nω subjet to 













































ΦI∪{1,n}ω ≤ yAsk
I∪{1,n},

−ΦIω ≤ −yBid
I ,

AΦω ≤ bp,

ψ0,N(0)TΩNω = 0.

(P1)
whih is nothing but a quadrati program in ω. This result is due to the followingProposition.Proposition 7.1. Let us write fN =

∑N
k=0 λ

−1
k ωkψk and

ΩN = Diag(λ−1
0 , . . . , λ−1

N ), (7.11)whih stands for the (N + 1) × (N + 1) diagonal matrix whose diagonal entries arethe λ−1
k for k = 0, . . . , N . Then

‖∂2ξfN‖2L2I = ωTΩ4
Nω.

Proof. Notie indeed that ∂2ξfN = ωTΩN∂
2
ξψ0,N . However, as demonstrated above inTheorem 6.1, ∂2ξψk = λ−1

k ϕk. Hene, using the property that the ϕks onstitute an



32 JEAN-BAPTISTE MONNIERorthonormal basis of L2I, we obtain
‖∂2ξfN‖2L2I =

N
∑

k=0

λ−4
k ω2

k = ωTΩ4
Nω.

7.5. Properties of eq. (P1) and hoie of the spetral-uto� N . A �rstquestion that arises is whether this quadrati program eventually admits a solution?In that perspetive, it is straightforward to notie that eq. (P1) admits a solution ifand only if Span{ϕi, 0 ≤ i ≤ N} admits an element whih satis�es the onstraints.Let us denote by D the subset of L2I whih satis�es the onstraints desribed ineq. (P1') and assume that D 6= ∅. Obviously, eq. (P1) admits a solution as soon as
N is large enough, sine (ϕi) is omplete in L2I (see Proposition 5.1). On the otherhand, it admits no solution when D = ∅, that is when the onstraints are inompat-ible. This latter situation might result from the presene of spurious data, sine thepresene of an arbitrage in the bid-ask quotes orresponds to a real arbitrage in themarket, whih would ertainly be arbitraged away by pratitioners.A seond natural question that arises, is how to hoose the spetral uto� N? As de-tailed in eq. (P1), we aim at reovering the smoothest density qN built upon ψ0, . . . ψNompatible with prie quotes. As desribed in Theorem 6.1, ψk is onstituted of aperiodi omponent hk,2 osillating at frequeny ρk/B around an exponential trend
hk,1, where ρk grows roughly speaking like k. It is therefore natural to think that thesmaller N , the smoother the singular basis funtions and thus the smoother the den-sity qN built upon them (although this needs not be the ase, rigorously speaking).This intuitive observation, is justi�ed through simulations (see Figure 8.3, bottomgraph). In pratie, we therefore suggest to hoose N to be the smallest N suh thateq. (P1) admits a solution. This is what we atually do in the forthoming simulationstudy.Finally, let us point out that we ould have hosen to impose a positivity onstrainton qN at eah point of the underlying dense grid ξ1, . . . , ξn, as an alternative to thein-sample onvexity onstraints on the (mi)s desribed in eq. (P1). However, we have



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 33notied via numerial simulations that results obtained in that way are less satisfyingthan with the onvexity onstraints on the mis. We therefore opted for the onvexityonstraints.8. Simulation study. We run a simulation study both on real and simulateddata. The purpose of the estimation on simulated data is mostly to show that theSRM returns a valid RND estimator in extreme ases, when as little as 5 marketquotes are available.Reall from Lemma 6.8 that, from k = 1 onward, we an write βk ≈ 2e−
π

2
−kπ ineq. (6.1) above. This approximation is not valid for k = 0. In that ase, however, wean solve eq. (6.17) numerially to obtain ρ0 = 1.875104069. This is the value of ρ0we use in the following simulation study.Table 8.1S&P 500 put option pries, Jan. 5, 2005. S&P 500 Index losing level = 1183.74; Optionexpiration = 03/18/2005 (72 days); r = 2.69%; δ = 1.70%.Strike prie 500 550 600 700 750 800 825 850 900 925Best bid 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.20Best o�er 0.05 0.05 0.05 0.10 0.15 0.20 0.25 0.50 0.50 0.70Strike prie 950 975 995 1005 1025 1050 1075 1100 1125 1150Best bid 0.50 0.85 1.30 1.50 2.05 3.00 4.50 6.80 10.10 15.60Best o�er 1.00 1.35 1.80 2.00 2.75 3.50 5.30 7.80 11.50 17.20Strike prie 1170 1175 1180 1190 1200 1205 1210 1215 1220 1225Best bid 21.70 23.50 25.60 30.30 35.60 38.40 41.40 44.60 47.70 51.40Best o�er 23.70 25.50 27.60 32.30 37.60 40.40 43.40 46.60 49.70 53.40Strike prie 1250 1275 1300 1325 1350Best bid 70.70 92.80 116.40 140.80 165.50Best o�er 72.70 94.80 118.40 142.80 167.508.1. Real data. We use the bid ask quotes reported in [14, Table 1℄ for putoptions on the S&P 500 Index on January 5, 2005. For ompleteness, we reproduethe table here in Table 8.1. We hoose B = 2 ∗ S0e

(r−δ)τ , whih orresponds totwo times the Forward prie on the underlying stok. This hoie is arbitrary andprodues an interval I, whih is symmetri around the forward prie. We observe fromour simulation that the result is largely independent of the hoie of B. However, thehigher B, the higher we will need to go into the spetrum of γ∗, sine the smoothestRND that �ts the data will be more and more onentrated around the enter of theinterval I. As regards the onstraints, we hoose the grid ξ1, . . . , ξn to be suh that
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ξk = k − 1, k = 1, . . . , ⌊B⌋ + 1 and if ⌊B⌋ < B, we add ξ⌊B⌋+2 = B. Of ourse, thisgrid ontains the initial 35 quoted strike pries sine they are integer valued. With theabove hoie of B, the quadrati program given in eq. (P1) �nds a feasible solutionfrom spetral uto� 66 onward. We report q⋆66 below in Figure 8.3. For the sakeof omparison, we plot on the same �gure the log-normal distribution obtained byleast-square �t to the put pries obtained as average of the bid-ask quotes. The onlyparameter of the log-normal distribution that must be �tted is σ (see Proposition 8.1),and we �nd σopt = 0.143. Interestingly, q⋆66 displays a small bump at the beginningof its left-tail, whih does not appear in [14, Fig. 8℄ and ould hardly be aountedfor by parametri methods. Notie the small blip next to B in Figure 8.3. Thisboundary e�et is due to the fat that all the ψks and their �rst derivative are worth
0 in B. In order to show that the hoie of B has very little impat, we omputethe RND estimator for B = 1.4 ∗ S0e

(r−δ)τ . Results are reported in Figure 8.1. Aswas expeted, �rst feasible points appear at muh lower spetral uto�s, namely fromspetral uto� 26 onward. Therefore, we plot q⋆26. As an be seen from Figure 8.2,the put pries P⋆

26 arising from eq. (P1) lie inside the bid ask quotes, while the onesprodued by the �tted log-normal density lie outside.
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Figure 8.1. Here we plot the RND q⋆26 (solid line) estimated from the real prie quotes reportedin Table 8.1. We hoose B = 1.4 ∗ F0 = 1.4 ∗ S0 ∗ e(r−δ)τ = 1660 for that plot. In addition, weplot the best log-normal �t (in a least-square sense) to the average prie quotes (dashed line). It isobtained for σopt = 0.143. At the top, we display the full left tail of the RND q⋆26. At the bottom,we zoom in on the fat left tail of the estimated RND distribution.
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Figure 8.2. Here we plot the �tted put pries obtained from the setting desribed above inFigure 8.1. The solid line orresponds to the �tted pries P⋆

26, while the dashed line orresponds tothe �tted pries obtained from a log-normal distribution. The stars and dots orrespond to marketask and bid quotes, respetively. At the top, we give a large view of the �ts. At the bottom we zoomin to show that P⋆

26 lies inside the market quotes, while the �tted log-normal pries lie outside.
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Figure 8.3. Here we plot the RND q⋆66 (solid line) estimated from the real prie quotes reportedin Table 8.1. We hoose B = 2 ∗ F0 = 2 ∗S0 ∗ e(r−δ)τ = 2372 for that plot. In addition, we plot thebest log-normal �t (in a least-square sense) to the average prie quotes (dashed line). It is obtainedfor σopt = 0.143. At the top, we display the full left tail of the RND q⋆66 and its full right tail upto B. At the bottom, we superimpose q⋆66 (solid line) with q⋆26 (dashed line) obtained in Figure 8.1for an other hoie of B. Notie the strong agreement between both densities, whih highlights thestability of the SRM with respet to the hoie of B. Interestingly, q⋆66 is slightly more bumpy than
q⋆26 at the level of its left fat-tail. This reinfores our argument that smoothness goes hand in handwith low spetral uto�.



38 JEAN-BAPTISTE MONNIER8.2. Simulated data. As regards the simulated data, we work in the Blak-Sholes setting. In that ontext the prie of a put option admits a losed form solutionand the RND is log-normal (see Proposition 8.1). We model the bid-ask spread asa random noise around the true prie given by the Blak-Sholes formula. Morepreisely, for a given set of quoted strikes ξ1 < . . . < ξs and orresponding putpries P (ξ1), . . . , P (ξs), we write yAsk
i = P (ξi) + zi/2 and yBid

i = P (ξi)− zi/2, where
zi = max(1,min(3, ̟|ξi|)), the ξi's are iid standard normal random variables and
̟ = 0.1max1≤i≤s P (ξi). The bounds 1 and 3 are hosen by analogy with the realdata quotes in Table 8.1. Of ourse, the bid-ask quotes we obtain in that way arenot arbitrage free. However, they ontain the true put prie P (ξ), whih, given thenature of the quadrati program desribed in eq. (P1) above, is all that matters toapproximate the true RND. For the sake of simpliity, we hoose r = 0, δ = 0, τ = 1,
S0 = 100, and σ = 0.3 and B = 2 ∗ F0 = 2 ∗ S0. In addition we set a �rst strike prieat ⌊F0⌋ and spread the others on its left and right sides at unit length distane awayfrom eah other until we obtain s strikes. More preisely, the seond strike would be
⌊F0⌋ − 1, the third ⌊F0⌋ + 1, the fourth ⌊F0⌋ − 2 and so on and so forth. We plotthe results for the �rst two spetral uto�s at whih a feasible point is found belowin Figure 8.4 in the ase where there are as little as s = 5 bid ask quotes and inFigure 8.5 in the ase where there are as many as s = 50 of them. In any ase, we ansee that we obtain a smooth density that resembles the log-normal density generatingthe initial quoted pries and that the estimate is stable from one spetral uto� toanother. Of ourse, the more strikes we have, the better the �t. Besides, we observeas expeted from an other simulation not reported here that, the smaller the bid-askspread, the better the �t. Notie one again that the �tted right-tail reahes zero in
B, while the true one is stritly positive at that point. As before, this is due to thefat that ψk(B) = 0.
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Figure 8.4. Here we are in the ase of 5 simulated bid ask quotes and with B = 2 ∗ F0 = 200.The �rst two plots display q⋆5 and q⋆6 (dashed line), the true log-normal RND used to gener-ate the pries (dashed-dotted line) and the orthogonal projetion of the true log-normal RND on
{ψ0, . . . , ψN} for N = 5 and N = 6 (solid line), respetively. The last two plots display the �ttedput pries, that is P⋆

5 and P⋆

6 (dashed line) together with the true pries (dashed-dotted line).
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Figure 8.5. Here, we repeat the same plots as in Figure 8.5 in the ase of 50 simulated bid-askquotes.



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 41Appendix.Refresher on the Blak-Sholes model. This is a well-known result of math-ematial �nane.Proposition 8.1. Let us denote by S0 the prie today of a stok paying dividendsontinuously over time at a onstant rate δ and by r the ontinuously ompoundedrisk-free rate. The arbitrage prie today of a put option on that stok maturing attime τ is given by the following losed form formula,
P (ξ) = ξe−rτN (−d2)− S0e

−δτN (−d1),with
d1 =

ln(S0/ξ) + [(r − δ) + 1
2σ

2]τ

σ
√
τ

, d2 = d1 − σ
√
τ,where σ stands for the volatility of the stok and N for the standard normal umulativedistribution. In addition, the RND is log-normal and writes as

q(x) =
1√

2πστx
exp

(

− [ln(x/S0)− (r − δ)τ + 1
2σ

2τ ]2

2σ2τ

)

.

Proof. These results an be found in see [21, p.117℄, for example.Additional results relative to γ and γ∗. We now present three results relativeto γ and γ∗, whih are either used in the ore of the paper or of interest in their ownright.Proposition 8.2. The operators γ and γ∗ admit no eigenvetors.Proof. Suppose f is an eigenvetor of γ assoiated to eigenvalue λ, then denote by
f̆(t) = f(B − ξ), (8.1)



42 JEAN-BAPTISTE MONNIERand notie that for all ξ ∈ I, a diret appliation of Lemma 8.4 allows to write
λf̆(B − ξ) = λf(ξ) = γf(ξ) = γ∗f̆(B − ξ).Thus f̆ must be an eigenvetor of γ∗. However, it is well known that γ∗ admits noeigenvalue sine, for any λ 6= 0,

λf(ξ) = γ∗f(ξ) =

∫ ξ

0

θ∗(ξ, x)f(x)dx, ξ ∈ I,de�nes a homogeneous Volterra equation in f , whose unique trivial solution is f = 0(see [12, p.239, Th. 5.5.2℄).Finally, let us point out the two following useful lemmas.Lemma 8.3. Let us denote by ∂kξ the kth order partial di�erential operator with respetto ξ. Then, for any f ∈ L2I, we have the following results.
f = ∂2ξγf, f = ∂2ξγ

∗f,

f = ∂4ξγ
∗γf, f = ∂4ξγγ

∗f.

Proof. Notie indeed that
∂ξγf(ξ) = ∂ξ

∫ B

ξ

(x− ξ)f(x)dx = −
∫ B

ξ

f(x)dx,

∂ξγ
∗f(ξ) = ∂ξ

∫ ξ

0

(ξ − x)f(x)dx =

∫ ξ

0

f(x)dx.Therefore, we obtain immediately
f = ∂2ξγf = ∂2ξγ

∗f.The remaining of the proof follows diretly from these �rst results. Notie indeed
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∂4ξγ

∗γf = ∂2ξ [∂
2
ξγ

∗](γf) = ∂2ξγf = f.whih onludes the proof.Lemma 8.4. For any f ∈ L2I and ξ ∈ I, we have γf(ξ) = γ∗f̆(B − ξ) (see eq. (8.1)for notations).Proof. Perform the hange of variable u = B − x to obtain
γf(ξ) =

∫ B

ξ

(x− ξ)f(x)dx

=

∫ B−ξ

0

([B − ξ]− u)f̆(u)du = γ∗f̆(B − ξ).

Relation between the (ϕk)s and the (ψk)s. We believe that m0(q) and m1(q)ould be readily estimated from the data, so that eq. (7.2) ould be used to onstruta seond estimator of the RND based on the restrited all operator. This seondestimator ould eventually be ombined with the one obtained from the SRM above.To that end, and for the sake of ompleteness, we ompute the salar produts betweenelements of the two singular bases. Results are reported in the following proposition.Proposition 8.5. Let us write
pk,m(x, y) = (−x3 + x2y)(−1)m+k − xy2 + y3,

qk,m(x, y) = (x3 + x2y)(−1)k + (y3 + y2x)(−1)m.Then, we have the following relationships,
〈ϕk, ψm〉

= 4
pk,m(ρk, ρm)e−ρk−ρm − qk,m(ρk, ρm)e−ρk + qk,m(ρm, ρk)e

−ρm + pk,m(ρm, ρk)

(ρ4k − ρ4m)(1 + (−1)me−ρm)(1 + (−1)ke−ρk)
, k 6= m,
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〈ϕk, ψk〉 =

−e−2ρk (ρk + 2) + 2ρk(−1)ke−ρk − ρk + 2

(e−ρk + (−1)k)2ρk
.On the way, we obtain,

〈hk,1, hm,1〉

= ((−1)k + (−1)m)
(ρk + ρm)(e−ρm − e−ρk) + (−1)k(ρk − ρm)(1− e−(ρk+ρm))

(ρ2k − ρ2m)(1 + (−1)ke−ρk)(1 + (−1)me−ρm)
, k 6= m,

〈hk,1, hm,2〉

= ((−1)k − (−1)m)
(ρk + ρm)(e−ρm + e−ρk)− (−1)k(ρk − ρm)(1 + e−(ρk+ρm))

(ρ2k + ρ2m)(1 + (−1)me−ρm)(1 + (−1)ke−ρk)
, k 6= m,

〈hk,1, hk,1〉 =
1− e−2ρk + 2(−1)kρke

−ρk

ρk((−1)k + e−ρk)2
,

〈hk,1, hk,2〉 = 0,

〈hk,2, hm,2〉 = δk,m − 〈hk,1, hm,1〉.

Proof. Reall that, for all k,m, we have de�ned
hk,1 = ak,1fk,1 + ak,2fk,2, hk,2 = ak,3fk,3 + ak,4fk,4,

ϕk = hk,1 + hk,2, ψk = hk,1 − hk,2.Besides, we have that
〈ϕk, ϕm〉 = δk,m = 〈hk,1, hm,1〉+ 〈hk,2, hm,2〉+ 〈hk,1, hm,2〉+ 〈hk,2, hm,1〉,

〈ψk, ψm〉 = δk,m = 〈hk,1, hm,1〉+ 〈hk,2, hm,2〉 − 〈hk,1, hm,2〉 − 〈hk,2, hm,1〉.



SPECTRAL RISK-NEUTRAL DENSITY RECOVERY 45Therefore, we obtain the following relationships,
δk,m = 〈hk,1, hm,1〉+ 〈hk,2, hm,2〉,

0 = 〈hk,1, hm,2〉+ 〈hk,2, hm,1〉.Whih leads to
〈ϕk, ψm〉 = 〈hk,1, hm,1〉 − 〈hk,2, hm,2〉 − 〈hk,1, hm,2〉+ 〈hk,2, hm,1〉,

= 2(〈hk,1, hm,1〉 − 〈hk,1, hm,2〉)− δk,m.Now, it remains to ompute 〈hk,1, hm,1〉 and 〈hk,1, hm,2〉. The results follow fromlengthy and tedious but straightforward omputations and are therefore not reportedhere.From the RND q of Sτ to the density of lnSτ . Some authors have hosento fous on the estimation of the density of logSτ rather than on the density of Sτitself. Both densities relate by a simple transformation, as desribed in the followingproposition. In our ase, this transformation an be readily applied sine the SRMreturns an analyti expression for the estimated RND.Proposition 8.6. If X admits f(x) for density on R, then Y = exp(X) admits
1
y f(ln y) for density on R+. Conversely, if Y admits f(y) for density on R+, then
X = ln(Y ) admits exf(ex) for density on R.Aknowledgments. The author is deeply grateful to Peter Tankov for his are-ful reading of this manusript and for his onstrutive and insightful omments, whihgreatly ontributed to improve its larity and ontent. The author is of ourse solelyresponsible for any eventual remaining error. Finally, the author would like to a-knowledge interesting onversations with Gérard Kerkyaharian and Dominique Pi-ard.Referenes.
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