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ABSTRACT. We classify combinatorial Dyson-Schwinger equations giving a Hopf subalgebra
of the Hopf algebra of Feynman graphs of the considered Quantum Field Theory. We first treat
single equations with an arbitrary number (eventually infinite) of insertion operators. we distin-
guish two cases; in the first one, the Hopf subalgebra generated by the solution is isomorphic to
the Faà di Bruno Hopf algebra or to the Hopf algebra of symmetric functions; in the second case,
we obtain the dual of the enveloping algebra of a particular associative algebra (seen as a Lie
algebra). We also treat systems with an arbitrary finite number of equations, with an arbitrary
number of insertion operators, with at least one of degree 1 in each equation.
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Introduction

Dyson-Schwinger equations are considered in Quantum Field Theory in order to compute the
Green functions of the theory as series in the coupling constant. More precisely, one considers
a family of graphs, namely the Feynman diagrams. These graphs are organised in a graded,
connected Hopf algebra; the gradation is given by the number of loops of the graphs. For any
primitive Feynman diagram γ, one constructs an insertion operator Bγ on this Hopf algebra, and
thse operators are used to define a system of combinatorial equations satisfied by the expansion
of the Green functions seen as series in Feynman graphs.

Let us give an example. In QED, we consider three series in Feynman graphs, here denoted

by� ,� and� , according to the external structure of the graph appearing in

these series. These series satisfy the following system [19]:

� =
∑

γ

Bγ





(1 +� )1+2l(γ)

(1−� )2l(γ)(1−� )l(γ)



 ,� = B� 



(1 +� )2

(1−� )2



 ,

� = B� 



(1 +� )2

(1−� )(1−� )



 .

The sum in the first equations run over the set of primitive Feynman graphs with the required
external structure.

Such a system has a unique solution. The homogeneous components of this solution generates
a subalgebra of the Hopf algebra of Feynman graphs. An important problem is to know if this
subalgebra is Hopf or not; if the answer is affirmative, the next question is to describe this Hopf
subalgebra and to relate it to already known objects. This problem has been answered in the
case of a single equation with a unique insertion operator in [5, 7], and in the case of systems
with a unique insertion operator in each equation in [6, 8]. These result does not answer the
question for the example described earlier, as an infinite number of insertion operators appears
in the first equation. The aim of the present paper is to give an answer in the general case.

The key point is the fact that, as explained in [2, 4, 13, 14], at least in a convenient quotient
of the Hopf algebra of Feynman graphs, the insertion operators satisfy the following 1-cocycle
equation: for all x,

∆ ◦Bγ(x) = Bγ(x)⊗ 1 + (Id⊗Bγ) ◦∆(x).

This allows to replace Feynman graphs by decorated rooted trees and insertion operators by
grafting operators, with the help of the universal property of the Connes-Kreimer Hopf algebra
of rooted trees HJ

CK(theorem 1). For example, for the preceding system, we work with trees
decorated by the set J = {(1, k) | k ≥ 1} ∪ {2, 3}. Any element j of J gives rise to a grafting
operator Bj, consisting of grafting the differents trees of a rooted forest decorated by J on a
common root decorated by j. Using the universal property, we can now consider the system
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defined on HJ
CK :







x1 =
∑

k≥1

B(1,k)

(
(1 + x1)

1+2k

(1− x2)k(1− x3)2k

)

,

x2 = B2

(
(1 + x1)

2

(1 − x3)2

)

,

x3 = B3

(
(1 + x1)

2

(1 − x2)(1− x3)

)

.

Here are the first terms of the solution:

x1 = q (1, 1) + 3 q

q

(1, 1)
(1, 1) + q

q

(1, 1)
2 + q

q

(1, 1)
3 + q (1, 2)

+9 q
q

q

(1, 1)
(1, 1)
(1, 1)

+ 3 q
q

q

(1, 1)
(1, 1)
2

+ 6 q
q

q

(1, 1)
(1, 1)
3

+ 2 q
q

q

(1, 1)
2
(1, 1)

+ q

q

q

(1, 1)
2
3

+ 4 q
q

q

(1, 1)
3
(1, 1)

+ 2 q
q

q

(1, 1)
3
2

+ 2 q
q

q

(1, 1)
3
3

+3 q∨
qq

(1, 1)
2(1, 1)

+ 6 q∨
qq

(1, 1)
3(1, 1)

+ q∨
qq

(1, 1)
22

+ 2 q∨
qq

(1, 1)
32

+ 3 q∨
qq

(1, 1)
33

+3 q

q

(1, 1)
(1, 2) + 5 q

q

(1, 2)
(1, 1) + 2 q

q

(1, 2)
2 + q

q

(1, 2)
3 + q (1, 3) + . . .

x2 = q2 + 2 q

q

2
(1, 1) + q

q

2
3

+6 q
q

q

2
(1, 1)
(1, 1)

+ 2 q
q

q

2
(1, 1)
2

+ 4 q
q

q

2
(1, 1)
3

+ 4 q
q

q

2
3
(1, 1)

+ 2 q
q

q

2
3
2

+ 2 q
q

q

2
3
3

+ q∨
qq

2
(1, 1)(1, 1)

+ 4 q∨
qq

2
3(1, 1)

+ 3 q∨
qq

2
33
+ 2 q

q

2
(1, 2) + . . .

x3 = q3 + 2 q

q

3
(1, 1) + q

q

3
2 + q

q

3
3

+6 q
q

q

3
(1, 1)
(1, 1)

+ 2 q
q

q

3
(1, 1)
2

+ 4 q
q

q

3
(1, 1)
3

+ 2 q
q

q

3
3
(1, 1)

+ q

q

q

3
3
2

+ q

q

q

3
3
3

+ q∨
qq

3
(1, 1)(1, 1)

+ 2 q∨
qq

3
2(1, 1)

+ 2 q∨
qq

3
3(1, 1)

+ q∨
qq

3
22
+ q∨

qq

3
32
+ q∨

qq

3
33
+ 2 q

q

3
(1, 2) + . . .

The degree of the decorations (1, 1), 2 and 3 is 1, the degree of the decoration (1, 2) is 2 and the
degree of the decoration (1, 3) is 3. The universal property allows to construct a Hopf algebra

morphism sending x1 to� , x2 to� , and x3 to� .

Up to a simplification of the hypotheses (see section 2.2), we can now consider without loss
of generality systems of the form:

(S) : ∀i ∈ I, xi =
∑

j∈Ji

B(i,j)

(

f (i,j)(xk, k ∈ I)
)

,

defined on the Hopf algebra HJ
CK , the set J being of the form

⊔

i∈I

Ji, where I is a finite set and

for all i ∈ I, Ji ⊆ N
∗; the f (i,j) are formal series. The grafting operator B(i,j) appearing in this

system is homogeneous of degree j.

We treat in the third section of this text the case of a single equation, that is to say when
|I| = 1. We obtain two possibilities (theorem 12):

1. There exists λ, µ ∈ K, such that the equation has the form:

x =
∑

j∈J

Bj((1− µx)Q(x)i),

where Q(x) = (1− µx)−λ/µ if µ 6= 0 and Q(x) = eλx if µ = 0.
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2. There exists m ≥ 1 and α ∈ K such that the equation has the form:

x =
∑

j∈J
m|j

Bj(1 + αx) +
∑

j∈J
m/| j

Bj(1)

We prove that such an equation indeed give a Hopf subalgebra H(S), and give a description
of H(S) in the fourth section. By the Cartier-Quillen-Milnor-Moore theorem [1, 15], it is the dual
of an enveloping algebra, and it turns out that the underlying Lie algebra g has a complementary
structure: it is pre-Lie, that is to say there is a (not necessarily associative) product ◦, satisfying
for all x, y, z ∈ g:

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).

The Lie bracket is the antisymmetrization of ◦. This pre-Lie algebra has a basis (ei)i≥1 (if in
the equation appears a grafting operator of degree 1; if not, the set of indices can be strictly
included in N

∗). In the first case, the pre-Lie product is given by ei ◦ ej = (λj−µ)ei+j. If λ 6= 0,
this is isomorphic as a Lie algebra to the Faà di Bruno Lie algebra (corollary 20). Hence, the
Hopf subalgebra generated by the solution of the equation is isomorphic to the Faà di Bruno
Hopf algebra, that is to say the coordinate ring of the group of formal diffeomorphisms tangent
to the identity at 0. If λ = 0, g is abelian, and the Hopf subalgebra generated by the solution
is isomorphic to the Hopf algebra of symmetric functions. In the second case, ◦ is associative,
given by ei ◦ ej = αei+j if j is a multiple of m and 0 otherwise (proposition 21).

We treat the case of systems in the last section. We assume here that in any equation of
the system we consider, a grafting operator homogeneous of degree 1 appears. Then the formal
series of the system are entirely determined by the formal series correponding to these grafting
operators of degree 1. By the classification for Dyson-Schwinger systems with a single operator by
equation obtained in [6], we can obtain two types of systems, called fundamental and quasicyclic
. The description of the other formal series is done in theorem 23 and proposition 25.

Here is a typical example of a fundamental system (see corollary 24): here, I = I0 ⊔ J0 ⊔K0,
and:

xi =
∑

q∈Ji

B(i,q)



(1− βixi)
∏

j∈I0

(1− βjxj)
−

1+βj
βj

q ∏

j∈J0

(1− xj)
−q



 , if i ∈ I0,

xi =
∑

q∈Ji

B(i,q)



(1− xi)
∏

j∈I0

(1− βjxj)
−

1+βj
βj

q ∏

j∈J0

(1− xj)
−q



 if i ∈ J0,

xi =
∑

q∈Ji

B(i,q)




∏

j∈I0

(1− βjxj)
−

1+βj
βj

q ∏

j∈J0

(1− xj)
−q



 if j ∈ K0.

Here is a typical example of a quasi-cyclic system: I = Z/NZ, and for all i ∈ I:

xi =
∑

j∈Ji

Bj(1 + xi+j).

Notations. Let K be a field of characteristic zero. Any vector space, algebra, Hopf algebra,
Lie algebra. . . of this text will be taken over K.

Acknowledgements. The author would like to thank Karen Yeats and the Simon Fraser
University for their hospitality in june 2011.
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1 Recalls

1.1 Hopf algebras of decorated trees

Let J be a nonempty set. A rooted tree decorated by J is a couple (t, d), where t is a rooted tree,
that is to say a connected finite graph without loop, with a special vertex called the root, and d
is a map from the set of vertices of t into J . For example, here are the decorated rooted trees
with k ≤ 4 vertices (the root is the vertex at the bottom of the graph):

qa; a ∈ J, q

q

a
b , (a, b) ∈ J2; q∨

qq

a

cb
= q∨

qq

a

bc
, q

q

q

a
b
c

, (a, b, c) ∈ J3;

q∨
qq q

a

d
c

b
= q∨

qq q

a

c
d

b
= . . . = q∨

qq q

a

b
c

d
, q∨

qq

q

a

db

c

= q∨
qq

q

a

bd

c

,
q∨
qq

q

a

b

dc

=
q∨
qq

q

a

b

cd

, q

q

q

q

a
b
c
d

, (a, b, c, d) ∈ J4.

The Hopf algebra HJ
CK of rooted trees decorated by J [4, 13] is, as an algebra, freely generated

by the set of these trees. As a consequence, a basis of HJ
CK is given by the set of monomials

in these trees, which are called rooted forests decorated by J . For example, here are the rooted
forests with k ≤ 3 vertices:

1, , qa , a ∈ J, q

q

a
b , qa q b = q b qa , (a, b) ∈ J2,

qa q b q c = qa q c q b = . . . = q c q b qa, qa q

q

b
c = q

q

b
c
qa, q∨

qq

a
cb
= q∨

qq

a
bc
, q

q

q

a
b
c

, (a, b, c) ∈ J3.

Let t be a rooted tree decorated by J . An admissible cut of t is a nonempty choice c of edges
of t such that any path in t from the root to t to a leaf meets at most one edge in c. Deleting
these edges, t becomes a forest W c(t). One of the trees of this forest contains the root of t: it
will be denoted by Rc(t). The product of the other trees of W c(t) is denoted by P c(t). The
coproduct of HJ

CK is then defined for all tree t by:

∆(t) = t⊗ 1 + 1⊗ t+
∑

c admissible cut of c

P c(t)⊗Rc(t).

Here is an example of coproduct:

∆( q∨
qq

q

d

cb

a

) = q∨
qq

q

d

cb

a

⊗ 1 + 1⊗ q∨
qq

q

d

cb

a

+ q

q

b
a ⊗ q

q

d
c + qa ⊗ q∨

qq

d

cb
+ q c ⊗ q

q

q

d
b
a

+ q

q

b
a
q c ⊗ qd + qa q c ⊗ q

q

d
b .

For all j ∈ J , let Bj : H
J
CK −→ HJ

CK , sending a forest decorated by J to the tree obtained by

grafting the trees of this forest on a common root decorated by j. For example, Bj( qk q

q

i
l ) = q∨

qq

q

j

ik

l

.
It is proved in [4] (in the non decorated version) that for all j ∈ J , for all x ∈ HJ

CK ,

∆ ◦Bj(x) = Bj(x)⊗ 1 + (Id⊗Bj) ◦∆(x).

In other words, Bj is a 1-cocycle for the Cartier-Quillen cohomology. Moreover, the following
universal property is satisfied:

Theorem 1 Let A be a Hopf algebra and for all j ∈ J , let Lj : A −→ A be a 1-cocycle
of A. There exists a unique Hopf algebra morphism φ : HJ

CK −→ A such that for all j ∈ J ,
φ ◦Bj = Lj ◦ φ.

1.2 Gradation and graded dual

We now assume that J is a graded, connected set, that is to say J is given a map deg : J −→ N
∗.

for any j ∈ J , deg(j) will be called the degree of j. In this case, HJ
CK becomes a graded Hopf

algebra, the decorated forests being homogeneous of the degree given by the sum of the degrees
of their decorations. For this gradation, Bj si homogeneous of the same degree as j.
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Let us consider a (convenient quotient of a) Hopf algebra H of Feynman graphs and let
(γj)j∈J be a family of primitive Feynman graphs of H. We give a gradation to J by putting
j ∈ J of degree the number of loops of γj . By the universal property, there exists a unique
Hopf algebra morphism φ from HJ

CK to H, such that φ ◦ Bj = Bγj ◦ φ for all j ∈ J . It is not
difficult to show that this morphism is homogeneous of degree 0. As a consequence, it is possible
to lift any systems of Dyson-Schwinger equations using the insertion operators Bγj to a system
of Dyson-Schwinger equations in HJ

CK using the operators Bj . Hence, φ sends the homogeneous
components of the solution of these equations in HJ

CK to the homogeneous components of the
solution in H. Consequently, if these components generate a Hopf subalgebra of HJ

CK , it is also
the case in H.

If for all n ≥ 1, the number of elements of J of degree n is finite, then the homogeneous
components of HJ

CK are finite-dimensional. So the graded dual (HJ
CK)∗ of HJ

CK is also a Hopf
algebra. As (HJ

CK)∗ is graded, connected, commutative, (HJ
CK)∗ is graded, connected, cocom-

mutative. By the Cartier-Quillen-Milnor-Moore theorem, it is the enveloping algebra of a certain
Lie algebra g

J
CK . To any rooted tree t decorated by J , we associate a linear form on HJ

CK also
denoted by t by 〈t, F 〉 = stδt,F for any rooted forest F decorated by J , where st is the number
of symmetries of t. Then the set of rooted trees decorated by J becomes a basis of gJCK . By
similarity with the non-decorated situation of [4], the bracket of gJCK is given by:

[t, t′] =
∑

grafting of t over t′ −
∑

graftings of t′ over t.

This bracket is the antisymmetrization of the product defined by:

t ◦ t′ =
∑

grafting of t over t′

For example, qa ◦ q∨
qq

b

dc
= q∨

qq q

b

d
c

a
+ q∨

qq

q

b

dc

a

+ q∨
qq

q

b

dc

a

. This product is not associative, but is (left) pre-Lie,
that is to say, for all x, y, z ∈ g

J
CK :

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).

By the results of [3], gJCK is the free pre-Lie algebra generated by the q j ’s, j ∈ J . For more
details on the Hopf algebra (HJ

CK)∗, see section 4.

Remark. The solutions of Dyson-Schwinger equations are not elements of HJ
CK : we have to

complete this space, in the following sense. We consider the case where J is a graded, connected
set, in such a way that HJ

CK is a graded, connected Hopf algebra. The valuation val on HJ
CK

associated to this gradation induces a distance on HJ
CK defined by d(x, y) = 2−val(x−y). The

space HJ
CK is not complete for this distance; the completion of HJ

CK is the space of formal series
in rooted trees decorated by trees. So elements of this completion can uniquely be written under
the form

∑
aFF , where the sum runs over all rooted forests F decorated by J .

1.3 The Faà di Bruno Hopf algebra

Let us consider the group of formal diffeomorphisms of the line tangent to the identity:

GFdB = {x+ a1x
2 + a2x

3 + . . . | ∀i ≥ 1, ai ∈ K}.

The product of this group is the usual composition of formal series. The Faà di Bruno Hopf
algebra HFdB is the co-opposite of the coordinate ring of GFdB . As an algebra, it is the free
associative, commutative algebra generated by the xi’s, ≥ 1, where:

xi :

{
GFdB −→ K

x+ a1x
2 + . . . −→ ai.
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The coproduct is defined by ∆(f)(F1⊗F2) = f(F2 ◦F1), for all f ∈ HFdB, for all F1, F2 ∈ GFdB .
For example:

∆(x1) = x1 ⊗ 1 + 1⊗ x1,

∆(x2) = x2 ⊗ 1 + 1⊗ x2 + 2x1 ⊗ x1,

∆(x3) = x3 ⊗ 1 + 1⊗ x3 + 2x2 ⊗ x1 + 3x1 ⊗ x2 + x21 ⊗ x1.

It is a graded, connected, commutative Hopf algebra. By the Cartier-Quillen-Milnor-Moore
theorem, its dual is an enveloping algebra. The underlying Lie algebra has a basis (ei)i≥1, dual
to the xi’s, and the Lie bracket is given by [ei, ej ] = (j− i)ei+j . One can also define a product on
this Lie algebra by ei ◦ej(xk) = (ei⊗ej)◦∆(xk) for all i, j, k ≥ 1. This gives ei ◦ej = (j+1)ei+j .
This product is pre-Lie and induces the Lie bracket by antisymmetrization.

2 Definitions of Hopf systems

2.1 Definitions

Definition 2 1. Let us choose a finite, non-empty set I. For any i ∈ I, let Ji be a graded,
connectet set. We put J = {(i, j) | i ∈ I, j ∈ Ii} and we work in the Hopf algebra HJ

CK of
rooted trees decorated by J . It is a graded Hopf algebra, the degree of the decoration (i, j)
being the degree of j.

2. For all i ∈ I, for all j ∈ Ji, let f (i,j) ∈ K[[hk, k ∈ I]]. The system of Dyson-Schwinger
equations associated to these data is:

(S) : ∀i ∈ I, xi =
∑

j∈Ji

B(i,j)

(

f (i,j)(xk, k ∈ I)
)

.

3. This system has a unique solution in the completion of HJ
CK , denoted by x = (xi)i∈I . For

all i ∈ I, for all n ≥ 1, the homogeneous component of degree n of xi is denoted by xi(n). If
the subalgebra H(S) generated by the xi(n)’s is Hopf, we shall say that the system is Hopf.

Notations.

1. We shall often take I = {1, . . . , N}. For all (i, q) ∈ J , we put:

f (i,q) =
∑

p1,...,pN

a
(i,q)
(p1,...,pN )h

p1
1 . . . hpNN .

2. The coefficient of hj in f (i,q) is also denoted by a
(i,q)
j ; the coefficient of hjhk in f (i,q) is also

denoted by a
(i,q)
j,k , and so on.

The unique solution of (S) is denoted in the following way: for all i ∈ I, xi =
∑

att, where
the sum is over all trees with a root decorated by an element (i, x), with x ∈ Ji. The coefficients
at are computed inductively:

• If t = q (i,q), at = a
(i,q)
(0,...,0).

• If t = B(i,q)

(

t
p1,1
1,1 . . . t

p1,k1
1,k1

. . . t
pN,1

N,1 . . . t
pN,kN

N,kN

)

, where the ti,j’s are different trees, the root

of ti,j being decorated by an element (i, x) with x ∈ Ji:

at = a
(i,q)
(p1,1+...+p1,k1 ,...,pN,1+...+pN,kN

)

N∏

l=1

(pl,1 + . . .+ pl,kl)!

pl,1! . . . pl,kl!

∏

j,k

a
pj,k
tj,k

.

7



2.2 Simplification of the hypotheses

We shall only consider systems with non-zeros xi’s. If xi = 0, we can forget one equation and
send hi to zero in all the formal series which appear, and this gives a system with a strictly
smaller number of equations, giving the same subalgebra. In this case, for all i ∈ I, xi is a
non-zero infinite span of rooted trees with roots decorated by elements of the form (i, j), j ∈ Ji.
Consequently, the xi’s are algebraically independent.

Lemma 3 Let (S) be a Hopf SDSE, and let (i, j) ∈ J . If f (i,j)(0) = 0, then f (i,j) = 0.

Proof. As f (i,j)(0) = 0, q (i,j) /∈ H(S). Moreover, the term f (i,j)(xk, k ∈ I) ⊗ q (i,j) appears
in the coproduct of xi, so is an element of the completion of H(S) ⊗ H(S). As q (i,j) /∈ H(S), we

deduce that f (i,j)(xk, k ∈ I) = 0. As the xi’s are algebraically independent, f (i,j) = 0. �

Remark. So we shall assume in the sequel that for any (i, j) ∈ J , f (i,j)(0) 6= 0. Up to a
normalization, we shall assume that f (i,j)(0) = 1 for all i, j ∈ I.

Lemma 4 Let (S) be a Hopf SDSE. Let us fix i ∈ I. If j, k ∈ Ii have the same degree, then
f (i,j) = f (i,k).

Proof. Let n = deg(j) = deg(k). The coefficients of q (i,j) and q (i,k) in xi(n) are both equal
to 1. So in any element of H(S), The coefficients of q (i,j) and q (i,k) in xi are equal. Let us put:

∆(xi) = xi ⊗ 1 +
∑

yt ⊗ t,

where the sum is over all the rooted trees with a root decorated by (i, j), j ∈ Ji. As ∆(xi) is in
the completion of H(S) ⊗H(S), y q (i,j) = y q (i,k) . Moreover:

f (i,j)(xl, l ∈ J) = y q (i,j) = y q (i,k) = f (i,k)(xl, l ∈ J).

As the xi’s are algebraically independent, f (i,j) = f (i,k). �

Hence, as a consequence, if (S) is a Hopf system, it can be written as:

∀i ∈ I, xi =
∑

n≥1




∑

j∈Ji, deg(j)=n

B(i,j)





︸ ︷︷ ︸

B(i,n)

(

f (i,n)(xk, k ∈ I)
)

,

where f (i,n) is any f (i,j) such that deg(j) = n.

Finally, it is enough to consider only the Hopf SDSE such that Ji ⊆ N
∗ for all i ∈ I, the

degree being the canonical inclusion of Ji into N
∗.

Proposition 5 Let (S) be a SDSE of the form:

(S) : ∀i ∈ I, xi =
∑

j∈Ji

B(i,j)

(

f (i,j)(xk, k ∈ I)
)

,

with for all i ∈ I, 1 ∈ Ji ⊆ N
∗. The truncation at 1 of (S) is the SDSE:

(S′) : ∀i ∈ I, x′i = B(i,1)

(

f (i,1)(x′k, k ∈ I)
)

.

If (S) is Hopf, then (S′) is also Hopf.

Proof. Let φ : HJ
CK −→ HJ ′

CK being the projection on HJ ′

CK sending any forest with at least
a vertex decorated by an element (i, j), j 6= 1, to zero. It is clearly a Hopf algebra morphism.
Moreover, φ(x) = x′, so φ(H(S)) = H(S′). As a consequence, if H(S) is Hopf, H(S′) also is. �
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2.3 Structure constants associated to a Hopf SDSE

Let (S) be a SDSE. For any decorated rooted tree, we denote by at the coefficient of t in the
unique xi where it may appear.

Proposition 6 Let (S) be a SDSE. If it is Hopf, then for any i, i′ ∈ I, q ∈ Ji′ , for any

n ∈ N
∗, there exists λ

(i,(i′,q))
n such that for all t of degree n, with the root decorated by an element

(i, j), j ∈ Ji:

λ(i,(i′,q))
n at =

∑

t′

n(i′,q)(t, t
′)at′ ,

where n(i′,q) is the number of leaves s of t′ decorated by (i′, q) such that the cut of s gives t.

Proof. A basis B of H(S) is given by the monomials in the xk(p)’s. As ∆(xi) is an element
of the completion of H(S) ⊗H(S), it can be written in the basis B ⊗ B. The unique element of

this basis where q (i′,q) ⊗ t appears is xi′(q) ⊗ xi(n). Let us denote by λ
(i,(i′,q))
n the coefficient of

this element in ∆(xi). Identifying the coefficient of q (i′,q) ⊗ t in ∆(xi) and λ
(i,(i′,q))
n xi′(q)⊗ xi(n)

in the tensor basis of forests, we obtain:

λ(i,(i′,q))
n at =

∑

t′

n(i′,q)(t, t
′)at′ ,

by definition of the coproduct. �

Remark. The converse is true; the proof uses the fact that the dual Hopf algebra of the
Hopf algebra of rooted tree is the enveloping algebra of a free pre-Lie algebra. This result will
not be used here.

Lemma 7 Let (S) be a Hopf SDSE, such that 1 ∈ Ji for all i ∈ I = {1, . . . , N}. For all
i ∈ I, q ∈ Ji, we put:

f (i,q) =
∑

(p1,...,pN )

a
(i,q)
(p1,...,pN)h

p1
1 . . . hpNN .

Then for all (p1, . . . , pN ) ∈ N
N , for all i, j ∈ {1, . . . , N}, for all q ∈ Ii:

a
(i,q)
(p1,...,pj+1,...,pN ) =

1

pj + 1

(

λ
(i,(j,1))
p1+...+pn+q −

N∑

l=1

a
(l,1)
j pl

)

a
(i,q)
(p1,...,pN).

Proof. We apply the preceding lemma with t = B(i,q)

(

q

p1
(1,1) . . . q

pN
(N,1)

)

. It gives:

λ
(i,(j,1))
p1+...+pn+qat = (pj + 1)a

B(i,q)

(

q

p1
(1,1)

... q
pj+1

(j,1)
... q

pN
(N,1)

)

+

N∑

l=1

a
B(i,q)

(

q

p1
(1,1)

... q
pl−1

(l,1)
... q

pN
(N,1)

q

q (j,1)
(l,1)

).

Computing the different coefficients at appearing in this formula, we obtain immediately the
result. �

Remarks.

1. As a consequence, if a
(i,q)
(p1,...,pN) = 0, then a

(i,q)
(p′1,...,p

′

N
)
= 0 if for all n, p′n ≥ pn. In particular,

if f (i,q) is not constant, there exists j ∈ J such that a
(i,q)
j 6= 0.
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2. Using the results of [6], if for all i ∈ J , 1 ∈ Ii and there are no constant f (i,1), the SDSE
xi = Bi

(
f (i,1)(xi)

)
for all i ∈ I generates a Hopf subalgebra and this allows to compute the

coefficients λ
(i,(j,1))
n from the coefficients a

(i,1)
j and a

(i,1)
j,k (they are the coefficients λn(i, j)

of [6]). Consequently, the formal series f (i,1) determine uniquely all the formal series f (i,q).

3. It is possible to prove that λ
(i,(j,q))
n does not depend on q. This will not be used in the

sequel.

3 Case of a single equation

We here treat the case of a single equation, that is to say that I is reduced to a single element.
As a consequence, the indices i are not needed, as they are all equal. The equation shall now be
written as:

x =
∑

j∈J

Bj

(

f (j)(x)
)

,

where J ⊆ N
∗ and for all j ∈ J , f (j)(0) = 1. We shall also write λ

(j)
n instead of λ

(i,(i,j))
n , for any

j ∈ J . We put, for all j ∈ J :

f (j) =

∞∑

n=0

a(j)n hn.

The unique solution can be written as x =
∑

att, where the sum is over all trees decorated by
J , the coefficients at being inductively computed as follows:

• a q j = 1 for all j ∈ J .

• If t = Bj(t
p1
1 . . . tpkk ), where t1, . . . , tk are different trees, then:

at = a
(j)
p1+...+pk

(p1 + . . .+ pk)!

p1! . . . pk!
ap1t1 . . . apktk .

3.1 Non constant formal series

Lemma 8 Let us consider i ∈ J , such that f (i) is non constant. There exists αi, βi ∈ K,
with αi 6= 0, such that for all j ∈ J , for all n ≥ 1:

λ
(j)
ni = αi(1 + (1 + βi)(n− 1)).

Moreover:

f (i) =
∞∑

k=0

αk
i (1 + βi) . . . (1 + (k − 1)βi)

k!
hk =

{
eαih if βi = 0,

(1− αiβih)
−1/βi if βi 6= 0.

Proof. Let us apply proposition 6 with t = Bi( q i
n) and j = i. The only trees t′ such that

ni(t, t
′) 6= 0 are Bi( q i

n+1) and Bi( q i
n−1

q

q

i
i ), so:

λi
i(n+1)a

(i)
n = (n+ 1)a

(i)
n+1 + na

(i)
1 a(i)n .

Equivalently:

a
(i)
n+1 =

1

n+ 1

(

λi
i(n+1) − na

(i)
1

)

a(i)n . (1)

Hence, if a
(i)
1 = 0, an easy induction proves that a

(i)
n = 0 for all n ≥ 1, so f (i) is constant: this is

a contradiction. So a
(i)
1 6= 0.
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Let us now apply proposition 6 with t = Bn
i (1), that is to say the ladder with n vertices all

decorated by i. The trees t′ such that nj(t, t
′) 6= 0 are Bn

i ◦Bj(1), B
n−1
i ( q i q j ) and Bk

i ( q jB
n−k
i (1)),

1 ≤ k ≤ n− 2. So:

λ
(j)
ni

(

a
(i)
1

)n−1
=
(

a
(i)
1

)n
+ 2(n − 1)

(

a
(i)
1

)n−2
a
(i)
2 .

As a
(i)
1 6= 0, λ

(j)
ni = a

(i)
1 + 2

a
(i)
2

a
(i)
1

(n − 1). We then take αi = a
(i)
1 and βi =

2a
(i)
2

(

a
(i)
1

)2 − 1, and the

assertion on λ
(j)
ni is now proved. Replacing in (1), we obtain for all n ≥ 1:

a
(i)
n+1 =

1

n+ 1
αi(1 + βin)a

(i)
n .

The formula for the coefficients of f (i) is the proved by an easy induction. �

Lemma 9 There exists λ, µ ∈ K, such that if f (i) is non constant, then αi = λi−µ 6= 0 and
βi =

µ
λi−µ .

Proof. We denote by J ′ be the set of indices i ∈ J such that f (j) is non constant. Let

i, j ∈ J ′. Let us compute λ
(j)
nij in two different ways:

λ
(j)
nij = λ

(j)
(nj)i

= αi(1 + (1 + βi)(nj − 1))

= njαi(1 + βi)− αiβi,

= λ
(j)
(ni)j

= niαj(1 + βj)− αjβj .

As this is true for all n ≥ 1, we deduce that αiβi = αjβj and jαi(1 + βi) = iαj(1 + βj) for all
i, j ∈ J ′. From the first equality, we deduce that there exists µ ∈ K, such that αiβi = µ for all
i ∈ J ′. The second equality implies that the vectors (αi(1 + βi))i∈J ′ and (i)i∈J ′ are colinear, so
there exists λ ∈ K, such that αi(1 + βi) = λi for all i ∈ J ′. Hence, αi + µ = λi 6= 0 as fi is not
constant, and βi = µ/αi. �

Let us sum up these results. If i ∈ J , such that f (i) is not constant, then:

f (i) =

{

(1− µh)−
λi
µ
+1 if µ 6= 0,

eλih if µ = 0.

This gives:

Proposition 10 Let (E) be a Hopf Dyson-Schwinger equation. Then J can be written as
J = J ′ ⊔ J ′′, and there exists λ, µ ∈ K, λ 6= 0, such that if we put:

Q(h) =

{

(1− µh)
−λ

µ if µ 6= 0,

eλh if µ = 0,

then:

(E) : x =
∑

j∈J ′

Bj

(
(1− µx)Q(x)i

)
+
∑

j∈J ′′

Bj(1).
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3.2 Constant formal series in Dyson-Schwinger equations

We first treat three particular cases.

Lemma 11 1. Let us consider a Dyson-Schwinger equation of the form:

x = Bi(1) +Bj(f(x)),

with f non constant. If it is Hopf, then there exists a non-zero α ∈ K, such that f(h) =

1 + αh or f(h) =
(

1− α i
j−ih

) i−j
i

.

2. Let us consider a Dyson-Schwinger equation of the form:

x = Bi(1) +Bj(f(x)) +Bk(g(x)),

with f, g non constant. If it is Hopf, then there exists a non-zero α ∈ K, such that

(f = (1− αih)−
j
i
+1 and g = (1− αih)−

k
i
+1)or (f = g = 1 + αh).

3. Let us consider a Dyson-Schwinger equation of the form:

x = Bi(1) +Bj(1) +Bk(f(x)),

where f is non constant. Then there exists a non-zero α ∈ K, such that f = 1 + αh.

Proof. 1. From lemma 8, there exists α = αj , β = βj ∈ K, such that for all n ≥ 1:

λ
(i)
nj = λ

(j)
nj = α(1 + (1 + β)(n− 1)) = α(1 + β)n− αβ.

Moreover, f = (1− αβh)
− 1

β if β is not equal to 0 and eαh if β = 0.

We define inductively a family of trees by t1 = q

q

j
i and tn+1 = Bj( q i tn) for all n ≥ 1. For

example, t2 = q∨
qq

q

j
ji

i

. For all n ≥ 1, tn is a tree with n vertices decorated by i and n vertices
decorated by j. Applying proposition 6 to tn, we obtain:

λ
(i)
n(i+j)(1 + β)n−1 = (n− 1)(1 + 2β)(1 + β)n−1 + (1 + β)n.

Let us assume that β 6= −1. Then λ
(k)
n(i+j) = (n− 1)(1 + 2β) + 1 + β = n(1 + 2β)− β. We now

compute λ
(k)
j(i+j) in two different ways:

λ
(i)
j(i+j) = λ

(i)
(i+j)j

= α(1 + β)(i + j)− αβ,

= λ
(i)
j(i+j)

= αj(1 + 2β)− αβ.

Hence, (1 + β)(i + j) = j(1 + 2β), so β = i
j−i . As a conclusion, β = −1 or i

j−i , therefore

f(h) = 1 + αh or
(

1− α i
j−ih

) i−j
i

.

2. Restricting to i and j (that is to say sending all the forests of HJ
CK with at least one vertex

not decorated by i or j to zero), from the first point, f = 1+ αh or
(

1− α i
j−ih

) i−j
i

; restricting

to i and k, g = 1 + α′h or
(

1− α′ i
k−ih

) i−k
i

.

Let us now restrict to j and k, using proposition 10: µ cannot be equal to zero, so f =

(1 − µh)−λ j
µ
+1 and g = (1 − µh)−λ k

µ
+1. Identifying the two expressions of f and g, we obtain

two possibilities:
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• −λ j
µ + 1 = 1 or −λ k

µ + 1 = 1. Then λ = 0 and f = g = 1− µh.

• −λ j
µ + 1 = i−j

i and −λ k
µ + 1 = i−k

i . As j 6= k, this implies that λ
µ = 1/i. So µ = λi,

f = (1− λih)−
j
i
+1 and g = (1− λih)−

k
i
+1.

3. Let us restrict to i and k. From the first point, f(h) = 1+αh or f(h) =
(

1− α i
k−ih

) i−k
i

.

We then restrict to j and k and we obtain f(h) = 1 + αh or f(h) =
(

1− α j
k−jh

) j−k
j

. As

i−k
i 6= j−k

j , necessarily f = 1 + αh. �

Theorem 12 Let (E) be a Hopf Dyson-Schwinger equation of the form:

x =
∑

j∈J

Bj

(

f (j)(x)
)

,

where J ⊆ N
∗ and f (j)(0) = 1 for all j ∈ J . Then one of the following assertions holds:

1. there exists λ, µ ∈ K such that, if we put:

Q(h) =

{

(1− µh)
−λ

µ if µ 6= 0,
eλh if µ = 0,

then:
(E) : x =

∑

j∈J

Bj

(
(1− µx)Q(x)j

)
.

2. There exists m ≥ 0 and α ∈ K − {0} such that:

(E) : x =
∑

j∈J
m|j

Bj(1 + αx) +
∑

j∈J
m/| j

Bj(1)

Proof. From proposition 10, we can write:

(E) : x =
∑

j∈J ′

Bj

(
(1− µx)Q(x)i

)
+
∑

j∈J ′′

Bj(1).

If J ′′ = ∅, we obtain the first case. Let us assume that J ′′ 6= ∅. If it contains at least two elements
i and j, then restricting to i, j and any k ∈ J ′ we deduce from the third point of lemma 11 that
f (k) = 1+αkh for any k ∈ J ′, where αk ∈ K. Restricting then to i and any k, l ∈ J ′, the second
point of lemma 11 implies that αk = αl. So we are reduced to:

(E) : x =
∑

j∈J ′

Bj(1 + αx) +
∑

j∈J ′′

Bj(1). (2)

If J ′ contains a unique element i, restricting to i and j, k ∈ J ′ = J − {i}, the second point of
lemma 11 implies that there are two possibilities:

• First case:
(E) : x =

∑

j∈J−{i}

Bj

(

(1− αix)−
j
i
+1
)

+Bi(1).

Noticing that −j/i+ 1 = 0 if j = i, this is the first case, with µ = αi = λi.

• Second case:
(E) =

∑

j∈J−{i}

Bj(1 + αx) +Bi(1).

This is an equation of the form (2).
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It remains now to consider the case of an equation of the form (2). Then:

x =
∞∑

k=1

∑

i1,...,ik∈J ′

αk−1Bi1 ◦ . . . ◦Bik(1)

︸ ︷︷ ︸

x′

+
∞∑

k=1

∑

i1,...,ik−1∈J ′,ik∈J ′′

αk−1Bi1 ◦ . . . ◦Bik(1)

︸ ︷︷ ︸

x′′

.

It is not difficult to see that ∆(x′) = x′⊗1+1⊗x′+αx′⊗x′ and ∆(x′′) = x′′⊗1+1⊗x′′+αx′′⊗x′,
so:

∆(x) = x⊗ 1 + 1⊗ x+ αx⊗ x′.

Finally, taking the homogeneous component of degree n:

∆(x(n)) = x(n)⊗ 1 + 1⊗ x(n) +

n−1∑

k=1

αx(n − k)⊗ x′(k).

As a consequence, the equation (E) is Hopf, if and only if, for all k ≥ 1, x′(k) is colinear to x(k).
As x(k) = x′(k) + x′′(k) and the ladders which may appear in x′ and x′′ are different, this is
equivalent to the following assertion: for all k ≥ 1, x′(k) = 0 or x′′(k) = 0.

Let us consider the subgroup of (Z,+) generated by the elements of J ′. it is equal to mZ for
a well-chosen m ≥ 0. All the elements of J ′ are multiples of m. Let us assume that there exists
j ∈ J ′′, such that m | j. By definition of m, there exists j1, . . . , jn ∈ J ′, λ1, . . . , λn ∈ Z, such that
λ1j1+. . .+λnjn = j. Writing this equality in a different way, there exists i1, . . . , ik, i

′
1, . . . , i

′
l ∈ J ′,

µ1, . . . , µk, µ
′
1, . . . , µ

′
l > 0, such that µ1i1+ . . .+µkik = µ′

1i
′
1+ . . .+µ′

lil+ j. So any ladder l′ with
µ1 vertices decorated by i1, . . ., µk vertices decorated by ik and any ladder l′′ with µ′

1 vertices
decorated by i′1, . . ., µ

′
l vertices decorated by i′l and its leaf decorated by j have the same degree

m. So x′(m) and x′′(m) are both non zero, and (E) is not Hopf. Hence, m divides no j ∈ J ′′.
Finally, (E) can be written as in the second case. �

Remarks.

1. In the first case, for any values of λ and µ:







Q(h) =
∞∑

n=0

λ(λ+ µ) . . . (λ+ (n− 1)µ)

n!
hn,

f (j)(x) =
∞∑

n=0

(λj − µ)(λj)(λj + µ) . . . (λj + µ(n− 2))

n!
hn.

2. In the second case, if m divides n, then x′′(n) = 0; if m does not divide n, then x′(n) = 0.
From the preceding proof, the second case gives indeed a Hopf subalgebra. Moreover, for
all n:

∆(x(n)) = x(n)⊗ 1 + 1⊗ x(n) + α

n−1∑

k=1
m|k

x(n− k)⊗ x(k). (3)

3. The first and second cases are not disjoint. A first case with λ = 0 is also a second case
with m = 1.

4 Pre-Lie structures associated to Hopf Dyson-Schwinger equa-

tions

We now prove that the equations of theorem 12 are Hopf.
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4.1 The Faà di Bruno pre-Lie algebra

Let gFdB = V ect(ei | i ≥ 1) and let λ, µ ∈ K. One defines a pre-Lie product on gFdB by
ei ◦ ej = (λj − µ)ei+j . It is graded, ei being homogeneous of degree i for all i ≥ 1.

Remarks.

1. The associated Lie bracket is given by [ei, ej ] = λ(j − i)ei+j , so does not depend of µ.

2. If λ = 1 and µ = −1, this pre-Lie algebra is precisely the dual Lie algebra of HFdB . If λ 6= 0
and µ = −λ, these two pre-Lie algebras are isomorphic; if λ 6= 0, they are isomorphic as Lie
algebras only. In this case, the graded dual of the enveloping algebra of gFdB is isomorphic
to the Faà di Bruno Hopf algebra HFdB.

We shall use the following result:

Theorem 13 [9, 16] Let (g, ◦) a pre-Lie algebra. Let S+(g) the augmentation ideal of S(g).
One can extend the product ◦ to S+(g) in the following way: if a, b, c ∈ S+(g), x ∈ g,







a ◦ 1 = ε(a),
1 ◦ b = b,

(xa) ◦ b = x ◦ (a ◦ b)− (x ◦ a) ◦ b,
a ◦ (bc) =

∑
(a′ ◦ b)(a′′ ◦ c).

We define a product on S+(g) by a⋆b =
∑

a′(a′′◦b), with the Sweedler notation ∆(a) =
∑

a′⊗a′′.
This product is extended to S(g), making 1 the unit of ⋆. With its usual coproduct, S(g) is a
Hopf algebra, isomorphic to U(g) via the isomorphism:

Φg :

{
U(g) −→ (S(g), ⋆)
v ∈ g −→ v.

Let us start by g
J
CK . Here, a basis of S(gJCK) is given by the set of rooted forests decorated

by J .

Proposition 14 Let F = t1 . . . tn, G be two decorated forests. Then:

F ◦G =
∑

s1,...,sn∈G

graftings of t1 over s1,. . ., tn over sn.

Proof. By induction on n. Let us start with n = 1. We put G = s1 . . . sm and we proceed
inductively on m. If m = 1, it is the definition of ◦ on g

J
CK . Let us assume the result at rank

m− 1. We put G′ = s1 . . . sm−1. Then:

t1 ◦G = t1 ◦ (G
′sm)

= (t1 ◦G
′)sm +G′(t1 ◦ sm)

=
∑

s∈G′

(grafting of t1 over s)sm +
∑

s∈sm

G′(grafting of t1 over s)

=
∑

s∈G

grafting of t1 over s.
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So the result is true at rank 1. Let us assume it at rank n− 1. We put F ′ = t2 . . . tn. Then:

F ◦G = t1 ◦ (F
′ ◦G)− (t1 ◦ F ) ◦G

=
∑

s2,...,sn∈G

∑

s∈F ′∪G

grafting of t2 over s2,. . ., tn over sn, t1 over s

−
∑

s2,...,sn∈G

∑

s∈F ′

grafting of t2 over s2,. . ., tn over sn, t1 over s

=
∑

s2,...,sn∈G

∑

s∈G

grafting of t2 over s2,. . ., tn over sn, t1 over s

=
∑

s1,...,sn∈G

grafting of t1 over s1,. . ., tn over sn.

So the result is true for all n. �

Corollary 15 If F = t1 . . . tm and G are decorated forests, then:

F ⋆ G =
m∑

k=0

∑

1≤i1<...<ik≤m

∑

s1,...,sm∈G

(grafting of t1 over s1, . . ., tk over sk)
∏

i 6=i1,...,ik

ti.

This Hopf algebra is known as the Grossman-Larson Hopf algebra [10, 11]. Extending the
pairing between trees and forests defined in section 1, it is isomorphic to the graded dual of HJ

CK ,
via the pairing:

〈−,−〉 :

{
S(gJCK)⊗HJ

CK −→ K
(F,G) −→ sF δF,G,

where F,G are two forests and sF is the number of symmetries of F [12, 17].

Let us now consider the Faà di Bruno pre-Lie algebra.

Proposition 16 In S(gFdB):

(ei1 . . . eim) ◦ ej = (λj − µ)(λj)(λj + µ) . . . (λj + (m− 2)µ)ei1+...+im+j .

Proof. We put Pm(j) = (λj − µ)(λj)(λj + µ) . . . (λj + (m − 2)µ). We proceed inductively
on m. If m = 1, it is the definition of the pre-Lie product of gFdB. Let us assume the result at
rank m− 1. Then:

(ei1 . . . eim) ◦ ej = ei1 ◦ ((ei2 . . . eim) ◦ ej)− (ei1 ◦ (ei2 . . . eim)) ◦ ej

= Pm−1(j)ei1 ◦ ei2+...+im+j −
m∑

k=2

(λik − µ)(ei2 . . . ei1+ik . . . eim) ◦ ej

= Pm−1(j)(λ(i2 + . . .+ im + j) − µ)ei1+...+im+j

−
m∑

k=2

Pm−1(j)(λik − µ)ei1+...+im+j

= Pm−1(j)(λ(i2 + . . .+ im + j − i2 − . . .− im)− µ+ (m− 1)µ)ei1+...+im+j

= Pm(j)ei1+...+im+j.

So the result is true for all n. �
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4.2 Morphisms of pre-Lie algebras

Let us choose a set J ⊆ N
∗. As g

J
CK is the free pre-Lie algebra generated by the q j ’s, there is a

unique pre-Lie algebra morphism:

φ :

{
g
J
CK −→ gFdB

q j , j ∈ J −→ ej .

Lemma 17 For all decorated rooted tree t, ∃µt ∈ K, φ(t) = µte|t|. the coefficients µt can be
inductively computed in the following way:

1. µ q j = 1.

2. Let t = Bj(t1 . . . tm), with m ≥ 1. Then:

µt = µt1 . . . µtm(λj − µ)(λj)(λj + µ) . . . (λj + (m− 2)µ).

Proof. We extend φ in a Hopf algebra morphism from S(gJCK) to S(gFdB). Then, φ(a◦ b) =
φ(a) ◦ φ(b) for any a, b ∈ S(gJCK). The first point is obvious. For the second point:

φ(t) = φ((t1 . . . tm) ◦ q j )

= (φ(t1) . . . φ(tm)) ◦ φ( q j )

= µt1 . . . µtme|t1| . . . e|tm| ◦ ej

= µt1 . . . µtm(λj − µ)(λj)(λj + µ) . . . (λj + (m− 2)µ)e|t1|+...+|tm|+j

= µt1 . . . µtm(λj − µ)(λj)(λj + µ) . . . (λj + (m− 2)µ)e|t|.

So the announced result holds. �

Lemma 18 1. If λ 6= 0, the morphism φ is surjective if, and only if, (1 ∈ J) and (2 ∈ J
or µ 6= λ).

2. If λ = 0, the morphism φ is surjective if, and only if, (µ 6= 0 and 1 ∈ J) or (J = N
∗).

Proof. There is a unique tree decorated by N
∗ of degree 1 , which is q1 . By homogeneity,

Im(φ)1 = (0) if 1 /∈ J . So if φ is surjective, 1 ∈ J .
There are two trees decorated by N

∗ of degree 2, which are q2 and q

q

1
1 . Moreover, φ( q

q

1
1 ) =

(λ−µ)e2. Therefore, if 2 /∈ J and λ = µ, then Im(φ)2 = (0). As a consequence, if φ is surjective,
µ 6= λ or 2 ∈ J .

If λ = µ = 0, then φ(t) = 0 if t is not reduced to a single root, and φ( q i ) = ei for all i ∈ J .
So Im(φ) = V ect(ei | i ∈ J). As a consequence, if λ = µ = 0, then φ is surjective if, and only if,
j = N∗.

These three observations prove =⇒ in both cases.

1. ⇐=. Let us first assume that 1 ∈ J and µ 6= λ. Let us prove by induction that en ∈ Im(φ).
This is obvious for n = 1. If en−1 ∈ Im(φ), then en−1 ◦ φ( q1) = en−1 ◦ e1 = (λ− µ)en ∈ Im(φ),
so en ∈ Im(φ). Hence, φ is surjective.

Let us assume that 1, 2 ∈ J and µ = λ. Let us prove by induction that en ∈ Im(φ). This is
obvious for n = 1, 2. If e1, . . . , en−1 ∈ Im(φ), then en−2◦φ( q2 ) = en−2 ◦e2 = λen, so en ∈ Im(φ).
Hence, φ is surjective.

2. =⇒. If λ = 0, then for any tree t, there exists an integer mt such that φ(t) = µmte|t|. So,
if µ 6= 0 and 1 ∈ J , taking any tree with n vertices, all decorated by 1, en ∈ Im(φ). �

Using the duality between S(gJCK) dans HJ
CK , we obtain a morphism of Hopf algebras φ∗

from S(gFdB)
∗ to HJ

CK . More precisely:
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Proposition 19 The image of φ∗ is generated by the elements:

y(n) =
∑

|t|=n

µt

st
t, n ≥ 1.

If (λ 6= 0) and (1 ∈ J) and (2 ∈ J or µ 6= λ), then Im(φ∗) is isomorphic to the Faà di Bruno
Hopf algebra.

Remark. The coefficients νt =
µt

st
can be inductively computed in the following way:

• ν q i = 1.

• If t = Bi

(
tp11 . . . tpkk

)
, where p1, . . . , pk are different trees, and putting m = p1 + . . .+ pk:

νt =
(λj − µ)(λj)(λj + µ) . . . (λj + (m− 2)µ)

m!

m!

p1! . . . pk!
νp1t1 . . . νpktk .

This implies that y =
∑

y(n) is the solution of the equation of theorem 12-1, λ and µ being the
parameters chosen in the definition of gFdB. As a consequence:

Corollary 20 All the Dyson-Schwinger equations of the first case in theorem 12 are Hopf.
Moreover, if (λ 6= 0) and (1 ∈ J) and (2 ∈ J or λ 6= µ), the Hopf subalgebra associated to an
equation of the first case is isomorphic to the Faà di Bruno Hopf algebra; if (λ = 0) and (µ 6= 0
and 1 ∈ J) or (J = N

∗), it is isomorphic to the Hopf algebra of symmetric functions Sym.

Remark. In the general case, let us denote by J the set of indices i ∈ J such that x(i) 6= 0.
The dual Lie algebra inherits a dual basis (ei)i∈J , with [ei, ej ] = λ(j− i)ei+j , so it a Lie subalge-
bra of gFdB. Dually, the Hopf subalgebra associated to an equation of the first case is isomorphic
to a quotient of the Faà di Bruno Hopf algebra if λ 6= 0 or a quotient of the Hopf algebra of
symmetric functions if λ = 0.

Example. The following example comes from [2, 14, 18]:

x =
∑

n≥1

Bn

(
(1 + x)n+1

)
,

where for all n ≥ 1, Bn is a 1-cocyle of certain graded Hopf algebra, homogeneous of degree
n. This is a system of theorem 12, with λ = 1 and µ = −1, so it generates a Hopf subalgebra
isomorphic to the Faà di Bruno Hopf algebra. The isomorphism is given by:

{
HFdB −→ HJ

CK

xi −→ x(i).

4.3 Pre-Lie algebra associated to an equation of the second type

Proposition 21 Let us consider the following equation:

(E) : x =
∑

j∈J
m|j

Bj(1 + αx) +
∑

j∈J
m/| j

Bj(1, )

with α ∈ K − {0}. We put:

J = {a1j1 + . . . + akjk | k ≥ 1, a1, . . . , ak−1 ∈ N
∗, ak ∈ {0, 1}, j1 , . . . , jk ∈ J,m | j1, . . . , jk−1}.

The subalgebra generated by the components of the solution of (E) is Hopf, and its dual is the
enveloping algebra of a pre-Lie algebra g. The pre-Lie product of g is given in a certain basis
(fi)i∈J by:

fi ◦ fj =

{
0 if m/| j,
fi+j if m | j.

It is associative.
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Proof. We already proved that these equations are Hopf, see (3). For all n ∈ N
∗, x(n) is

a linear span of ladders of degree n, such that the vertices are decorated by elements of J , all
multiples of m, except maybe the decoration of the leaf. It is then clear that J is the set of
indices n such that x(n) 6= 0. As a consequence, the dual pre-Lie algebra inherits a dual basis
(ei)i∈J . By homogeneity, ei ◦ ej = ηi,jei+j, for a certain scalar ηi,j . Using the duality and (3):

ηi,j = (ei ◦ ej) (x(i+ j))

= (ei ⊗ ej) (∆(x(i+ j)))

= (ei ⊗ ej)






x(i+ j) ⊗ 1 + 1⊗ x(i+ j) + α

i+j−1
∑

k=1
m|k

x(i+ j − k)⊗ x(k)







=

{
0 if m/| j,
α if m | j.

Let us take i, j, k ∈ J .

(ei ◦ ej) ◦ ek =

{
α2ei+j+k if m | j and m | k,
0 if not;

ei ◦ (ej ◦ ek) =

{
α2ei+j+k if m | j and m | j + k,
0 if not.

So the pre-Lie product ◦ is associative. We now put fi =
1
αei. The assertion on these elements

is easily proved. �

Remark. J = N
∗ if, and only if, 1, . . . ,m ∈ J .

5 Generalization of Hopf systems

5.1 Fundamental systems

Notations.

1. For any β ∈ K, we put:

Fβ(h) =

∞∑

k=1

(1 + β) . . . (1 + (n − 1)β)

n!
xk =

{

(1− βh)
− 1

β if β 6= 0,
eh if β = 0.

2. For all β 6= −1:

F β
1+β

((1 + β)h) =
∞∑

k=0

(1 + β) . . . (1 + nβ)

n!
hn,

so we shall put F β
1+β

((1 + β)h) = 1 if β = −1.

We first recall the definition of an extended fundamental SDSE [6]:

Definition 22 An extended fundamental SDSE has the following form: II is a set with a
partition I = I0 ∪ J0 ∪K0 ∪ L0 ∪ I1 ∪ J1 ∪ E, such that:

• any part of this partition may be empty.

• I0 ∪ J0 is not empty.

We define a SDSE in the following way:
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1. For all i ∈ I0, there exists βi ∈ K, such that:

fi = Fβi
(hi)

∏

j∈I0−{i}

F βj
1+βj

((1 + βj)hj)
∏

j∈J0

F1(hj).

2. For all i ∈ J0:
fi =

∏

j∈I0

F βj
1+βj

((1 + βj)hj)
∏

j∈J0−{i}

F1(hj).

3. For all i ∈ K0:
fi =

∏

j∈I0

F βj
1+βj

((1 + βj)hj)
∏

j∈J0

F1(hj).

4. For all i ∈ L0, there exists a family of scalars
(

a
(i)
j

)

j∈I0∪J0∪K0

, such that (∃j ∈ I0, a
(i)
j 6=

1 + βj) or (∃j ∈ J0, a
(i)
j 6= 1) or (∃j ∈ K0, a

(i)
j 6= 0).

fi =
∏

j∈I0

F βj

a
(i)
j

(

a
(i)
j hj

) ∏

j∈J0

F 1

a
(i)
j

(

a
(i)
j hj

) ∏

j∈K0

F0

(

a
(i)
j hj

)

.

5. For all i ∈ I1, there exists νi ∈ K, a family of scalars
(

a
(i)
j

)

j∈I0∪J0∪K0

, such that νi 6= 1

and, if νi 6= 0:

fi =
1

νi

∏

j∈I0

F βj

νia
(i)
j

(

νia
(i)
j hj

) ∏

j∈J0

F 1

νia
(i)
j

(

νia
(i)
j hj

) ∏

j∈K0

F0

(

νia
(i)
j hj

)

+ 1−
1

νi
;

if νi = 0:

fi = −
∑

j∈I0

a
(i)
j

βj
ln(1− βjhj)−

∑

j∈J0

a
(i)
j ln(1− hj) +

∑

j∈K0

a
(i)
j hj + 1.

6. For all i ∈ J1, there exists νi ∈ K − {0}, a family of scalars
(

a
(i)
j

)

j∈L0

, with the following

conditions:

• L
(i)
0 = {j ∈ L0 / a

(i)
j 6= 0} is not empty.

• For all j, k ∈ L
(i)
0 , fj = fk. In particular, we put c

(i)
t = a

(j)
t for any j ∈ L

(i)
0 , for all

t ∈ I0 ∪ J0 ∪K0.

Then:

fi =
1

νi

∏

j∈I0

F βj

c
(i)
j

−1−βj

((

c
(i)
j − 1− βj

)

hj

) ∏

j∈J0

F 1

c
(i)
j

−1

((

c
(i)
j − 1

)

hj

)

∏

j∈K0

F0

(

c
(i)
j hj

)

+
∑

j∈L
(i)
0

a
(i)
j hj + 1−

1

νi
.

7. For all i ∈ E, if a
(i)
j 6= 0 and a

(i)
k 6= 0, then fj = fk; moreover:

fi = 1 +
∑

j∈I

a
(i)
j hj .

The elements of E are called extension vertices.

20



Moreover, there is a notion of level of a vertex with the following properties:

• If a
(i)
j 6= 0, then the level of i is 0 or 1 if, and only if, the level of j is 0.

• Let N ≥ 2. If a
(i)
j 6= 0, then the level of i is N if, and only if, the level of j is N − 1.

In the preceding description, the level of the vertices in I0 ∪ J0 ∪K0 ∪ L0 is 0. The level of the
vertices in I1 ∪ J1 is 1. The level of an extension vertex is at least 1.

The coefficients λ
(i,j)
n = λ

(i,(j,1))
n have been computed in [6]. They satisfy:

λ(i,j)
n =

{

a
(i)
j if n = 1,

ã
(i)
j + bj(n − 1) if n > level(i),

where the coefficients bj, a
(i)
j and ã

(i)
j are given in the following arrays:

bj :
j I0 J0 K0 L0 I1 J1 E

bj 1 + βj 1 0 0 0 0 0

a
(i)
j :

j \ i I0 J0 K0 L0 I1 J1 E

I0 1 + (1− δi,j)βj 1 + βj 1 + βj a
(i)
j a

(i)
j (c

(i)
j − 1− βj)/νi a

(i)
j

J0 1 1− δi,j 1 a
(i)
j a

(i)
j (c

(i)
j − 1)/νi a

(i)
j

K0 0 0 0 a
(i)
j a

(i)
j c

(i)
j /νi a

(i)
j

L0 0 0 0 0 0 a
(i)
j a

(i)
j

I1 0 0 0 0 0 0 a
(i)
j

J1 0 0 0 0 0 0 a
(i)
j

E 0 0 0 0 0 0 a
(i)
j

ã
(i)
j :

j \ i I0 J0 K0 L0 I1 J1 E

I0 1 + (1− δi,j)βj 1 + βj 1 + βj a
(i)
j νia

(i)
j c

(i)
j − 1− βj ã

(i)
j

J0 1 1− δi,j 1 a
(i)
j νia

(i)
j c

(i)
j − 1 ã

(i)
j

K0 0 0 0 a
(i)
j νia

(i)
j c

(i)
j ã

(i)
j

L0 0 0 0 0 0 0 0

I1 0 0 0 0 0 0 0

J1 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0

For the extension vertices, the way to compute ã
(i)
j is the following. Let us choose a i′ such

that a
(i)
i′ 6= 0. For all n ≥ 1, λ

(i,j)
n+1 = λ

(i′,j)
n . In particular, if n > level(i):

ã
(i)
j + bjn = ã

(i′)
j + bj(n − 1).

So ã
(i)
j = ã

(i′)
j − bj . With an induction on the level, this implies that ã

(i)
j = 0 for any i ∈ J if

j ∈ L0 ∪ I1 ∪ J1 ∪ E.

Theorem 23 Let (S) a Hopf SDSE such that the truncation at 1 gives a fundamental ex-
tended system. Let us put:

Q(h) =
∏

j∈I0

(1− βjhj)
−

1+βj
βj

∏

j∈J0

(1− hj)
−1.

Then for all i ∈ I, there exists a formal series g(i), depending only of the hj ’s with j ∈ I0∪J0∪K0,
such that if q > level(i), then f (i,q) = g(i)Qq. In particular:
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1. If i ∈ I0, g
(i) = 1− βihi.

2. If i ∈ J0, g
(i) = 1− hi.

3. If i ∈ K0, g
(i) = 1.

4. If i ∈ E, g(i) = Q(h)−1.

Proof. We apply lemma 7. As q > level(i), this gives:

a
(i,q)
(p1,...,pj+1,...,pN ) =

(

ã
(i)
j + bj(p1 + . . .+ pN + q − 1)−

N∑

l=1

a
(l,1)
j pl

)

a
(i,q)
(p1,...,pN ).

In particular, for p1 = . . . = pN = 0, a
(i,q)
j = ã

(i)
j + bj(q − 1). If j ∈ L0 ∪ I1 ∪ J1 ∪ E, then

ã
(i)
j = bj = 0, so a

(i,q)
j = 0 and f (i,q) does not depend on hj . From now, we assume that pk = 0

if k ∈ L0 ∪ I1 ∪ J1 ∪ E. Let us take j ∈ I0 ∪ J0 ∪K0. For all l ∈ I0 ∪ J0 ∪K0, a
(l)
j = bj, except

perhaps if l = j. So:

a
(i,q)
(p1,...,pj+1,...,pN ) =

(

ã
(i)
j + bj(p1 + . . .+ pN + q − 1)−

N∑

l=1

bjpl +
(

bj − a
(j)
j

)

pj

)

a
(i,q)
(p1,...,pN )

=
(

ã
(i)
j + bj(q − 1) +

(

bj − a
(j)
j

)

pj

)

a
(i,q)
(p1,...,pN ).

This implies:

f (i,q) =
∏

j∈I0∪J0∪K0

(

1−
(

bj − a
(j)
j

)

hj

)−
ã
(i)
j

−bj

bj−a
(j)
j

−
bj

bj−a
(j)
j

q

=
∏

j∈I0

(1− βjhj)
−

ã
(i)
j

−1−βj

βj

∏

j∈J0

(1− hj)
−ã

(i)
j +1

∏

j∈K0

e−ã
(i)
j hj

︸ ︷︷ ︸

g(i)

(4)










∏

j∈I0

(1− βjhj)
−

1+βj
βj

∏

j∈J0

(1− hj)
−1

︸ ︷︷ ︸

Q(h)










q

.

In particular, if i, j ∈ I0 ∪ J0 ∪K0, ã
(i)
j = a

(i)
j = bj , except perhaps if i = j. In this case:

g(i) =
(

(1−
(

bi − a
(i)
i

)

hi

)−
ã
(i)
i

−bi

bi−a
(i)
i =







(1− βihi) if i ∈ I0,
(1− hi) if i ∈ J0,
1 if i ∈ K0.

If i ∈ E, then ã
(i)
j = 0 for all j ∈ I, so:

g(i) =
∏

j∈I0

(1− βjhj)
1+βj
βj

∏

j∈J0

(1− hj).

Hence, g(i) = Q(h)−1. �

In the particular case where L0 = I1 = J1 = E = ∅:
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Corollary 24 Let us take I = I0 ∪ J0 ∪K0, with I0 ∪ J0 6= ∅. The following SDSE is Hopf:

• For all i ∈ I0:

xi =
∑

q∈Ji

B(i,q)



(1− βixi)
∏

j∈I0

(1− βjxj)
−

1+βj
βj

q ∏

j∈J0

(1− xj)
−q



 .

• For all i ∈ J0:

xi =
∑

q∈Ji

B(i,q)



(1− xi)
∏

j∈I0

(1− βjxj)
−

1+βj
βj

q ∏

j∈J0

(1− xj)
−q



 .

• For all i ∈ K0:

xi =
∑

q∈Ji

B(i,q)




∏

j∈I0

(1− βjxj)
−

1+βj
βj

q ∏

j∈J0

(1− xj)
−q



 .

Example. For the example of the introduction:







x1 =
∑

k≥1

B(1,k)

(
(1 + x1)

1+2k

(1− x2)k(1− x3)2k

)

,

x2 = B2

(
(1 + x1)

2

(1 − x3)2

)

,

x3 = B3

(
(1 + x1)

2

(1 − x2)(1− x3)

)

.

This is obtained from a fundamental system, with I0 = {1, 3}, J0 = {2}, β1 = −1/3, β3 = 1, by
a change of variables h1 −→ 3h1. Hence, it generates a Hopf subalgebra.

Corollary 24 determines the formal series f (i,q) when i ∈ I0 ∪ J0 ∪K0. If i ∈ L0, theorem 23
and (4) determines all the f (i,q). If i ∈ I1 ∪ J1, then theorem 23 and (4) determines the f (i,q) if
q ≥ 2, and f (i,1) is given in definition 22. It remains to determine f (i,q) when i ∈ E.

Notations.

1. Let (S) be a Hopf SDSE, and let G(S) be the (oriented) graph of dependence of (S), that
is to say:

• The vertices of G(S) are the elements of I.

• There is an oriented edge from i to j if, and only if, a
(i,1)
j 6= 0.

2. Let i, j ∈ J . We shall write i −→ j if there is an oriented edge from i to j in G(S). For all

q ≥ 1, we shall write i
q

−→ j if there is an oriented path of length q from i to j in G(S). In

particular, i
0

−→ j if, and only if, i = j.

Theorem 23 and its proof give all the formal series f (i,q) when the level of i is ≤ 1. If i is
an extension vertex, its level can be greater than 2, and the associated formal series are now
described:

Proposition 25 Let (S) be a Hopf SDSE such that the truncation at 1 is an extended fun-
damental system. For any i ∈ E, of level n ≥ 1:
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• If q < n, f (i,q) = 1 +
∑

j∈I

a
(i′,1)
j hj , where i′ is any element of I such that i

q−1
−→ i′.

• f (i,n) = f (i′,1), where i′ is any element of J such that i
n−1
−→ i′.

• If q > n, then f (i,q) = Qq−1.

Proof. If q > n, this comes directly from theorem 23. Let us prove the case q < n by
induction on n. If n = 1, there is nothing to prove. Let us assume the results at all rank
k < n. Let i0 = i → i1 → · · · → in in the graph of dependence G(S). As the level of i0 is n,
the level of ik is n − k for all 0 ≤ k ≤ n. In particular, i1, . . . , in−2 are extension vertices, as
their level is ≥ 2. We apply proposition 6 with t = B(i0,1) ◦ . . . ◦ B(ik ,1)(1), with k ≤ n − 1.
As i0, . . . , ik−1 are extension vertices, the only tree t′ such that at′ 6= 0 and n(j,1)(t, t

′) 6= 0 is
B(i0,1) ◦ . . . ◦B(ik ,1) ◦B(j,1)(1). So:

λ
(i,(j,1))
k+1 a

(i0,1)
i1

. . . a
(ik−1,1)
ik

= a
(i0,1)
i1

. . . a
(ik−1,1)
ik

a
(ik ,1)
j .

Hence, if 1 ≤ l ≤ n, λ
(i,(j,1))
l = a

(i′,1)
j , where i′ is any element of I such that i

l−1
−→ i′. As a

consequence, if λ
(i,(j,1))
l 6= 0, i

l
−→ j, so the level of j is n− l.

Let us fix 1 ≤ q ≤ n. From lemma 7, with p1 = . . . = pN = 0, for all j ∈ J , a
(i,q)
j = λ

(i,(j,1))
q .

So this is equal to a
(i′)
j for any i′ such that i

q−1
−→ i′. Hence, if a

(i,q)
j 6= 0, then i

q
−→ j. So the

level of j is n− q.

If q < n, let us now consider j, j′ ∈ J . If a
(i,q)
j = 0 or a

(i,q)
j′ = 0, by lemma 7, a(i,q) = 0.

If a
(i,q)
j 6= 0 and a

(i,q)
j′ 6= 0, then a

(i,q)
j,j′ =

(

λ
(i,(j′,1))
q+1 − a

(j,1)
j′

)

a
(i,q)
j′ . As the level of j and j′ is

n− q ≥ 1, a
(j,1)
j′ = 0. Moreover, as the level of j′ is n− q 6= n− q− 1, λ

(i,(j′,1))
q+1 = 0. So a

(i,q)
j,j′ = 0.

So all the terms of degree 2 of f (i,q) are zero, so all the terms of degree ≥ 2 of f (i,q) are zero.

Let us finish with the case q = n. Let us choose i′ such that i
n−1
−→ i′; then the level of i′ is

1. We already saw that a
(i,n)
j = a

(i′,1)
j for all j ∈ J . If i = i0 → · · · → in−1 = i′ in G(S), then

i0, . . . , in−2 are extension vertices as their level is ≥ 2, so for all j ∈ J :

ã
(i)
j = ã

(i1)
j − βj = . . . = ã

(i′)
j − (n− 1)βj .

Let us apply lemma 7, with (p1, . . . , pN ) 6= (0, . . . , 0). Then p1 + . . .+ pn + n > n, so:

a
(i,n)
(p1,...,pj+1,...,pN )

=
1

pj + 1

(

ã
(i′)
j − (n− 1)bj + bj(p1 + . . .+ pN + n− 1)−

N∑

l=1

a
(l,1)
j pl

)

a
(i,n)
(p1,...,pN )

=
1

pj + 1

(

ã
(i′)
j + bj(p1 + . . . + pN )−

N∑

l=1

a
(l,1)
j pl

)

a
(i,n)
(p1,...,pN )

=
1

pj + 1

(

λ
(i′,(j,1))
p1+...+pN+1 −

N∑

l=1

a
(l,1)
j pl

)

a
(i,n)
(p1,...,pN ).

By lemma 7, this is the same induction as the coefficients a
(i′,1)
(p1,...,pN ). So f (i,n) = f (i′,1). �

Remark. If q < n, the level of i′ is n − q + 1 ≥ 2, so i′ is an extension vertex, and
f (i,q) = f (i′,1).
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5.2 Quasi-cyclic systems

Let us first recall the structure of a quasi-cyclic SDSE:

Definition 26 Let N ≥ 2. A SDSE is N -quasi-cyclic if it has the following form: J admits
a partition J = J1 ∪ · · · ∪ JN indexed by Z/NZ, with the following conditions:

1. If i ∈ Jp, its direct descendants are all in Jp+1.

2. If i and j have a common direct ascendant, then they have the same direct descendants.

Moreover, for all i ∈ J :

fi = 1 +
∑

i−→j

a
(i)
j hj ,

and if i and j have a common direct ascendant, then fi = fj.

Remark. Let us consider a quasi-cyclic SDSE. For all i ∈ J :

xi = q i +

∞∑

n=1

∑

i1,...,in∈I

a
(i)
i1
a
(i1)
i2

. . . a
(in−1)
in

Bi ◦Bi1 ◦ . . . ◦Bin(1).

In order to simplify the problem, we shall assume that for all i, j ∈ J such that i → j in H(S),

then a
(i)
j depends only on i. This is generally not the case, but it can be assumed without loss

of generality if there is no vertex with no ascendant in the graph of dependence of the system.

In this case, if i = i0 → . . . → in is a path of length n in G(S), a
(i0)
i1

. . . a
(in−1)
in

only depends on i

and n: we denote it by b
(i)
n . Then for all i ∈ I:

xi =
∞∑

n=0

∑

i→i1→···→in

b(i)n Bi ◦Bi1 ◦ . . . ◦Bin(1),

with the convention b
(i)
0 = 1. Moreover, if there is a path of length m from i to j, then b

(i)
m b

(j)
n =

b
(i)
m+n for all n. With these notations, λ

(i,j)
n = 0 if there is no path of length n from i to j and is

equal to b
(i)
n /b

(i)
n−1 if there is such a path.

Theorem 27 Let (S) be a Hopf SDSE such that the truncation at 1 gives a quasi-cyclic
SDSE satisfying the preceding hypothesis. Then, for all i ∈ J , for all q ∈ Ii:

f (i,q) = 1 + b(i)q

∑

i
q

−→j

hj .

Proof. Up to a change of indexation, we shall assume that i ∈ I0. From lemma 7, for all

j ∈ J , a
(i,q)
j = λ

(i,(j,1))
q . So this is 0 if there is no path from i to j of length q and equal to

b
(i)
q if i

q
−→ j. Let j, k ∈ J . If a

(i,q)
j = 0 or a

(i,q)
k = 0, then a

(i,q)
j,k = 0. Let us assume that

a
(i,q)
j , a

(i,q)
k 6= 0. Then i

q
−→ j, k, so j, k ∈ Iq. From lemma 7:

a
(i,q)
j,k =

(

λ
(i,(j,1))
q+1 − a

(k)
j

)

a
(i,q)
k .

As j ∈ Iq, j /∈ Iq+1 so there is no path of length q + 1 from i to j, and λ
(i,(j,1))
q+1 = 0. As j, k are

both in Iq, a
(k)
j = 0. As a consequence, a

(i,q)
j,k = 0. All the terms of degree 2 of f (i,q) are equal to

0, so all the terms of degree ≥ 2 of f (i,q) are equal to 0. �

Remark. If this holds, for all i, n ∈ N
∗, xi(n)/b

(i)
n is a sum of the ladders B(i1,p1) ◦ . . . ◦

B(ik ,pk)(1) with the following conditions:

25



• i1 = 1.

• p1 + . . .+ pk = n.

• for all 1 ≤ r ≤ k − 1, there exists a path of length pr from ir to ir+1 in G(S).

Example. Here is an example of such a SDSE. For all i ∈ Z/MZ, let us choose Ji ⊆ N
∗.

Then:
xi =

∑

j∈Ji

Bj(1 + xi+j).
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