
HAL Id: hal-00650956
https://hal.science/hal-00650956v1

Submitted on 12 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based diagnosis for avionics systems using
minimal cuts

Fabien Kuntz, Stéphanie Gaudan, Christian Sannino, Éric Laurent, Alain
Griffault, Gérald Point

To cite this version:
Fabien Kuntz, Stéphanie Gaudan, Christian Sannino, Éric Laurent, Alain Griffault, et al.. Model-
based diagnosis for avionics systems using minimal cuts. DX 2011, Oct 2011, Murnau, Germany.
pp.138-145. �hal-00650956�

https://hal.science/hal-00650956v1
https://hal.archives-ouvertes.fr


Model-based diagnosis for avionics systems

using minimal cuts

Fabien Kuntz 1,2, Stéphanie Gaudan 1, Christian Sannino 1, Éric Laurent 1,
Alain Griffault 2, Gérald Point 2

1 THALES Avionics S.A., F-31036 Toulouse, France
{fabien.kuntz, stephanie.gaudan, christian.sannino, eric.laurent}@fr.thalesgroup.com

2 LABRI-CNRS, Université Bordeaux 1, F-33405 Talence, France
{fabien.kuntz, alain.griffault, gerald.point}@labri.fr

ABSTRACT

Increasing complexity of avionics systems leads
to reconsider methods that are used today to diag-
nose system failures. In addition, the size of avio-
nics systems is an important characteristic to con-
sider and that narrows the possible methods we
can use to diagnose our systems. Therefore we
need to work both on the mastery of the avio-
nics system size and on the improvement of ac-
tual diagnostic techniques.

In parallel, problems of diagnosis and safety ana-
lysis for avionics context have a lot of common
points. Here, we use safety analysis experience to
set up a diagnostic method and try to get it close
to methods used in safety analysis.

This paper presents how we use model-based rea-
soning, rule-based reasoning and safety particular
techniques to set up an automated diagnosis solu-
tion. It gives a feedback on the use of minimal
cuts to diagnose large industrial systems.

1 CONTEXT

Over the past few years, avionics systems complexity
has grown strongly. Even quite recently, each avio-
nics function was implemented on only one hardware
unit. In these conditions, detecting and locating a fai-
lure was quite easy and describing the relations be-
tween observations and failures was feasible by hand.
But today, softwares are present everywhere. Further-
more, the way in which hardware supports software
has evolved too. Functions are supported by several
hardware units and one hardware unit can be shared
by several functions. It is common to use Avionics
Full DupleX (AFDX) networks or Integrated Modular
Avionics (IMA) in avionics systems, which are good
examples of the way avionics systems evolve towards
resources sharing. Here are the main reasons why sys-
tems become more complex and harder to analyse.

Today the most practical technique to make diag-
nosis for avionics maintenance is to use rule-based
reasoning. Diagnosis rules represent the relations be-
tween observations that are thrown by the monito-
ring system and their possible causes. These rules are

mainly handmade based on human expertise. The in-
creasing level of system complexity makes this ope-
ration very difficult. Indeed, to find all the causes that
could have thrown a monitoring observation is not an
activity designed for humans. Such an exhaustive ope-
ration is a task more adapted to computers.

Another important point to consider is that our work
takes place in an industrial context. That brings several
constraints. We must find a solution which scales to
sizes of real systems and that can be integrated into
our current engineering processes.

The application of model-based techniques in an in-
dustrial context is a well-identified problem. In (Con-
sole and Dressier, 1999), the authors explained the si-
tuation: model-based diagnosis is a primary need for
industry, but it needs efforts from both “application
peoples” and academic researchers. Today, notably
thanks to workshops like “Workshop on Principles of
Diagnosis”, application side is more considered. But
the effort that requires modelling of industrial systems
is often too important for companies that prefer to keep
going with their current processes. These reasons mo-
tivate us to find a method that is generic, automatic,
and which takes into account these fears.

In this context, we aim at defining a diagnosis ap-
proach allowing us to master both the systems’ gro-
wing complexity and their size. In the following sec-
tion we detail further our problem and compare diag-
nosis and safety analysis. In the section 3 are exposed
our choices and solutions, and also methods and pro-
cess of our diagnostic chain. This is completed by a
brief presentation of features of a case study on which
we apply this method. Finally our conclusion inte-
grates some hints for future work.

2 PRESENTATION OF THE PROBLEM

Several definitions of diagnosis can be found in the lit-
erature (Hélouët et al., 2006). The Oxford Dictionary
official definition presents diagnosis as “the identifi-
cation of the nature of an illness or other problem by
examination of the symptoms”. In the systems diag-
nosis field, it means to explain the observed situation.
For a given diagnosis problem, i.e. given a situation,
solving it means finding its causes.

1



22nd International Workshop on Principles of Diagnosis

In this section we describe the type of systems that
we deal with and present the diagnostic problem that
we want to solve. We briefly give the problems of
safety analysis and show how they overlap with diag-
nostic ones. Then we describe techniques used to ana-
lyze systems in the safety assessment domain, and we
give an idea of how we can use these techniques to
solve our diagnostic problems.

2.1 Avionics systems and diagnostic problem

Systems that we want to diagnose are avionics sys-
tems, composed of several types of components.
Broadly speaking, we can identify two types of items:
physical (hardware) components and functional com-
ponents. Functional components must fulfil a precise
purpose and physical components enable functional
ones to accomplish their work.

Physical components are, for example, computation
units used for calculation tasks, I/O components al-
lowing I/O functions to send and receive messages
and data, network components (switches, cables, ports,
. . . ) dispatching messages and data, or also probes
measuring for instance pressure or temperature. Func-
tional components are for example computing func-
tions, I/O functions being in charge of process sen-
ding and reception of messages and data, comparison
functions comparing several values, or also monitoring
functions whose role is to detect, for instance, when
data flows, functions, or I/O mechanisms, do not have
a correct behaviour. These monitoring functions are
primordial for diagnosis because they provide observa-
tions which are the starting point of diagnosis. These
monitoring observations correspond to the result of the
sending of a message from a monitoring function.

We use diagnosis to perform the maintenance of an
avionics system. Indeed physical and functional com-
ponents have failure modes associated to them. They
can break down totally, partially, or change their func-
tioning mode, resulting in an unexpected behaviour of
the system. To repair the system, the goal of the main-
tenance action is to repair faulty components, i.e. com-
ponents that are responsible for the faulty behaviour
of the system. The problem of avionics systems diag-
nosis for maintenance is, given a set of observations
provided by the monitoring functions (what call a situ-
ation in the sequel), to find what are the components
responsible for system faulty behaviour.

2.2 Parallel with safety analysis

Avionics safety is related to the mastering of critical
events. In simple words, the mission of safety en-
gineers is to ensure that the occurrence of a critical
event is very improbable. Thus, the need behind a
safety analysis is first to identify all the root causes
potentially leading to a critical situation and then use
these information to quantify the probability that criti-
cal events occur.

We can compare the safety need described here and
diagnosis need. Indeed the main need for diagnosis
is to identify the causes that can have led a system in
a problematic situation. Safety considers only critical
situations while diagnosis must be exhaustive, but they
both need to know the possible causes. For diagnosis

we need to handle all system events, but in compensa-
tion, we do not have to take care of failure occurrence
probabilities. An obvious common need to safety and
diagnosis is to have a way to formalize relations be-
tween system events and observations.

To answer to the problems we previously described,
safety has found and set up solutions. A commonly
accepted solution is to use fault tree analysis. A fault
tree is a logic tree emphasizing the causes to effects
relations. It describes how a critical event can occur.
Then the fault trees are combined and used to quantify
the occurrence probability of a critical event.

Today, these fault trees are mainly handmade, de-
scribed by safety engineers. Here again we can draw
a parallel between safety and diagnosis community.
Both safety and diagnosis aim at automating the gene-
ration of their models (fault trees for safety and diag-
nostic rules for diagnosis). Indeed with the increasing
complexity of avionics systems, creating fault trees (as
well as diagnostic rules) is a laborious and hard task,
and it is even harder to ensure that they are correct
and complete. Moreover, when system architecture is
modified, all fault trees impacted by the modification
must be rebuilt.

New approaches are studied and start to be used for
industrial safety analysis. Among them is a model ba-
sed approach which consists in formally modelling the
system behaviours in a dysfunctional way, and then in
generating automatically fault tree analyses with an al-
gorithm based on minimal cuts. An example of the use
of minimal cuts for fault tree generation can be found
in (Tang and Dugan, 2004). A cut represents a combi-
nation of failures sufficient to provoke the critical sit-
uation. The first advantage of this approach is that the
complexity of the system is handled by the use of high-
level formalisms. Indeed with that approach, one de-
scribes the behaviour of each different component and
how these components interact, and the whole com-
plexity of combined behaviours of the components is
handled by the formal semantics of the model. An-
other advantage is that this approach permits to auto-
mate the process. On the other hand, modelling a sys-
tem is a hard task, more natural for human beings than
to find all possible causes of a critical situation, but
which needs application and time.

The main difference between safety and diagnosis
problems concerns the study perimeter; diagnosis is
not only interested in critical events. But we have seen
that problems are pretty similar. Thus, an improve-
ment could be the creation of a complete model of the
system under diagnosis, the use of algorithms based on
minimal cuts in order to obtain diagnostic rules and the
combination of the results to make a diagnosis. Note
that fault tree analysis techniques have already been
proposed in the context of diagnosis, e.g. in (Faure et
al., 1999) or (Hurdle et al., 2008).

3 DIAGNOSIS SOLUTION

In this section we propose a solution for avionics sys-
tems diagnosis which considers usual diagnostic me-
thods, safety methods, as well as industrial constraints.

Several choices have been made to fulfil these cons-
traints. Most of these choices have been motivated by

2



22nd International Workshop on Principles of Diagnosis

Figure 1: The three phases of the diagnosis chain

our industrial context. Efforts have been made to be
compliant with the current maintenance process and to
automate the diagnosis workflow. First, we have cho-
sen to model the system under diagnosis with the high-
level formalism used by safety engineers. Doing so,
we can benefit from safety’s modelling work and we
can permit safety to benefit from ours, which is impor-
tant in an industrial context. That choice brings cons-
traints with it: the process of modelling must allow
to integrate safety informations into the model. This
first choice implies the second one. Indeed we have
chosen to generate the model automatically. Then we
made the choice to set up a diagnostic method similar
to the safety one: we generate diagnostic rules from
the diagnostic model thanks to an algorithm producing
minimal cuts, and combine these rules to obtain diag-
nostic results.

Our diagnosis solution is thus split up into three
phases depicted on Fig.1:

1. Automatic generation of the model.

2. Automatic generation of the diagnostic rules.

3. Correlation of rules to get the global diagnosis.

In the sequel of that section we present the diagnosis
solution and its different phases.

3.1 Automatic generation of the model

To explain the first phase of the diagnosis solution,
we first introduce the ALTARICA formalism used to
model the system. Then we briefly describe the auto-
matic modelling principle and emphasizes some ad-
vantages of such an approach.

ALTARICA is a high-level language based on cons-
traint automata (Point and Rauzy, 1999). ALTARICA

was created at the end of 90’s in the LABRI to an-
swer to industrial needs. This language has been de-
signed to permit the description of both functional and
dysfunctional behaviours of critical systems; its formal
semantics has been given in (Arnold et al., 1999).

LABRI proposes model-checking tools that support
ALTARICA language: ARC with its graphical front-
end ALTARICA Studio (Griffault et al., 2010) and
MEC 5 (Griffault and Vincent, 2004). There also exists

industrial tools based on dialects of ALTARICA, such
as BPA-DAS Safety Designer of Dassault Systèmes,
Cecilia OCAS of Dassault Aviation, SIMFIA of EADS
Apsys or also RAMSES of EADS Airbus.

We now illustrate ALTARICA language on a small
example. In the AltaRica terminology, components
are called nodes. Fig.2 presents a node that models
a switch. This node includes a Boolean state variable
representing its two possible positions: on (closed) and
off (open). At the initial state, it is on. Transitions
(keyword trans) express that we can modify its state
by pushing the switch button through the event push.
The switch’s input and output electrical flows are re-
presented in the model by flow variables i and o. The
ALTARICA language allows the definition of some in-
variants called assertions (keyword assert). Here the
unique assertion means: when the switch is on, the
flows are equals. We can see on Fig.3 the labelled tran-
sition system representing model’s behaviours.

node Switch

state on : bool;

init on := true;

flow i, o : [0,1];

event push;

trans true |- push -> on := not on;

assert on => (i = o);

edon

Figure 2: Model of a switch

Switch/Q (2 classes)

o = 0, on = true, i = 0

o = 1, on = true, i = 1
o in [0, 1], on = false, i in [0, 1]

push

push

Figure 3: LTS of the switch model

3



22nd International Workshop on Principles of Diagnosis

In ALTARICA we also have the notion of hierarchy
and events synchronization. We can see on Fig.4 a
system composed with two wired switches. The top-
level node System is composed of two subnodes of
type Switch. A constraint, introduced by the keyword
assert, states that the input of the second switch
is wired to the output of the first one. And, finally,
an event synchronization, introduced by the keyword
sync, enforces the push events to be simultaneous.

node System

sub S1,S2 : Switch;

assert S1.o = S2.i;

sync <S1.push, S2.push>;

edon

Figure 4: Model of a two-switches system

Now we can focus on the method used to automati-
cally generate ALTARICA models.

To have an automatic process of model generation
for a system, we must use information we have on the
system and define some generation rules.

In addition we want to generalize the process so that
we can use it to automatically generate a model for
different systems.

In order to be as close as possible to the actual de-
sign, we need to take as input data the actual engineer-
ing document produced by system designers. There
are mainly two kinds of documents:

• Those describing how each components of the
system may dysfunction and what are the effects
of this dysfunction. We find mainly in this cate-
gory the FMEA documents (Failure Mode Effect
Analysis) required by standard avionics certifica-
tion procedure such as described in ARP4754A
(SAE, 2010).

• Those describing how components are intercon-
nected. We find in this category several types
of documents: wiring, functional data flows, net-
work routing, depending on company design pro-
cess.

To set up the model generation process we keep only
information relative to diagnosis and maintenance like
the component failure modes, the system faults, the
way in which components are interconnected, the dif-
ferent functions of the system in charges of the moni-
toring, the different messages of maintenance sent by
functions, . . .

Once the dysfunctional behaviour of components
has been collected and once the interconnection be-
tween those components has been defined, then we de-
fine generation rules to formalize these data into an
ALTARICA model. Such rules are:

• A physical component/function will be a node in
the ALTARICA model.

• A state of a component will be a state variable of
the corresponding node.

• Mode changes are modeled using transitions la-
belled with failure events of the corresponding
node.

• Data and messages will be ow variables in the
ALTARICA model.

• . . .

With these generation rules, we are able to create an
ALTARICA model of the system right in accordance
with how engineers has designed it.

Our approach has many advantages. First, we in-
herit from benefits of a model-based method: once the
system is formalized, we can notably perform power-
ful analyses and model-checking. Moreover with the
automatic generation of models, we get around the
most important difficulty of a model-based approach
which is the creation of the model. There are also
other advantages due to our particular industrial con-
text. Actually this method of automatic model genera-
tion can be used for safety, one must only point out
what are the changes to apply to diagnostic generation
rules so that they become safety rules. Furthermore
the creation, by hand, of a complete model for each
industrial system would be too expensive.

In the following phase we point out how automatic
generation of models meets actual processes.

3.2 Automatic generation of diagnostic rules

At this step, we have a model which represents the sys-
tem we want to diagnose, i.e. we have formalized re-
lations between component failure modes and monito-
ring observations. This is what matters for diagnosis.
Now we need to take benefit of these relations to make
a diagnosis.

It is necessary for the solution we choose to be inte-
grated into our current processes which are rule-based.
As we said in the context section, most of avionics
techniques currently used for diagnosis are based on
the creation by experts of tables of diagnostic rules.
These diagnostic rules, describing what can be the
causes for each monitoring observation, can be incom-
plete since both are handmade and the complexity of
systems grows. The idea is thus to automatically create
these diagnostic rules from the generated model. This
job can be done using minimal cuts of the model.

To explain the second phase of the solution, we first
define minimal cuts for a model, and then we explain
how we generate diagnostic rules (or minimal cuts)
from the model and, what we have not mentioned yet,
how we handle the model size issue.

To define what are the minimal cuts we handle,
we need to give some other definitions first. Let us
start with the definition of a labelled transition sys-
tem (LTS) that represents the reachability graph of the
model.

Definition 1 (Labelled Transition System) A label-
led transition system A = 〈S, I, E, T 〉 is a tuple
where:

• S represents a finite set of states.

• I ⊆ S represents the set of initial states.

• E is a finite set of events.

• T ⊆ S × E × S is a set of transitions.

In the sequel, if M is an ALTARICA model, then we
denote [[M]] its semantics given as an LTS (Arnold et

al., 1999).

4



22nd International Workshop on Principles of Diagnosis

LTS are called Finite State Machines (FSM) in
(Sampath et al., 1996). Note that in our setting, T is a
relation which means that the model is not necessarily
deterministic.

In addition we mark some events as visible. A visi-
ble event is an event which is important to see in the
result. For diagnostic problem, it often corresponds
to an event representing a failure. For instance, in a
model, we can consider failure events and also repair
events. On the other hand, identifying repair events in
a diagnosis is not mandatory since we only focus on
the identification of faulty components. The notion of
visibility is different from observability encountered in
classical frameworks (Sampath et al., 1996) or contro-
lability in (Ramadge and Wonham, 1989). Besides, in
these frameworks, failure events are considered unob-
servable and uncontrollable. In our context, visibility
attribute only identifies events that must be kept in the
result.

In the sequel we denote Ev ⊆ E the set of visible
events. We are interested by the computation of traces
of visible events that leads the system into some states
specified as targets.

Definition 2 (Run and trace) Given a LTS A = 〈S,
I, E, T 〉 and a set of targets states F ⊆ S, a run is
a finite sequence s0, e0, . . . , en−1, sn such as s0 ∈ I ,
sn ∈ F and (si, ei, si+1) ∈ T for i ∈ [0;n − 1]. The
sequence e0, . . . , en−1 is called the trace of the run.

We denote by L(A, F ) the set of traces of A that
leads to a state in F .

Definition 3 (Cut) If w = e0, . . . , en−1 is a sequence
of events, the cut associated with w is the set of its
visible events.

cut(w) = {e ∈ Ev | ∃i ∈ [0;n − 1], e = ei} (1)

Cuts are thus sets of visible events. Other events are
considered irrelevant for maintenance and are removed
from the result.

Definition 4 (Cuts of a LTS) Given a LTS A = 〈S,
I, E, T 〉 and a set of targets states F ⊆ S, we define
the set of cuts Cuts(A, F ) that lead A into a state of
F by:

Cuts(A, F ) = {cut(w) | w ∈ L(A, F )} (2)

Finally we can define the notion of minimal cuts.

Definition 5 (Minimal cut) Given a set of cuts C, a
cut c ∈ C is said minimal in C iff ∀c′ ∈ C, c′ ⊆
c =⇒ c = c′.

We denote MinCuts(A, F ) the set of all the mini-
mal cuts of the LTS A for the targets states F .

Definition 6 (Over-approximation) If C1 and C2 are
sets of cuts, we say that C2 is an over-approximation
of C1 iff for any c1 ∈ C1 there exists c2 ∈ C2 such that
c1 ⊆ c2.

Minimal cuts are sets of events and not sequences.
As a consequence, the logical order of failure occur-
rences is forgotten. Cuts are thus a coarse and pessi-
mistic abstraction of what actually happens. In the
context of maintenance activities, this is not really
an issue because all components listed in a cut are
checked regardless of the actual sequence.

A similar remark also holds for non observation of
some failures. In some systems, it may happen that
targets states are reachable only if some components
are healthy. Even if healthy components do not appear
in minimal cuts they are handled by algorithm used to
minimize sets of cuts (Rauzy, 2001). Note that exone-
ration of healthy components is directly integrated into
the model when defining variables used to observe the
system.

In our diagnostic problem, we do not exactly handle
targets states but rather monitoring observations. But
there is obviously a link between them. A monitoring
observation is encoded by a variable in our ALTARICA

model which is true when the observation is present.
A state of the LTS representing the semantics of the
model is described by valuations of state and flow vari-
ables. We can define targets states for an observation;
we call them observation states:

Definition 7 (Observation states) Given a LTS A =
〈S, I, E, T 〉 and an observation variable v, we define
Fv , the set of targets states for v, as

Fv = {s ∈ S | v is true in s} (3)

With a LTS A, finding the causes of an observation v
corresponds to the computation of MinCuts(A, Fv),
the minimal cuts of A for the observation states Fv as
targets states.

The generated model gives us a LTS from which we
now want to compute, for each monitoring observa-
tion, the set of minimal cuts. Unfortunately, due to
state space explosion, the model can not be used as is.

To tackle this combinatorial explosion, we narrow
the model to a submodel which only comprises neces-
sary information to obtain those minimal cuts. More
precisely, the algorithm consists of two steps: a first
step which considers the global model and computes
a dependency graph of the model, and a second step
which computes the set of minimal cuts for each ob-
servation variable but using a restricted model.

The input of the first step is the ALTARICA model
M. Feedback from previously studied systems shows
that, despite its size, only a small part of the model im-
pacts the truth value of a given observation variable.
Using a static analysis of the model we can reduce
it drastically in a conservative way, i.e. the reduced
model has the same minimal cuts w.r.t. to a given ob-
servation variable.

The static analysis builds a dependency graph
whose nodes are objects of the ALTARICA model re-
lated to assignments of variables: variables, assertions
and transitions. In this graph, an edge from one object
to another means that the former directly influences the
latter. This graph is built as follows:

• A two-way edge is created between an assertion
and variables it contains;

• A two-way edge is created between a transition
and state variables it assigns a value;

• An edge is created between a variable used in the
enabling condition or assigned value of a transi-
tion and this latter.

A simple traversal of this graph gives us parts of the
model that influences the truth value of an observation
variable. In practice, assertions yield lots of two-way

5



22nd International Workshop on Principles of Diagnosis

edges. These numerous edges can lead the analysis to
build a strongly connected graph containing the whole
model and thus we get no gain. To handle this issue
we use a pre-processing step that discovers functional
dependencies between flow and state variables. These
dependencies are then used to remove useless edges.

Once we have a dependency graph of the model M,
we can start the second step, which is applied for each
observation variable obs of the model. It is composed
of five tasks:

1. Computation of the reduced model M′ for obs.

2. Encoding of visible events in M′ to obtain M′′.

3. Computation of [[M′′]], the LTS of M′′.

4. Computation of Cuts([[M′′]], Fobs).

5. Computation of MinCuts([[M′′]], Fobs).

Task 1 takes an observation variable obs and first de-
termines the dependency perimeter of obs (i.e. ALTA-
RICA objects). Then it computes the reduced model
M′ by projecting M on this perimeter. We have
proved (Griffault et al., 2011) that the reduced model
M′ preserves minimal cuts of the original model M:
MinCuts([[M]], Fobs) = MinCuts([[M′]], Fobs).

Task 2 decorates the model M′ with a Boolean
variable for each visible event of M′. We ob-
tain the model M′′. We have shown that M′ and
M′′ are bisimilar (Milner, 1980) and thus we have
MinCuts([[M′]], Fobs) = MinCuts([[M′′]], Fobs).

Task 3 computes Fobs. Due to the encoding of M′′,
Fobs is a Decision Diagram (Bryant, 1986) with on one
hand states and flow variables included in the depen-
dency perimeter of obs, and on the other hand, vari-
ables for each visible event that may appear in the re-
sult.

Task 4 projects the DD obtained in task 3 on the pre-
viously added variables. The new DD we obtain con-
tains only Boolean variables. The remaining variables
represent the events that can have led to the observa-
tion. We can translate the DD into a Boolean formula
to get cuts.

Finally, task 5 computes minimal cuts from cuts
using Rauzy’s algorithm (Rauzy, 2001).

Our method relies on the particular structure of the
generated model. Actually the model contains lots
of functional dependencies, what permits to compute
submodels little enough to allow computations unfea-
sible on the global model without combinatorial explo-
sion.

We can also notice that computations on submo-
dels can only be applied to one or few observations.
Considering several monitoring observations would
increase the probability to get a submodel too large
for analysis. Each observation variable would bring
with it its own dependencies, and all those dependen-
cies would have to be included in the submodel.

All this process, from reduction of the model to the
computation of minimal cuts is implemented in the
ARC tool (Griffault et al., 2010).

3.3 Correlation of rules

At this step, we have met current processes of indus-
trial diagnosis. We have generated the diagnostic rules

which are usually written by experts. Nevertheless
we must propose a method of correlation for the diag-
nostic rules which handle the complexity of the rules.
Actually generated rules are larger and more complex
than the rules written by experts today. The current
methods of correlation are designed for smaller rules
and can not process complex diagnostic rules we pro-
pose here.

We use a method of correlation based on BDDs
(Bryant, 1986). We can find an example of the appli-
cation of BDD-based methods for diagnosis in (Schu-
mann et al., 2004). We give an idea of the different
steps of the algorithm of correlation.

An observed situation defines a set of monitoring
observations (variables); for each one, we compute a
set of minimal cuts. The correlation of these sets yield
a new set of cuts that must be, at least, a pessimistic
explanation of the situation.

In practice, the correlation is realized as follows.
The observed situation gives a set V of monitoring
variables. For each such variable v ∈ V , we have
computed a set of minimal cuts Cv . Each Cv can
be interpreted as a Boolean formula φv in disjunc-
tive normal form: each cut forms a conjunctive clause
whose variables are failure events and the disjunction
of these clauses corresponds to Cv . Then we com-
pute the BDD of the conjunction

∧
v∈V

φv . Finally

a traversal of the BDD gives a new set of cuts that
over-approximates all Cvs (in the sense of definition
6). This over-approximation is not an issue because,
for maintenance needs, we have to be sure that we
identify all the possible causes of a problem.

The last step is to present the results. A simple way
to do this, is to order alternatives according to their
size, i.e. according to the number of failure events
composing them. We present the diagnostic results
from the smallest alternatives to the biggest ones. We
can even stop the presentation of results as soon as the
number of alternatives becomes too big. That presen-
tation of diagnostic results has a particular meaning
in avionics context. Indeed it represents single failu-
res, then double ones, . . . And this cardinality often
matches with probability (i.e., a single failure is often
more probable than a double one, . . . ).

The algorithm we have presented here is simplified.
For instance we must be sure that the BDD has the
same variables perimeter before doing the logical con-
junction. We just wanted to give the main actions and
not completely enter in the details.

4 CASE STUDY

In this section we give some results and dimensions of
an example we have studied.

4.1 Case presentation

The case we studied is the avionics suite of a regional
jet in the 75 to 95-seats category.

For this study we consider only maintenance infor-
mation of this avionics suite. Table 1 shortly gives
sizes of the system.

4.2 Generated model

Table 2 gives sizes of data used for the model gener-
ation step: the acquiring of data from engineering in-
put description and the generated model. We remind

6



22nd International Workshop on Principles of Diagnosis

Table 1: Sizes opf the system under diagnosis

# physical # physical # exchange

components links flows

253 2772 7770

that input description can be different data of differ-
ent types, written by different peoples and for differ-
ent uses. The given number represents the total of read
lines from the different data.

Table 2: Generation files statistics (in number of lines)

Input Generated

description ALTARICA code

76898 35812

Let us illustrate the time necessary for modelling
generation process for this case study with Table 3. In
fact, we can notice that the time of generation process
corresponds to the time of acquiring input description.

Table 3: Generation process time statistics

Reading of Code Total model

input data generation generation time

(1) (2) (1+2)

11 min. 2 sec. 11 min 2 sec.

We can finally focus on the result of model genera-
tion with Table 4. With such sizes we quickly reali-
zed that the analysis of the entire model would be
impossible. Indeed given that variables are most of
the time boolean, reachability graph of the model can
have 21349+7713 states. This explains that we have ex-
hausted memory resources when we tried to compute
the reachability graph of the model.

Table 4: Generated model sizes

# state # flow # events # observations

1349 7713 2268 2388

4.3 Diagnostic rules

For the last phase it is interesting to have a look at the
size of models computed during the task of reduction.
Figures 5 and 6 show respectively the proportion of
events and the proportion of variables in reduced mod-
els. We can see for example that the biggest reduced
model do not exceed 90 events and 55 variables while
the global model contains 2268 events and 9062 vari-
ables.

Finally the time required to compute the 2388 sets
of minimal cuts of this model takes about 44 minutes
(on a Linux laptop equipped with a Core 2 Duo 2.5Ghz
and 4Go of RAM).

5 CONCLUSION AND FUTURE WORK

This paper has proposed a feedback on an industrial
use of models and minimal cuts for diagnosis. We
have presented a complete diagnosis chain for avion-
ics systems starting with acquisition of documents de-
scribing the system, continuing with the generation of
a model of this system, then generating the set of diag-
nostic rules for each observation, and finishing with
the method of correlation of those rules in order to give
the final diagnostic results.

The outcome of this methodology is twofold. First,
the generation of diagnostic rules from a correct high-
level model, ensure us a better coverage of all possible
causes and an increased completeness of rules. Se-
cond, providing a totally automatic diagnostic process
is an important requirement to make the promotion of
model-based approaches in industrial contexts.

Another significant point is the particular structure
of our models, due to the way we have built them,
which allows this solution to work.

In the future we want to address several topics. First
we want to improve different steps of the diagnos-
tic chain to improve the quality of the results. More
specifically we want to work on the correlation algo-
rithm and define exactly the abstraction and what are
the cases for which we obtain exact results. We also
want to explore the possibility to not generate diag-
nostic rules but to make diagnosis directly from mo-
dels and so use the dynamic capacity of model-based
diagnosis. Another topic we are interested in, is the
assessment of the quality of the monitoring. In order
to improve diagnostic performances we want to look
at diagnosability of our systems and optimization of
monitoring functions (Kuntz, 2010).

ACKNOWLEDGEMENTS

Algorithms mentioned in section 3.2 were designed
through a collaboration between THALES Avionics
and the LABRI.

We want to thank Sébastien Dubois from THALES

Avionics, Aymeric Vincent from LABRI, and Tung
Tran Tranh from Université Bordeaux 1 for their con-
tributions to the project.

REFERENCES

(Arnold et al., 1999) A. Arnold, G. Point, A. Grif-
fault, and A. Rauzy. The ALTARICA formalism
for describing concurrent systems. Fundam. Inf.,
40:109–124, November 1999.

(Bryant, 1986) R.E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE Transac-
tions on Computers, 35:677–691, 1986.

(Console and Dressier, 1999) L. Console and
O. Dressier. Model-based diagnosis in the
real world: lessons learned and challenges remain-
ing. In Proceedings of the 16th international joint
conference on Artificial intelligence - Volume 2,
pages 1393–1400, 1999.

(Faure et al., 1999) P.P. Faure, L. Trave-Massuyès,
and H. Poulard. An interval model-based approach
for optimal diagnosis tree generation. In 10th In-
ternational Workshop on Principles of Diagnosis
(DX’99), pages 78–89, June 1999.

7



22nd International Workshop on Principles of Diagnosis

Figure 5: Events in reduced models Figure 6: Variables in reduced models

(Griffault and Vincent, 2004) A. Griffault and A. Vin-
cent. The mec 5 model-checker. In CAV: Inter-
national Conference on Computer Aided Verifica-
tion, volume 3114 of Lecture Notes in Computer
Science, pages 488–491. Springer, July 2004.

(Griffault et al., 2010) A. Griffault, G. Point, and
A. Vincent. AltaRica Checker Handbook. LaBRI,
Talence, France, January 2010. Available on
http://altarica.labri.fr/forge/.

(Griffault et al., 2011) A. Griffault, G. Point, and
A. Vicent. ALTARICA models and algorithms for
diagnosis. Technical report, LaBRI-CNRS, Univer-
sité de Bordeaux, 2011. Internal collaboration re-
port.

(Hélouët et al., 2006) L. Hélouët, T. Gazagnaire, and
B. Genest. Diagnosis from scenarios. In proc. of
the 8th Int. Workshop on Discrete Events Systems,
WODES’06, pages 307–312, 2006.

(Hurdle et al., 2008) E.E. Hurdle, L.M. Bartlett, and
J.D. Andrews. System fault diagnostics using fault
tree analysis. Proceedings of the Institution of Me-
chanical Engineers Part O Journal of Risk and Re-
liability, 221(1):43–55, 2008.

(Kuntz, 2010) F. Kuntz. Optimising monitoring of
avionics systems to improve diagnostic perfor-
mances. 10th Summer School MOVEP, pages 100–
106, Aachen (Germany), 2010.

(Milner, 1980) R. Milner. A Calculus of Communicat-
ing Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer, 1980.

(Point and Rauzy, 1999) G. Point and A. Rauzy. AL-
TARICA - constraint automata as a description lan-
guage. European Journal on Automation, 1999.
Special issue on the Modelling of Reactive Systems.

(Ramadge and Wonham, 1989) P.J.G. Ramadge and
W.M. Wonham. The control of discrete event sys-
tems. Proceedings of the IEEE, 77(1):81 –98, jan
1989.

(Rauzy, 2001) A. Rauzy. Mathematical foundation of
minimal cutsets. IEEE Transactions on Reliability,
50(4):389–396, 2001.

(SAE, 2010) SAE. Guidelines for Development of
Civil Aircraft and Systems. Technical report, ARP
4754A, 2010.

(Sampath et al., 1996) M. Sampath, R. Sengupta,
S. Lafortune, K. Sinnamohideen, and D.C. Teneket-
zis. Failure diagnosis using discrete-event models.
IEEE Transactions on Control Systems Technology,
4(2):105–124, March 1996.

(Schumann et al., 2004) A. Schumann, Y. Pencolé,
and S. Thiébaux. Diagnosis of discrete-event sys-
tems using bdds. 15th International Workshop on
Principles of Diagnosis (DX-04), 197-202, 2004.

(Tang and Dugan, 2004) Z. Tang and J.B. Dugan.
Minimal cut set/sequence generation for dynamic
fault trees. In Proceedings of the 2004 Annual Sym-
posium Reliability and Maintainability, pages 207–
213. IEEE, 2004.

8


