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Introduction

Let f ∈ C[X] be a polynomial of degree d > 1 and leading coefficient c = 0. Given x 0 , y 0 ∈ C, consider the recurring sequences x n , y n (n ∈ N) defined by

x n+1 = f (x n ), y n+1 = cy d n . Note that if x n → ∞ then x n+1 ∼ cx d n .
This lead to the following question: given x 0 ∈ C such that x n → ∞ there exists y 0 ∈ C such that x n ∼ y n ?

If f is a polynomial of the form c(X -a) d + a for some a ∈ C the answer is affirmative for if we take y 0 = x 0 -a then y n = x n -a for each n ∈ N hence x n ∼ y n whenever x n → ∞.

The next theorem states that, under certain arithmetical hypothesis, the polynomials c(X -a) d + a are the only ones with this property.

Theorem 1.1. Let f ∈ Z[X] be a polynomial of degree d > 1 and leading coefficient c = 0. Suppose that there exists two unbounded sequences x n , y n (n ∈ N) such that

x n+1 = f (x n ), y n+1 = cy d n and
x n ∼ y n as n → +∞. If x 0 is integer and y 0 is rational then there exists

a ∈ Q such that f (X) = c(X -a) d + a.
Note that the sequences x n , y n are actually divergent: this follows from the explicit formula

y n = c d n -1 d-1 y d n 0
which implies that y n is unbounded if and only if

cy d-1 0 > 1 (1)
and in this case y → ∞.

The proof of 1.1 follows several steps. The first (section 2) consist to show that the sequence x n admits a power series expansion in y n of the form

x n = y n + a 0 + a 1 y -1 n + a 2 y -2 n + • • • with a i ∈ Q. This guarantees (section 3) that given k ∈ N there exists two polynomials a, b ∈ Q[X] with a = 0 such that a(x n )y n = b(x n ) + o(y -k n )
as n → +∞. If x 0 is integer and y 0 rational, then the error term o(y -k n ) can be eliminated, so that y n can be written as a rational function of x n that's

y n = γ(x n ) eventually, where γ = b/a ∈ Q(X). Then γ satisfy the functional equation γ(f (X)) = cγ(X) d in Q(X). Doing arithmetic in Q[X]
(section 4) we conclude that this is possible if and only if f (X) is of the form c(X + a) d -a with c ∈ Z and a ∈ Q.

Power series expansion

It this section we show that the sequence x n admit a power series expansion in y n of the form

x n = y n + a 0 + a 1 y -1 n + a 2 y -2 n + • • • with a i ∈ Q.
In the sequel we consider complex sequences as functions N → C. Given a complex sequence ξ : N → C and n ∈ N we indicate with ξ n the value of ξ at n, as customary. If ξ, η are complex sequences then ξ + η and ξη are complex sequences defined as

(ξ + η) n = ξ n + η n (ξη) n = ξ n η n .
Finally, ξ τ denote the translate sequence, that's (ξ τ ) n = ξ n+1 . We start by formalizing the notion of power series of a sequences.

Definition 2.1. Let θ be a complex sequences such that θ → 0 and θ = 0 eventually. We say that a complex sequence ξ has a θ-expansion if for each k ∈ N there exists a polynomial p ∈ Q[X] such that

ξ = p(θ) + o(θ k ).
The purpose of this section is to prove the following:

Theorem 2.1. Let f be a complex polynomial with degree d > 1 and leading coefficient c, x, y : N → C be two complex sequences such that

x τ = f (x), y τ = cy d , (2) 
x, y → ∞ and x ∼ y. If θ := 1/y and r := x -y, then r has θ-expansion.

Note that r = o(y) and from ( 2) we obtain a recurrence relation for r, namely

r τ = ducy d-1 r + v (3) 
where

u := x d-1 + • • • + y d-1 dy d-1 ∼ 1, v := f (x) -cx d = O(y d-1 ).
The first step consist to show that r is bounded. Then an induction argument applied to the recurrence (3) will show that r has θ-expansion.

Lemma 2.2. If r is unbounded then r → ∞.

Proof. From (3) we obtain

|r| τ -|r| ≥ (du |c| |y| d-1 -1) |r| -|v| .
Since u ∼ 1 and y → ∞, there exists ū ∼ 1 such that

du |c| |y| d-1 -1 = dū |c| |y| d-1 ; in particular there exists N ∈ N such that ūn > 1 2 for n > N. Let C > 0 such that |v| ≤ C |y| d-1 and S be the set of n ∈ N with n > N such that |r n | > 2C d|c| .
Then

|v n | < (du n |c| |y n | d-1 -1) |r n | for n ∈ S, consequently |r n+1 | > |r n | > 2C cd for n ∈ S. Thus if n ∈ S then n + 1 ∈ S, hence |r n | > 2C
d|c| eventually. Since C can be choose great as we would, we obtain r → ∞.

Proposition 2.3. The sequence r is bounded.

Proof. Suppose r unbounded and let ̺ := |r/y|. From (3) we obtain

|̺ τ -du̺| ≤ |v| |y| -d (4)
where u ∼ 1 and vy -d = O(y -1 ), from which

̺ τ du̺ = 1 + O 1 r → 1 that's ̺ τ ∼ d̺.
In particular r = 0 eventually, that's ̺ > 0 eventually. Since d > 1 we have

̺ τ -̺ ∼ (d -1)̺ =⇒ ̺ τ -̺ ̺ → d -1
hence from d -1 > 0 and ̺ > 0 follows that ̺ is eventually non-decreasing. Since ̺ → 0 this implies ̺ = 0 eventually that's r = 0 eventually -a contradiction.

Now a proof of 2.1:

Proof. Since r is bounded and θ d-1 v is convergent, from r = 1 cdu (θ d-1 r τ -θ d-1 v)
follows that r is convergent, that's r has a θ-expansion of order 0. Suppose that r admit a θ-expansion of order k ∈ N, that's there exists

p ∈ Q[X] such that r = p(θ) + o(θ k ). Then r τ = p(θ d /c) + o(θ dk ) and since xθ = 1 + θr vθ d-1 = c 1 (1 + θr) d-1 + • • • + c d , with c i ∈ Z hence vθ d-1 = g(θ) + o(θ k+1 ) for some g ∈ Q[X]. Similarly u = (1 + θr) d-1 + • • • + 1 d = h(θ) + o(θ k+1 ).
Since u → 1 we have h(0) = 1 and

r = 1 cd θ d-1 p(θ d /c) -g(θ) + o(θ k+1 ) h(θ) + o(θ k+1 ) = q(θ) + o(θ k+1 ) for some q ∈ Q[X].

Approximation by rational functions

In this section we use the power series expansion obtained in the previous section to show that y can be approximated as a rational function of x, that's given k ∈ N there exists two polynomials a, b ∈ Q[X] with a = 0 such that

a(x)y = b(x) + o(θ k ).
Let E (θ) be denote the set of infinitesimal complex sequences which has a θ-expansion.

Lemma 3.1. Let ξ be a complex sequence which as a θ-expansion. For all k ∈ N there exists p ∈ Q[X] and η ∈ E (θ) such that ξ = p(θ) + θ k η.

Proof. Given k, by definition there exists a polynomial p ∈ Q

[X] such that ξ = p(θ) + o(θ k ). Define η := ξ -p(θ) θ k .
We prove that η ∈ E (θ). Certainly η is infinitesimal. Given h ∈ N, we claim that there exists a polynomial q ∈ Q[X] such that η = q(θ)

+ o(θ h ). Let p ∈ Q[X] such that ξ = p(θ) + o(θ h+k ). Then p(θ) -p(θ) = o(θ k ) hence there exists a polynomial q ∈ Q[X] such that p -p = X k q. Consequently, η = p(θ) -p(θ) + o(θ h+k ) θ k = q(θ) + o(θ h )
which conclude the proof. Now we shall investigate the structure of the set of sequences that admit θ-expansion. From the relation xθ = 1 + rθ, follows that the vector space S := Q[x] + E (θ) is closed by multiplication by x. More explicit:

Proposition 3.2. For every ξ ∈ S and a ∈ Q[X] there exists b ∈ Q[X] such that a(x)ξ -b(x) ∈ E (θ).
Proof. It's enough to prove the statement for ξ ∈ E (θ) and a = 0. By previous Lemma there exists a 0 ∈ Q and η ∈ E (θ) such that ξ = a 0 θ + ηθ. Proof. By Proposition 3.2 for every j = 0, . . . , k there exists b

j ∈ Q[X] such that x j ξ -b j (x) ∈ E (θ), that's x j ξ -b j (x) = p j (θ) + o(θ k ),
where p j ∈ Q[X]. We can assume p j = 0 or deg p j ≤ k, for all j. Since p j (0) = 0 for every j, the polynomials p 0 , . . . , p k are linearly dependent over Q. Thus there exists a 0 , . . . , a k ∈ Q not all 0 such that a 0 p 0 +

• • • + a k p k = 0 in Q[X]. Put a := a 0 + • • • + a k X k = 0 and b := a 0 b 0 + • • • + a k b k , then a(x)ξ = b(x) + o(θ k ).
Theorem 3.4. Under the assumption of 1.1, there exists

γ ∈ Q(X) \ Q such that γ(f (X)) = cγ(X) d .
Proof. If x 0 ∈ Z then x is an integer valued sequence. If y 0 is rational, there exists u 0 , v 0 integer with v 0 > 0 (without common factors) such that y 0 = u 0 v 0 . The sequences u τ = cu d and v τ = v d are integral valued and y = u v . Moreover, by (1), there exists k ∈ N such that vθ k → 0.

Since

y = x -r ∈ S , there exists a, b ∈ Q[X], with a = 0, such that a(x)y = b(x) + o(θ k ). We can assume a, b ∈ Z[X]. Consequently, a(x)u -b(x)v is a integer valued infinitesimal sequence, hence a(x)u -b(x)v = 0 eventually. Then we have b(x) a(x) = u v eventually, from which b(f (x)) a(f (x)) = c b(x) d a(x) d , that's ca(f (x))b(x) d -b(f (x))a(x) d = 0. Since x is unbounded, it follows that ca(f (X))b(X) d -b(f (X))a(X) d = 0 identically in Z[X]. The rational function γ = b a ∈ Q(X) satisfy γ(f (X)) = cγ(X) d .

Rational functional equation

In this section we prove the following:

Theorem 4.1. Let f ∈ C[X]
be a non-constant polynomial with degree d > 1 and leading coefficient c = 0. If there exists a non-constant rational function γ ∈ C(X) such that γ(f (X)) = cγ(X) d then there exists a ∈ C such that f (X) = c(X -a) d + a.

Recall that C[X] is a unique factorization domain with field of fractions C(X). In C[X] irreducible elements are the polynomials of degree 1. If p ∈ C[X] is an irreducible polynomial and γ ∈ C(X) then we can define the order ord p γ of γ at p and it's an integer.

Lemma 4.2. Let f be a non-constant polynomial in C[X]. For any monic irreducible polynomial q ∈ C[X] there exists a unique monic irreducible polynomial

p ∈ C[X] such that q(X) | p(f (X)) in C[X]
. If e q denote the order of p(f ) at q then 1 ≤ e q ≤ deg f . Moreover for any rational function γ ∈ C(X) we have ord q γ(f ) = e q ord p γ.

Proof. If q(X) = X -a for some a ∈ C then take p(X) = X -f (a). Since deg p(f (X)) = deg p deg f it follows that e q ≤ deg f . For the last statement, let n ∈ Z be the order of γ at p and let γ ∈ C(X) such that γ = p n γ; then p is not an irreducible factor of γ. Then γ(f ) = p(f ) n γ(f ) and p(f ), γ(f ) has no common irreducible factors. Consequently the order of γ(f ) at q is ne q .

Proposition 4.3. Let f (X) ∈ C[X] be a polynomial with degree d > 1 and leading coefficient c. If there exists a non-constant rational function γ ∈ C(X) such that γ(f (X)) = cγ(X) d then for any monic irreducible factor p of γ there exists an unique monic irreducible factor q of γ such that p(f (X)) = cq(X) d .

Proof. For any monic irreducible polynomial q ∈ C[X] let q * denote the monic irreducible polynomial in C[X] such that q(X) | q * (f (X)) and let e q be the order of q * (f (X)) at q. Let S be the set of monic irreducible factors of γ; since γ is not constant, S is non-empty. By previous lemma, d ord q γ = e q ord q * γ;

in particular q ∈ S if and only if q * ∈ S. Consequently we have a map * : q → q * from S into S.

Note that this map is onto for if p(X) = X -b ∈ S and q(X) = X -a where a ∈ C is a root of the polynomial f (X) -b, then q * = p hence q ∈ S. Since S is finite, the map * : q → q * is a permutation of S.

We obtain q∈S d ord q γ = q∈S e q ord q * γ but since q ord q γ = q ord q * γ = 0 it implies

d ♯S = q∈S e q
where ♯S denote the number of elements in S. Since 1 ≤ e q ≤ d, must be e q = d for each q thus q * (f ) = q d . Now we are able to prove 4.1:

Proof. Let p be a monic irreducible factor of γ. By 4.3 there exists a monic irreducible factor q of γ such that p(f (X)) = cq(X) d . If q(X) = X -a and p(X) = X -b then f (X) = c(X -a) d +b. Since q is a monic irreducible factor of γ, q(f (X)) is also a d-power of an irreducible factor of f . In particular, q(f ) has a multiple root r hence 0 = q(f (r)) ′ = f ′ (r) but since a is the only root of f ′ , it follows that r = f (a) = b, that's q(X) = p(X). Thus a = b, that's f (X) = c(X -a) d + a.

  Since xθ -1 = rθ ∈ E (θ), we have xξ -a 0 = η + a 0 rθ + rηθ ∈ E (θ), because r, θ, η ∈ E (θ). Conclude by induction on the degree of a. Theorem 3.3. Given ξ ∈ S , for every positive integer k there exists a, b ∈ Q[X], with a = 0 and deg a ≤ k, such that a(x)ξ = b(x) + o(θ k ).