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Discrete mode observability analysis of switching structured linear
systems with unknown input: A graphical approach

Mohamed Ghassane Kabadi, Taha Boukhobza and Frederic Hamelin

Abstract— Switching linear systems are described by a set
of continuous state-space models together with conditions
(switching law) that decide which model (mode) of this set is
valid for the current continuous state. This article deals with
the problem of the observability of discrete mode in which the
switching law is assumed to be unknown. The formalization
of the problem, based on a graph-theoretic approach, is to
express sufficient conditions for generic observability of the
discrete mode assuming only the knowledge of the system’s
structure. These conditions allow us to obtain criteria of sensor
placement in order to recover the discrete mode observability
using properties of the graph associated to the system. We
obtain a sensor placement procedure based on classical and
well-known graph theory algorithms, which have polynomial
complexity orders.

Index Terms— discrete mode observability, state and input
observability, switching structured linear systems, graph theory.

I. INTRODUCTION

Over the past decade, study of hybrid systems has received
particular attention in several scientific fields including au-
tomation.
In general, this kind of systems can represent, through hy-
brid systems properties, several physical, technological and
biological phenomena. It allows to model complex systems
which combine the dynamics of the continuous parts of the
system with the dynamics of the logic and discrete parts.
Hybrid models are characterized by continuous processes
(continuous differential equations) interacting with discrete
processes (paradigms from discrete event systems). A hybrid
system’s structure is illustrated in figure I:

Fig I:Hybrid Dynamical System’s structure
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these models have proven their efficiency for the rep-
resentation of complex systems, unlike the homogeneous
approach of continuous linear systems that is insufficient
for modeling such systems. The transition from one mode
to another one is strongly linked to the global nature of
the behavior of the complex system to model. When the
mode transition is abrupt, we can define a particular but
very important framework of hybrid dynamical systems :
switching continuous-time linear systems (SCTLS) or SLS
(to simplify the notation). They are composed of a family
of subsystems which are linear time-invariant and these
subsystems (modes) are orchestrated by a switching law
that specifies which subsystem is active. As an extension
of the classical linear or affine state-space representations
of dynamical systems, this modeling formalism has been
thoroughly investigated through several studies.
Knowing that, the focus is on the study of observability
property for SLS with unknown input, this property plays
a major role in command law synthesis, fault detection and
isolation, fault tolerant command law synthesis and also for
perturbations rejection.
Many definitions of this property appear in the literature for
SLS. For example, we quote [3], [7], [6] devoted to studying
observability of hybrid systems where the discrete mode
depends on the state trajectory or is associated to discrete
outputs. We can also quote [14], [1], [3] for deterministic
discrete-time switching linear systems. Knowing the different
studies and investigations devoted to SLS, there exist several
differences between deterministic discrete-time switching
linear systems and deterministic continuous-time switching
linear systems mainly proved in [15]. This article focuses on
the definition of observability for deterministic continuous-
time switching linear systems expressed in [2], [9], [15], [17],
[10].
Conventional algebraic and geometric tools which are based
on the numerical value of state-space matrices of system’s
model are needed. However, these variables are subject to
parametric uncertainties due to identification processus and
so, they are approximatively known.
We consider here a structured switching linear system also in
state-space form, knowing that a switching linear system is
structured when each entry of the matrices of its state-space
form is either a fixed zero or a free parameter. The location
of the fixed zeros in these matrices constitutes the structure
of the system.
The approach is of interest to investigate many classical
properties of structured systems that can be studied in
terms of genericity. In this case, properties that are true for



almost any value of the free parameters are called generic
proprieties.
In order to check generic properties as controllability, ob-
servability and so on (see [11]), we can associate in natural
way digraphs to structured systems and so verify structural
properties by means of graph theoretic terms.
This approach also presents a major advantage. Indeed,
through the association of the digraph with the structured
system, we can intuitively represent the structural changes
on the graph and take into account them when analyzing
the property of system. This fact is very interesting knowing
that a switch can be related to a change in structure, as for
example in the field of electronics [16].
In this paper, our aim is to characterize the discrete mode
observability for structured switching linear systems (SSLS).
The outline of the paper is as follows. In section II, we
expose the problem statement. After that we give some
definitions and notations to the graph-theoretic approach in
section III, then the main result is given in section IV and
we conclude.

II. PROBLEM STATEMENT

Consider the state-space form of switching linear systems
as follows:

Σ :

{
ẋ(t) = A(rt)x(t) +B(rt)u(t)
y(t) = C(rt)x(t) +D(rt)u(t)

(1)

with x ∈ Rn,u ∈ Rm, y ∈ Rp are respectively the state
vector, unknown input vector and output vector and matrices
A(·), B(·), C(·) and D(·) are of appropriate dimensions.
Consider a discrete mode variable (mode sequence) as an
exogenous input which is considered to be unobserved and
defined by rt : [0,∞) → Q

def
= {1, . . . , N}. Close to

[2], the switching signal is right-continuous and so impulses
in state and input of SLS are excluded. The minimum
dwell time is considered to avoid zeno behavior which is
an undesired phenomenon for the well-definedness of SLS.
In order to have more general framework, a generic study
of discrete mode observability is assumed not for all initial
conditions and unknown input u but for generic ones. We
deal with structured switching linear systems (SSLS) which
consider only the structure of modeled system and assume
independent all the real parameters of matrices A(q), B(q),
C(q), D(q) for each mode q ∈ Q of SLS.
The studied structured state space form is

ΣΛ :

{
ẋ(t) = Aλ(rt)x(t) +Bλ(rt)u(t)
y(t) = Cλ(rt)x(t) +Dλ(rt)u(t)

(2)

Real parameters of this state-space form are either fixed to
zero or assumed to be nonzero parameters. In the latter case,
they are substituted by free parameters noted λi and the set of
these parameters forms vector Λ = (λ1, λ2, ..., λh)T which
can take values in Rh. Aλ(q), Bλ(q), Cλ(q) and Dλ(q)
represent structured matrices for each q ∈ Q and are obtained

by replacing the non zeros parameters of A(q), B(q), C(q),
D(q) for each mode q ∈ Q by free parameters from vector
Λ. To address the discrete mode observability problem, some
preliminary definitions are useful:

Definition 1: (Mode distinguishability) Two modes q ∈ Q
and q′ ∈ Q (with q 6= q′) are distinguishable if at least one
of the two following conditions holds:
- there exist an integer s ≥ 0 and an expression
Ψq(y, ẏ, . . . , y

(s)) = 0 which is satisfied for mode q but
is not satisfied for mode q′ for almost all initial conditions
x0 and input u.
- there exist an integer s′ ≥ 0 and an expression
Ψq′(y, ẏ, . . . , y

(s′)) = 0 which is satisfied for mode q′ but
is not satisfied for mode q for almost all initial conditions
x0 and input u.
Here, “ for almost all initial conditions x0 and input u ” is
to be understood as “ for all (xT0 , u

T )T ∈ Rn+m except
for the zero set of some polynomials with real coefficients
in the n + m initial state and input components”Ṫhese
polynomials can be written down explicitly, i.e. we can
precisely describe them when the mode distinguishability
fails to be true. Obviously u(t) ≡ 0 and x0 = 0 are two of
these polynomials. The zero set of some polynomial forms
a proper algebraic variety of Rn+m which has Lebesgue
measure zero. So, by the expression “ for almost all initial
conditions x0 and input u ” we mean for all initial conditions
and input functions except the ones belonging to a proper
algebraic variety in the state and input space.
The interpretation of Definition 1 is that q is distinguishable
from q′ if, for generic initial state x0 and unknown input u,
we can rule out q or q′ when observing the output over
[0, T ]. Relatively to the definitions of [2], our notion of
distinguishability of q and q′ is equivalent to the fact that
q is discernible from q′ or vice-versa. The mutual mode
discernibility, which is a dissymmetric property in [2], is
equivalent to have both conditions of Definition 1 satisfied.

Definition 2: (Location observability) SLS (Σ) is location
observable if its modes are all distinguishable two-by-two i.e.
∀q ∈ Q, ∀q′ ∈ Q, with q 6= q′, q and q′ are distinguishable.
Comparatively with the notion of location observability
defined in [9], [10], our definition concerns as well au-
tonomous as non-autonomous systems. In [9], [10], location
observability is defined as the ability to reconstruct the mode
starting from the knowledge of the input and the output,
for any nonzero input value and for all initial conditions.
Since we deal with unknown input systems, this definition
is not applicable and it cannot be achieved for autonomous
systems. In definition 2, we relax this by accepting that
the reconstruction of the mode may be possible not for all
but for almost all inputs and initial conditions values. To
establish the observability of SLS, we have to address, in
addition to location observability reduced to the study of the
distinguishability of each pair of modes, the state and input
observability of each mode as defined classically in [12].
To study location observability, it is pertinent and necessary
to highlight the similarities and the differences between the
models associated to these modes. Thus, we decompose each



structured matrix into two parts: the first one is common to
the two modes and the second one is specific to each mode
i.e. for q ∈ Q, Aλ(q) = Aλ0 + Aλq , Bλ(q) = Bλ0 + Bλq ,
Cλ(q) = Cλ0 +Cλq and Dλ(q) = Dλ

0 +Dλ
q where all nonzeros

entries of structured matrices are assumed as free parameters
λi from vector Λ.
For the sake of simplicity, we consider in the later that we
have only two modes q ∈ {1, 2}.

III. GRAPHICAL REPRESENTATION OF STRUCTURED
SWITCHING LINEAR SYSTEMS

In this subsection, our aim is to present a manner of
modeling structure of SSLS (ΣΛ) taking into account
different modes of the system. For a such structure, we can
associate in a natural way a directed graph noted G(ΣΛ)
constituted by a non-empty finite set V of elements called
vertices and a finite set E of ordered pairs of distinct vertices
called edges (directed edges). Notation G(ΣΛ) = (V, E)
means that V and E are respectively vertex set and edge set of
G(ΣΛ). Vertex set V defined by V = X∪U∪Y corresponds
to the system’s variables (inputs U = {u1, . . . ,um}, states
X = {x1, . . . ,xn} and outputs Y = {y1, . . . ,yp}) and
edge set E is defined by E0 ∪ Eq . E0 represents the common
part of both modes of SSLS and Eq represents the specific
part for each mode. They can be respectively defined by
E0 = A0-edges ∪ B0-edges ∪ C0-edges ∪ D0-edges,
where, A0-edges = {(xj,xi) | A0(i, j) 6= 0},
B0-edges = {(uj,xi) | B0(i, j) 6= 0}, C0-edges =
{(xj,yi) | C0(i, j) 6= 0} and D0-edges =
{(uj,yi) | D0(i, j) 6= 0} and Eq = Aq-edges ∪
Bq-edges ∪ Cq-edges ∪ Dq-edges for each mode
q ∈ {1, 2}, where, Aq-edges = {(xj,xi) | Aq(i, j) 6= 0},
Bq-edges = {(uj,xi) | Bq(i, j) 6= 0}, Cq-edges =
{(xj,yi) | Cq(i, j) 6= 0} and Dq-edges =
{(uj,yi) | Dq(i, j) 6= 0}. The existence of free non
zero parameters (non-zero entries) of common part
(Aλ0 , B

λ
0 , C

λ
0 , D

λ
0 ) of SSLS is represented by edges e0 ∈ E0

indexed by 0 and the existence of free non-zero parameters
of specific part (Aλq , B

λ
q , C

λ
q , D

λ
q ) of SSLS is represented

by edges eq ∈ Eq indexed by q for q ∈ {1, 2}.

Example 1: To the system defined by the following
structured matrices, we associate the digraph in Figure 1.

Aλ0 =



0 0 λ1 0 0 0 0 0 0 0
0 0 λ2 0 0 0 0 0 0 0
0 0 0 λ3 0 0 0 0 0 0
0 0 0 λ4 0 0 0 0 0 0
0 λ5 0 0 0 λ6 0 0 0 0
0 0 0 0 0 0 λ7 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 λ8 0 0 0 λ9 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

Bλ0 =



0 0
0 0
0 0
0 0
0 0
0 0
λ13 0
0 0
0 λ14

0 λ15


,

Cλ0 =


λ16 0 0 0 0 0 0 0 0 0
0 λ17 0 0 0 0 0 0 0 0
0 0 0 0 λ18 0 0 0 0 0
0 0 0 0 0 0 0 λ19 0 0
0 0 0 0 0 0 0 0 0 λ20

,

All the entries of Aλ1 , Bλ1 , Bλ2 are zero except
Aλ1 (1, 3) = λ10, Bλ1 (10, 2) = λ11, Bλ2 (9, 2) = λ12.
The elements of matrices Aλ2 , Cλ1 , Cλ2 , Dλ

0 , Dλ
1 and Dλ

2 are
equal to zero.

Fig. 1. Digraph associated to system of Example 1

A. Notations and definitions

The digraph representing the SSLS is built from the
superposition of the digraphs related to each mode. In order
to study the properties of the system associated to a specific
mode q, we have to restrict the edge set to E0 ∪ Eq . In this
context, many of the functions and specific vertex subsets,
defined below, present an index q related to the considered
mode.
• Two edges e1 = (v1,v

′
1) and e2 = (v2,v

′
2) are v-disjoint

if v1 6= v2 and v′
1 6= v′

2.
• Some edges are v-disjoint if they are mutually v-disjoint.
In Example 1, (x4,x3) and (x3,x1) as well as (u1,x7)
and (x7,x6) are v-disjoint. It is not the case for (u2,x9)
and (u2,x10) which have the same begin vertex and for
(x2,x5) and (x6,x5) which have the same end vertex.
• A path P is denoted P = vs0 → vs1 → . . . → vsi ,
where (vsj ,vsj+1

) ∈ E for j = 0, 1, . . . , i − 1. We say in
this case that P covers vs0 , vs1 , . . . , vsi .
• A path is simple when every vertex occurs only once in
this path.
• A cycle is a path of the form vs0 → vs1 → . . . →
vsi → vs0 , where vs0 , vs1 , . . . , vsi are distinct.
• For q ∈ {1, 2}, we say that path P is included in E0 ∪ Eq
if all its edges are included in E0 ∪ Eq .
• Some paths (resp. cycles) are disjoint if they have no
common vertex.
• A set of disjoint cycles is called a cycle family.
• P is a Y-topped path if its end vertex belongs to Y. A



Y-topped path family consists of disjoint simple Y-topped
paths.
• V1 and V2 represent two subsets of V . We denote by
card(·) the cardinality function and V1 \ V2 is the set of
elements in V1 which are not in V2.
• A path P = vs0 → vs1 → . . . → vsi is said a V1–V2

path if vs0 ∈ V1 and vsi ∈ V2. Moreover, if the only vertex
of P which belongs to V1 is vs0 and the only vertex of P
which belongs to V2 is vsi , P is called a direct V1–V2 path.
• For q = {1, 2}, ρq

[
V1,V2

]
is the maximal number of

disjoint V1-V2 paths included in E0 ∪ Eq . Moreover, a set
of ρq

[
V1,V2

]
disjoint V1-V2 paths included in E0 ∪ Eq is a

maximum V1-V2 linkings in E0 ∪ Eq .
• For q ∈ {1, 2}, µq

[
V1,V2

]
denotes the minimal number

of vertices of U ∪X ∪Y belonging to a maximum V1–V2

linking included in E0 ∪ Eq .
• For q ∈ {1, 2}, Vess,q

[
V1,V2

]
is the vertex subset

including the vertices present in all the maximum V1–V2

linkings included in E0 ∪ Eq .
• For q ∈ {1, 2}, there exists a unique vertex subset noted
Soq
[
V1,V2

]
and called minimum output separator which

is the set of begin vertices of all direct Vess,q
[
V1,V2

]
–V2

paths included in E0 ∪ Eq .

IV. RESULTS

A. Preliminaries

First of all, we begin to introduce some existing results, in
graphical terms, for continuous state and input observability
of SSLS. Whole of these results are based on several works
in ([5], [11], [8]). It is characterized the generic dimension
of the observability subspace related to the degeneration
of pencil matrix for each mode q ∈ {1, 2} ( due often to
invariant properties [13] such as invariant zeros). In this
paper, our aim, through a subdivision close to [5], [4], is
to express propositions to assess the observability of the
discrete mode for SSLS by using some subsets emerged
from subdivision of SSLS into two distinct parts. Towards
this end, the following definitions are useful.

Definition 3: Consider SSLS (ΣΛ) associated to digraph
G(ΣΛ). The following vertex subsets emerge from SSLS
subdivision :
• X1,q

def
=
{
xi | ρq

[
U ∪ {xi},Y

]
> ρq

[
U,Y

]}
;

• Y0,q
def
= Y ∩ Vess,q

[
U,Y

]
;

• Y1,q
def
= Y \Y0,q;

In order to rule on discrete mode observability of SSLS,
we should be able to express an algebraic equation linking
only output components of Y1,q and their derivatives. This
equation has to be satisfied by only one of the two modes
q ∈ {1, 2}.
The particularities of each subset proposed above are detailed
in [4].

Definition 4: Consider SSLS (ΣΛ) associated to digraph
G(ΣΛ) for q ∈ {1, 2}. We associate integer βq(Y) defined

by µq
[
U, (Soq

[
U,Y

]
∩ X) ∪ Y0,q

]
− ρq

[
U, (Soq

[
U,Y

]
∩

X)∪Y0,q

]
plus the maximal number of vertices of X1,q ∪

Soq
[
U,Y

]
covered by a disjoint union of :

- a Soq
[
U,Y

]
–Y1,q(Y) linking of maximal size;

- a Y1,q-topped path family ;
- a cycle family covering only elements of X1,q.

As expressed in Lemma 3 of [4], βq(Y) is equal to the
generic dimension of the observable subspace in the extended
state and input space (xT , uT ) for each q ∈ {1, 2}.

Definition 5: (strongly connected component)
Two vertices vi and vj are said to be strongly connected if
it exists a path from vi to vj and a path from vj to vi.It
is assumed that a vertex is strongly connected to itself. The
relation “ is strongly connected to ” is an equivalence relation
and we can define its equivalence classes. Each equivalent
class is called a strongly connected component

Definition 6: (maximal elements subset)
Let’s “ ≤ ” a partial order relation on S, {a, b} ∈ S and a ≤
b. a is a maximal element of S if a = b. A set of maximal
elements of S is denoted by max(S). A same definition can
be formulated for a set of minimal elements of S denoted
by min(S).

B. Discrete mode observability of SSLS

Hypothesis 1: SSLS is assumed to be continuous state and
input observable for each mode q ∈ {1, 2}.
In this part, we will treat the observability of the discrete
mode for SSLS with unknown input and so based only on
the measurements given by the output set Y.

Proposition 1: A sufficient condition for location observ-
ability of SSLS represented by digraph G(ΣΛ) is:
• There exists eκ = (vi,vj) a specific edge of one mode
q ∈ {1, 2} and yi ∈ Y1,q such that there exists yi− topped
path of length strictly greater than dq(yi) = βq

(
y
)
−βq(y \

{yi}) which covers eκ ended by vertex vj.
• vj belongs to a direct soq[max(u,x1,q),y1,q]-yi path
included in E0 ∪ Eq .
Proof:
Sufficiency:
The fact that, for some q, yi belongs to Y1,q implies that
there exists a vertex subset Yu ⊆ Y1,q \ {yi} such that
ρq
[
Soq [max(U,X1,q),Yu

]
= card(max(U,X1,q)). This

implies, from Lemma 2 of [4], that there exist a matrix G,
a function ϕ and an integer ν ≤ n1 such that the dynamics
equation of subsystem (Σ1,q) can be put on form:

Ẋ1,q =
(
A1,1 + (A1,s, B1,1)G

)
X1,q

+ ϕx(Yu, Ẏu, . . . , Y
(ν)
u )

def
= ÃX1,q + ϕx(Yu, Ẏu, . . . , Y

(ν)
u )

Y1,q =
(
C1,1 + (C1,s, D1,1)G

)
X1,q

+ ϕy(Yu, Ẏu, . . . , Y
(ν)
u )

def
= C̃X1,q + ϕy(Yu, Ẏu, . . . , Y

(ν)
u ) (3)



Moreover, by definition of dq(yi), we have that, there exists
a minimal subset Ỹ ⊆ Y1,q(Y) \ (Yu ∪ {yi}), such that
∀k ≥ dq(yi),

y
(k)
i =

∑
s<k̃i

αi,sy
(s)
i +

∑
l |yl∈Ỹ

n1∑
s=0

αl,sy
(s)
l + υ(Yu, . . . , Y

(n1)
u )

(4)

where n1 = card(X1,q). Since subset Ỹ is minimal i.e.
∀yj ∈ Ỹ, βq

(
(Ỹ∪{yi}∪Yu)\{yj}

)
−βq(Yu ∪ Ỹ\{yj}) >

k̃i, then in relation (4), all the components of Ỹ are present.
Let us denote by max(U,X1,q) = xj the begin vertex of
the so-called path P satisfying condition of Proposition 1
(i.e. P is a yi-topped path of length k + 1 strictly greater
than dq(yi) and covering es) and ej the jth Euclidean vector.
Relation (4) can be written as:

C̃iÃ
kej =

 ∑
s<dq(yi)

αi,sC̃iÃ
s+

∑
yl∈Ỹ

n1∑
s=0

αl,sC̃lÃ
s + υ(Yu, . . . , Y

(n1)
u )

 ej (5)

where each non-zero component of C̃lÃs is associated to
the paths arriving to yl ∈ Ỹ of length s + 1. Since all the
{xj}-Ỹ ∪ {yi} paths starting from xj cover, by definition,
Soq
[
{xj}, Ỹ∪{yi}

] def
= {xr}, then there exist kr and k′ such

that kr + k′ = k and C̃iÃ
kej = C̃iA

kr∆rÃ
k′ej where ∆r

is a diagonal matrix which has only one non-zero element
∆r(r, r) = 1. We can do the same reasoning for each term
C̃lÃ

sej and so there exist sr and s′ such that sr + s′ = s
and C̃lÃ

sej = C̃lÃ
sr∆rÃ

s′ej . The fact that end vertex of
eκ i.e. x` belongs to a direct Soq [{xj},Y1,q]-yi path implies
that specific edge eκ ∈ Eq belongs to a Soq

[
vP, Ỹ ∪ {yi}

]
–

Ỹ ∪ {yi} path. This means that edge eκ appears in only
some Soq

[
max(U,X1,q), Ỹ ∪ {yi}

]
–Ỹ ∪ {yi} paths. Thus,

some terms C̃iAkr and C̃lÃsr , but not all, contain the non-
zero parameter corresponding to edge eκ, which is specific
to mode q. Denoting by Cr = eTr , where er is the rth

Euclidean vector, we have that C̃iÃkej = C̃iA
kr∆rÃ

k′ej =
α′CrÃ

k′ej and C̃lÃ
sej = C̃lÃ

sr∆rÃ
s′ej = α′

l,sCrÃ
s′ej .

Thus, after substitution of the previous terms in relation (??),

α′CrÃ
k′ej =

( ∑
sr≤s<dq(yi)

α′i,sαi,sCrÃ
s−sr+

∑
l |yl∈Ỹ

n1∑
s=sr

α′l,sαl,sCrÃ
s−sr + υ(Yu, Ẏu, . . . , Y

(n)
u )

)
ej

(6)

where some coefficients α′ and α′
l,s but not all depend

on the weight of eκ. This weight cannot be factorized and
simplified because all the coefficients do not depend on it
(some Soq

[
max(U,X1,q), Ỹ ∪ {yi}

]
–Ỹ ∪ {yi} paths do

not contain edge eκ). Therefore, equality (6) is valid only
if some of the coefficients α, αi,s and αl,s depend also
on the weight λκ of eκ. Thus, by means of equation (4)
in which appear coefficients αi,s and αl,s, we obtain an
algebraic relation depending on λκ and satisfied only when

the discrete mode variable is equal to q.2
In Example 1 above, a partial order of strongly connected
components for both modes q ∈ {1, 2} is:
• y1 ≤ x1 ≤ x3 ≤ x4.
• y2 ≤ x2 ≤ x3 ≤ x4.
• y3 ≤ x5 ≤ x2 ≤ x3 ≤ x4.
• y4 ≤ x5 ≤ x2 ≤ x3 ≤ x4.
• y3 ≤ x5 ≤ x6 ≤ x7 ≤ u1.
• y4 ≤ x8 ≤ x5 ≤ x6 ≤ x7 ≤ u1.
• y4 ≤ x8 ≤ x9 ≤ u2.
• y5 ≤ x10 ≤ u2.
and then we have that X1,1 = X1,2 =
{x1,x2,x4,x8,x9,x10}, Y0,1 = Y0,2 = 0,
Y1,1 = Y1,2 = Y and max(U,X1,q) = {u1,u2,x4} thus
Soq
[
max(U,X1,q),Y1

]
= {u2,x3,x5}.

As example, (x3,x1) is a specific edge to mode 1. Since, for
both modes, Soq

[
U,Y

]
∩X = {x5}, we can then calculate

µq
[
U, (Soq

[
U,Y

]
∩ X) ∪ Y0,q

]
− ρq

[
U, (Soq

[
U,Y

]
∩

X) ∪ Y0,q

]
= 4 − 1 = 3. In this case, we have that

d1(y1) = β1

(
Y
)
− β1(Y \ {y1}) = 12 − 11 = 1, this

implies that output y1 allows us to observe d1(y1) = 1 new
directions.
Let us search a y1 − topped path P which length is strictly
greater than d1(y1) and including specific edge (x3,x1),
we can choose P = x3 → x1 → y1, whose length is equal
to 2.
We also have that the ending vertex x1 of the specific edge
(x3,x1) for mode 1 belongs to a Soq [max(U,X1,q),Y1,q]-
y1 path. So, Conditions of proposition 1 are satisfied.
In the same manner, if we take (u2,x9) as a specific edge
of mode 2, we have d1(y4) = β1

(
Y
)
− β1(Y \ {y4}) =

12− 10 = 2. Let us find a path P of length strictly greater
than d1(y4) and including specific edge (u2,x9), we can
choose P = u2 → x9 → x8 → y4 which length is equal
to 3. We have also that the ending vertex x9 of the specific
edge (u2,x9) belongs to a Soq [max(U,X1,q),Y1,q]-y4

path. (So, conditions of proposition 1 are satisfied).
When the proposition 1 is not satisfied, an additional sensor
is required to recover discrete mode observability of SSLS.
To do so, we define a new output vector Z representing
the additional sensors collecting new measurements
z(t) = Hλ

x (rt)x(t) + Hλ
u (rt)u(t). The completed system

is denoted by ΣcΛ and a structured state-space form is as
following:

ΣcΛ :

{
ẋ(t) = Aλ(rt)x(t) +Bλ(rt)u(t)
y(t) = Cλ(rt)x(t) +Dλ(rt)u(t)
z(t) = Hλ

x (rt)x(t) +Hλ
u (rt)u(t)

(7)

The additional sensor components can be represented by
vertex set Z and edge subsets Hx− edges and Hu− edges.

Proposition 2: Consider SSLS (ΣΛ) associated to digraph
G(ΣΛ), when conditions of Proposition 1 are not satisfied.
Let vi ∈ Vi be the ending vertex of a specific edge
associated to one mode q ∈ {1, 2} which belongs
to any direct max(U,X1,q) − Soq [max(U,X1,q),Y1,q]
path. In order to ensure that vi belongs to any direct
Soq [max(U,X1,q),Y1,q]−Y1,q path, an additional sensor



zi ∈ Z has to be placed on vertex vi or on vj ∈ Vj such
that Vi ≤ Vj .
After sensor placement, the length condition has to be
checked in order to satisfy Proposition 1.
Proof.
Let vi ∈ Vi be the ending vertex of a specific edge for one
mode q ∈ {1, 2} and vj ∈ Vj such that vi and vj belong to
any direct max(U,X1,q) − Soq [max(U,X1,q),Y1,q] path
and Vi ≤ Vj .
A sensor placement zi ∈ Z on vi ∈ Vi such that
Soq [max(U,X1,q),Y1,q] ≤ Vi makes elements from
Soq [max(U,X1,q),Y1,q] non essential. it is due to the
addition of a new direct max(U,X1,q) − {zi} path
which covers only vi (it can be the latest essential vertex in
max(U,X1,q)−{zi}) and then Soq [max(U,X1,q),Y1,q] ≤
Soq [max(U,X1,q),Y1,q ∪ {zi}], so, vi belongs to a direct
Soq [max(U,X1,q),Y1,q ∪ {zi}]-Y1,q path.
The same reasoning can be done when an additional sensor
zj ∈ Z is placed to measure vj ∈ Vj such that Vi ≤ Vj .

Comments and interpretation
An additional sensor does not add a path from input U to out-
put Y and so the cardinality of minimal output separator does
not increase. The aim of proposition 2 is to formalize sensor
placement problem in order to have the ending vertex of
specific edge belonging to a direct Soq [max(U,X1,q),Y1,q]-
yi path included in E0 ∪ Eq under constraint that the length
condition have to be checked after this placement.
A length condition can be satisfied after a finite sensor
placement iterations which is estimated as a number of
vertices located at distance of yi, this distance is equal to the
length of max(U,X1,q)− yi which covers specific edge.2
Consider Example 2 which keeps the same digraph structure
of example 1 and consider new entries Aλ1 (3, 4) = λ21 for
mode 1 and Aλ2 (6, 7) = λ22 for mode 2. The figure below
shows the digraph’s structure of example 2. Note that the

Fig. 2. Digraph associated to system of Example 2

partial order of strongly connected components is the same
for the examples 1 and 2.
Ending vertex x3 of specific edge (x4,x3) of mode 1 and
ending vertex x6 of a specific edge (x7,x6) of mode 2
do not belong respectively to Soq [max(U,X1,q),Y1,q]-y1

path and Soq [max(U,X1,q),Y1,q]-y4 path for both modes
q ∈ {1, 2}. So the condition of Proposition 1 is not satisfied.

In order to satisfy these conditions to recover the discrete
mode observability of SSLS of example 2, spreading proce-
dure of Proposition 2 is needed.
• For mode 1, if an additional sensor z1 is placed
to measure state vertex x4 then x3 belongs to a
Soq [max(U,X1,q),Y1,q]-y1 path. After that , the length
condition should be verified. We have that d1(y1) = β1

(
Y∪

{z1}
)
− β1(Y \ {y1}) = 12 − 11 = 1. We choose then a

y1 − topped path P = x4 → x3 → x1 → y1 which covers
specific edge (x4,x3) of mode 1 and its length is greater
than 2. Condition of Proposition 1 is then satisfied.
• For mode 2, if an additional sensor z2 is placed to
measure state vertex x7 or u1 then x6 belongs to a
Soq [max(U,X1,q),Y1,q]-y4 path. After that , the length
condition should be verified. We have that d2(y4) = β2

(
Y∪

{z2}
)
− β2(Y \ {y4}) = 12 − 10 = 2. We choose then a

y4 − topped path P = x7 → x6 → x5 → x8 → y4

which covers specific edge (x7,x6) of mode 2 and its length
is greater than 3. The condition of Proposition 1 is then
satisfied. Figure 3 illustrates sensors placement of example
2 to recover the discrete mode discernability.

Fig. 3. Sensor placement recovering discrete mode observability of SSLS

Note that after sensor placement, the output separator (il-
lustrated by dashed line circles) is Soq

[
max(U,X1,q),Y1 ∪

{z1, z2}
]

= {u2,x4,x7}.

C. Algorithmic aspect and complexity

The evaluation of the complexity of an algorithm plays a
key role in its effectiveness in treating data.The efficiency
of an algorithm is strongly linked to the analysis of the
amount of time taken by algorithm to run (time complexity)
independently of any hardware or software support or
storage locations (space complexity) in order to estimate
memory space required for implementation.
Estimating complexity of the algorithms proposed to verify
discrete mode observability is estimated as follows:

Step 0:Identification of strongly connected components of
G(ΣΛ) using Tarjan’s algorithm with O(|V |+ |E|)
time complexity (|V | and |E| denote respectively
cardinality of vertex set and edge set of digraph).

Step 1:Scheduling strongly connected components of
G(ΣΛ) by selection sort algorithm with O(n2)



time complexity (n: number of strongly connected
components in digraph of SSLS).

Step 2:Identification of output separator by Denic,
Edmonts and Karp algorithm (D.E.K) with
O(|V |2.|E|) time complexity.

Step 3:Evaluating the location of ending vertices of spe-
cific edges for each mode relative to the output
separator specified in proposition 1 and proposition
2, the evaluation can be done by Depth-first search
(DFS) with O(|V |+ |E|) time complexity.

Step 4:If ending vertex of specific edge of mode q ∈ {1, 2}
belongs to a direct Soq [max(U,X1,q),Y1,q]-yi

path for some yi ∈ Y1,q then go to Step 5, else
sensor placement procedure from Proposition 2 is
needed and go to Step 1. For this step, we use
Dijkstra’s algorithm whose complexity order equals
to O(|V |2).

Step 5:If the length condition is satisfied then Proposition
1 is satisfied else a iterative sensor placement
procedure is needed until satisfying the length con-
dition. The evaluation of length condition requires
an algorithm of complexity order O(|V |6) [4].

Therefore all the algorithms proposed above have a polyno-
mial complexity and thus the conditions mentioned in this
article can be implemented using a polynomial complexity
order algorithm O(|V |6).

V. CONCLUSION

This paper proposes, through an intuitive graphical ap-
proach, a sufficient condition to investigate discrete mode
observability of switching structured linear systems with
unknown input. Under assumption that continuous state and
input of SSLS are observable as it is widely treated in [5], we
propose a graphical criterion of sensor placement to recover
the discrete mode observability of SSLS when this property
is not satisfied.
Rule on this property, only through the knowledge of the
structure of the system, makes our approach interesting for
the analysis of large scale systems using graph-theoretical
techniques. Finally, two examples have been presented to
illustrate the usefulness of the theoretic results.
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