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Abstract

The main purpose of this paper is to prove an irrationality criterion
involving recurring sequences. Let f ∈ Z[X] be a polynomial of degree
d > 1 and leading coefficient c 6= 0. Suppose that there exists two
unbounded sequences xn, yn (n ∈ N) such that

xn+1 = f(xn), yn+1 = cydn

and xn ∼ yn as n → ∞. If x0 is an integer and y0 is rational then
there exists a ∈ Q such that

f(X) = c(X − a)d + a.

1 Introduction

Let f ∈ C[X ] be a polynomial of degree d > 1 and leading coefficient c 6= 0.
Given x0, y0 ∈ C, consider the recurring sequences xn, yn (n ∈ N) defined by

xn+1 = f(xn), yn+1 = cydn.

Note that if xn → ∞ then xn+1 ∼ cxd
n. This lead to the following question:

given x0 ∈ C such that xn → ∞ there exists y0 ∈ C such that xn ∼ yn?
If f is a polynomial of the form c(X − a)d + a for some a ∈ C the answer

is affirmative for if we take y0 = x0 − a then yn = xn − a for each n ∈ N

hence xn ∼ yn whenever xn → ∞.
The next theorem states that, under certain arithmetical hypothesis, the

polynomials c(X − a)d + a are the only ones with this property.
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Theorem 1.1. Let f ∈ Z[X ] be a polynomial of degree d > 1 and leading

coefficient c 6= 0. Suppose that there exists two unbounded sequences xn, yn
(n ∈ N) such that

xn+1 = f(xn), yn+1 = cydn

and xn ∼ yn as n → +∞. If x0 is integer and y0 is rational then there exists

a ∈ Q such that

f(X) = c(X − a)d + a.

Note that the sequences xn, yn are actually divergent: this follows from
the explicit formula

yn = c
d
n
−1

d−1 yd
n

0

which implies that yn is unbounded if and only if

∣

∣cyd−1
0

∣

∣ > 1 (1)

and in this case y → ∞.
The proof of 1.1 follows several steps. The first (section 2) consist to show

that the sequence xn admits a power series expansion in yn of the form

xn = yn + a0 + a1y
−1
n + a2y

−2
n + · · ·

with ai ∈ Q. This guarantees (section 3) that given k ∈ N there exists two
polynomials a, b ∈ Q[X ] with a 6= 0 such that

a(xn)yn = b(xn) + o(y−k
n )

as n → +∞. If x0 is integer and y0 rational, then the error term o(y−k
n ) can

be eliminated, so that yn can be written as a rational function of xn that’s
yn = γ(xn) eventually, where γ = b/a ∈ Q(X). Then γ satisfy the functional
equation

γ(f(X)) = cγ(X)d

in Q(X). Doing arithmetic in Q[X ] (section 4) we conclude that this is
possible if and only if f(X) is of the form c(X + a)d − a with c ∈ Z and
a ∈ Q.
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2 Power series expansion

It this section we show that the sequence xn admit a power series expansion
in yn of the form

xn = yn + a0 + a1y
−1
n + a2y

−2
n + · · ·

with ai ∈ Q.
In the sequel we consider complex sequences as functions N → C. Given

a complex sequence ξ : N → C and n ∈ N we indicate with ξn the value of
ξ at n, as customary. If ξ, η are complex sequences then ξ + η and ξη are
complex sequences defined as

(ξ + η)n = ξn + ηn (ξη)n = ξnηn.

Finally, ξτ denote the translate sequence, that’s (ξτ )n = ξn+1.
We start by formalizing the notion of power series of a sequences.

Definition 2.1. Let θ be a complex sequences such that θ → 0 and θ 6= 0
eventually. We say that a complex sequence ξ has a θ-expansion if for each

k ∈ N there exists a polynomial p ∈ Q[X ] such that

ξ = p(θ) + o(θk).

The purpose of this section is to prove the following:

Theorem 2.1. Let f be a complex polynomial with degree d > 1 and leading

coefficient c, x, y : N → C be two complex sequences such that

xτ = f(x), yτ = cyd, (2)

x, y → ∞ and x ∼ y. If θ := 1/y and r := x− y, then r has θ-expansion.

Note that r = o(y) and from (2) we obtain a recurrence relation for r,
namely

rτ = ducyd−1r + v (3)

where

u :=
xd−1 + · · ·+ yd−1

dyd−1
∼ 1, v := f(x)− cxd = O(yd−1).

The first step consist to show that r is bounded. Then an induction argument
applied to the recurrence (3) will show that r has θ-expansion.
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Lemma 2.2. If r is unbounded then r → ∞.

Proof. From (3) we obtain

|r|τ − |r| ≥ (du |c| |y|d−1 − 1) |r| − |v| .

Since u ∼ 1 and y → ∞, there exists ū ∼ 1 such that

du |c| |y|d−1 − 1 = dū |c| |y|d−1 ;

in particular there exists N ∈ N such that ūn > 1
2
for n > N . Let C > 0

such that |v| ≤ C |y|d−1 and S be the set of n ∈ N with n > N such that
|rn| >

2C
d|c|

. Then

|vn| < (dun |c| |yn|
d−1 − 1) |rn| for n ∈ S,

consequently |rn+1| > |rn| >
2C
cd

for n ∈ S. Thus if n ∈ S then n + 1 ∈ S,
hence |rn| >

2C
d|c|

eventually. Since C can be choose great as we would, we
obtain r → ∞.

Proposition 2.3. The sequence r is bounded.

Proof. Suppose r unbounded and let ̺ := |r/y|. From (3) we obtain

|̺τ − du̺| ≤ |v| |y|−d (4)

where u ∼ 1 and vy−d = O(y−1), from which

̺τ

du̺
= 1 +O

(1

r

)

→ 1

that’s ̺τ ∼ d̺. In particular r 6= 0 eventually, that’s ̺ > 0 eventually. Since
d > 1 we have

̺τ − ̺ ∼ (d− 1)̺ =⇒
̺τ − ̺

̺
→ d− 1

hence from d− 1 > 0 and ̺ > 0 follows that ̺ is eventually non-decreasing.
Since ̺ → 0 this implies ̺ = 0 eventually that’s r = 0 eventually - a contra-
diction.

Now a proof of 2.1:
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Proof. Since r is bounded and θd−1v is convergent, from

r =
1

cdu
(θd−1rτ − θd−1v)

follows that r is convergent, that’s r has a θ-expansion of order 0. Suppose
that r admit a θ-expansion of order k ∈ N, that’s there exists p ∈ Q[X ] such
that r = p(θ) + o(θk). Then rτ = p(θd/c) + o(θdk) and since xθ = 1 + θr

vθd−1 = c1(1 + θr)d−1 + · · ·+ cd, with ci ∈ Z

hence vθd−1 = g(θ) + o(θk+1) for some g ∈ Q[X ]. Similarly

u =
(1 + θr)d−1 + · · ·+ 1

d
= h(θ) + o(θk+1).

Since u → 1 we have h(0) = 1 and

r =
1

cd

θd−1p(θd/c)− g(θ) + o(θk+1)

h(θ) + o(θk+1)
= q(θ) + o(θk+1)

for some q ∈ Q[X ].

3 Approximation by rational functions

In this section we use the power series expansion obtained in the previous
section to show that y can be approximated as a rational function of x, that’s
given k ∈ N there exists two polynomials a, b ∈ Q[X ] with a 6= 0 such that

a(x)y = b(x) + o(θk).

Let E (θ) be denote the set of infinitesimal complex sequences which has
a θ-expansion.

Lemma 3.1. Let ξ be a complex sequence which as a θ-expansion. For all

k ∈ N there exists p ∈ Q[X ] and η ∈ E (θ) such that ξ = p(θ) + θkη.

Proof. Given k, by definition there exists a polynomial p ∈ Q[X ] such that
ξ = p(θ) + o(θk). Define

η :=
ξ − p(θ)

θk
.
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We prove that η ∈ E (θ). Certainly η is infinitesimal. Given h ∈ N, we claim
that there exists a polynomial q ∈ Q[X ] such that η = q(θ) + o(θh). Let
p̄ ∈ Q[X ] such that ξ = p̄(θ)+ o(θh+k). Then p̄(θ)−p(θ) = o(θk) hence there
exists a polynomial q ∈ Q[X ] such that p̄− p = Xkq. Consequently,

η =
p̄(θ)− p(θ) + o(θh+k)

θk
= q(θ) + o(θh)

which conclude the proof.

Now we shall investigate the structure of the set of sequences that admit
θ-expansion. From the relation xθ = 1 + rθ, follows that the vector space
S := Q[x] + E (θ) is closed by multiplication by x. More explicit:

Proposition 3.2. For every ξ ∈ S and a ∈ Q[X ] there exists b ∈ Q[X ]
such that a(x)ξ − b(x) ∈ E (θ).

Proof. It’s enough to prove the statement for ξ ∈ E (θ) and a 6= 0. By
previous Lemma there exists a0 ∈ Q and η ∈ E (θ) such that

ξ = a0θ + ηθ.

Since xθ − 1 = rθ ∈ E (θ), we have

xξ − a0 = η + a0rθ + rηθ ∈ E (θ),

because r, θ, η ∈ E (θ). Conclude by induction on the degree of a.

Theorem 3.3. Given ξ ∈ S , for every positive integer k there exists a, b ∈
Q[X ], with a 6= 0 and deg a ≤ k, such that a(x)ξ = b(x) + o(θk).

Proof. By Proposition 3.2 for every j = 0, . . . , k there exists bj ∈ Q[X ] such
that xjξ − bj(x) ∈ E (θ), that’s

xjξ − bj(x) = pj(θ) + o(θk),

where pj ∈ Q[X ]. We can assume pj = 0 or deg pj ≤ k, for all j. Since
pj(0) = 0 for every j, the polynomials p0, . . . , pk are linearly dependent over
Q. Thus there exists a0, . . . , ak ∈ Q not all 0 such that a0p0 + · · ·+ akpk = 0
in Q[X ]. Put a := a0 + · · ·+ akX

k 6= 0 and b := a0b0 + · · ·+ akbk, then

a(x)ξ = b(x) + o(θk).
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Theorem 3.4. Under the assumption of 1.1, there exists γ ∈ Q(X)\Q such

that

γ(f(X)) = cγ(X)d.

Proof. If x0 ∈ Z then x is an integer valued sequence. If y0 is rational,
there exists u0, v0 integer with v0 > 0 (without common factors) such that
y0 =

u0

v0
. The sequences uτ = cud and vτ = vd are integral valued and y = u

v
.

Moreover, by (1), there exists k ∈ N such that vθk → 0.
Since y = x− r ∈ S , there exists a, b ∈ Q[X ], with a 6= 0, such that

a(x)y = b(x) + o(θk).

We can assume a, b ∈ Z[X ]. Consequently, a(x)u− b(x)v is a integer valued
infinitesimal sequence, hence a(x)u − b(x)v = 0 eventually.

Then we have b(x)
a(x)

= u
v
eventually, from which

b(f(x))

a(f(x))
= c

b(x)d

a(x)d
,

that’s
ca(f(x))b(x)d − b(f(x))a(x)d = 0.

Since x is unbounded, it follows that

ca(f(X))b(X)d − b(f(X))a(X)d = 0

identically in Z[X ]. The rational function γ = b
a
∈ Q(X) satisfy γ(f(X)) =

cγ(X)d.

4 Rational functional equation

In this section we prove the following:

Theorem 4.1. Let f ∈ C[X ] be a non-constant polynomial with degree d > 1
and leading coefficient c 6= 0. If there exists a non-constant rational function

γ ∈ C(X) such that

γ(f(X)) = cγ(X)d

then there exists a ∈ C such that f(X) = c(X − a)d + a.
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Recall that C[X ] is a unique factorization domain with field of fractions
C(X). In C[X ] irreducible elements are the polynomials of degree 1. If
p ∈ C[X ] is an irreducible polynomial and γ ∈ C(X) then we can define the
order ordp γ of γ at p and it’s an integer.

Lemma 4.2. Let f be a non-constant polynomial in C[X ]. For any monic

irreducible polynomial q ∈ C[X ] there exists a unique monic irreducible poly-

nomial p ∈ C[X ] such that q(X) | p(f(X)) in C[X ]. If eq denote the order of

p(f) at q then 1 ≤ eq ≤ deg f . Moreover for any rational function γ ∈ C(X)
we have

ordq γ(f) = eq ordp γ.

Proof. If q(X) = X − a for some a ∈ C then take p(X) = X − f(a). Since
deg p(f(X)) = deg p deg f it follows that eq ≤ deg f .

For the last statement, let n ∈ Z be the order of γ at p and let γ̄ ∈ C(X)
such that γ = pnγ̄; then p is not an irreducible factor of γ̄. Then γ(f) =
p(f)nγ̄(f) and p(f), γ̄(f) has no common irreducible factors. Consequently
the order of γ(f) at q is neq.

Proposition 4.3. Let f(X) ∈ C[X ] be a polynomial with degree d > 1
and leading coefficient c. If there exists a non-constant rational function

γ ∈ C(X) such that

γ(f(X)) = cγ(X)d

then for any monic irreducible factor p of γ there exists an unique monic

irreducible factor q of γ such that

p(f(X)) = cq(X)d.

Proof. For any monic irreducible polynomial q ∈ C[X ] let q∗ denote the
monic irreducible polynomial in C[X ] such that q(X) | q∗(f(X)) and let eq
be the order of q∗(f(X)) at q. Let S be the set of monic irreducible factors
of γ; since γ is not constant, S is non-empty. By previous lemma,

d ordq γ = eq ordq∗ γ;

in particular q ∈ S if and only if q∗ ∈ S. Consequently we have a map
∗ : q 7→ q∗ from S into S.

Note that this map is onto for if p(X) = X − b ∈ S and q(X) = X − a
where a ∈ C is a root of the polynomial f(X)− b, then q∗ = p hence q ∈ S.
Since S is finite, the map ∗ : q 7→ q∗ is a permutation of S.
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We obtain
∏

q∈S

d ordq γ =
∏

q∈S

eq ordq∗ γ

but since
∏

q ordq γ =
∏

q ordq∗ γ 6= 0 it implies

d♯S =
∏

q∈S

eq

where ♯S denote the number of elements in S. Since 1 ≤ eq ≤ d, must be
eq = d for each q thus

q∗(f) = qd.

Now we are able to prove 4.1:

Proof. Let p be a monic irreducible factor of γ. By 4.3 there exists a monic
irreducible factor q of γ such that p(f(X)) = cq(X)d. If q(X) = X − a and
p(X) = X−b then f(X) = c(X−a)d+b. Since q is a monic irreducible factor
of γ, q(f(X)) is also a d-power of an irreducible factor of f . In particular,
q(f) has a multiple root r hence

0 = q(f(r))′ = f ′(r)

but since a is the only root of f ′, it follows that r = f(a) = b, that’s
q(X) = p(X). Thus a = b, that’s f(X) = c(X − a)d + a.
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