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NONLINEAR SCHR ÖDINGER EQUATION AND FREQUENCY SATURATION

RÉMI CARLES

ABSTRACT. We propose an approach that permits to avoid instability phenomena for the
nonlinear Schrödinger equations. We show that by approximating the solution in a suitable
way, relying on a frequency cut-off, global well-posednessis obtained in any Sobolev space
with nonnegative regularity. The error between the exact solution and its approximation
can be measured according to the regularity of the exact solution, with different accuracy
according to the cases considered.

1. INTRODUCTION

We consider the nonlinear Schrödinger equation

(1.1) i∂tu+∆u = ǫ|u|2σu, (t, x) ∈ I ×R
d; u|t=0 = u0,

for some time intervalI ∋ 0, with ǫ = 1 (defocusing case) orǫ = −1 (focusing case). The
aim of this paper is to propose an approach to overcome the lack of local well-posedness
in Sobolev spaces with nonnegative regularity.

Recall two important invariances associated to (1.1):

• Scaling: ifu solves (1.1), then forλ > 0, so doesuλ(t, x) := λ1/σu
(
λ2t, λx

)
.

This scaling leaves thėHsc
x -norm invariant, withsc = d/2− 1/σ.

• Galilean: if u solves (1.1), then forv ∈ R
d, so doeseiv·x−i|v|2t/2u(t, x − vt).

This transform leaves theL2
x-norm invariant.

These two arguments suggest that the critical Sobolev regularity to solve (1.1) ismin(sc, 0).
Indeed, ifsc > 0, local well-posedness fromHs(Rd) to Hs(Rd) for s > sc has been es-
tablished in [13], and ifsc < 0, local well-posedness fromHs(Rd) to Hs(Rd) for s > 0
has been established in [25].

If sc > 0, pathological phenomena have been exhibited for initial data inHs(Rd) with
0 < s < sc: Gilles Lebeau has proved a “norm inflation” phenomenon for the wave
equation∂2

t u − ∆u + up = 0, x ∈ R
3, p ∈ 2N + 1, p > 7 ([21]; see also [23]). The

analogous result for (1.1) has been established in [14] and [4].

Theorem 1.1(From [4, 14]). Let σ > 1. Assume thatsc = d/2 − 1/σ > 0, and let
0 < s < sc. There exists a family(uh

0 )0<h61 in S(Rd) with

‖uh
0‖Hs(Rd) → 0 ash → 0,

a solutionuh to (1.1)and0 < th → 0, such that:

‖uh(th)‖Hs(Rd) → +∞ ash → 0.

Key words and phrases.Nonlinear Schrödinger equation; well-posedness; approximation.
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2 R. CARLES

The argument of the proof consists in considering concentrated initial data,

u0(x) = hs−d/2(log 1/h)−αa0

(x
h

)
with h → 0,

and showing that for very short time, the Laplacian can be neglected in (1.1). The above
result then stems from its (easy) counterpart in the ODE case, by choosing a suitableα > 0.
In the spirit of [22], the above result has been strengthenedto a “loss of regularity” in
[1, 8, 24]; the assumptions and conclusion are similar to that in Theorem 1.1, the only
difference is thatuh(th, ·) is measured inHk(Rd) for anyk > s/(1 + σ(sc − s)), thus
allowed to be smaller thans. In all the cases mentioned here, the lack of uniform continuity
of the nonlinear flow map near the origin is due to the appearance of higher and higher
frequencies on a very short time scale. Ifsc < 0, similar pathological phenomena have
been established inHs(Rd)with s < 0, where on the contrary, low frequencies are ignited;
see e.g. [2, 10, 14, 20]. In the rest of this paper, we focus on nonnegative regularity,s > 0.

The goal of this paper is twofold. First, we want to investigate a method to remove the
pathology mentioned above, causing a lack of well-posedness for (1.1), in a deterministic
way, as opposed to the probabilisitc approach initiated in [6, 7] for the wave equation. The
other motivation is related to numerical simulations for (1.1), where high frequencies may
be a source of important errors; see for instance [18], a reference which will be discussed
further into details in Sections 3 and 4.

We show that with a suitable cut-off on the high frequencies of the nonlinearity, the ob-
structions to local well-posedness vanish, and the problembecomes globally well-posed:
the nonlinear evolution of any initial datum inL2(Rd) can be controlleda priori, an in-
formation which may be useful for numerics, since we do not have to decide if the initial
datum belongs to a full measure set or not. This strategy is validated inasmuch as this
procedure yields a good approximation of the solution to (1.1) as the cut-off tends to the
identity. Note that this approach can be viewed as a deterministic counterpart of the one
presented in [5] (see also [3]), where by the construction ofa probability measure, the au-
thors prove that the pathological phenomenon described in Theorem 1.1 occurs for a set of
initial data whose probability is zero.

Notations. We define the Fourier transform by the formula

f̂(ξ) = F(f)(ξ) =
1

(2π)d/2

∫

Rd

e−ix·ξf(x)dx, f ∈ S(Rd).

We writea . b if there existsC such thata 6 Cb. In the presence of a small parameterh,
the notation indicates thatC is independent ofh ∈ (0, 1].

2. FROM INSTABILITY TO GLOBAL WELL -POSEDNESS

Let χ : Rd → [0, 1] be a smooth function, equal to one on the unit ball, and even:
χ(−x) = χ(x) for all x ∈ R

d. It may be compactly supported, in the Schwartz class
S(Rd), or with a slower decay at infinity. For simplicity, we will not discuss sharp as-
sumptions onχ. We define the frequency “cut-off”Π as the Fourier multiplier

Π̂(f)(ξ) = χ(ξ)f̂(ξ).

As pointed out in the introduction, in the examples constructed to prove the lack of local
well-posedness, the mechanism of high frequencies amplification occurs at the level of the
ordinary differential equation. We discuss some strategies to saturate high frequencies at
the ODE level first, withǫ = 1 for simplicity.
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2.1. Candidates at the ODE level.The first possibility to prevent the appearance of high
frequencies by nonlinear self-interaction consists in saturating the whole nonlinearity:

(2.1) i∂tv = Π
(
|v|2σv

)
.

This can be viewed as an extremely simplified version of theI-method (see e.g. [15]).
Another choice consists in saturating the high frequenciesin the “nonlinear multiplicative
potential” only, that is|v|2σ: for σ ∈ N, we propose two possibilities,

i∂tv = Π
(
|v|2σ

)
v,(2.2)

i∂tv =
(
Π
(
|v|2

))σ
v.(2.3)

In the cubic caseσ = 1, the last two approaches obviously coincide. These two approaches
have two advantages over (2.1):

• They preserve the gauge invariance. Ifv solves the equation, then so doesveiθ for
any constantθ ∈ R.

• They preserve the conservation of mass.

To see the second point, rewriteΠ(f) = K ∗ f , with K(x) = (2π)−d/2χ̂(−x). Sinceχ
is even and real-valued, so isK, and therefore∂t|v|2 = 0 in (2.2) and (2.3). This identity
leads to the conservation of theL2-norm at the PDE level.

Before passing to the PDE case, we conclude this section by showing that even at the
ODE level, cutting off high frequencies in the initial data does not suffice to prevent the
appearance of higher frequencies in the solution for positive time. Fora ∈ S(Rd) and
s > 0, considervh the solution to

i∂tv
h = |vh|2σvh; vh(0, x) = hs−d/2a

(x
h

)
.

Thenvh|t=0 is bounded inHs(Rd), uniformly inh ∈ (0, 1], and ifâ is compactly supported

(in B(0, R)), thenv̂h|t=0 is compactly supported (inB(0, R/h)). Since∂t|vh|2 = 0, we
have the explicit formula

vh(t, x) = hs−d/2a
(x
h

)
exp

(
−ith2σ(s−d/2)

∣∣∣a
(x
h

)∣∣∣
2σ
)
.

We check that fort > 0, ash → 0, the homogeneous Sobolev norms behave like

‖vh(t)‖Ḣk ≈ hs−2kσ(s−d/2)−ktk,

at least fork ∈ N. The above quantity is unbounded ash → 0 if

k >
s

1 + 2σ(s− d/2)
.

Therefore, ifs < d/2, vh(t, ·) is unbounded inHs(Rd) for t > 0, ash → 0: cutting
off the high frequencies in the initial data does not suffice to control the frequency support
of the solution. On the other hand, the models (2.2) and (2.3)prevent the appearance of
high frequencies by nonlinear self-interaction. The abovemechanism is essentially the one
that leads to the norm inflation phenomenon in [4, 14, 21], except that in those papers, the
approximation by an ODE is used only on a time interval where theHs-norm becomes
unbounded, but not theHk-norm for anyk < s. The above mechanism at the PDE level
leads to the loss of regularity [1, 8, 22, 24], where indeedk is allowed to be smaller than
s, as recalled in the introduction. Roughly speaking, the appearance of oscillations is quite
similar to the above ODE example; in the PDE case, the numerology is different, and the
proof is more intricate.
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2.2. Choice at the PDE level.We consider now the equations

(2.4) i∂tu+ P (D)u = ǫΠ
(
|u|2σ

)
u,

and

(2.5) i∂tu+ P (D)u = ǫ
(
Π
(
|u|2

))σ
u,

whereP (D) is a Fourier multiplier with a real-valued symbolP : Rd → R,

P̂ (D)f = P (ξ)f̂(ξ).

TheL2-norm ofu is formally independent of time:

(2.6)
d

dt

∫

Rd

|u(t, x)|2dx = 0.

In view of this conservation and of Young inequality

(2.7) ‖Π(f)‖L∞ 6 ‖K‖L∞‖f‖L1,

the option (2.5) seems more interesting than (2.4), and we have the following result.

Theorem 2.1. Letσ ∈ N, ǫ ∈ {±1},P : Rd → R andχ ∈ S(Rd) even and real-valued.

• For anyu0 ∈ L2(Rd), (2.5) has a unique solutionu ∈ C(R;L2(Rd)) such that
u|t=0 = u0. ItsL2-norm is independent of time:(2.6)holds.

• If in additionu0 ∈ Hs(Rd), s ∈ N, thenu ∈ C(R;Hs(Rd)).
• The flow mapu0 7→ u is uniformly continuous from the balls inL2(Rd) to
C(R;L2(Rd)). More precisely, for allu0, v0 ∈ L2(Rd), there existsC depending
onσ, ‖K‖L∞, ‖u0‖L2 and‖v0‖L2 such that for allT > 0,

(2.8) ‖u− v‖L∞([−T,T ];L2(Rd)) 6 ‖u0 − v0‖L2(Rd)e
CT ,

whereu andv denote the solutions to(2.5)with initial datau0 andv0, respectively.
• More generally, lets ∈ N. For all u0, v0 ∈ Hs(Rd), there existsC depending on
σ, ‖K‖W s,∞, ‖u0‖Hs and‖v0‖Hs such that for allT > 0,

(2.9) ‖u− v‖L∞([−T,T ];Hs(Rd)) 6 ‖u0 − v0‖Hs(Rd)e
CT .

Remark2.2. As pointed out in [12], even if the solution is constructed bya fixed point
argument, the continuity of the flow map is not trivial in general. In the case of Schrödinger
equations (1.1), continuity of the flow map inHs(Rd) is known only in a limited number
of cases: see [25] fors = 0, [19] for s = 1 ands = 2, and [12] for0 < s < 1.

Proof. First, recall thatS(t) = e−itP (D) is a unitary group oṅHs(Rd), s ∈ R. Duhamel’s
formula associated to (2.5) reads

(2.10) u(t) = S(t)u0 − iǫ

∫ t

0

S(t− τ)
((

K ∗ |u|2
)σ

u
)
(τ)dτ.

The local existence inL2 stems from a standard fixed point argument in

X(T ) = {u ∈ C([−T, T ];L2(Rd)); ‖u‖L∞([−T,T ];L2) 6 2‖u0‖L2}.
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Denote byΦ(u)(t) the right hand side of (2.10). In view of (2.7), fort ∈ [−T, T ],

‖Φ(u)(t)‖L2 6 ‖u0‖L2 +

∫ T

−T

∥∥∥
((

K ∗ |u|2
)σ

u
)
(τ)

∥∥∥
L2

dτ

6 ‖u0‖L2 +

∫ T

−T

∥∥K ∗ |u(τ)|2
∥∥σ
L∞

‖u(τ)‖L2dτ

6 ‖u0‖L2 + ‖K‖σL∞

∫ T

−T

‖u(τ)‖2σ+1
L2 dτ.

By choosingT > 0 sufficiently small, we see thatX(T ) is stable under the action ofΦ.
Note that in the case of the model (2.4), the above estimate would have to be adapted,
forcing us to work in a space smaller thanX(T ) (L2 regularity in space would no longer
be sufficient in general). Contraction is established in thesame way:

‖Φ(u)(t)− Φ(v)(t)‖L2 6

∫ T

−T

∥∥∥
((

K ∗ |u|2
)σ

u
)
(τ) −

((
K ∗ |v|2

)σ
v
)
(τ)

∥∥∥
L2

dτ

6

∫ T

−T

∥∥∥
((

K ∗ |u|2
)σ

−
(
K ∗ |v|2

)σ)
u
∥∥∥
L2

dτ

+

∫ T

−T

∥∥∥
((

K ∗ |v|2
)σ)

(u− v)
∥∥∥
L2

dτ.

Using the estimate|aσ − bσ| . (|a|σ−1 + |b|σ−1)|a− b|, and (2.7) again, we infer

‖Φ(u)(t)− Φ(v)(t)‖L2 . ‖K‖σL∞

∫ T

−T

(
‖u‖2σ−1

L2 + ‖v‖2σ−1
L2

)
‖u− v‖L2‖u‖L2dτ

+ ‖K‖σL∞

∫ T

−T

‖v‖2σL2‖u− v‖L2dτ,

where all the functions inside the integrals are implicitlyevaluated at timeτ . Choosing
T > 0 possibly smaller,Φ is a contraction onX(T ). Note that this small timeT depends
only onσ, ‖K‖L∞ and‖u0‖L2 . Since theL2-norm ofu is preserved (see e.g. [11] for
the rigorous justification), the construction of a local solution can be repeated indefinitely,
hence global existence and uniqueness at theL2 level.

Global existence inHs(Rd) for s ∈ N then follows easily, thanks to the estimate
∥∥∥
(
K ∗ |u|2

)σ
u
∥∥∥
Hs

.
∑

|α|+|β|=s

∥∥∥∂α
(
K ∗ |u|2

)σ
∂βu

∥∥∥
L2

. ‖K‖σW s,∞‖u‖σL2‖u‖Hs .

The continuity of the flow map inL2 is obtained by resuming the estimate written to
establish the contraction ofΦ: for t > 0,

‖u(t)− v(t)‖L2 6 ‖u0 − v0‖L2 + ‖K‖σL∞

∫ t

0

(
‖u‖2σL2 + ‖v‖2σL2

)
‖u− v‖L2dτ

6 ‖u0 − v0‖L2 + ‖K‖σL∞

(
‖u0‖

2σ
L2 + ‖v0‖

2σ
L2

) ∫ t

0

‖u− v‖L2dτ,

where we have used the conservation of theL2-norm. Proceeding similarly fort < 0,
Gronwall lemma then yields (2.8) forC depending only ofσ, ‖K‖L∞, ‖u0‖L2 and‖v0‖L2 .
Finally, (2.9) is obtained in a similar fashion. �
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Remark2.3. The proof of continuity of the flow map is extremely easy. Thisis in sharp
constrast with the case of the equation without frequency cut-off. In the case of Schrödinger
equations (P (ξ) = −|ξ|2), continuity is more intricate to establish (see [25]), andis true
only forL2-subcritical nonlinearities,σ 6 2/d, from [14].

We note that even for largeσ, global well-posedness inL2 is available, in sharp contrast
with the nonlinear Schrödinger equation (1.1). Even in thefocusing caseǫ = −1, the high
frequency cut-off prevents finite time blow-up. In (2.9), considerv0 = v = 0 ands = 1
for instance: by comparison with the case of (1.1), we see that the constantC necessarily
depends onK (or equivalently onχ), and is unbounded asχ converges to the Dirac mass.
The frequency cut-offΠ removes the instabilities, and prevents finite time blow-up.

Remark2.4 (Hamiltonian structure in the cubic case). If σ = 1, (2.4) and (2.5) coincide.
We have the equivalence

χ even and real-valued⇐⇒ K even and real-valued.

This implies that under the assumption of Theorem 2.1, (2.5)has an Hamiltonian structure,
and the conserved energy is

H(u) =

∫

Rd

u(x)P (D)u(x)dx +
ǫ

2

∫∫
K(x− y)|u(y)|2|u(x)|2dxdy.

3. CONVERGENCE IN THE SMOOTH CASE

Suppose thatP (D) converges to∆ and thatΠ converges toId: does the solution to (2.5)
converge to the solution of NLS? We show that this is the case under suitable assumptions
on these convergences, at least in the case where the solution to the limiting equation (1.1)
is very smooth. In the sequel, the convergence is indexed byh ∈ (0, 1].

Proposition 3.1. Letσ ∈ N. We assume thatP andΠ verify the following properties:

• There existα, β > 0 such thatPh(ξ) = −|ξ|2 +O
(
hα 〈ξ〉β

)
.

• χh(ξ) = χ (hξ), withχ : Rd → [0, 1] even, real-valued,χ = 1 on the unit ball.

Denote byuh the solution to(2.5)with Ph andχh, such thatuh
|t=0 = u|t=0. Suppose that

the solution to(1.1)satisfiesu ∈ L∞([0, T ];Hs+β), for somes > d/2. Then

‖u− uh‖L∞([0,T ];Hs) . hmin(α,β).

Example3.2. The above assumption onPh is satisfied withα = 1 andβ = 2 in the
following cases:

• Ph(ξ) =
−|ξ|2

1 + h|ξ|2
.

• Ph(ξ) = −
1

h
arctan

(
h|ξ|2

)
.

The second example is borrowed from [16], where this truncated operator appears naturally
when discretizing the Laplacian for numerical schemes.

Remark3.3. In this result, no assumption is needed on the possible decayof χ at infinity.

Proof. Letwh = u− uh: it satisfieswh
|t=0 = 0 and

i∂tw
h + Ph(D)wh = ǫ

(
Πh

(
|u|2

))σ
u− ǫ

(
Πh

(
|uh|2

))σ
uh

+ (Ph(D)−∆)u+ ǫ
(
|u|2σ −

(
Πh

(
|u|2

))σ)
u.
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Denote byRh(u) the second line, which corresponds to a source term. In view of the
assumption onPh, there existsC independent ofh ∈ (0, 1] such that

‖Ph(D)f −∆f‖Hs 6 Chα‖f‖Hs+β ∀f ∈ Hs+β(Rd).

We also have, by Plancherel formula,

‖ (1−Πh) f‖
2
Hs =

∫

Rd

(1− χ(hξ))
2
〈ξ〉

2s
|f̂(ξ)|2dξ

6

∫

|ξ|>1/h

〈ξ〉
2s
|f̂(ξ)|2dξ

6 h2β

∫

|ξ|>1/h

〈ξ〉
2s+2β

|f̂(ξ)|2dξ 6 h2β‖f‖2Hs+β .

Therefore,
‖Rh(u)‖L∞([0,T ];Hs) . hmin(α,β)‖u‖L∞([0,T ];Hs+β).

Now sinces > d/2, Hs(Rd) is an algebra, and there existsC independent ofh such that
∥∥∥
(
Πh

(
|u|2

))σ
u−

(
Πh

(
|uh|2

))σ
uh

∥∥∥
Hs

6 C‖χ̂‖σL1

(
‖u‖2σHs + ‖uh‖2σHs

)
‖u− uh‖Hs ,

where the Young inequality that we have used is not the same asin Section 2:

‖K ∗ f‖L2 6 ‖K‖L1‖f‖L2.

This is essentially the only way to obtain an estimate independent ofh ∈ (0, 1]. Indeed,
Πh(f) = Kh ∗ f , with

Kh(x) =
1

(2π)d/2hd
χ̂

(
−x

h

)
.

The result then stems from a bootstrap argument: so long as

‖uh‖L∞([0,t];Hs) 6 1 + ‖u‖L∞([0,T ];Hs),

Gronwall lemma yields

‖u− uh‖L∞([0,t];Hs) . hmin(α,β)‖u‖L∞([0,T ];Hs+β).

Therefore, up to choosingh sufficiently small, this estimate is valid up tot = T . �

Such a convergence result can be compared to the one proved in[18] to prove the
convergence of numerical approximations. The approach there is a bit different though,
inasmuch as the frequency cut-off does not affect the nonlinearity (as in (2.5)), but the
initial data: considervh solution to

i∂tv
h + Ph(D)vh = ǫ|vh|2σvh; vh|t=0 = Πhu0.

Then in [18], the discrete analogue toΠhu − vh is proven to be small. Proposition 3.1
differs from the results in [18] on several aspects:

• The context in [18] is discrete.
• Only the low frequency part ofu, Πhu, is shown to be well approximated.
• The regularity assumption onu may be much weaker.

As mentioned above, the second point is due to the choice of the model. However, as
discussed in Section 2.1, controlling the high frequenciesof the initial data must not be
expected to ensure a control of high frequencies of the solution vh for positive time.

The third point is due to the use of Strichartz estimates in [18]. In the next section,
we show that in the presence of dispersion (withPh(ξ) = −|ξ|2), Proposition 3.1 can be
adapted to rougher data.
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4. CONVERGENCE USING DISPERSIVE ESTIMATES

We first recall the standard definition.

Definition 4.1. A pair (p, q) 6= (2,∞) is admissible ifp > 2, q > 2, and

2

p
= d

(
1

2
−

1

q

)
.

We shall consider (2.5) whenP (D) is exactly the Laplacian, and not an approximation
as in Proposition 3.1. The reason is that whenP is bounded, then no Strichartz estimate
is available, as we now recall. LetS(·) be bounded onHs for all s > 0. By Sobolev
embedding, for all(p, q) (not necessarily admissible) with2 6 q < ∞, there existsC > 0
such that for allu0 ∈ Hd/2−d/q(Rd), and all finite time intervalI,

‖S(·)u0‖Lp(I;Lq(Rd)) 6 C‖S(·)u0‖Lp(I;Hd/2−d/q(Rd))

6 C‖u0‖Lp(I;Hd/2−d/q(Rd)) = C|I|1/p‖u0‖Hd/2−d/q(Rd).

If the Fourier multiplierP is bounded, the above estimate cannot be improved, in sharp
contrast with the result provided by Strichartz estimates.

Proposition 4.2(From [9]). Let d > 1, andP ∈ L∞(Rd;R). DenoteS(t) = e−itP (D).
Suppose that there exist an admissible pair(p, q), an indexk ∈ R, a time intervalI ∋ 0,
|I| > 0, and a constantC > 0 such that

‖S(·)u0‖Lp(I;Lq(Rd)) 6 C‖u0‖Hk(Rd), ∀u0 ∈ Hk(Rd).

Then necessarily,k > 2/p = d/2− d/q.

We now state the main result of this section.

Theorem 4.3. Letσ ∈ N andT > 0. We assume thatχh(ξ) = χ (hξ), with χ ∈ S(Rd)
even, real-valued,χ = 1 onB(0, 1). Letu solve(1.1), and consider the solutionuh to

i∂tu
h +∆uh = ǫ

(
Πh

(
|uh|2

))σ
uh; uh

|t=0 = u0.

1. Suppose thatσ = 1 andd 6 2. If u ∈ L∞([0, T ];L2) ∩ L8/d([0, T ];L4), then

‖u− uh‖L∞([0,T ];L2) −→
h→0

0.

2. Suppose thatσ = 1 andd = 3.

• If u,∇u ∈ L∞([0, T ];L2) ∩ L8/d([0, T ];L4), then

‖u− uh‖L∞([0,T ];H1) −→
h→0

0.

• If u ∈ L∞([0, T ];Hs), with s > 3/2, then

‖u− uh‖L∞([0,T ];L2) . hs and ‖u− uh‖L∞([0,T ];H1) . hs−1.

3. Suppose thatσ > 1 andd 6 2. If u ∈ L∞([0, T ];Hs), with s > 1 ands > d/2, then

‖u− uh‖L∞([0,T ];L2) . hs and ‖u− uh‖L∞([0,T ];H1) −→
h→0

0.

If in additions > 1, then

‖u− uh‖L∞([0,T ];H1) . hs−1.
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Remark4.4. Supposeu0 sufficiently smooth. Ifǫ = +1 (defocusing case), the bounds for
u are known in several cases, withT > 0 arbitrarily large. On the contrary, ifǫ = −1
(focusing case),T may have to be finite, bounded by a blow-up time. See e.g. [11, 17].
Typically, if σ = d = 1, then the assumption of the first point is fulfilled for allT > 0 as
soon asu0 ∈ L2(R), for ǫ ∈ {±1}, from [25], and ifσ > 1, d 6 2, the assumption of the
third point is fulfilled for allT > 0 as soon asu0 ∈ Hs(Rd), for ǫ = +1, from [17].

Proof. For fixedh > 0, Theorem 2.1 shows thatuh ∈ C(R;Hk), with k = 0, 1 or
s according to the cases considered in the assumptions of the theorem. Of course, the
bounds provided by Theorem 2.1 blow up ash → 0 if k > 0.

As in the proof of Proposition 3.1, letwh = u − uh. The equation satisfied bywh is
simpler than in the proof of Proposition 3.1, sincePh(D) = ∆:

i∂tw
h +∆wh = ǫ

(
Πh

(
|u|2

))σ
u− ǫ

(
Πh

(
|uh|2

))σ
uh + ǫ

(
|u|2σ −

(
Πh

(
|u|2

))σ)
u.

Resume the notationsRh(u) = ǫ
(
|u|2σ −

(
Πh

(
|u|2

))σ)
u andΠh(f) = Kh ∗ f , with

Kh(x) = (2π)−d/2h−dχ̂(−x/h). From young inequality, we have, for allq ∈ [1,∞],

(4.1) ‖Πh(f)‖Lq 6 ‖Kh‖L1‖f‖Lq 6 ‖χ̂‖L1‖f‖Lq ,

an estimate which is uniform inh > 0. Introduce the Lebesgue exponents

q = 2σ + 2 ; p =
4σ + 4

dσ
; θ =

2σ(2σ + 2)

2− (d− 2)σ
.

The pair(p, q) is admissible, and

(4.2)
1

q′
=

2σ

q
+

1

q
;

1

p′
=

2σ

θ
+

1

p
.

For t > 0, denoteLj
tL

k = Lj([0, t];Lk(Rd)). From Strichartz estimates (see e.g. [11]),

‖wh‖Lp
tL

q∩L∞

t L2 .
∥∥∥
(
Πh

(
|u|2

))σ
u−

(
Πh

(
|uh|2

))σ
uh

∥∥∥
Lp′

t Lq′
+ ‖Rh(u)‖

L
p′1
t Lq′1

.
(
‖u‖2σLθ

tL
q + ‖uh‖2σLθ

tL
q

)
‖wh‖Lp

tL
q + ‖Rh(u)‖

L
p′
1

t Lq′
1
,

where we have used Hölder inequality and (4.1), and where(p1, q1) is an admissible pair
whose value will be given later.

If σ = 1 andd 6 2, thenθ 6 p, and we infer

‖wh‖Lp
tL

q∩L∞

t L2 . t1/θ−1/p
(
‖u‖2σLp

tL
q + ‖uh‖2σLp

tL
q

)
‖wh‖Lp

tL
q + ‖Rh(u)‖

L
p′
1

t Lq′
1
.

In the first case of the theorem, we assumeu ∈ Lp([0, T ];Lq), sincep = 8/d andq = 4
for σ = 1. We use again a bootstrap argument: so long as‖uh‖Lp

tL
q 6 2‖u‖Lp

tL
q , we

divide the interval[0, T ] into finitely many small intervals so the first term of the right hand
side is absorbed by the left hand side (recall thatp is finite), and we have

‖wh‖Lp
tL

q∩L∞

t L2 . ‖Rh(u)‖
L

p′1
t Lq′1

.

The bootstrap argument is validated provided that‖Rh(u)‖
L

p′
1

T Lq′
1
→ 0 ash → 0.

If we have onlyσ < 2
d−2 , then by Sobolev embedding,

‖u‖Lθ
tL

q 6 t1/θ‖u‖L∞

t H1 .
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In the same way as above,

‖∇wh‖Lp
tL

q∩L∞

t L2 .
∥∥∥∇

((
Πh

(
|u|2

))σ
u−

(
Πh

(
|uh|2

))σ
uh

)∥∥∥
Lp′

t Lq′

+ ‖∇Rh(u)‖
L

p′1
t Lq′1

The first term of the right hand side is controlled by

(4.3)

∥∥∥
(
Πh

(
|u|2

))σ
∇u−

(
Πh

(
|uh|2

))σ
∇uh

∥∥∥
Lp′

t Lq′

+
∥∥∥u∇

(
Πh

(
|u|2

))σ
− uh∇

(
Πh

(
|uh|2

))σ∥∥∥
Lp′

t Lq′

Introducing the factor
(
Πh

(
|u|2

))σ
∇uh, the first term is estimated by

∥∥∥
(
Πh

(
|u|2

))σ
∇wh

∥∥∥
Lp′

t Lq′
+
∥∥∥
((

Πh

(
|u|2

))σ
−
(
Πh

(
|uh|2

))σ)
∇uh

∥∥∥
Lp′

t Lq′

.
∥∥Πh

(
|u|2

)∥∥σ
L

θ/2
t Lq/2 ‖∇wh‖Lp

tL
q

+
(
‖u‖2σ−2

Lθ
tL

q + ‖uh‖2σ−2
Lθ

tL
q

) ∥∥|u|2 − |uh|2
∥∥
L

θ/2
t Lq/2 ‖∇uh‖Lp

tL
q

. ‖u‖
2σ
Lθ

tL
q ‖∇wh‖Lp

tL
q +

(
‖u‖2σ−1

Lθ
tL

q + ‖uh‖2σ−1
Lθ

tL
q

) ∥∥wh
∥∥
Lθ

tL
q ‖∇uh‖Lp

tL
q

. t2σ/θ ‖u‖
2σ
L∞

t H1 ‖∇wh‖Lp
tL

q

+ t2σ/θ
(
‖u‖2σ−1

L∞

t H1 + ‖uh‖2σ−1
L∞

t H1

)∥∥wh
∥∥
L∞

t H1 ‖∇uh‖Lp
tL

q

Proceeding similarly for the other term in (4.3), splitting[0, T ] into finitely many time
intervals where the terms containingwh on the right hand side can be absorbed by the left
hand side, and using a bootstrap argument, we end up with

‖wh‖Lp
tW

1,q∩L∞

t H1 . ‖Rh(u)‖
L

p′1
t W 1,q′1

.

Therefore, it suffices to show that for some admissible pair(p1, q1), the source term con-
verges to0 in Lp′

1([0, T ];Lq′1) (if σ = 1 andd 6 2) or in Lp′

1([0, T ];W 1,q′1) (in the other
cases), so the bootstrap argument is completed. In addition, the rate of converge of the
source term, if any, yields a rate of convergence forwh. The theorem then stems from the
following lemma, in which(p, q) is given by (4.2).

Lemma 4.5. LetT > 0. The source termRh(u) can be controlled as follows.
1. Suppose thatσ = 1 andd 6 2. If u ∈ L∞([0, T ];L2) ∩ L8/d([0, T ];L4), then

‖Rh(u)‖Lp′([0,T ];Lq′) −→
h→0

0.

2. Suppose thatσ = 1 andd = 3.

• If u,∇u ∈ L∞([0, T ];L2) ∩ L8/d([0, T ];L4), then

‖Rh(u)‖Lp′([0,T ];W 1,q′ ) −→
h→0

0.

• If u ∈ L∞([0, T ];Hs), with s > 3/2, then

‖Rh(u)‖L1([0,T ];L2) . hs and ‖Rh(u)‖L1([0,T ];H1) . hs−1.

3. Suppose thatσ > 1 andd 6 2. If u ∈ L∞([0, T ];Hs), with s > 1 ands > d/2, then

‖Rh(u)‖L1([0,T ];L2) . hs and ‖Rh(u)‖L1([0,T ];H1) −→
h→0

0.
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If in additions > 1, then

‖Rh(u)‖L1([0,T ];H1) . hs−1.

Proof of Lemma 4.5.For the first case, we use Hölder inequality, in view of (4.2):

‖Rh(u)‖Lp′

T Lq′ =
∥∥(1−Πh)

(
|u|2

)
u
∥∥
Lp′

T Lq′ 6
∥∥(1−Πh)

(
|u|2

)∥∥
L

θ/2
T Lq/2 ‖u‖Lp

TLq .

We note that forσ = 1, q = 4, so by Plancherel Theorem,

‖ (1−Πh) (|u|
2)‖2L2 =

∫

Rd

(1− χ(hξ))
2
|F(|u|2)(ξ)|2dξ 6

∫

|ξ|>1/h

|F(|u|2)(ξ)|2dξ.

By assumption,u ∈ Lp([0, T ];L4) ⊂ Lθ([0, T ];L4), thus|u|2 ∈ Lθ/2([0, T ];L2), and by
Plancherel Theorem,F(|u|2) ∈ Lθ/2([0, T ];L2). The first point of the lemma then stems
from the Dominated Convergence Theorem.

For the first case of the second point, we note that nowθ > p, so the above argument
must be adapted, and we have to estimate the gradient ofRh(u) in the same space as above.
SinceL∞([0, T ];H1(R3)) ⊂ Lθ([0, T ];L4(R3)), the Dominated Convergence Theorem
yields

‖Rh(u)‖Lp′

T Lq′ −→
h→0

0.

We now estimate∇Rh(u). Write

‖∇Rh(u)‖Lp′

T Lq′ 6
∥∥(1−Πh)

(
|u|2

)∥∥
L

θ/2
T L2 ‖∇u‖Lp

TL2

+
∥∥(1 −Πh)∇

(
|u|2

)∥∥
L

(1/θ+1/p)−1

T L2
‖u‖Lθ

TL2

.
∥∥(1−Πh)

(
|u|2

)∥∥
L∞

T L2 ‖∇u‖Lp
TL2

+
∥∥(1 −Πh)∇

(
|u|2

)∥∥
L

(1/θ+1/p)−1

T L2
‖u‖L∞

T L2

By the same argument as above,
∥∥(1− Πh)

(
|u|2

)∥∥
L∞

T L2 ‖∇u‖Lp
TL2 −→

h→0
0.

We note thatu bounded inL∞([0, T ];H1(R3)) ⊂ Lθ([0, T ];L4(R3)), and∇u bounded

in Lp
TL

4, so∇|u|2 is bounded inL(1/θ+1/p)−1

T L2. Invoking Plancherel Theorem and the
Dominated Convergence Theorem like above, we infer

∥∥(1−Πh)∇
(
|u|2

)∥∥
L

(1/θ+1/p)−1

T L2
‖u‖L∞

T L2 −→
h→0

0.

This completes the proof for the first case of the second point.

For the remaining cases, we use thatHs(Rd) is embedded intoL∞(Rd): for fixed t,

‖Rh(u)(t)‖L2 .
(
‖u(t)‖2σ−2

L∞ + ‖Πh(|u(t)|
2)‖σ−1

L∞

)
‖(1−Πh)(|u(t)|

2)‖L2‖u(t)‖L∞

. ‖u(t)‖2σ−1
L∞ ‖(1−Πh)(|u(t)|

2)‖L2 . ‖u(t)‖2σ−1
Hs ‖(1−Πh)(|u(t)|

2)‖L2 .

Like in the proof of Proposition 3.1, we use the estimate

(4.4) ‖ (1−Πh) f‖L2 6 hs‖f‖Hs ,

and sinceHs(Rd) is an algebra,

‖Rh(u)‖L∞([0,T ];L2) . hs‖u‖2σ+1
L∞([0,T ];Hs).
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To conclude the proof, we estimate∇Rh(u) in L2(Rd). We compute

∇Rh(u) = σ|u|2σ−2
(
(1−Πh)

(
∇
(
|u|2

)))
u

+ σ
(
|u|2σ−2 −

(
Πh(|u|

2)
)σ−1

)
Πh

(
∇
(
|u|2

))
u

+
(
|u|2σ −

(
Πh

(
|u|2

))σ)
∇u,

where the second line is zero isσ = 1. We estimate successively, thaks to (4.1),
∥∥|u|2σ−2

(
(1−Πh)

(
∇
(
|u|2

)))
u
∥∥
L2 6 ‖u‖2σ−1

L∞

∥∥(1−Πh)
(
|u|2

)∥∥
H1 ,∥∥∥

(
|u|2σ −

(
Πh

(
|u|2

))σ)
∇u

∥∥∥
L2

6 ‖u‖2σ−2
L∞

∥∥(1−Πh)
(
|u|2

)∥∥
L∞

‖∇u‖L2,

and, ifσ > 2,∥∥∥
(
|u|2σ−2 −

(
Πh(|u|

2)
)σ−1

)
Πh

(
∇
(
|u|2

))
u
∥∥∥
L2

. ‖u‖2σ−4
L∞

∥∥(1−Πh)
(
|u|2

)∥∥
L2

∥∥∇
(
|u|2

)∥∥
L2 ‖u‖L∞

. ‖u‖2σ−2
L∞

∥∥(1−Πh)
(
|u|2

)∥∥
L2 ‖∇u‖L2 .

Since we haveHs(Rd) →֒ L∞(Rd), we end up with

‖∇Rh(u)‖L2 . ‖u‖2σ−2
Hs

∥∥(1−Πh)
(
|u|2

)∥∥
H1 .

If s > 1, (4.4) yields, since in additions > d/2,
∥∥(1− Πh)

(
|u|2

)∥∥
H1 . hs−1

∥∥|u|2
∥∥
Hs . hs−1‖u‖2Hs .

If s = 1 (a case which may occur only ifd = 1, sinces > d/2), we write
∥∥∇ (1−Πh)

(
|u|2

)∥∥2
L2 6

∫

|ξ|>1/h

∣∣F
(
∇
(
|u|2

))
(ξ)

∣∣2 dξ.

Now since∇
(
|u|2

)
= 2Re ū∇u andu ∈ H1(R) →֒ L∞(R),∇u ∈ L2(R), we conclude

thanks to the Dominated Convergence Theorem. �

This completes the proof of Theorem 4.3, by choosing(p1, q1) = (p, q) or (∞, 2). �
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