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The Adjustment and Monitoring of Freeform Surfaces
using Inertial Tolerancing

Dimitri DENIMAL, Maurice PILLET*, Alain SERGENT

Symme Laboratory, University of Savoie, Annecy, France

Abstract

At present, the manufacturing process allows one to make parts easily having one or several freeform surfaces
thanks to the numerical link between Computer Aided Design (CAD) and Computer Numerical Control (CNC).
Indeed, from a part defined by a CAD software the designer realizes the program of the CNC and can produce,
if the CNC is supplied. However, during the step of production, the operator meets some difficulties to monitor
and control. Indeed the ISO tolerancing of this kind of part is often complex and the setting of the manufacturer
process is complex to adjust a part to its target values (numerical model). In this paper, we propose an original
approach which simplifies the monitoring of freeform surface. We introduce this approach, we present the concept

and we conclude by two industrial cases.

Keywords: Monitoring, freeform surface, tolerance, measure.

1. INTRODUCTION

In recent years, the development process has co-
vered all the automated production phases, from the
design to manufacture and finally through to the in-
spection of the parts. Since then, the design and the ma-
nufacture of complex surfaces has become a current
practice in industry. Thus, the literature presents diffe-
rent works on the tool path generation using the digital
model of a part (Duc E et al 1999, Li H et al, 2004), the
metrology of freeform-shaped parts (Li Y et al, 2005,
Savio E, 2007 or Jiang X et al, 2007), the monitoring of
freeform surfaces (Yang My et al 1993, Klocke et al,
2008), or the certification method for the milling pro-
cess (Thiebaut F et al, 1999, and Cho HD, 1993). These
studies essentially highlight the problems related to the
conformity and the production of parts with freeform
surfaces.

This paper takes an interest in the monitoring and
adjustment of the milling process which allows a part
composed of one or a set of freeform surfaces to be
obtained. The aim is to introduce an approach which
allows a quick and efficient adjustment of a manu-
factured process using a group of measured deviations.

In the context of milling machines, we have iden-
tified three approaches which deduce the correction
values using measured points (obtained by Coordinate
Measuring Machines (CMM)).

U The first approach consists in defining the spatial
location the volume of a numerical part inside a
cast part before a machining operation. The
principle is the following, from a measured cast
part the approach computes the parameters of the
process in function of several defined. These
requirements can be functional, physical...The
spatial location is defined mathematically by a
transfer matrix between the reference system of
the cast part (R,) and the reference system of the
numerical part (Figure 1) (Li and Gu,Y 2005)
(Frank Fontanili 1992)

U The second approach is to consider the tool path
as an invariable, but it can be affected by the
variation in the parameters of the tool (for
example, the corrector of a tool). Consequently,
the aim is to adjust the path of the tool using the
parameters of the tool. Figure 2 is an illustration
of the second approach. The numerical model is

* Correspondence to Prof.dr. Maurice Pillet, e-mail: srdjan.tomic76@gmail.com.
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Figure 1. Spatial location
of the numerical model
inside a measured cast part

Numerical Model of
the part

presented by a dashed line and the measured part
by a continuous line. Consequently, if you want
the measured part to be on the target, one must
adjust the parameters CR and CL (Figure 2).
The third approach consists in the adjustment of
the path tool to a group of measured points. For
example, we want to machine a porthole in a
hull. During the machining operation, the hull is
put onto three supports (Isostatic support)
therefore the hull bends because of the weight of
the keel. Thus, the form of the porthole becomes
elliptic. Hence, the question is what is the path of
the tool to guarantee a circular porthole in a real
context (when the hull is on the sea)? The
response consists in adapting the path tool in
function of the bend of the hull.

Numerical model

The first and the third approaches have been intro-
duced in several works by different authors (Li 2005,
Dubois 2008, Desplatz 2008, Goldschmidt 2009, Bou-
chenitfa 2009). In addition, a collaboration with the
company DELCAMg and CETIM (French Technical
Centre for Mechanical Industry) has developed a soft-
ware programme (Power Millingg)) which allows us to
adapt the tool path using a measured part. Nevertheless,
to our knowledge, the second approach has not been
introduced in research yet. Indeed, we think that the
first and the third approaches are really adapted to fit a
part on the numerical model, consequently these
approaches mainly concern small production batches
and the calculation takes some time.

In the context of mass production, the second ap-
proach seems more adapted if the calculation time
takes a few seconds. In fact, our industrial backgrounds
show us that the adjustment phase can be strenuous and
very time-consuming.

In this paper, we will firstly present the mathema-
tical principle of our method, and secondly, two indus-
trial case studies.

2. PRESENTATION
OF THE MATHEMATICAL PROCEDURE
2.1. General approach

The aim of a production is to

comply with the functional requi-
rements. These requirements are

materialized by a numerical model

ol

X N10gq

o of a part for which a level of varia-
i bility is defined on each surface.

Since any manufacturing process

induces variability, the control of
the process is required in order to

|
t
|
|
|
|
+
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respect the required level of varia-
bility.

By achieving a balance in the
production environment it finds that:

O The manufacturing process is
controlled through a group of
correctors which is defined
by a vector, Y. For example,

Real model on
supports

Measuredpart __—¥
Figure 2. Adjustment of the tool
Numerical Model
/ \
\l O A A
\ 9

Real Model during
the machining

Figure 3. Adaptative path tool

Supports

in the case of a CNC machi-
ne, these correctors can be an
offset, a radius corrector, a
corrector of rotation... The
size of the vector Y is equal to
the number of available para-
meters to adjust a given part.

9.
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U The machined part has deviations in comparison
to its numerical model (NVM). These differences
are represented by a vector E which corresponds
to the differences between the target (VM) and
the measured values. This vector contains all the
deviations and its size is relative to the number
of measured points. For example, in the case of
scanning, the size of the vector £ is equal to
several thousand points.

We propose to link these two vectors (Y and E) by a
linear relationship matrix (1). We call this matrix: inci-
dence matrix X. The incidence matrix synthesizes the
impact of each corrector (¥) on each measured point
(E). Consequently, by knowing one of the vectors (Y or
E), it is possible to deduce the other:

E=XY (1)

The parameter X in the relation (1) corresponds to a
matrix which describes the relation between the vectors
E and Y. Its dimension is equal to m x n for which m is
the size of the vector Y and n the size of the vector E.
This matrix is called an incidence matrix. The impact
of each corrector is calculated using the normal of the
numerical surface of each point, we present this point
in the part ,,Determination of the matrix X*.

The main purpose is to suggest the adjustment in
order to reduce or eliminate the set of deviations (Vec-
tor E). The relation (1) defines a set of inequalities and,
to solve this mathematical operation, we suggest cal-
culating the pseudo inverse of the incidence matrix X
(Saporta 2006, Nisbet 2009). The pseudo-inverse me-
thod corresponds to at least the square optimization, we
call this pseudo-inverse, X*.

X =XX"X )

Finally, the relation (3) presents the mathematical
model which gives the adjustment vector (Y) for a
deviation vector, E.

Y=XFE 3)

In the next parts, we will present the calculation of
the E vector and then the X matrix.

2.2. Determination of the vector E

The vector £ is composed of a set of scalar projec-
tion of the deviation &, between the coordinate of the
measured point and the target point appertaining to the
theoretical topology of surfaces (Figure 4) (Equation

4)).

5
o)
E-|© (4)

S,

The coordinate of the measured point and the target
point are defined in the CMM reference system. For a
target point i, the deviation & between the measured and
the target is formulated by:

. Xo Ty ny;
51':TiXi"7i: Xyi_Tyi *\ 1y Q)
X, T n;
Note that:

X, : Measured point i in the CMM reference system,

T; : Target point 7 in the CMM reference system,

n; : Normal Vector of the target point .

The normal vector is normalized and it is defined as
positive on the external side of the surface.

This approach implies that the CMM measure is in
accordance with the normal vector of the target point .

From the relation (4), we can represent the overall
defect of the part by a scalar. This scalar is called inertia
of the part i (Pillet 2004, Adragna 2007).

=\ 155 6)

ni=r’

This last relation is used to evaluate the overall
defect of the part.

2.3. Determination of the matrix X

In the case of the milling process, the incidence
matrix X is composed of a set of correctors (C;) which

o/ ~t
o 7P ~grr—=_ Measured Point
- -
- -
ST

_ ' -...:‘." 'ffffjtff’ Normal of Target Poirt

e T ot
i argel Posr

are independent and for
which the impact has been
calculated for each measu-
red point.

Nowadays, the milling
machine presents the opera-
tor with a lot of possibilities
of adjustment. Consequently

Figure 4. Illustration of the E vector

-10-

in this part, we will present
an approach to build the
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matrix X of the milling process using a set of correc-
tors. We introduce four kinds of correctors and discuss
the building of the X matrix in the case of injection
molding machines.

2.3.1.Location Corrector (Dec)

Figure 5 (a) illustrates the location of a hole in a re-
ference system (RS) of the measure. Here, we consider
the RS of the measure to coincide with the RS of the
machine. In order to adjust the location of the hole, the
machine operator can modify the corrector DEC, and
the corrector DEC, The first corrector adjusts follo-
wing the x-axis and the second, following the y-axis.

o & TapaFoun
@ & MearedFont

(a)

(b

Figure 5. Location of a hole

Figure 5 (b) presents the location problem. The ope-
rator would like to adjust the hole location. In Figure 5
(b), the target hole location is presented by a circle
defined by 8 green points (P;). The measured location
is given by the 8 red points (P,,). The yellow arrows
correspond to the value of the adjustment on the x axis.
The influence of the corrector DEC; is calculated using
the impact on the measured point following the
direction of the corrector 7, for one unit.

—_—

DEC; = (Pc,Pm,) * n; @)

With e corresponding to the scalar product.
2.3.2. Length Corrector (L)

Figure 6 (a) shows the principle of the length cor-
rector. The dashed line is the target framework while
the continuous line presents the measured framework.
Each surface is defined by a set of points; the target
point (Py) in the RS, and R, and P,,; on the measured
point. The deviation between P;; and P,,; following the
normal direction to the surface targeted correspond to
the deviation to adjust.

“&. §

IE ri(

v P

Figure 6. Principle of the length corrector

The impact of the corrector L, is given by the rela-
tion:

—

L;= (Pc,Pm,) ¢ ﬁz (8)

2.3.3. Rotation corrector (R)

This corrector corresponds to a rotation of the tool
or of the support of the machine part. The impact of this
third corrector is calculated using the same principle as
for the previous correctors. But it integrates another pa-
rameter which is the location of the centre of rotation.

: P
Y
\ - 5%‘
sum-:m‘.::._,__"_::-'w """" o : Pc,. R'I .

\\ :
", Sumce. -
]
]

(b)

Figure 7. Principle of the Rotation corrector

To express the impact of this corrector on the
measured point, we assume that the deviation is always
in the small displacement context.

O; = (RyR)) + (Pc;,Pmy)g; A Rmobility) ° E[ )

. — . .
With R, ., corresponding to the degree of rotation
following a rotation axis (x,),z-axis), n; is the normal

-11-
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vector on the surface at point i and RyR, is the vector
between the reference system R et R,.

2.3.4. Radius corrector

If the tool path creates an outline of a part, the
impact of the radius corrector on the part corresponds
to a homothetic transformation. Figure 8 illustrates the
influence of this corrector. We can see the target surface
represented by a mixed point, the path of the tool is a
dashed arrow and tool is a colour circle. The
continuous lines correspond to the measured surface.

Figure 8. Principle of the Radius corrector

The variation of the radius impacts the deviation of
the point 7 following the normal of the target surface.

—_—

R; = (Pc,Pm,) 'n)i:’" ||n)i||2:’” (10)

With r as the radius of the tool.

In this paper, we have presented the most important
correctors but it is also possible to introduce other
correctors such as corrector of the radius of a curva-
ture...

2.4. Adjustment Efficiency Indicator (AEI)

The main purpose of this
indicator is to characterize the
effectiveness of the proposed

cidence matrix, X. Thus, if a part is measured after the
proposed adjustment, it’s possible to note a deviation
between Sy, defined theoretically, and the S,* calcu-
lated using the measured part. This difference depends
on process and measure variability.

_ Sy _ >6%;
14 =100(1 -5 = 100(1 £ (11)

If the /EA is equal to 100%, we must understand that
all the deviations are corrected so that part is almost
similar to the numerical part. Consequently, if the /EA
is equal to a value of less than £% of 100%, it means
that the proposed adjustments only correct k% of the
deviations. The convergence of £% to 100% is depen-
dent on the number and kind of correctors (C;) chosen
during the construction of the incidence matrix X. From
the application point of view, we recommend retaining
the most relevant correctors among the dozens often
offered by the different processes. Thus, one role of
industrialization will be to look for the 20% of the
correctors in order to correct 100% of the deviations, in
80% of the cases encountered by the machinist.

3. INDUSTRIAL CASE WITH ISO GPS

This industrial case shows the satisfaction of geo-
metrical product specifications (ISO 8015 ) with the 777.
The presented case is a part which allows one to check
the geometry of a milling machine. The part is pre-
sented in Figure 9 (a) and it is measured at 32 points by
a Coordinate Measuring Machine (CMM).

3.1. Study Case

Figure 9 shows two reference systems. The first
system is built according to the surfaces 4, B, C while
the second, based on the first datum is noted 4, G, H.
Thus, it is necessary for all the measured points to be

adjustment (Y) in relation to the

measured deviation (E). ¥
Its indicator is called , Ad- [&[eez [A[E[C}—r
justment Efficiency Indicator*

(AED(11 ). It is a ratio between
the sum of the squared measured
deviation (Sy) and the sum of the
theoretical result from the pro-

o] 002

posed adjustment (Sy). The theo-
retical result corresponds to the
predicted deviation from the in-

-12-

Figure 9. Example of a part with geometrical product specification (GPS)
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expressed using the same reference system. Two tran-
sition matrices are needed; one for expressing the mea-
sured points in the same reference system during the
measurement and another for expressing the measured
points in the reference system of the machine.

The reference system AGH is based on the median
plans which are dependent on the distances D1 and D2.
Accordingly, a deviation on D1 or D2 leads to a devia-
tion of the reference system. (Figure 10)

E ___*_Fih—:"‘)ff-— |EI
+, ], §%| ':_‘——— Meastred Fart
[ - !

Figure 10. Evolution of the reference system depending
on the deviation of the distance D1 and D2

In Figure 10, we observe that for a deviation 6, and
o,, the deviation of the reference system corresponds to
0,/2 and 6,/2. Thus, it is possible to determine the
transition matrix between the reference system ABC to
the reference system AGH.

0
0 5,2
1 (12)
0

10
01
[Plryge 5 a6u= |0 0
00

In this case, there is no orientation of the reference
system and the z component is null because it pertains
to the datum plan A4.

From the transition matrix (12), it is possible to
express the set of measured points in one measure refe-
rence system (CMT). Therefore, it is possible to define
the transition matrix to the reference system of the
machine. Nevertheless, in this case study, the reference
system AGH coincided with the machine reference sys-
tem. In consequently, all the measured points should be
expressed using the AGH reference system.

3.2. Incidence matrix X

This part explains the construction of the incidence
matrix X. Figure 11 presents the set of correctors that
the machine has available in order to correct the part.

Figure 11. Part and Correctors

This case is composed of three correctors which are
the length correctors (LC) and a radius corrector (RC).
Nevertheless, these correctors are not sufficient to give
an efficient adjustment concerning the inclined planes.
Indeed, during the machining of the inclined planes, the
production tool creates a modification of its location and
its orientation. Consequently, it is necessary to consider
a location corrector (LgC) at the center of its tool. The
impact of each corrector of every measured point is
calculated for one unit (See Table 1) from the relations
(8)(10)(7) for the LC, RC, and LgC respectively.

Table 1. Incidence Matrix X for each Point

Incidence Matrix LC RC LgC
P1 -1 0 0
P2 -1 0 0
P3 -1 0 0
P4 -1 0 0
P5 -1 0 0
P6 -1 0 0
P7 -1 0 0
P8 -1 0 0
P9 -1 0 0
P10 -1 0 0
P11 -1 0 0
P12 -1 0 0
P13 0 0 0.707107
P14 0 0 0.707107
P15 0 0 0.707107
P16 0 0 0.707107
P17 0 0 0.5
P18 0 0 0.5
P19 0 0 0.5
P20 0 0 0.5
P21 0 1 0

-13-
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From the Incidence Matrix, we define the matrix X*

by the relation (2).

Table 2. Matrix X* for each Point

Matrix X* LC RC LgC
P1 —0.08 0 0
P2 -0.08 0 0
P3 -0.08 0 0
P4 —0.08 0 0
P5 -0.08 0 0
P6 -0.08 0 0
P7 —0.08 0 0
P8 —0.08 0 0
P9 -0.08 0 0
P10 —0.08 0 0

P11 —0.08 0 0
P12 -0.08 0 0
P13 0 0 0.236
P14 0 0 0.236
P15 0 0 0.236
P16 0 0 0.236
P17 0 0 0.167
P18 0 0 0.167
P19 0 0 0.167
P20 0 0 0.167
P21 0 0.083 0
P22 0 0.083 0
P23 0 0.083 0
P24 0 0.083 0
P25 0 0.083 0
P26 0 0.083 0
P27 0 0.083 0
P28 0 0.083 0
P29 0 0.083 0
P30 0 0.083 0
P31 0 0.083 0
P32 0 0.083 0

_14-

3.3. Industrial Feedback

In order to experiment with our approach, we used a
known situation and modified different correctors so as
to produce a defective part. Compared to a known si-
tuation, a difference of — 0.1 on the length correction
(LC:—0.1) has been added and a correction radius (RC)
of equal value. Figure 12 illustrates the measured de-
viation for each point.

HHHHHHI

O 040 4P 4P P PGP R

Figure 12. Result for LC=—0.1 and RC =-0.1

The measured deviation before the optimized
adjustment (O4) is presented in blue. In red, we present
the theoretical residual with the OA4. The value of the
AEI is equal to 83,9 %. Table 3 presents the value of the
corrector to adjust the deviation.

Table 3. Value of the corrector to adjust
the measured deviation

Corrector
LC 0.087
RC 0.098
LgC -0.26

The measure of the adjusted part shows an AET equal
to 93.7%.

We can notice that the difference between the real
AEI and the theoretical AE] is really sensitive to the
variation in the process and the measurement machine.
Consequently, some precautions must be taken to mea-
sure with effectiveness the real deviation effectively.
Nevertheless, the result of this approach is really inte-
resting because the optimized adjustment corrects 93%
of the deviations of the part.

4. INDUSTRIAL CASE WITH FORM

This case corresponds to the machining of a part in
its raw state.

4.1. Study Case

Figure 13 (a) shows the reference part built from the
datum 4, B and C. The shape is defined by a set of 11
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points. Each measured point is calculated using the nor-
mal of the target surface. The geometry of the profile
can be adjusted by two location correctors (DECI,
DEC2), a rotation corrector (O1) and a radius corrector
(R1). We note that O1 corresponds to the rotation of the
base where the part is located.

(a) (b)

Figure 13. Part and Correctors (NF E 04 008, 2009)

4.2. Incidence matrix X

From the relations (7)(9)(10) and the coordinate of
the 11 points, the incidence matrix X is defined. The di-
mension of the incidence matrix is composed of eleven
lines and four columns which correspond to the number
of measured points and the number of correctors in
order to adjust the deviation of the vector E.

-0 1 1 -35-
0 1 1 -675
0 1 1-10.65
098 —0.17 1 —1.62
—0.86 0.5 1 0.73 (13)
X=1-071 071 1 0
0.5 -0.86 1 0.73
~0.17 095 1 1.62
1 0 1 1065
1 0 1 675
- 1 0 1 35 -

The following table is the matrix
X“.

4.3. Industrial Feedback

From 7Table 4 and the relation (3), (a)
it is possible to deduce an adjust-

ment of the measured deviation as illustrated in Figure
14 (b). Figure 14 (a) shows the target shape and the
measured shaped by dashed lines.

The inertia of the measured form (/: relation (6)) is
equal to 1.03.

Therefore, it is important to adjust these deviations
in order to respect the specification. The graph pre-
sented in Figure 14(b) corresponds to the absolute de-
viation for each point Mi.

From the deviation Figure 14(b), we obtain the va-
lues of adjustment (7able 5).

Corrector
DEC, 0.11
DEC, -0.22
R, 0.29
0, 0.19

Table 5. Value of the corrector to adjust
the measured deviation

The proposed adjustment leads to an AEI equal to
97.67 %, thus an inertia of about 0.02.

The advantage of this approach is its rapidity. In-
deed, when the incidence matrix is defined, the results
are instant unlike a conventional adjustment which can
last from between 10 minutes to 1 hour in function of
the background of the machinist. In addition, this
approach uses potentially more efficient corrector but
which are not often not used by machine operators due
to their complex impact on the measured points (eg
rotate corrector, curvature corrector... ). Consequently,
the correctors with a complex impact can be used and
thus increase the capacity of adjustment.

‘Point Mesure P1
M1 0.2
M2 -0.9
M3 -1.6

M4 ).2
=103 M5 3
M6 ).4

M7 ). 4

M8 .5

[ 2.1

M10 1.3

M11 0.7

Figure 14. Defects on the measured Part

Table 4. Matrix X*

1 2 3 4 5 6 7 8 9 10 11

DEC, -0.23 -0 0.28 —0.41 -0.24 —0.1 0.06 0.259 -0.14 0.145 0.38
DEC, 0.38 0.14 -0.14 0.26 0.06 0.1 -0.24 —0.41 0.281 -0 -0.23
R, 0.09 0.09 0.094 0.088 0.087 0.087 0.087 0.088 0.094 0.094 0.094
0, 0.03 —-0.01 —0.06 0.039 0.018 0 -0.02 —0.04 0.057 0.01 —0.03

-15-
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5. CONCLUSIONS AND PERSPECTIVES have the same requirements. So, for the same
surface, the measured points will not have the
The first version of this method was developed same inertia. The question is: how can we solve
using Excelg. However, several industrial cases con- this problem...? Our first thought, is to add
strained us to implement a program. Thus, we have sol- weight on the surface. However, this solution re-
ved a problem including that of a part defined by 3000 mains to be validated.
points and 9 correctors. The calculation time was less U The second prospect is about the optimization
than 10 seconds. These experiments underline several criterion. Indeed, if we add a weight to differen-
prospects for improvement. This approach is recent, tiate the surfaces of a part. The solving by the
and the current perspectives are not exhaustive; Below, Gauss criterion could not be efficient. In this
we suggest some of them: case, what will it be the optimization criteria?
U The numerical model of part is an approxima-
U In this paper, we have presented an example with tion. Indeed, the assembly of parts done with
a procedure plan which is simple but: how do Computer Aided Design (CAD) software com-
you adjust the part when the procedure plan is pared to an assembly of real parts (with the same
complex? dimensions as proposed by the CAD) presents
U The tool presented allows one to adjust all the some differences. In coming works, it will neces-
deviations of a part. However, we can imagine sary to correct or take the numerical errors into
that the surfaces which make up a part do not all account.
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