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Minimum sample size determination for
generalized extreme value distribution

aYuzhi Cai∗and bDominic Hames
aUniversity of Plymouth, Plymouth, UK

bHR Wallingford, Oxfordshire, UK

Abstract

Sample size determination is an important issue in statistical analysis. Obviously,
the larger the sample size is, the better the statistical results we have. However, in
many areas such as coastal engineering and environmental sciences, it can be very
expensive or even impossible to collect large samples. In this paper, we propose a
general method for determining the minimum sample size required by estimating the
return levels from a generalized extreme value distribution. Both simulation studies
and the applications to real data sets show that the method is easy to implement and
the results obtained are very good.

Key words: Bootstraping, Generalized extreme value distribution, Return level, Sample
size.

1 Introduction

Sample size is very important in statistical analysis. However, the sample size required
for a study usually depends on different factors such as the probability models used and
the types of statistical tests applied. Various methods have been proposed in the literature
on sample size determination. For example, Shieh (2000) used the likelihood ratio test,
Self and Mauritsen (1988) and Lubin and Gail (1990) applied the score test, and Bickel
and Doksum (2001) and Demidenko (2007) considered the Wald test. Ashour and Shalaby
(1983) derived some Bayesian and non-Bayesian estimators for sample size when the un-
derlying distribution is a Weibull idstribution, and Ashour et al. (1996) also derived these
estimators in the case of Burr type XII failure model. Abd-Elfattah and Bakoban (2003)
obtained the estimators for sample size in case of a generalized gamma distribution, and

∗Address for correspondence: Dr Yuzhi Cai, School of Computing and Mathematics, University of Ply-
mouth, Plymouth PL4 8AA, United Kingdom. Email: ycai@plymouth.ac.uk
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Abd-Elfattah et al. (2007) considered the Marcus and Blumenthal (1975) approach to es-
timate the sample size in the case when the distribution is the Lomax distribution, i.e. the
Pareto distribution of the second kind.

The generalized extreme value (GEV) distribution has been used widely in many areas
because the extreme value theory guarantees that the maximum group values will follow a
GEV distribution if the group size tends to infinity. For example, in coastal engineering,
we could assume that the maximum annual sea-levels will approximately follow the GEV
distribution, and hence a GEV model is often fitted to the maximum annual data. In this
paper, we study the sample size determination in the case when the underlying distribution
is the GEV distribution, and we assume that the group size is large enough for us to use the
GEV model. However, in reality limited data sets are available , or it can be very expensive
or even impossible to collect a large number of such data. Therefore, it is very important
to develop a method for estimating the accuracy of any study or the minimum sample size
required for such a study.

Let xi (i = 1, . . . , n) be the maximum value of group i. It is well known that under
certain regular conditions the maximum likelihood estimators (MLE) of the parameters
are normally distributed as n approaches infinity. However, for any finite values of n, the
distributions of the estimators are unknown, and hence the distributions of any functions of
the estimators, such as return levels, are also unknown.

The main purpose of the paper is to develop a method for determining the minimum
sample size based on the asymptotic distribution of MLEs. We will focus on the return level
as it is a very important quantity in coastal engineering and environmental sciences and it
provides crucial information in, for example, the design of flood defences. The developed
methodology can be easily extended to other models and other quantities of interest. The
arrangement of the paper is as follows. In Section 2, we develop the methodology for
determining the sample size. Simulation studies are given in Section 3 and applications in
Section 4. Some discussions and conclusions are given in Section 5.

2 The method

The GEV distribution function is defined by

F (x; µ, σ, ξ) = e−[1+ξ(x−µ
σ )]

−1/ξ

(1)

for 1 + ξ
(

x−µ
σ

)
> 0, where µ ∈ R is the location parameter, σ > 0 the scale parameter

and ξ ∈ R the shape parameter. Let β = (µ, σ, ξ) be the parameter vector. Suppose we are
interested in estimating the τ th quantile of the GEV, which is given by

x = µ− σ

ξ
[1− (− ln τ)−ξ], (2)

where 0 < τ < 1. So, if τ = 0.99, the 0.99th quantile may correspond (in an analysis of
annual maxima) to the 100-year return level. We need to decide the minimum sample size
so that the statistical inferences on the return level are proper. Note that in the following
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we illustrate our method by using the 100-year return level, any other quantities of interest
can be dealt with similarly.

The basic idea of the proposed method is given below. If the sample size n is large
enough, then the maximum likelihood estimator (MLE) of β should be normally dis-
tributed, hence any functions of the MLE, such as the return level. As we only have one
observed data set, it would be difficult to check the normality of the MLE of the return
level. Therefore, we propose to apply the bootstrap method with replacement to the ob-
served data set. Suppose we generated M bootstrap samples each of size n. Then we
should expect that the MLEs of the return level based on the bootstrap samples should also
be normally distributed. Standard bootstrap methodology guarantees that the MLEs form
a random sample of a normal distribution for the return level. In this paper, we use the
Shapiro-Wilk test to check the normality of the MLEs of the return level. If we have to
reject the null hypothesis, i.e. the MLEs are normally distributed, then we may conclude
that the sample size n is not large enough at a given significant level. So we need to col-
lect more samples and to apply the above procedure to the enlarged sample. This process
should be continued until we failed to reject the null hypothesis. The details of the method
are given below.

Let y1 = (y11, . . . , y1n) be the observed data.

Step 1. Obtain M − 1 bootstrap samples (with replacement) from y1, denoted by ym =
(ym1, . . . , ymn), where m = 2, . . . , M .

Step 2. For m = 1, . . . ,M , let x
(1)
mj be the first j values of ym. That is x

(1)
mj =

(ym1, . . . , ymj), where j = n0, . . . , n and n0 is large enough for parameter estimation.

Step 3. For fixed j, obtain K − 1 bootstrap samples (with replacement) from x
(1)
mj ,

denoted by x
(k)
mj , where k = 2, . . . , K.

Step 4. Fit a GEV model to each data set x
(k)
mj , and calculate the return level `

(k)
mj ,

m = 1, . . . , M , j = n0, . . . , n, k = 1, . . . , K.

Step 5. Carry out the Shapiro-Wilk normality test on `
(k)
mj (k = 1, . . . , K) and record

the p-value, denoted by pmj , of the test statistic, where m = 1, . . . , M and j = n0, . . . , n.

Step 6. For j = n0, . . . , n calculate

p̄j =
1

M

M∑
m=1

pmj, s2
j =

1

M − 1

M∑
m=1

(pmj − p̄j)
2.

and construct a 100(1− α)% confidence interval

p̄j ± t∗sj,

where t∗ is the critical value obtained from a t-distribution with M − 1 degrees of freedom.

Step 7. Let N be the number such that for any j > N we have p̄j − t∗sj > α. As
p̄j − t∗sj is the lower band of the confidence interval, we are 100(1 − α)% confident that
the minimum number of samples required for obtaining a properly estimated return level
is N .
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It is worth mentioning that the standard theory of maximum likelihood was developed
for the case when the support of the distribution does not depend on unknown parameters,
see, for example, Rao (1993). For GEV distribution, this is not the case because the support
of the distribution must satisfy 1 + ξ(x − µ)/σ > 0. However, Smith (1985) studied this
problem thoroughly and showed that (a) if ξ > −0.5, then the MLEs of the model param-
eters are asymptotically normally distributed; (b) if −1 < ξ < −0.5, then the MLEs can
be obtained but are not asymptotically normally distributed; and (c) if ξ < −1, then it is
usually not possible to obtain the MLEs. Note that when ξ ≤ −0.5, the GEV distribution
has a very short bounded right tail which, as Cole (2001) pointed out, is rarely encountered
in applications of extreme value analysis. Therefore the theoretical limitations of the max-
imum likelihood method have little effect in practice. So in this paper we focus on the case
ξ > −0.5. Indeed, all the real data sets considered in this paper have a reasonable long
right tail, and hence the developed method can be safely applied.

To investigate the performance of the proposed method, we carried out extensive simu-
lation studies which are given in the next section.

3 Simulation studies

Simulation study 1

Consider the GEV model given by

F (x; µ, σ, ξ) = e−[1−0.11(x−100)/13]1/0.11

(3)

for 1 − 0.11 (x− 100) /13 > 0. So, the true parameter values are: µ = 100, σ = 13 and
ξ = −0.11. Furthermore, the 100-year return level is given by

x = 100 + 13[1− (− ln 0.99)0.11]/0.11 = 146.93, (4)

Note that the true parameter values were chosen arbitrarily.

The statistical software R was used to generate a random sample of size n = 200
from the above GEV model. In this simulation study, we take M = K = 50, n0 = 25 and
α = 0.05. By applying the developed method to this data set, we obtained the results shown
in Figure 1, where the lighter curve shows the average p-values p̄j against the sample size
j = 25, . . . , 200, the darker curves are the corresponding lower and upper limits of the 95%
confidence interval, i.e. p̄j± t∗sj (j = 25, . . . , 200). The horizontal line is at α = 0.05, and
the vertical line is at N = 40. It is seen that for j ≥ 40 all curves are above the horizontal
line, indicating that the minimum sample size we could take is N = 40 in this case. So
if the data represent the maximum annual values of sea levels at a particular site, then 40
years’ data would give a for good estimate of the return levels in terms of the normality of
the MLE.

Now we compare the two fitted GEV models: one was fitted to the first 40 values of
the simulated data, the other to all the data. The true and the estimated values are shown
in Table 1. As expected, the standard errors of the MLEs based on the whole data sets are

4
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Figure 1: Plot of the average p-values of the Shapiro-Wilk Normality test statistics together
with a 95% confidence interval in the Simulation Study 1.

True value MLE (s.e.) MLE (s.e.)
(n = 40) (n = 200)

µ 100.00 99.16 ( 2.13) 98.75 (0.95)
σ 13.00 12.38 ( 1.44) 12.10 (0.67)
ξ -0.11 -0.10 (0.08) −0.08(0.05)

Return level 146.93 144.95 (8.02) 145.57 (4.44)

Table 1: True and estimated parameter values together with their standard errors (in brack-
ets).
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smaller than those based on the first 40 values. However, the estimated values are all very
similar to the true parameter values. Note that the standard error of the estimated return
level was obtained by using the delta method, and that a 95% confidence interval for each
parameter can be constructed easily by using the estimated standard errors. The diagnostic
plots in Figure 2 also shows that the two fitted models are very similar.
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Figure 2: The probability plot and the return level plot of the GEV models fitted to the first
N = 40 simulated data (left column), and to the whole data set (right column) respectively
in the Simulation Study 1. On the return level plots, the top and the bottom curves give a
95% confidence bands for the return levels.

Simulation study 2.

In simulation study 1 we only dealt with one simulated data. In this simulation study,
we repeat the above simulation study on 70 independently simulated data sets, each of size
200. So the average performance of the method can be assessed.

For each simulated data and for different sample sizes, we recorded the sample average
p-values of the test statistic. Then the final average p-values are obtained by averaging over
the 70 simulated data sets. Figure 3 shows the average p-values against the sample size and
the corresponding 95% confidence interval. The lower limit of the confidence interval at a
sample size N = 40 is 0.047, and for any sample size n > 40, all the curves are above the
horizontal line. This suggests that on average, the performance of the method is very stable
over different simulated data sets.
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Figure 3: Average p-values over 70 different simulated data sets together with a 95% con-
fidence interval in the Simulation Study 2.

4 Applications

In the applications of the developed method, we consider four real data sets obtained from
Reiss and Thomas (2001). The first data set is the maximum annual sea-levels (in meters)
in Venice from 1931 to 1981, containing 51 values. The mean sea level at Venice is 0.52m.
In this application we consider the sea levels relative to the mean sea level. The second
data set is the Iceland maximum annual wind speed (in meters per second) data in the years
1912 to 1992 with measurements for two years missing. We ignore the missing data in
this application, hence the data set contains 79 values. The third data set is the maximum
annual discharges (in cubic meters per second) of the Harricana River at Amos (Quebec,
Canada) from 1915 to 1983, containing 69 values. The fourth data set is the maximum
annual De Bilt temperatures (in Celsius) from 1849 to 1981, containing 133 values. The
scatter plots of the four data sets are given in Figure 4.

All the four data sets are not long. We would like to estimate the minimum sample
size required for making reasonable statistical inferences on the 100-year return level, and
hence to see what confidence we can place in these estimates and whether further data are
required.

Because the data are annual maximums, it is reasonable to fit a GEV model to each
data set, hence the developed method can be used. For each of them, the minimum sample
size was taken to be 25, because for smaller sample sizes we often have difficulties in
fitting a GEV model to them. The largest sample size was taken to be the total number
of observations in each data set. Furthermore, the number of bootstrap samples obtained
from each data set and from its subsets with different sample sizes is 50. That is, we let
M = K = 50. For larger values we have very similar results.
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Figure 4: Scatter plots of (a) the maximum annual sea-levels in Venice, (b) the maximum
annual wind speed in Iceland, (c) the maximum annual discharges of the Harricana River
and (d) the maximum annual De Bilt temperature data.
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Sample size Sea-levels Wind-speeds Discharges Temperatures
Return level 1 1.78 (0.113) 79.53 (2.79) 327.52 (31.100) 36.00 (0.889)
Return level 2 1.78 (0.110) 84.42 (3.13) 326.78 (23.454) 35.99 (0.358)

Table 2: Estimated return levels, where Return level 1 corresponds to the model fitted to
data of minimum sample size, while the Return level 2 corresponds to the model fitted to
all the data. Numbers in brackets are the corresponding standard errors.

Figure 5 shows the average p-values of the Shapiro-Wilk test statistic together with a
95% confidence interval for each data set, where the horizontal lines are at α = 0.05, and
the vertical lines are at 50, 72, 44 and 44 respectively, indicating the minimum sample
size required in each case. Note that the total sample size of Venice sea-levels is only 51.
Figure 5(a) shows it is difficult to make a sensible conclusion about the minimum sample
size required in this case. So more data need to be collected. Figure 5(b) shows that all three
curves are above the horizontal line for sample sizes greater than 71. This suggests that the
minimum sample size can be taken as N = 72. Both Figure 5(c) and (d) suggest that the
minimum sample size can be taken as N = 44. Therefore, except for the Venice sea-levels
data set, all other data sets are large enough for making good statistical inferences on the
return level.

To compare the model fitted to the data of minimum sample size with the model fitted
to the whole data set, we produced Table 2 which shows that no significant differences at
a 95% level between the two estimated return levels for each data set: one is based on the
minimum sample sizes and the other is based on the whole data sets. This is because the
corresponding 95% confidence intervals overlap. Note that the larger standard error value
in the second row of Table 2 for the Iceland maximum annual wind speed data is caused by
the approximation features of the delta method in calculating return levels for this data set.

Figure 6 shows the return level plots for the sea-level and wind-speed data sets, while
Figure 7 is for the discharge and temperature data sets. In both figures, the left column
corresponds to the minimum sample size, and the right column corresponds to the whole
data set. These figures also show no significant differences in estimating return levels
caused by using the minimum sample sizes.

A further statistical inferences about the sample size effects on the accuracy of the
return levels can be carried out. We should expect that, generally, the standard errors of the
MLEs of the return level decreases as the sample size increases. These standard errors tell
us how much gain we will have if we increase the sample size. In other words, how much
it would be worth paying to obtain a greater length of data. Figure 8 shows the average
standard errors of the MLEs of the return level when the sample size increases from the
minimum sample size up to another 300 data. Those 300 extra data were simulated from
the fitted model by using the observed samples of minimum length. The average standard
errors are based on 50 independently simulated samples each of size 300. From these plots,
say, from Figure 8(b), we see that if we require the standard error of the MLE is less than
2.0, then we need at least 120 data instead of 72. That means that extra 48 data need to be
collected in order to decrease the standard error of the MLE of the return level from 2.79
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Figure 5: Average p-values and the corresponding 95% confidence interval for (a) the
maximum annual sea-levels in Venice, (b) the maximum annual wind speed in Iceland, (c)
the maximum annual discharges of the Harricana River and (d) the maximum annual De
Bilt temperature data.
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Figure 6: The return level plots of the GEV models fitted to the data of minimum sample
sizes (left column), and the return level plots of the GEV models fitted to the whole data
sets (right column). First row is for the Venice sea-level data, and the second row is for the
Iceland wind-speed data.

11

Page 12 of 17

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

1e−01 1e+01 1e+03

10
0

20
0

30
0

Return Period

R
et

ur
n 

Le
ve

l

Return Level Plot

1e−01 1e+01 1e+03

10
0

20
0

30
0

Return Period

R
et

ur
n 

Le
ve

l

Return Level Plot

1e−01 1e+01 1e+03

28
30

32
34

36

Return Period

R
et

ur
n 

Le
ve

l

Return Level Plot

1e−01 1e+01 1e+03

28
32

36

Return Period

R
et

ur
n 

Le
ve

l

Return Level Plot

Figure 7: The return level plots of the GEV models fitted to the data of minimum sample
sizes (left column), and the return level plots of the GEV models fitted to the whole data
sets (right column). First row is for the discharges of the Harricana River data, and the
second row is for the De Bilt temperature data.
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to 2.0. This would provide useful information for a company to decide whether new data
are worth collecting.

5 Comments and conclusion

In this paper, we proposed a simple method to determine the minimum sample size re-
quired for making statistical inferences on a statistical quantity of interest. The developed
methodology is based on the standard theory of maximum likelihood and we illustrated
the method through the estimation of the 100-year return level by using a GEV model.
It is worth mentioning that for other probability models and other quantities of interest,
the method proposed in this paper can also be used, provided that the MLE is normally
distributed in large samples. However, we would expect that the minimum sample sizes
required by making statistical inferences on different quantities may be different. Simula-
tion studies and application results show that the method can be easily implemented and
the fitted models based on the minimum sample size are very similar to the fitted models
based on all the available data.

In this paper we have also demonstrated different applications of the developed method.
In summary, this method can be used (a) to check whether an existing data set is long
enough for making good statistical inference, (b) to decide how many more data need to
be collected for making good statistical inference and (c) to make sure how much gain we
will have in terms of confidence if we increase the sample size. Therefore, we expect that
the developed method can be very useful in practice.
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The standard theory of maximum likelihood is developed for the case when 

the distribution domain does not depend on unknown parameters, e.g. 

C.R.Rao (1993), "Linear Statistical Inference and Its Applications," New York: 

Wiley. Unfortunately, GEM, as defined in equation (1), does, namely, 1+ksi*(x-

mu)/sigma>0. The authors should provide theoretical justification why MLE is 

normally distributed in large sample. 
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<= -0.5 , the GEV distribution has a very short bounded right tail which, as 

Cole (2001) pointed out, is rarely encountered in applications of extreme 

value analysis. Therefore the theoretical limitations of the maximum likelihood 

method have little effect in practice. So in this paper we focus on the case  kxi 

> - 0.5. Indeed, all   the real data sets considered in this paper have a 

reasonable long right tail, and hence the developed method can be safely 

applied.  
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importance of the asymptotic normality condition.  
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