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In this paper, stabilizing control design for a class of nonlinear affine systems is presented by using a new generalized Gronwall-Bellman lemma approach. The nonlinear systems under consideration can be non Lipschitz. Two cases are treated for the exponential stabilization : the static state feedback and the static output feedback. The robustness of the proposed control laws with regards to parameter uncertainties is also studied. A numerical example is given to show the effectiveness of the proposed method.

Introduction

Many physical processes may be appropriately modeled as bilinear or more general affine nonlinear systems, specially in biology (distillation columns) and mechanics (motor drives, robot manipulators).

A lot of work has been accorded to the control and state estimation of such systems which are of considerable interest in both theory and applications. In the last decades, control for these systems were developed using the linearization approach and optimal control or Lyapunov theories (see [START_REF] España | Reduced order bilinear models for distillations columns[END_REF][START_REF] Longchamp | Stable feedback control of bilinear systems[END_REF][START_REF] Mohler | Nonlinear systems : Applications to Bilinear Control[END_REF][START_REF] Jacobson | Stabilization and optimal control of nonlinear systems homogenous in the input[END_REF][START_REF] Jurdjevic | Controllability and stability[END_REF][START_REF] Slemrod | Stabilization of bilinear control systems with applications to nonconservative problems in elasticity[END_REF][START_REF] Ryan | On asymptotically stabilizing feedback control of bilinear systems[END_REF][START_REF] Benallou | Charaterization of equilibrium sets for bilinear systems with feedback control[END_REF][START_REF] Gauthier | A simple observer for nonlinear systems, applications to bioreactors[END_REF][START_REF] Mota | Nonlinear implicit on-line observer : application to the estimation in binary distillation columns[END_REF] and references therein).

Another approach to stabilize nonlinear systems is based on the Gronwall-Bellman lemma [START_REF] Pachpatte | A note on Gronwall-Bellman inequality[END_REF][START_REF] Desoer | Feedback Systems Input-Output Properties[END_REF][START_REF] Vidyasagar | Nonlinear Systems Analysis[END_REF]. This lemma has been applied to the exponential stability of nonlinear affine systems in [START_REF] Zevin | Exponential stability and solution bounds for systems with bounded nonlinearities[END_REF], to the nonlinear observer synthesis in [START_REF] Shimizu | Nonlinear state observers by gradient descent method[END_REF], to the robust stabilization and observation of nonlinear uncertain systems in [START_REF] Żak | On the stabilization and observation of nonlinear / uncertain dynamic systems[END_REF], to the robust stability of linear systems in [START_REF] Chen | Robust linear controller design: time domain approach[END_REF][START_REF] Jetto | Relaxed sufficient conditions for the stability of continuous and discrete-time linear time-varying systems[END_REF] and to finite-time stability of linear singular systems in [START_REF] Debeljković | Finite-time stability of linear singular systems: Bellman-Gronwall approach[END_REF]. Some useful generalized Gronwall-Bellman lemma have been proposed in [START_REF] Pachpatte | On some integral inequalities similar to Bellman-Bihari inequalities[END_REF][START_REF] Pachpatte | On some generalizations of Bellmans lemma[END_REF][START_REF] Alami | Analyse et Commande Optimale des Systèmes Bilinéaires Distribués[END_REF][START_REF] Alami | A generalization of Gronwall's lemma[END_REF].

The aim of this paper is to develop the exponential stabilization of a class of nonlinear systems using a generalized Gronwall-Bellman lemma approach. The nonlinear systems considered are affine in the control, the use of the proposed generalized Gronwall-Bellman lemma allows us to consider nonlinear affine systems which are not necessary Lipschitz. Two cases are presented : the static state feedback control and the static output feedback control. The proposed stabilization methods are simple to implement and are robust with respect to parameter uncertainties. This paper is organized as follows. The class of nonlinear systems under consideration are described in the beginning of the section 2. The exponential stabilization for the nominal case is treated in section 2.1 by considering two control laws (static state feedback and output state feedback), while the exponential stabilization with uncertain parameters is given in section 2.2. A numerical example presented in section 3 illustrates the application of the proposed static approach to a multilinear affine nonlinear system with uncertain parameters. The proof of the proposed generalized Gronwall-Bellman lemma is given in the appendix. Notations. x = √ x T x and A = λ max (A T A) are the Euclidean vector norm and the spectral matrix norm respectively where λ max (A T A) is the maximal eigenvalue of the symmetric matrix A T A. (f (•)) i stands for the i th component of vector f (•) .

Feedback stabilization

Consider the following nonlinear affine system

         ẋ(t) = Ax(t) + m i=1 g i (x(t))u i (t) + Bu(t) y(t) = Cx(t) x(0) = x 0 (1) 
where x ∈ IR n is the state vector, u ∈ IR m is the control input vector and y(t) ∈ IR p is the measured output. A, B and C are known constant matrices of appropriate dimensions.

In the sequel of the paper, we use the following assumption.

Assumption 1. The nonlinear affine system (1) satisfies the following conditions.

1. The functions g i (x(t)) are bounded and measurable with g i (0) = 0 (for i = 1, . . . , m).

2. For i = 1, . . . , m, there exists an integer q 1, such that

g i (x(t)) µ i x(t) q (2) 
where µ i are given positive constants.

3. The pair (A, B) is stabilizable.

4. The pair (C, A) is detectable.

In the sequel, we define µ = m i=1 µ i .

Exponential stabilization in the nominal case

First, we consider the state feedback control, and we assume that the nonlinear system (1) satisfies Assumption 1. The following theorem gives the exponential state feedback stabilization of system (1). Theorem 1. Under Assumption 1, the system (1) controlled by the following state feedback

u(t) = Lx(t) (3) 
is exponentially stable if all eigenvalues of matrix A + BL have a strictly negative real part and if

0 < x 0 ε 0 , (4) 
ε q 0 < β = |ω| µM q+1 L , (5) 
where scalars ε 0 > 0, M > 0 and ω < 0 are given scalars satisfying

e (A+BL)t < M e ωt ∀ t 0. ( 6 
)
Moreover, there exists a strictly positive real ε 1 such that the state x(t) is bounded as follows

x(t) ε 1 M e ωt x 0 1 - M q+1 µ L ε q 1 x 0 q |ω| 1 q . ( 7 
)
Proof. With the feedback control (3), the solution of (1) is given by

x(t) = e (A+BL)t x 0 + t 0 e (A+BL)(t-s) m i=1 g i (x(s))(Lx(s)) i d s (8) 
where (Lx(t)) i stands for the i th component of vector Lx(t). Under item 3 in Assumption 1, the gain matrix L can be chosen such that all eigenvalues of matrix A + BL have a strictly negative real part.

Then there exist two reals M > 0 and ω < 0 such that relation [START_REF] Slemrod | Stabilization of bilinear control systems with applications to nonconservative problems in elasticity[END_REF] holds and, under Assumption 1, x(t) can be bounded as

x(t) M e ωt x 0 + M e ωt t 0 µe -ωs L x(s) q+1 d s M e ωt ε 0 + M e ωt t 0 µe -ωs L x(s) q+1 d s (9) 
where ε 0 is defined in relation ( 4), or equivalently as

x(t) e -ωt M ε 0 + µM L t 0 e qωs x(s) q+1 e -(q+1)ωs d s. (10) 
Since, ∀ t > 0, we have

h(t) = 1 -qµM q+1 L ε q 0 t 0 e qωs d s = 1 - µM q+1 L ε q 0 |ω| (1 -e ωt ) 1 - µM q+1 L ε q 0 |ω| (11) 
and there exits a strictly positive real ε 2 such that

0 < ε 2 h(t). (12) 
if inequality (5) holds. Hence, using ( 11) and ( 12), the generalized Gronwall-Bellman given in Lemma 2 yields the following inequality

x(t) e -ωt M ε 0 1 -qM q+1 µ L ε q 0 t 0 e qωs d s 1 q . ( 13 
)
Using [START_REF] Pachpatte | A note on Gronwall-Bellman inequality[END_REF] and inequality (13), the following inequality

x(t) M e ωt ε 0 1 - M q+1 µ L ε q 0 |ω| 1 q = ε 1 M e ωt x 0 1 - M q+1 µ L ε q 1 x 0 q |ω| 1 q (14) 
holds, where ε 1 is given a strictly positive real such that ε 0 = ε 1 x 0 . Now the case where the state of the nonlinear system is partially available through a measurement equation is considered.

Notice that item 3 in Assumption 1 is a necessary and sufficient condition for the existence of a gain matrix L such that all the eigenvalues of the matrix A + BL have a strictly negative real part. But, items 3 and 4 in Assumption 1 give only necessary conditions for the existence of a gain matrix K such that all the eigenvalues of the matrix A + BKC have a strictly negative real part.

As shown in [START_REF] Fu | Pole placement via static output feedback is NP-hard[END_REF], the design of an output feedback gain K such that all eigenvalues of matrix A+BKC have a strictly negative real part is difficult to solve and leads to non convex optimization problems : there do not exist necessary and sufficient conditions on given matrices A, B and C such that there exists a gain matrix K given stable eigenvalues for the matrix A + BKC (see [START_REF] Syrmos | Static output feedback : a survey[END_REF] for a survey). In the literature, many authors have proposed sufficient conditions for the static output feedback stabilization problem for linear systems without guaranteeing the existence of a solution if their algorithm fails (for example, see [START_REF] Iwasaki | Linear quadratic suboptimal control with static output feedback[END_REF][START_REF] Ghaoui | A cone complementary linearization algorithm for static output-feedback and related problems[END_REF][START_REF] Cao | Static output feedback stabilization: an ILMI approach[END_REF][START_REF] Geromel | Static output feedback controllers : stability and convexity[END_REF][START_REF] Crusius | Sufficient LMI conditions for output feedback control problems[END_REF][START_REF] Shaked | An LPD approach to robust H 2 and H ∞ static output-feedback design[END_REF][START_REF] Fujimori | Optimization of static output feedback using substitutive LMI formulation[END_REF]).

The exponential static output feedback stabilization of system (1) is given by the following theorem which is a direct extension of Theorem 1.

Theorem 2. Under Assumption 1, the system (1) controlled by the following output feedback

u(t) = Ky(t) (15) 
is exponentially stable if all eigenvalues of matrix A + BKC have a strictly negative real part and if

0 < x 0 ε 0 , (16) 
ε q 0 < β = |ω| µM q+1 KC , ( 17 
)
where scalars ε 0 > 0, M > 0 and ω < 0 are given reals satisfying

e (A+BKC)t < M e ωt ∀ t 0. (18) 
Moreover, there exists a strictly positive real ε 1 such that the state x(t) is bounded as follows

x(t) ε 1 M e ωt x 0 1 - M q+1 µ KC ε q 1 x 0 q |ω| 1 q . ( 19 
)
Proof. With the feedback control [START_REF] Shimizu | Nonlinear state observers by gradient descent method[END_REF], the solution of (1) is given by

x(t) = e (A+BKC)t x 0 + t 0 e (A+BKC)(t-s) m i=1 g i (x(s))(KCx(s)) i d s (20) 
where (KCx(t)) i stands for the i th component of vector KCx(t).

Notice that items 3 and 4 in Assumption 1 are necessary but not sufficient conditions for the existence of a gain matrix K such that all eigenvalues of matrix A + BKC have a strictly negative real part, but we assume that this matrix K exists.

The sequel of the proof is omitted since it can be obtained by the relations ( 9) to ( 14) by replacing the matrix L by matrix KC and equations ( 4) to (6) by relations [START_REF] Żak | On the stabilization and observation of nonlinear / uncertain dynamic systems[END_REF] to [START_REF] Jetto | Relaxed sufficient conditions for the stability of continuous and discrete-time linear time-varying systems[END_REF].

The proposed generalized Gronwall-Bellman lemma allows to obtain simple designs to exponentially stabilize a class of affine nonlinear systems. Indeed, unlike in the literature where the most kinds of affine nonlinear systems are Lipschitz, the nonlinear affine systems under consideration are non Lipschitz when the parameter q in item 2 of Assumption 1 is strictly superior to one. For example, this class includes multilinear affine systems in the form

ẋ(t) = Ax(t) + m i=1 n j=1 n k=1 A i,j,k x j (t)x k (t)x(t) g i (x(t)) u i (t) + Bu(t) (21) 
where x j (t) is the j th component of vector x(t). In this case, q = 3 and the scalars µ i in relation ( 2) can be done as follows

g i (x(t)) A i,1,1 . . . A i,n,1 . . . A i,1,n . . . A i,n,n µ i x(t) 3 (22) since g i (x(t)) = P A i,1,1 . . . A i,n,1 . . . A i,1,n . . . A i,n,n (x(t) ⊗ x(t) ⊗ x(t)) ( 23 
)
where P is a given selection matrix of appropriate dimension of full row rank satisfying P = 1 with all components are equal to zero except one component equal to one in each row and with at most one component equal to one in each column and where ⊗ is the Kronecker product satisfying A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C and A ⊗ B = A B (see [START_REF] Lancaster | The Theory of Matrices[END_REF], p. 408 and p. 439).

In Theorems 1 and 2, one can design the gain matrix L or K in order to maximizing the radius β of the ball defining the domain of admissible initial conditions given in relations ( 4) and [START_REF] Jurdjevic | Controllability and stability[END_REF] or in relations ( 16) and ( 17). This can be done by minimizing L or K and by imposing some constraints to obtain a sufficiently large |ω| (see [START_REF] Slemrod | Stabilization of bilinear control systems with applications to nonconservative problems in elasticity[END_REF] or ( 18)).

To minimizing L (or K ), one can add the following LMI optimization in the control design procedure min α such that αI L L αI > 0.

Since, it is well known that there exists M such that e At M e ωt , ∀ t > 0, where ω < 0 is the largest real part of the eigenvalues of matrix A, we can maximize |ω| by solving the following LMI (see [START_REF] Boyd | Linear Matrix Inequality in Systems and Control Theory[END_REF], p. 66)) max κ such that P = P T > 0 and A T P + P A + 2κP 0 where κ = -ω. The previous LMI can be included in the design procedure by replacing A by A + BL or A + BKC.

Exponential stabilization for the uncertain systems

In this section, we show that the two stabilization theorems given in section 2.1 are intrinsically robust with respect to parameter uncertainties. We consider only the case of static output feedback, i.e. the case where the state of the nonlinear system is partially available through a measurement equation as in Theorem 2. Notice that the developments given in this section can be easily extended to the state feedback case as in Theorem 1.

Consider the nonlinear uncertain affine system described by a differential equation of the following form

         ẋ(t) = (A 0 + ∆ A )x(t) + m i=1 g i ∆ (x(t))u i (t) + (B 0 + ∆ B )u(t) y(t) = (C 0 + ∆ C )x(t) x(0) = x 0 (24) 
where the vectors x(t), u(t), y(t), the constant matrices A, B and C have been defined in relation [START_REF] España | Reduced order bilinear models for distillations columns[END_REF]. The uncertain matrices ∆ A , ∆ B and ∆ C are constant and can be rewritten as follows

∆ A ∆ B ∆ C 0 = N x N y ∆ E x E u ( 25 
)
where ∆ is a constant unknown matrix satisfying ∆ 1 and where N x , N y , E x and E u are known given constant matrices of appropriate dimensions.

In place of items 1 and 2 in Assumption 1, it is assumed that the m functions g i ∆ (x(t)) with unknown parameters satisfy g i ∆ (0) = 0 and are bounded as follows

g i ∆ (x(t)) µ i ∆ x(t) q (26)
where q

1 is a known integer and µ i ∆ are known given positive constants with µ ∆ = m i=1 µ i ∆ . In addition, matrices A, B and C in items 3 and 4 in Assumption 1 are replaced by matrices A 0 , B 0 and C 0 , respectively. The uncertain system considered in ( 24) and ( 25) with g i ∆ (x(t)) = 0 (i = 1, . . . , m) is equivalent to the following system

       ẋ(t) = A 0 x(t) + B 0 u(t) + λN x w(t) y(t) = C 0 x(t) + λN y w(t) z(t) = λ -1 E x x(t) + λ -1 E u u(t) x(0) = x 0 (27) connected with w(t) = ∆ z(t) (28) 
for any given strictly positive real λ.

Then, there exists an output feedback gain K such that the uncertain systems given by ( 24) and ( 25), with g i ∆ (x(t)) = 0 (i = 1, . . . , m), is quadratically stable if and only if there exists a scaling parameter λ > 0 such that the system [START_REF] Ghaoui | A cone complementary linearization algorithm for static output-feedback and related problems[END_REF] connected with the feedback control law u(t) = Ky(t) is quadratically stable with an H ∞ -norm bound inferior or equal to 1 from w(t) to z(t) (see Corollary 3 in [START_REF] Gu | H ∞ control of systems under norm bounded uncertainties in all systems matrices[END_REF]). This quadratic stabilization implies that there exist two scalars M > 0 and ω < 0, and an output feedback gain matrix K such that e (A+BKC)t < M e ωt ∀ t 0, [START_REF] Geromel | Static output feedback controllers : stability and convexity[END_REF] where

A = A 0 + ∆ A , B = B 0 + ∆ B and C = C 0 + ∆ C .
Using [START_REF] Syrmos | Static output feedback : a survey[END_REF], we have

B B 0 + N x E u = ρ B and C C 0 + N y E x = ρ C . (30) 
Then, using the above developments, we can apply Theorem 2 to the uncertain system ( 24)-( 25) by replacing µ, B and KC by µ ∆ , ρ B and K ρ C , respectively, and by using system [START_REF] Ghaoui | A cone complementary linearization algorithm for static output-feedback and related problems[END_REF] to design the feedback gain K.

Illustrative example

Consider the following uncertain nonlinear system

             ẋ = -0.1 -1 -0.1763 -1.197 + ∆ A x + 2 i=1 g i ∆ (x)u i + 0.8 0.1 + ∆ B u y = 0.7 0 0 0.01 + ∆ C x x(0) = x 0 (31) 
with

x = x 1 x 2 , ∆ A = 0 0 0 δ 1 , ∆ B = δ 2 0 , ∆ C = δ 3 0 0 0 , g 1 ∆ (x) = x 2 1 (1 + δ 4 ) 0 , g 2 ∆ (x) = 0 -x 1 x 2 (1 + δ 5 )
,

where |δ 1 | 0.3, |δ 2 | 0.25, |δ 3 | 0.2, |δ 4 | 0.2 and |δ 5 | 0.4.
The matrix A 0 is unstable since its two eigenvalues are given by λ 1 = 0.0423, and λ 2 = -1.3393. The pair (A 0 , B 0 ) is controllable and the pair (C 0 , A 0 ) is observable.

Matrices N x , N y , E x and E u defined in relation [START_REF] Syrmos | Static output feedback : a survey[END_REF] are given by

∆ A ∆ B ∆ C 0 = N x N y ∆ E x E u =      0 0.15 0 0.2 0 0 0 0 0.1 0 0 0      ∆    0 1 0 0 0 1 1 0 0   
where ∆ is a constant unknown matrix satisfying ∆ 1. The parameters ρ B and ρ C defined in [START_REF] Crusius | Sufficient LMI conditions for output feedback control problems[END_REF] are given by

ρ B = B 0 + N x E u = 1.0062 and ρ C = C 0 + N y E x = 0.8.
We have g 1 ∆ (0) = g 2 ∆ (0) = 0 and using the approach developed in ( 21), ( 22) and ( 23), we obtain

g 1 ∆ (x) = x 2 1 (1 + δ 4 ) 0 = (1 + δ 4 ) 0 0 0 0 0 0 0 (x ⊗ x), g 2 ∆ (x) = 0 -x 1 x 2 (1 + δ 5 ) =   0 0 0 0 0 -(1 + δ 5 ) 0 0   (x ⊗ x),
and

g 1 ∆ (x) (1 + δ 4 ) 0 0 0 x 2 1 + |δ 4 | x 2 = √ 1.2 x 2 = µ 1 ∆ x 2 , g 2 ∆ (x) 0 0 0 -(1 + δ 5 ) x 2 1 + |δ 5 | x 2 = √ 1.4 x 2 = µ 2 ∆ x 2 .
Then Assumption 1 holds where functions g 1 ∆ (x) and g 2 ∆ (x), and matrices A 0 , B 0 and C 0 are used.

The nonlinear system [START_REF] Shaked | An LPD approach to robust H 2 and H ∞ static output-feedback design[END_REF] with control u(t) = 0 in the nominal case is given in figure 1, which shows that it is not stable and its states do not converge to zero.

Using Theorem 2, the uncertain nonlinear system (31) controlled by the static output feedback u(t) = Ky(t) is exponentially stable, where the gain matrix K = -1.8908 -57.2962 has been obtained by solving the "W -problem" formulated in Theorem 2 of [START_REF] Crusius | Sufficient LMI conditions for output feedback control problems[END_REF] for the system [START_REF] Ghaoui | A cone complementary linearization algorithm for static output-feedback and related problems[END_REF] with λ = 1 and an H ∞ -norm inferior or equal to one. Notice that the eigenvalues of A 0 + B 0 KC 0 are (-0.5340, -1.8792). Choosing δ 1 = 0.15, δ 2 = 0.20, δ 3 = 0.18, δ 4 = 0.12 and δ 5 = 0.38. Then, the time response of the uncertain system (31) controlled with u = Ky is shown in figures 2 and 3. 

Conclusion

In this paper, the exponential stabilization of a class of nonlinear affine systems has been derived from the application of a generalized Gronwall-Bellman lemma which has been proved in the appendix. Two cases are studied : first, a state feedback control law is designed if all the state of the nonlinear system is available, secondly, a static output control law is proposed if the state of the nonlinear system is partially available through a measurement equation. These control laws are simple to implement. The robustness of these two exponential stabilization techniques with respect to parameter uncertainties has been studied. It should be stressed that the use of the generalized Gronwall-Bellman lemma makes it possible to consider nonlinear affine systems which can be non Lipschitz. A numerical example shows the effectiveness of the proposed approach.

ii) g 0, k 0, iii) g ∈ L∞, iv) gk is locally integrable on IR + .

If u : IR

+ → IR satisfies u(t) f (t) + g(t) t 0 k(τ )u(τ ) d τ, ∀ t 0 (32) then u(t) f (t) + g(t) t 0 k(τ )f (τ ) exp t τ k(s)g(s) d s d τ, ∀ t 0. ( 33 
)
Corollary 1 is a special case of this lemma.

Corollary 1.

[13] (p 236) [START_REF] Desoer | Feedback Systems Input-Output Properties[END_REF] (p 252) Let k : IR + → IR, locally integrable on

IR + et k 0. If u : IR + → IR satisfies u(t) c + t 0 k(τ )u(τ ) d τ, ∀ t 0 (34) then u(t) c exp t 0 k(τ ) d τ , ∀ t 0. ( 35 
)
The following generalized Gronwall-Bellman lemma is an extension of the works of El Alami [START_REF] Alami | Analyse et Commande Optimale des Systèmes Bilinéaires Distribués[END_REF][START_REF] Alami | A generalization of Gronwall's lemma[END_REF] and Pachpatte [START_REF] Pachpatte | A note on Gronwall-Bellman inequality[END_REF][START_REF] Pachpatte | On some integral inequalities similar to Bellman-Bihari inequalities[END_REF][START_REF] Pachpatte | On some generalizations of Bellmans lemma[END_REF].

Lemma 2 (Generalized Gronwall-Bellman lemma). Notice that the constant in the above integration is equal to 1 (this can be shown with t = a).

If the inequality (37) holds, we have exp (ℓ -1) (41)

Figure 1 :

 1 Figure 1: Time response of the system with u(t) = 0 in the nominal case.

Figure 2 :

 2 Figure 2: Time response of the system with u(t) = Ky(t).

Figure 3 :

 3 Figure 3: Time response of the system with u(t) = Ky(t).

1 ∀

 1 [START_REF] Alami | A generalization of Gronwall's lemma[END_REF] Let i) a, b, k ∈ IR, 0 a < b, k > 0 and an integer ℓ > 1, ii) f : IR + → IR + an integrable function such that, ∀ α, β ∈ [a, b], (0 α < β), we haveβ α f (s) d s > 0, iii) x : [a, b] → IR + an essential bounded function such that x(t) k + t a f (s)(x(s)) ℓ d s, ∀ t ∈ [a, b]. t ∈ [a, b].(38)Proof. Relation (36) can be written as followsx(t) k + t a f (s)(x(s)) ℓ-1 x(s) d s, ∀ t ∈ [a, b],and, from the Corollary 1, we obtainx(t) k exp t a f (s)(x(s)) ℓ-1 d s or equivalently (x(t)) ℓ-1 k ℓ-1 exp (ℓ -1) t a f (s)(x(s)) ℓ-1 d s .(39)Multiplying the above inequality by -(ℓ -1)f (t) gives-(ℓ -1)f (t)(x(t)) ℓ-1 -(ℓ -1)k ℓ-1 f (t) exp (ℓ -1) t a f (s)(x(s)) ℓ-1 d s or equivalently -(ℓ -1)f (t)(x(t)) ℓ-1 exp -(ℓ -1) t a f (s)(x(s)) ℓ-1 d s -(ℓ -1)k ℓ-1 f (t)Using the primitive of the exponential function, the above inequality becomesd d t exp -(ℓ -1) t a f (s)(x(s)) ℓ-1 d s -(ℓ -1)k ℓ-1 f (t)and integrating from a to t, we obtain exp -(ℓ -1) t a f (s)(x(s)) ℓ-1 d s 1 -(ℓ -1)k ℓ-1 t a f (s) d s.

Appendix : Generalized Gronwall-Bellman lemma

The "stantard" Gronwall-Bellman lemma is given in Lemma 1.

Lemma 1 (Gronwall-Bellman lemma). [START_REF] Vidyasagar | Nonlinear Systems Analysis[END_REF] (p 292) [START_REF] Desoer | Feedback Systems Input-Output Properties[END_REF] (p 252) Let i) f , g and k, IR + → IR and locally integrable,