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NONLINEAR SCHR ODINGER EQUATION AND FREQUENCY SATURATION

REMI CARLES

ABSTRACT. We propose an approach that permits to avoid instabilignpmena for the
nonlinear Schrodinger equations. We show that by appratiirg the solution in a suitable
way, relying on a frequency cut-off, global well-posednisssbtained in any Sobolev space
with nonnegative regularity. The error between the exakttism and its approximation
can be measured according to the regularity of the exacti@oJwith different accuracy
according to the cases considered.

1. INTRODUCTION
We consider the nonlinear Schrédinger equation
(1.2) i0pu + Au = €e|u|*u, (t,z) € I x R% Ujg—0 = U0,

for some time interval > 0, with ¢ = 1 (defocusing case) er= —1 (focusing case). The
aim of this paper is to propose an approach to overcome theofdocal well-posedness
in Sobolev spaces with nonnegative regularity.
Recall two important invariances associated tol(1.1):
e Scaling: ifu solves[[I1), then fok > 0, so doesu,(t,z) := AY7u (A%, Az).
This scaling leaves thH *-norm invariant, withs, = d/2 — 1/o.
o Galilean: ifu solves[T1), then for € R, so does:=ilvI"t/2y (¢ 2 — vt).
This transform leaves the2-norm invariant.
These two arguments suggest that the critical Sobolevaeiguio solve[(T.11) isnin(s., 0).
Indeed, ifs. > 0, local well-posedness frof *(R?) to H*(R?) for s > s. has been es-
tablished in[[13], and it < 0, local well-posedness frof*(R¢) to H*(R<) for s > 0
has been established in [25].
If s. > 0, pathological phenomena have been exhibited for inititd éa/ * (R¢) with
0 < s < s.: Gilles Lebeau has proved a “norm inflation” phenomenon her wave
equationd?u — Au +u? = 0,z € R?, p € 2N + 1, p > 7 ([21]; see also[23]). The
analogous result fof (11.1) has been establishedin [14]4nd [

Theorem 1.1(From [4,[14]) Leto > 1. Assume that, = d/2 — 1/0 > 0, and let
0 < s < s.. There exists a familjuf )o<n<1 in S(R?) with

H'LL}OIHHs(Rd) — O aSh — O,
a solutionu” to (T.I)and0 < t* — 0, such that:
Huh(th)”Hs(Rd) — 400 aSh — 0.
Key words and phraseNonlinear Schrodinger equation; well-posedness; appration.
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2 R. CARLES

The argument of the proof consists in considering conctedriaitial data,
uo(x) = h*~¥2(log 1/h)~%aq (%) with h — 0,

and showing that for very short time, the Laplacian can béewggd in [1.1). The above
result then stems from its (easy) counterpartin the ODE, ¢gsehoosing a suitable > 0.

In the spirit of [22], the above result has been strengthéoeal “loss of regularity” in

[, [8,[24]; the assumptions and conclusion are similar to ith& heoren{ L1, the only
difference is thaw” (", -) is measured irff*(R%) for anyk > s/(1 + o(s. — s)), thus
allowed to be smaller than In all the cases mentioned here, the lack of uniform coitgnu
of the nonlinear flow map near the origin is due to the appearaf higher and higher
frequencies on a very short time scale.slf < 0, similar pathological phenomena have
been established i *(R) with s < 0, where on the contrary, low frequencies are ignited;
see e.g[[2, 10,14, 20]. In the rest of this paper, we focusommegative regularity; > 0.

The goal of this paper is twofold. First, we want to investigga method to remove the
pathology mentioned above, causing a lack of well-posediteq1.1), in a deterministic
way, as opposed to the probabilisitc approach initiate@,i7] for the wave equation. The
other motivation is related to numerical simulations fadljiwhere high frequencies may
be a source of important errors; see for instance [18], aeefe which will be discussed
further into details in Sectiori$ 3 aht 4.

We show that with a suitable cut-off on the high frequencigbe nonlinearity, the ob-
structions to local well-posedness vanish, and the prolblecomes globally well-posed:
the nonlinear evolution of any initial datum i?(R?) can be controllea priori, an in-
formation which may be useful for numerics, since we do netha decide if the initial
datum belongs to a full measure set or not. This strategylidatad inasmuch as this
procedure yields a good approximation of the solutior td@)(4s the cut-off tends to the
identity. Note that this approach can be viewed as a detéstititounterpart of the one
presented in [5] (see alsd [3]), where by the constructiom pfobability measure, the au-
thors prove that the pathological phenomenon describetiémieni 1.1 occurs for a set of
initial data whose probability is zero.

Notations. We define the Fourier transform by the formula

Fi6) = PO = Gy [ e S @hdo. [ € SER.

We writea < b if there existsC such that: < Cb. In the presence of a small parameier
the notation indicates that is independent of € (0, 1].

2. FROM INSTABILITY TO GLOBAL WELL -POSEDNESS

Let x : R? — [0,1] be a smooth function, equal to one on the unit ball, and even:
x(—z) = x(x) for all z € R%. It may be compactly supported, in the Schwartz class
S(R%), or with a slower decay at infinity. For simplicity, we will hdiscuss sharp as-
sumptions ory. We define the frequency “cut-offT as the Fourier multiplier

()(€) = x()F(©).

As pointed out in the introduction, in the examples congadd¢o prove the lack of local
well-posedness, the mechanism of high frequencies angtiditoccurs at the level of the
ordinary differential equation. We discuss some stragegiesaturate high frequencies at
the ODE level first, withe = 1 for simplicity.
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2.1. Candidates at the ODE level. The first possibility to prevent the appearance of high
frequencies by nonlinear self-interaction consists inrsding the whole nonlinearity:

(2.1) i0pv =11 (Jo*7v) .

This can be viewed as an extremely simplified version of itreethod (see e.g. [15]).
Another choice consists in saturating the high frequenniéise “nonlinear multiplicative
potential” only, that igv|??: for o € N, we propose two possibilities,

(2.2) i0pv =11 (Jv]*7) v,
(2.3) i = (I (|v|2))g v.
In the cubic case = 1, the last two approaches obviously coincide. These twocgmbhres

have two advantages ovér (2.1):

e They preserve the gauge invariancev Holves the equation, then so dee¥’ for
any constanf € R.
e They preserve the conservation of mass.
To see the second point, rewriil f) = K  f, with K (z) = (2r)~%2%(—z). Sincey
is even and real-valued, so s, and thereforé; |v|? = 0 in (Z2) and[[ZB). This identity
leads to the conservation of tii&-norm at the PDE level.

Before passing to the PDE case, we conclude this sectiondwisf that even at the
ODE level, cutting off high frequencies in the initial dataes$ not suffice to prevent the
appearance of higher frequencies in the solution for pasttme. Fora € S(R¢) and
s > 0, considen” the solution to

0" = [o"27uh; (0, 2) = hSY % (%) .

Thenv”_ is bounded inf7*(R%), uniformly inh € (0, 1], and ifa is compactly supported

[t=0
(in B(0, R)), thenv’|,_, is compactly supported (iB(0, R/R)). Sinced,|v"|* = 0, we
have the explicit formula

20’)

o (t,z) = b2 (%) exp (—ith%(s_dm) ‘a (%)
We check that fot > 0, ash — 0, the homogeneous Sobolev norms behave like
||Uh(t)HHk ~ h572ka(sfd/2)fktk’

at least fork € N. The above quantity is unboundedias- 0 if

1+ 20(s —d/2)

Therefore, ifs < d/2, v"(t,) is unbounded in7¢(R%) for ¢t > 0, ash — 0: cutting
off the high frequencies in the initial data does not suff@edntrol the frequency support
of the solution. On the other hand, the modEgls](2.2) (@&)ent the appearance of
high frequencies by nonlinear self-interaction. The aboeehanism is essentially the one
that leads to the norm inflation phenomenoriin [4,14, 21]epkthat in those papers, the
approximation by an ODE is used only on a time interval whaeeH *-norm becomes
unbounded, but not th&*-norm for anyk < s. The above mechanism at the PDE level
leads to the loss of regularityl[1] [8,122,] 24], where ind&asl allowed to be smaller than
s, as recalled in the introduction. Roughly speaking, theeapgnce of oscillations is quite
similar to the above ODE example; in the PDE case, the numgyast different, and the
proof is more intricate.

k>
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2.2. Choice at the PDE level.We consider now the equations

(2.4) i0yu + P(D)u = eI (Ju|*") u,
and
(2.5) i0u+ P(D)u = € (II (|u|2))au,

whereP(D) is a Fourier multiplier with a real-valued symbBl: R¢ — R,

o —

P(D)f = P(€)f ().
The L2-norm ofw is formally independent of time:

d

(2.6) il

lu(t, z)|*dx = 0.

In view of this conservation and of Young inequality

(2.7) (AL <Kzl fllLr,
the option[(2.b) seems more interesting tHanl (2.4), and we tie following result.

Theorem2.1.Leto € N, e € {+1}, P: R — Randy € S(R%) even and real-valued.

e For anyuy € L?(R?), (28) has a unique solution € C(R; L?(R%)) such that
Uj—o = ug. Its L%-norm is independent of tim¢2.6) holds.

e Ifin additionuy € H*(R%), s € N, thenu € C(R; H*(R?)).

e The flow mapuy +~ wu is uniformly continuous from the balls ih?(R?) to
C(R; L%(R?)). More precisely, for alkg, vo € L?(R?), there exists’ depending
ono, ||K|| L, ||uol| 2 @and|lvg]| 2 such that for alll” > 0,

(2.8) l|u— UHLO@([—T,T];L?(RCI)) < luo — UO”LZ(Rd)eCTa

whereu andv denote the solutions {€.3)with initial datauy andwvg, respectively.
e More generally, let € N. For all ug, vy € H*(R?), there exist€” depending on
o, |K||ws.e, ||uo|| = @nd||vo|| = Such that for alll” > 0,

(2.9) [ = vl oo (o) 10 (R2)) < [0 — Vo]l s (raye© ™ -

Remark2.2. As pointed out in[[1P], even if the solution is constructedafixed point
argument, the continuity of the flow map is not trivial in geadeln the case of Schrodinger
equations[(1]1), continuity of the flow map i*(R?) is known only in a limited number
of cases: se¢ [25] far = 0, [19] for s = 1 ands = 2, and [12] for0 < s < 1.

Proof. First, recall thalS(t) = e~**P(?) is a unitary group ot/ *(R¢), s € R. Duhamel's
formula associated t6 (2.5) reads

t
(2.10) u(t) = S(t)ug — ie/ S(t — 1) ((K s« uf?)” u) (r)dr.
0
The local existence ifi? stems from a standard fixed point argument in

X(T)=A{u e C([-T, T} L*RY);  lullp(-m.1;22) < 2|luollz2}-
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Denote by®(u)(t) the right hand side of(2.10). In view df(2.7), foe [T, T,
T
2 Olle < ol + [ (G 1) ) ()], ar
_T
<fuoles + [ 1K )P ) o

T
< fuoles + 1K [ )

By choosingT’ > 0 sufficiently small, we see that (T') is stable under the action @f.
Note that in the case of the modE[(2.4), the above estimatddamave to be adapted,
forcing us to work in a space smaller tha(T) (L? regularity in space would no longer
be sufficient in general). Contraction is established irstmae way:

dr

L2

1 (u)(t) — B(0) ()| 2 < /T (8 1)) (1) = (5 < [of2)70) (7)
o

< /_TH((K* uf?)” — (K |v|2)g)u’

e [ (i) o,

Using the estimatg:” — b7 | < (|a|”~* + [b]°1)|a — b, and [2.7) again, we infer

dr

L2

dr.

T
[@(u)(t) = @()(1)llz2 S K7 /T (lullZ5™ + oll757") llu = vl e llull L2dr

T
KT~ [ olBalla = ol adr
-7

where all the functions inside the integrals are implicélaluated at time. Choosing
T > 0 possibly smaller® is a contraction oX (T"). Note that this small tim& depends
only ono, | K|/~ and|lug|/z=. Since theL2-norm of  is preserved (see e.d. [11] for
the rigorous justification), the construction of a localdmn can be repeated indefinitely,
hence global existence and uniqueness aLthievel.

Global existence i/ ¢(R?) for s € N then follows easily, thanks to the estimate

ey, s 30|

la|+]|Bl=s

0 (K +[uf?)” 07|

Lo S e e llullzeul -

The continuity of the flow map inL? is obtained by resuming the estimate written to
establish the contraction @f: for ¢ > 0,

t
Ju(t) = v(@)][ L2 < [luo = vol|2 + IIKHZm/0 (IullZ% + 10l172) llu = v]| 2dr

t
< [luo = vollz2 + 1K1 7o (IluollZ% + llvollZ2) / llu = vl L2dr,
0

where we have used the conservation of fifenorm. Proceeding similarly fot < 0,
Gronwall lemma then yield§(3.8) féf depending only of, || K|| L, ||uo|| L2 and|jvg || z2.
Finally, (2.9) is obtained in a similar fashion. O
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Remark2.3. The proof of continuity of the flow map is extremely easy. Tikign sharp
constrast with the case of the equation without frequentypffuln the case of Schrodinger
equations P(£) = —|¢]?), continuity is more intricate to establish (s€el[25]), @true
only for L2-subcritical nonlinearitiesy < 2/d, from [14].

We note that even for large global well-posedness ib? is available, in sharp contrast
with the nonlinear Schrodinger equatign {1.1). Even infdmising case = —1, the high
frequency cut-off prevents finite time blow-up. [0 (R.9)nsaervy = v = 0 ands = 1
for instance: by comparison with the case[of{1.1), we segthigaconstanC necessarily
depends ori (or equivalently orny), and is unbounded asconverges to the Dirac mass.
The frequency cut-offl removes the instabilities, and prevents finite time blow-up

Remark2.4 (Hamiltonian structure in the cubic caséf) o = 1, (2.4) and[(Z.b) coincide.
We have the equivalence

X even and real-valued—- K even and real-valued.

This implies that under the assumption of Theorem 2.1] (#aS)an Hamiltonian structure,
and the conserved energy is

1) = [ w@POus+ 5 [ K@= pluts)Plu) sy

3. CONVERGENCE IN THE SMOOTH CASE

Suppose thaP(D) converges ta\ and thafll convergestad: does the solution t¢ (2.5)
converge to the solution of NLS? We show that this is the caseusuitable assumptions
on these convergences, at least in the case where the sdhutize limiting equatior (1]1)
is very smooth. In the sequel, the convergence is indexédéyo0, 1].

Proposition 3.1. Leto € N. We assume thd? andII verify the following properties:

e There existy, 3 > 0 such thatP, (&) = —[¢|> + O (ho‘ <§>B).

o xn(€) = x (h&), with y : R? — [0, 1] even, real-valuedy = 1 on the unit ball.
Denote by." the solution toZ.8) with P, and x5, such thatu,_, = uj;=o. Suppose that
the solution tofL.T) satisfiesu € L>°([0, T]; H*#), for somes > d/2. Then

lu—u™|| Lo o, 730y S pmin(e.B),

Example3.2 The above assumption aB, is satisfied witha = 1 and = 2 in the
following cases:

_52
o () = %h:gp

.« Po(¢) = _% arctan (h|¢|?).

The second example is borrowed fram|[16], where this triagttaperator appears naturally
when discretizing the Laplacian for numerical schemes.

Remark3.3. In this result, no assumption is needed on the possible d&cat infinity.

Proof. Letw” = u — u™: it satisfiesw”_, = 0 and

|t=0
i0pw" + Py(D)w" = € (I, (Jul?))” u — e (I, (Ju"[?))” "

+ (P(D) —A)u+te (|u|2" — (I, (|u|2))a) u.
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Denote byR"(u) the second line, which corresponds to a source term. In viethieo
assumption orP;,, there exists” independent ok € (0, 1] such that

1Pa(D)f = Aflm= < Ch|| fllgsvs ¥f € HPP(RY).
We also have, by Plancherel formula,

(=10 I = /R (U xR (€ |l P
< 2s | 7 2d
< /|g|>1/h<5> () 2ae

< b2 / (€228 | F(6)2de < WP £
[€]>1/h

Therefore, .
IR" ()| e po,1:5) S W™ ™D [ual] oo (0,77, 11045)-
Now sinces > d/2, H*(R?) is an algebra, and there exigtindependent ok such that

[ 0 ) = (11 (1 2))" [, < R (el + ) =
where the Young inequality that we have used is not the sarimeSectior 2:

K« fllez < K[l ze-
This is essentially the only way to obtain an estimate inddpet ofh € (0, 1]. Indeed,

I, (f) = Kp * f, with
1 =
Kh(x) = (271_)(1/2th (Tx) .

The result then stems from a bootstrap argument: so long as

|| oo (0,81 15) < 1A+ [l Lo o, 7512)
Gronwall lemma yields

llu = wM| e 0,030y S RO ] oo (0,77, 110459

Therefore, up to choosingsufficiently small, this estimate is valid upte=T'. O

Such a convergence result can be compared to the one pro\i&8]ito prove the
convergence of numerical approximations. The approaate tisea bit different though,
inasmuch as the frequency cut-off does not affect the neatity (as in[(2b)), but the
initial data: consider” solution to

10" + P (D)o = ejo™ 270" Uﬁ:o = I up.

Then in [18], the discrete analoguelh,u — vy, is proven to be small. Propositidn B.1
differs from the results ir [18] on several aspects:

e The context in[[18] is discrete.
e Only the low frequency part af, 11, u, is shown to be well approximated.
e The regularity assumption anmay be much weaker.

As mentioned above, the second point is due to the choiceeofribdel. However, as
discussed in Sectidn 2.1, controlling the high frequenofethe initial data must not be
expected to ensure a control of high frequencies of theisalut' for positive time.

The third point is due to the use of Strichartz estimates$ 8j.[1n the next section,
we show that in the presence of dispersion (WiH(¢) = —[£|?), Propositiod 311 can be
adapted to rougher data.
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4. CONVERGENCE USING DISPERSIVE ESTIMATES

We first recall the standard definition.

Definition 4.1. A pair (p, q) # (2,0) is admissible i > 2, ¢ > 2, and

2 1 1
a(3-)
D 2 q

We shall considef(2]5) wheR(D) is exactly the Laplacian, and not an approximation
as in Propositioh 3]11. The reason is that wheis bounded, then no Strichartz estimate
is available, as we now recall. Lé&t(-) be bounded orfZ® for all s > 0. By Sobolev
embedding, for al(p, ¢) (not necessarily admissible) with< ¢ < oo, there exist& > 0
such that for alky € HY/2=4/4(R%), and all finite time interval,

1S()uollr(r;zamayy < CIS(uollLo(r;ar2-aramay)
< Clluoll o(z;zrar-araqmayy = CHIYP|luoll grase=asaray.

If the Fourier multiplier P is bounded, the above estimate cannot be improved, in sharp
contrast with the result provided by Strichartz estimates.

Proposition 4.2(From [@]). Letd > 1, andP € L>*(R% R). DenoteS(t) = e~ #F(P),
Suppose that there exist an admissible gairg), an indext € R, a time intervall > 0,
|I| > 0, and a constan€ > 0 such that

”S(')UOHLP(I;Lq(Rd)) < CHUOHHk(Rd)a Yug € Hk(Rd)-
Then necessarily; > 2/p =d/2 — d/q.
We now state the main result of this section.

Theorem 4.3. Leto € N and7 > 0. We assume tha, (¢) = x (h€), with x € S(RY)
even, real-valuedy = 1 on B(0, 1). Letu solve(L.1), and consider the solution” to

iOpu" + AuM = € (11, (|uh|2))a ul; “|ht:o = wup.
1. Suppose that = 1 andd < 2. If u € L>°([0, T]; L?) N L¥4([0, T]; L*), then
h
lw —u" || Lo 0,77 22) }30-

2. Suppose that = 1 andd = 3.
o If u, Vu € L>([0,T); L?) N L¥(]0, T); L*), then

flu— uh”Loo([O,T];Hl) }j)o-
o If u e L*>®([0,T); H®), withs > 3/2, then
[ = uM| oo o122y S B° and  fu — " oo, 7y S BT
3. Suppose that > 1 andd < 2. If u € L*°([0,T]; H?), withs > 1 ands > d/2, then
h s h
Hu —u ||Loo([07T];L2) S h® and Hu —u |‘Loo([07T];H1) }:60.
Ifin additions > 1, then

[ — w"|| Lo o,y S BT
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Remarkd.4. Suppose, sufficiently smooth. I&€ = +1 (defocusing case), the bounds for
u are known in several cases, wilh > 0 arbitrarily large. On the contrary, = —1
(focusing case)]” may have to be finite, bounded by a blow-up time. See e.d.[ 1111, 1
Typically, if 0 = d = 1, then the assumption of the first point is fulfilled for @ll> 0 as
soon asi € L*(R), fore € {1}, from [25], and ifc > 1, d < 2, the assumption of the
third point is fulfilled for all7 > 0 as soon as, € H*(R?), for e = +1, from [17].

Proof. For fixedh > 0, Theoren{ 21 shows that" € C(R; H*), with & = 0,1 or
s according to the cases considered in the assumptions ohé&wmeem. Of course, the
bounds provided by Theordm 2.1 blow upfass 0 if & > 0.

As in the proof of Proposition 3.1, let” = u — u". The equation satisfied by" is
simpler than in the proof of Propositidn 8.1, singg(D) = A:

0w + Aw = € (I, (|u|2))g u—e (I (|uh|2))a ul e (|u|2” — (I (|u|2))g) u.
Resume the notationBy, (u) = e (|ul?** — (II; (Ju[?))?) v andIl, (f) = K}, = f, with
Kn(z) = (2m)~%2h=4%(—x/h). From young inequality, we have, for allc [1, cc],
(4.1) ITn (Nl e < I Enl[ ol fllze < XN e f[]za,

an estimate which is uniform il > 0. Introduce the Lebesgue exponents

4 4 20(2 2

do ’ - 2—(d—2)’
The pair(p, ¢) is admissible, and
1 20 1 1 20 1
(4.2) - = + - 3 - = 7 -
q q p p

q
Fort > 0, denotel] L* = L7 ([0, ¢]; L*(R%)). From Strichartz estimates (see elg. [11]),

HwhHLfLmL?Lz < H (1T, (|u|2))"u — (I, (|uh|2))0uh’

o e T IER O ot

S (Hall2 0 + 1135 0 ) Il p o + 1B (u)

)

lri g
where we have used Holder inequality and(4.1), and wherey ) is an admissible pair
whose value will be given later.

If o =1 andd < 2, thenf < p, and we infer

e el (1 oo T o ) I PP E A O e
In the first case of the theorem, we assume L?([0,T]; L?), sincep = 8/d andg = 4
for o = 1. We use again a bootstrap argument: so Ion@ﬂ:ﬂ,;w < 2|lullzrrq, we
divide the interval0, T'] into finitely many small intervals so the first term of the tigland
side is absorbed by the left hand side (recall ghiatfinite), and we have

h
[[w ||LqumL§°L2 IS ||Rh(u)||Lfqu/1 .

| » . —0ash— 0.
L L%
If we have onlys < ﬁ, then by Sobolev embedding,

The bootstrap argument is validated provided thaf (u)

lull Lora < 0wl pgo g
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In the same way as above,
IV g panzmre S |9 (0 ()= (0 ()7 o),
IV i g

L?' L

The first term of the right hand side is controlled by
| ) = (1 )7 9|

(4.3) Ly Le

+ [ (@ ()7 = o (1 ()"

LY L

Introducing the factofTI, (Ju[?))” Vu”, the first term is estimated by
H(Hh (ful®)”wu"|| .+ H (. () = (1 (1u"2))7) Wh‘
S [T (|u|2)HZf/2Lq/2 V™| Lpra

(N2 1t1252) 1l = F 2] o2 o IV 2

/ ’
LY La

SNl o 190" e + (el 2500 + It 12520) [ || o 1901 2o
S t20/0 (| HL°°H1 ||thHLqu

+ 8277 (all 25+ 12250 ) " | e o 190 1 20
Proceeding similarly for the other term in_(#.3), splittiftg 7] into finitely many time

intervals where the terms containing on the right hand side can be absorbed by the left
hand side, and using a bootstrap argument, we end up with

”wh”Lle)qﬂLf"Hl 5 HRh(u)”Lp/lwl,q/l :
t

Therefore, it suffices to show that for some admissible fairq; ), the source term con-
verges td) in L1 ([0, T); L%) (if o = 1 andd < 2) orin L1 ([0, T]; W41) (in the other
cases), so the bootstrap argument is completed. In additierrate of converge of the

source term, if any, yields a rate of convergencedbr The theorem then stems from the
following lemma, in which(p, q) is given by [4.2).

Lemma 4.5. LetT > 0. The source terni;, (u) can be controlled as follows.
1. Suppose that = 1 andd < 2. If u € L>([0, T]; L?) N L¥ ([0, T]; L*), then

HRh(U)HLP’([O,T];L",) ;:60'

2. Suppose that = 1 andd = 3.
o If u, Vu € L>([0,T); L?) N L¥(]0, T); L*), then

”Rh(u)HLP/([O,T];WL‘I') ,:60'
o Ifue L>®([0,T]; H®), withs > 3/2, then
[Ru(u)llLiqo,ryc2y S B and [|Ry(w)| 1o rymry S AV
3. Suppose that > 1 andd < 2. If u € L*°([0,T]; H®), with s > 1 ands > d/2, then

[ Bn (@)l qoryzey S h* - and ([ Raw)ps o,y ;=0
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If in additions > 1, then
| Rn (w)|| L (o,ry;00y S A5
Proof of Lemm&4]5For the first case, we use Holder inequality, in view[of|(4.2)
”Rh(U)HL%’Lq/ = H(l - Hh) (|u|2) U‘HLI%/LQ’ < H(l - Hh) (|u|2) HLZ/2Lq/2 |‘u|lL§Lq .
We note that for = 1, ¢ = 4, so by Plancherel Theorem,
=T (P = [ (= () [P OPdg < [ 1FGuP)e)Pde
R4 |€/>1/h

By assumptiony € LP([0,T); L*) c LY([0, T); L*), thus|u|? € L/2([0,T]; L?), and by
Plancherel Theoren® (|u|?) € L/2([0, T]; L?). The first point of the lemma then stems
from the Dominated Convergence Theorem.

For the first case of the second point, we note that iow p, so the above argument
must be adapted, and we have to estimate the gradiét(af) in the same space as above.
SinceL>([0,T]; HY(R?)) c L°([0,T]; L*(R?)), the Dominated Convergence Theorem
yields

|Rn @) 57 =20
We now estimaté/ Ry, (u). Write
IV R o o < (1= T00) () || o2 o 1Vl g 1
=)V () [ sosm-1 o g o
S =T00) ([ul)]] oo 2 1Vl g 22
+[|(1 =11,V (|U|2)HL<Tl/e+1/prlL2 ull g2
By the same argument as above,
(1 —1Ip) (|U|2)HL;cL2 [Vullpz 2 0

We note that: bounded inL>*([0, T]; H}(R?)) c L?([0,T]; L*(R?)), andVu bounded

in L2.L4, soV|u/? is bounded inz{/+1/?)"" 12 Invoking Plancherel Theorem and the
Dominated Convergence Theorem like above, we infer

H(l —1I,)V (|U|2) HL<T1/9+1/pr1L2 HUHL%’L? }:60-
This completes the proof for the first case of the second point
For the remaining cases, we use thEt(R?) is embedded intd > (R%): for fixedt,
[Rr(w)(®)llz2 S (le@®177%2 + [T (u@))I7<) 1 = Ta) (Ju(@)*) | 2 llu(@)]
S M@ @ = ) (Ju@®) )l e S Nu@IFHIQ = ) (u@)]?)] 22
Like in the proof of Proposition 311, we use the estimate
(4.4) (1 =T0n) fllLz < h°(fllae,

and sincel *(RY) is an algebra,

O R o 1 ks
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To conclude the proof, we estimaf@R, (u) in L2(R<). We compute
VR (u) = oful**™2 (1= 10) (V ([ul?))) u
o (a2 = (I (juf?) 7" ) T (V (Juf?) w
+ (|u|20 — (I, (|u|2))g) Vu,
where the second line is zerods= 1. We estimate successively, thaks[io]4.1),
[l (1 =T00) (V (Jul*))) ull 2 < 22 [ =TT0) (Jul?) [ 4.
| (al2 = (11 (1)) V|, < alBz? (10— T0) (jul?)]| o [ 90 2,
and, ifo > 2,
[ (=2 = (1 )™ )11 (9 () o],
S ullZZH [0 =10 ([ulP) || o (1Y ()] o llull 2
S ullZZ2 {11 = 1) (Jul?) || o 1Vl e -
Since we have?*(R?) — L*>(R?), we end up with
IVRR ()22 < llull3? (1 =10 (Jul?)
If s > 1, (4.4) yields, since in addition > d/2,

= T00) (o) o S 7 e S 3
If s =1 (a case which may occur onlydf= 1, sinces > d/2), we write

HV (1 —1In) |u| HL2 \/ ’]: |u| )(f)fdf

L2

lirr -

l€]>1/h
Now sinceV (|u|?) = 2ReuVuandu € H*(R) — L>(R), Vu € L*(R), we conclude
thanks to the Dominated Convergence Theorem. O

This completes the proof of Theorém.3, by choosingq1) = (p, q) or (00,2). O
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