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Abstract

We consider N independent stochastic processes (Xi(t), t ∈ [0, Ti]), i =

1, . . . , N , defined by a stochastic differential equation with drift term de-

pending on a random variable φi. The distribution of the random effect

φi depends on unknown parameters which are to be estimated from the

continuous observation of the processes Xi. We give the expression of the

exact likelihood. When the drift term depends linearly on the random

effect φi and φi has Gaussian distribution, an explicit formula for the

likelihood is obtained. We prove that the maximum likelihood estimator

is consistent and asymptotically Gaussian, when Ti = T for all i and N

tends to infinity. We discuss the case of discrete observations. Estimators

are computed on simulated data for several models and show good per-

formances even when the length time interval of observations is not very

large.

Key Words: Asymptotic normality, consistency, maximum likelihood estima-

tor, mixed-effects models, stochastic differential equations.

1 Introduction

Statistical analysis of data collected over time on a series of subjects requires to

account for both the intra-individual variability, i.e. the variability occurring
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within the dynamics of each individual over time, and the variability existing be-

tween subjects. Modeling of such data goes through mixed-effects models which

are very popular in the biomedical field (Davidian and Giltinan, 1995; Pinheiro

and Bates, 2000). In mixed-effects stochastic differential equations (SDEs), the

model for each individual set of data is given by a SDE, thus modeling the intra-

individual variability in the data, and the parameters of each individual SDE are

random variables, thus handling the variability between subjects. A major area

of application for mixed effects SDEs is in pharmacokinetic/pharmacodynamic

modeling, where they have been introduced as an alternative to the classical

ODE-based models (Ditlevsen and De Gaetano, 2005; Overgaard et al., 2005;

Donnet and Samson, 2008). SDEs with random effects have also been proposed

for neuronal data (Picchini et al., 2010).

Maximum likelihood estimation (MLE) of the parameters of the random effects,

also called population parameters, is generally not straightforward as the like-

lihood function can rarely be expressed in a closed-form. Approximations of

the likelihood have been proposed, based on linearization (Beal and Sheiner,

1982) or Laplace’s approximation (Wolfinger, 1993). Alternative methods have

also been developed such as the SAEM algorithm (Kuhn and Lavielle, 2004).

Maximum likelihood estimation in SDEs with random effects has been tackled

in a few papers. Ditlevsen and De Gaetano (2005) show that in the specific case

of a mixed-effects Brownian motion with drift, the likelihood function can be

explicitly derived, leading to explicit parameters estimators. For general mixed

SDEs, approximations of the likelihood have been proposed (Picchini et al.,

2010; Picchini and Ditlevsen, 2011).

For theoretical properties of the MLE in the context of mixed effects models,

the main contribution to our knowledge is due to (Nie and Yang, 2005; Nie,

2006, 2007) and covers the asymptotic properties of the MLE for the popula-

tion parameters under several asymptotic frameworks, depending on whether

the number of subjects and/or the number of observations per subject goes to

infinity. Nie’s results are nevertheless based on a series of technical assumptions,

which may be uneasy to check.

In the present work, we focus on mixed-effects SDEs with drift term depending

on random effects and diffusion term without random effects. More precisely,

we consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with

dynamics ruled by the following SDEs:

d Xi(t) = b(Xi(t), φi)dt + σ(Xi(t)) dWi(t), Xi(0) = xi, i = 1, . . . , N, (1)
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where (W1, . . . ,WN ) are N independent Wiener processes, φ1, . . . , φN are N

i.i.d. R
d-valued random variables, (φ1, . . . , φN ) and (W1, . . . ,WN ) are inde-

pendent and xi, i = 1, . . . , N are known real values. The diffusion coefficient

σ : R → R is a known real-valued function. The drift function b(x, ϕ) is a

known function defined on R × R
d and real-valued. Each process (Xi(t)) rep-

resents an individual and the random vector φi represents the random effect of

individual i. We assume that the random variables φ1, . . . , φN have a common

distribution g(ϕ, θ)dν(ϕ) on R
d, where θ is an unknown parameter belonging to

a set Θ ⊂ R
p and, for all θ, g(ϕ, θ) is a density w.r.t. a dominating measure ν

on R
d. Below, we denote by θ0 the true value of the parameter. The process

(Xi(t)) is continuously observed on a time interval [0, Ti] with Ti > 0 given. Our

aim is to estimate the parameters θ of the density of the random effects from

the observations {Xi(t), 0 ≤ t ≤ Ti, i = 1, . . . , N}. We introduce assumptions

ensuring that the models (1) are well-defined together with the exact likelihood

function. Then, we focus on the special case of one-dimensional linear Gaussian

random effects, i.e. b(x, φi) = φib(x), where b is a known real function and φi is

Gaussian. It turns out in this case that the likelihood has a simple and explicit

expression depending on θ and the sufficient statistics:

Ui =

∫ Ti

0

b(Xi(s))

σ2(Xi(s))
dXi(s), Vi =

∫ Ti

0

b2(Xi(s))

σ2(Xi(s))
ds, i = 1, . . . , N.

For the asymptotic study, the main difficulties are encountered to obtain specific

moment properties of the random variables (Ui, Vi), and to prove identifiability.

We prove the consistency and the asymptotic normality of the exact MLE as N

tends to infinity and give the expression of the Fisher information matrix. The

results are extended to Gaussian multidimensional linear random effects. The

present likelihood theory is derived from continuous observations of the X ′
is. In

practice, one rather disposes of discrete observations on the time interval [0, Ti].

Thus we suggest to discretize the r.v.’s Ui, Vi in the expression of estimators

and we show that under conditions on the discretization step, and thus on the

number of observations per subject, the asymptotic properties of the estimates

based on continuous observations are preserved. Our simulations are presented

within the framework of discretely observed stochastic processes.

The paper is organized as follows. Section 2 introduces the notations and as-

sumptions. In section 3, we make the likelihood function explicit. In sections

4 and 5, we show that the strong consistency and the asymptotic normality of
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the MLE when the model includes a Gaussian one-dimensional and a Gaussian

multi-dimensional random effect respectively. The impact of discretization on

the estimators is detailed in section 6. A simulation study is presented in section

7. Concluding remarks are given in section 8. Proofs are gathered in appendix.

2 Model, assumptions and notations

Consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with

dynamics ruled by (1). The processes (W1, . . . ,WN ) and the r.v.’s φ1, . . . , φN

are defined on a common probability space (Ω,F , P). We introduce assumptions

ensuring that the processes (1) are well defined and allowing to compute the

exact likelihood of our observations. Consider the filtration (Ft, t ≥ 0) defined

by Ft = σ(φi, Wi(s), s ≤ t, i = 1, . . . , N). As Ft = σ(Wi(s), s ≤ t) ∨ F i
t ,

with F i
t = σ(φi, φj , Wj(s), s ≤ t, j 6= i) independent of Wi, each process Wi

is a (Ft, t ≥ 0)-Brownian motion. Moreover, the random variables φi are F0-

measurable.

(H1) (i) The function (x, ϕ) → b(x, ϕ) is C1 on R × R
d, and such that:

∃K > 0,∀(x, ϕ) ∈ R × R
d, b2(x, ϕ) ≤ K(1 + x2 + |ϕ|2),

(ii) The function σ(.) is C1 on R and

∀x ∈ R, σ2(x) ≤ K(1 + x2).

Under (H1), for all ϕ, the stochastic differential equation

d Xϕ
i (t) = b(Xϕ

i (t), ϕ)dt + σ(Xϕ
i (t)) dWi(t), Xϕ

i (0) = xi, (2)

admits a unique strong solution process (Xϕ
i (t), t ≥ 0) adapted to the filtra-

tion (Ft, t ≥ 0). Let C(R+, R) be the space of continuous functions on R
+,

endowed with the Borel σ-field associated with the topology of uniform conver-

gence on compact sets. The distribution of Xϕ
i (.) is uniquely defined on this

space. Moreover, as xi is deterministic, for all integer k, all ϕ and all t ≥ 0,

sup
s≤t

E[Xϕ
i (s)]2k < +∞. (3)

For the observed processes, we have the following result.

Proposition 1. Under (H1), for i = 1, . . . , N , equation (1) admits a unique

solution process (Xi(t), t ≥ 0), adapted to the filtration (Ft, t ≥ 0). Given
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that φi = ϕ, the conditional distribution of (Xi(t), t ≥ 0) is identical to the

distribution of the process (Xϕ
i (t), t ≥ 0). The processes (Xi(t), t ≥ 0), i =

1, . . . , N are independent.

If for k ≥ 1, E|φi|2k < ∞, then for all T > 0, supt∈[0,T ] E[Xi(t)]
2k < ∞.

3 Likelihood

We introduce the canonical model associated with the observations. Let CTi

denote the space of real continuous functions (x(t), t ∈ [0, Ti]) defined on [0, Ti],

endowed with the σ-field CTi
associated with the topology of uniform conver-

gence on [0, Ti]. Under (H1), we introduce the distribution Qxi,Ti
ϕ on (CTi

, CTi
)

of (Xϕ
i (t), t ∈ [0, Ti]) given by (2). On R

d ×CTi
, let P i

θ = g(ϕ, θ)dν(ϕ)⊗Qxi,Ti
ϕ

denote the joint distribution of (φi, Xi(.)) and let Qi
θ denote the marginal distri-

bution of (Xi(t), t ∈ [0, Ti]) on (CTi
, CTi

). From now on, we denote by (φi, Xi(.))

the canonical process of R
d × CTi

. Let us consider the following assumptions.

(H2) For i = 1, . . . , N , and for all ϕ, ϕ′

Qxi,Ti
ϕ

(∫ Ti

0

b2(Xϕ
i (t), ϕ′)

σ2(Xϕ
i (t))

dt < +∞
)

= 1.

(H3) For f = ∂b
∂ϕj

, j = 1, . . . , d, there exist c > 0 and some γ ≥ 0 such that

sup
ϕ∈Rd

|f(x, ϕ)|
σ2(x)

≤ c(1 + |x|γ).

Proposition 2. Assume (H1)-(H3) and let ϕ0 ∈ R
d.

• The distributions Qxi,Ti
ϕ are absolutely continuous w.r.t. Qi := Qxi,Ti

ϕ0
with

density:

dQxi,Ti
ϕ

dQi
(Xi) = LTi

(Xi, ϕ) = eℓTi
(Xi,ϕ) with ℓTi

(Xi, ϕ) =

∫ Ti

0

b(Xi(s), ϕ) − b(Xi(s), ϕ0)

σ2(Xi(s))
dXi(s)−

∫ Ti

0

b2(Xi(s), ϕ) − b2(Xi(s), ϕ0)

2σ2(Xi(s))
ds,

where (Xi = Xi(s), s ≤ Ti) denotes the canonical process of CTi
given by

(Xi(s)(x) = x(s), s ≤ Ti).

• The function ϕ → LTi
(Xi, ϕ) admits a continuous version Qi-a.s. and

(Xi, ϕ) → LTi
(Xi, ϕ) is measurable on (CTi

× R
d, CTi

⊗ B(Rd)).
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Remark 1. For a given drift function b(x, ϕ), it is often possible to check

directly that ϕ → LTi
(X, ϕ) is continuous even if (H3) is not fulfilled. Then,

the joint measurability follows.

To simplify notations, we assume that there is one value ϕ0 such that b(x, ϕ0) ≡
0. Thus, we can choose the dominating measure Qi = Qxi,Ti

ϕ0
which is the

distribution of (2) with nul drift. Formula LTi
(Xi, ϕ) simplifies into:

LTi
(Xi, ϕ) = exp

(∫ Ti

0

b(Xi(s), ϕ)

σ2(Xi(s))
dXi(s) −

1

2

∫ Ti

0

b2(Xi(s), ϕ)

σ2(Xi(s))
ds

)
. (4)

By independence of the individuals, Pθ = ⊗N
i=1P

i
θ is the distribution of (φi, Xi(.)),

i = 1, . . . , N on the product space
∏N

i=1 R
d × CTi

and Qθ = ⊗N
i=1Q

i
θ is the dis-

tribution of the whole sample (Xi(t), t ∈ [0, Ti], i = 1, . . . , N) on C =
∏N

i=1 CTi
.

We now compute the density of Qθ w.r.t. Q = ⊗N
i=1Q

i. We denote by Eθ the

expectation w.r.t. Pθ.

Proposition 3. Assume (H1)-(H3).

• The probability measure Qi
θ admits a density w.r.t. Qi equal to:

dQi
θ

dQi
(Xi) =

∫

Rd

LTi
(Xi, ϕ)g(ϕ, θ)dν(ϕ) := λi(Xi, θ).

• The distribution Qθ on C =
∏N

i=1 CTi
admits a density given by

dQθ

dQ
(X1, . . . , XN ) =

N∏

i=1

λi(Xi, θ).

• The exact likelihood of the whole sample (Xi(t), t ∈ [0, Ti], i = 1, . . . , N) is

ΛN (θ) =

N∏

i=1

λi(Xi, θ). (5)

On this general expression, if we can check Nie (2006)’s assumptions, then weak

consistency and asymptotic normality of the MLE will follow. However, these

assumptions, even when the random effects are Gaussian, are uneasy.

4 Gaussian one-dimensional linear random effects

In this section, we consider model (1) with drift b(x, ϕ) = ϕb(x) where ϕ ∈ R,

b(.), σ(.) are known functions. In this case, we simplify (H1)-(H2) and assume
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that b, σ are C1 and have linear growth, which implies Proposition 1. And, we

assume that
∫ Ti

0
b2(Xi(s))/σ2(Xi(s))ds < ∞, Qxi,Ti

ϕ -a.s. for all ϕ. As ϕ →
LTi

(Xi, ϕ) is obviously continuous, (H3) is not required. We also assume that,

for i = 1, . . . , N , Ti = T, xi = x so that the observed processes (Xi(t), t ∈
[0, T ]), i = 1, . . . , N are i.i.d.. Let us introduce:

Ui =

∫ T

0

b(Xi(s))

σ2(Xi(s))
dXi(s), Vi =

∫ T

0

b2(Xi(s))

σ2(Xi(s))
ds, (6)

which are well defined under (H1)-(H2). Hence,

λi(Xi, θ) =

∫

R

g(ϕ, θ) exp (ϕUi −
ϕ2

2
Vi) dν(ϕ). (7)

4.1 Exact likelihood

We propose here to model the random effects distribution by a Gaussian distri-

bution N (µ, ω2), and set θ = (µ, ω2) ∈ R×(0,+∞) for the unknown parameters

to be estimated. This choice leads to an explicit exact likelihood.

Proposition 4. Assume that g(ϕ, θ)dν(ϕ) = N (µ, ω2). Then,

λi(Xi, θ) =
1

(1 + ω2Vi)1/2
exp

[
− Vi

2(1 + ω2Vi)

(
µ − Ui

Vi

)2
]

exp

(
U2

i

2Vi

)
.

The conditional distribution, under P i
θ, of φi given Xi is the distribution

N
(

µ + ω2Ui

1 + ω2Vi
,

ω2

1 + ω2Vi

)
.

Therefore, the logarithm of the likelihood function (5) is explicitely given by

LN (θ) = −1

2

N∑

i=1

log(1 + ω2Vi) −
1

2

N∑

i=1

Vi

1 + ω2Vi

(
µ − Ui

Vi

)2

+

N∑

i=1

U2
i

2Vi
. (8)

The derivatives of the log-likelihood (8) are

∂

∂µ
LN (θ) =

N∑

i=1

(
Ui

1 + ω2Vi
− µ

Vi

1 + ω2Vi

)
,

∂

∂ω2
LN (θ) =

1

2

N∑

i=1

[(
Ui

1 + ω2Vi
− µ

Vi

1 + ω2Vi

)2

− Vi

1 + ω2Vi

]
.
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When ω2
0 is known, we obtain the explicit estimator for µ0:

µ̂N =

∑N
i=1

Ui

1+ω2
0
Vi∑N

i=1
Vi

1+ω2
0
Vi

. (9)

When both parameters are unknown, the maximum likelihood estimators of

θ0 = (µ0, ω
2
0) are given by the system:

µ̂N =

(
N∑

i=1

Vi

1 + ω̂2
NVi

)−1( N∑

i=1

Ui

1 + ω̂2
NVi

)
,

N∑

i=1

(
µ̂N − Ui

Vi

)2
V 2

i

(1 + ω̂2
NVi)2

=
N∑

i=1

Vi

1 + ω̂2
NVi

.

Remark 2. Note that, when the effect φi is non random and φi ≡ µ0, the

estimator of µ0 is standardly given by:

µ̃N =

∑N
i=1 Ui∑N
i=1 Vi

, (10)

which corresponds to ω2
0 = 0 in µ̂N .

4.2 Preliminary moments properties

For studying the maximum likelihood estimators of θ = (µ, ω2), we need inves-

tigate properties of the following random variables:

γi(θ) =
Ui − µVi

1 + ω2Vi
, Ii(ω

2) =
Vi

1 + ω2Vi
. (11)

Indeed under Qθ, (γi(θ), Ii(ω
2))i=1,...,N are i.i.d. and the score function is

∂

∂µ
LN (θ) =

N∑

i=1

γi(θ),
∂

∂ω2
LN (θ) =

1

2

N∑

i=1

(γ2
i (θ) − Ii(ω

2)). (12)

Evidently, 0 < Ii(ω
2) ≤ 1/ω2 is bounded. By the following lemma, which is

crucial for the statistical study, we prove that γi(θ) admits a finite Laplace

transform, hence moments of any order.
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Lemma 1. For all θ = (µ, ω2) ∈ R × (0,+∞), and all u ∈ R,

Eθ(exp (u
U1

1 + ω2V1
)) < +∞.

We can now compute some useful moments of functions of γ1(θ), I1(ω
2).

Proposition 5. For all θ ∈ R × (0,+∞), the following relations hold:

Eθ(γ1(θ)) = 0, Eθ(γ
2
1(θ)) = Eθ(I1(ω

2)), Eθ(γ
3
1(θ)) = 3Eθ(γ1(θ) I1(ω

2)),

Eθ

(
γ2
1(θ) − I1(ω

2)
)2

= 4Eθ(γ
2
1(θ)I1(ω

2)) − 2Eθ(I
2
1 (ω2)).

4.3 Convergence in distribution of the normalized score

function

Based on lemma 1 and Proposition 5, we can state:

Proposition 6. For all θ, under Qθ, as N tends to infinity, the random vector

1√
N

(
∂

∂µLN (θ)
∂

∂ω2LN (θ)

)
=

1√
N

( ∑N
i=1 γi(θ)

1
2

∑N
i=1(γ

2
i (θ) − Ii(ω

2))

)

converges in distribution to N2(0, I(θ)) and the matrix

− 1

N

(
∂2

∂µ2LN (θ) ∂2

∂µ∂ω2LN (θ)
∂2

∂µ∂ω2LN (θ) ∂2

∂ω2∂ω2LN (θ)

)

converges in probability to I(θ) where

I(θ) =

(
Eθ(I1(ω

2)) Eθ(γ1(θ)I1(ω
2))

Eθ(γ1(θ)I1(ω
2)) Eθ(γ

2
1(θ)I1(ω

2)) − 1
2Eθ(I

2
1 (ω2))

)
(13)

is the covariance matrix of the vector

(
γ1(θ)

1
2 (γ2

1(θ) − I1(ω
2))

)
.

The following corollary holds immediately.

Corollary 1. When ω2 = ω2
0 is known, the explicit estimator µ̂N (9) is consis-

tent and
√

N(µ̂N−µ0) converges in distribution under Qµ0
to N (0, 1/Eµ0

(V1/(1+

ω2
0V1))) where 1/Eµ0

(V1/(1 + ω2
0V1)) ≥ ω2

0.
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If φ1, . . . , φN were observed, the MLE of µ0 would be φ̄ = 1
N (φ1 + . . . + φN )

which satisfies
√

N(φ̄ − µ0) ∼ N (0, ω2
0). As φ1, . . . , φN are not observed, we

obtain that the MLE µ̂N has a larger asymptotic variance.

4.4 Consistency and asymptotic normality

When both parameters µ0, ω
2
0 are unknown, we need to introduce additional

assumptions to prove identifiability and consistency. Recall that Q is the distri-

bution on C such that the canonical processes (Xi(s), s ≤ T, i = 1, . . . , N) are

i.i.d. and Xi satisfies the SDE with nul drift:

dXi(t) = σ(Xi(t))dWi(t), Xi(0) = x.

We assume that

(H4) The function b(.)/σ(.) is not constant. Under Q, the random variable

(U1, V1) admits a density f(u, v) w.r.t. the Lebesgue measure on R ×
(0,+∞) which is jointly continuous and positive on an open ball of R ×
(0,+∞).

(H5) The parameter set Θ is a compact subset of R × (0,+∞).

(H6) The true value θ0 belongs to
◦

Θ.

(H7) The matrix I(θ0) is invertible (see (13)).

Under smoothness assumptions on functions b, σ, assumption (H4) will be ful-

filled by application of Malliavin calculus tools†. The case where b(.)/σ(.) is

constant is rather simple and is treated separately in Section 7. Assumptions

(H5)-(H7) are classical. We first state an identifiability result.

Proposition 7. Set K(Q1
θ0

, Q1
θ) the Kullback information of Q1

θ0
w.r.t. Q1

θ.

(i) Under (H1)-(H2) and (H4), Q1
θ = Q1

θ0
implies that θ = θ0. Hence, θ →

K(Q1
θ0

, Q1
θ) admits a unique minimum at θ = θ0.

(ii) Under (H1)-(H2), the function θ → K(Q1
θ0

, Q1
θ) is continuous on R ×

(0,+,∞).

We are now able to prove the consistency and asymptotic normality of θ̂N .

Proposition 8. 1. Assume (H1)-(H2) and (H4)-(H5). Let θ̂N be a maxi-

mum likelihood estimator defined as any solution of LN (θ̂N ) = supθ∈Θ LN (θ).

Under Qθ0
, θ̂N converges in probability to θ0.

†If σ and f = b/σ are C∞, if their derivatives of any order greater than 1 are bounded, if σ
is bounded below, and if the Lebesgue measure of the set of values x such that f(x)f ′(x) = 0
is zero, then assumption (H4) holds.
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2. Assume (H1)-(H2) and (H4)-(H7). The maximum likelihood estimator

satisfies, as N tends to infinity,

√
N(θ̂N − θ0) →D N2(0, I−1(θ0)).

Note that the consistency obtained here is a strong consistency in the sense that

any solution of the likelihood equation is consistent.

5 Gaussian multidimensional linear random ef-

fects

In this section, we extend the previous results to multidimensional linear random

effects. Let φi = (φ1
i , . . . , φ

d
i )

′ be a d-dimensional random vector and b(x) =

(b1(x), . . . , bd(x))′ be a function R → R
d. Consider the SDE

d Xi(t) = φ′
i b(Xi(t))dt + σ(Xi(t)) dWi(t), Xi(0) = x. (14)

We assume that b1(x), . . . , bd(x) are such that b(x, ϕ) =
∑d

j=1 ϕjbj(x) satis-

fies (H1)-(H2) and that (φi, i = 1, . . . , N) are i.i.d. Gaussian vectors, with

expectation vector µ and covariance matrix Ω ∈ Sd(R) where Sd(R) is the

set of positive definite symetric matrices. The parameter to be estimated is

θ = (µ,Ω) ∈ R
d × Sd(R). To compute the likelihood, we introduce the random

vectors

Ui =

∫ T

0

b(Xi(s))

σ2(Xi(s))
dXi(s),

and the d × d random matrices

Vi =

∫ T

0

b(Xi(s))b
′(Xi(s))

σ2(Xi(s))
ds.

The following assumption is now required.

(H8) For i = 1, . . . , N the matrix Vi is positive definite Qi-a.s. and Qi
θ-a.s. for

all θ.

If the functions (bj/σ2) are not linearly independent, (H8) is not true. Thus,

(H8) can be interpreted as ensuring a well-defined dimension of the vector φi.

We deduce the invertibility of matrices involved in the likelihood computation.
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Lemma 2. Under (H8), the matrices Vi +Ω−1, Id +ViΩ, Id +ΩVi are invertible

Qi-a.s. and Qi
θ-a.s. for all θ.

Then we can compute the likelihood.

Proposition 9. Under (H8), set R−1
i = (Id + ViΩ)−1Vi, we have

λi(Xi, θ) =
1√

det(Id + ViΩ)
exp

[
−1

2
(µ − V −1

i Ui)
′R−1

i (µ − V −1
i Ui)

]
exp

(
1

2
U ′

iV
−1
i Ui

)
.

The conditional distribution of φi given Xi is the Gaussian distribution

Nd

(
(Id + ΩVi)

−1µ + (Ω−1 + Vi)
−1Vi, (Id + ΩVi)

−1Ω
)

The likelihood is ΛN (θ) =
∏N

i=1 λi(Xi, θ).

The score function (respectively a d-vector and a d × d matrix) is given by:

∂

∂µ
LN (θ) =

N∑

i=1

γi(θ),
∂

∂Ω
LN (θ) =

1

2

N∑

i=1

(γi(θ)γ
′
i(θ) − Ii(Ω))

where θ = (µ,Ω) and :

γi(θ) = (Id + ΩVi)
−1(Ui − Vi µ), Ii(Ω) = (Id + ΩVi)

−1Vi. (15)

When Ω0 is known, the estimator for µ0 is explicit.

Lemma 1 and Propositions 5 and 6 can be readily extended to the multidimen-

sional case.

Proposition 10. 1. For all θ = (µ,Ω) ∈ R × (0,+∞), and all u ∈ R,

Eθ(exp (u′(Id + ΩVi)
−1U1)) < +∞.

2. For all θ ∈ R × (0,+∞), the following relations hold:

Eθ(γ1(θ)γ
′
1(θ)) = Eθ(I1(Ω)), Eθ(γ1(θ)γ

′
1(θ)γ1(θ)) = 3Eθ(I1(Ω) γ1(θ)),

Eθ(γ1(θ)) = 0, Eθ (γ1(θ)γ
′
1(θ) − I1(Ω))

2
= 4Eθ(I1(Ω)γ1(θ)γ

′
1(θ))−2Eθ(I

2
1 (Ω)).

3. For all θ, under Qθ, as N tends to infinity, the random vector

1√
N

(
∂

∂µLN (θ)
∂

∂ΩLN (θ)

)
=

1√
N

( ∑N
i=1 γi(θ)

1
2

∑N
i=1(γi(θ)γ

′
i(θ) − Ii(Ω))

)

converges in distribution to N (0, I(θ)) where I(θ) is the covariance matrix

12



of the vector (
γ1(θ)

1
2 (γ1(θ)γ

′
1(θ) − I1(Ω))

)

which is also the limit of the observed Fisher information matrix.

The study of θ̂N = (µ̂N , Ω̂N ) can be done as above.

6 Discrete data

In this section, we briefly discuss the case of discrete data. Let us assume

that we observe synchronously the processes Xi(t) at times tnk = tk = k T
n ,

k = 0, 1, . . . , n. To build estimators θ̂
(n)
N based on these data, we simply replace

the r.v.’s Ui, Vi, i = 1, . . . , N by their discretized versions:

Un
i =

n−1∑

k=0

b(Xi(tk))

σ2(Xi(tk))
(Xi(tk+1) − Xi(tk)), (16)

V n
i =

n−1∑

k=0

b2(Xi(tk))

σ2(Xi(tk))
(tk+1 − tk). (17)

Looking at the expressions of (8) and its derivatives w.r.t. θ, it is enough to

study the differences Ui − Un
i , Vi − V n

i . We can prove

Lemma 3. Assume that b/σ is bounded and Lipschitz, σ(.) ≥ ǫ > 0, b and σ

Lipschitz, then for all p ≥ 1 and all i = 1, . . . , N , there exists a constant C such

that

Eθ0
(|Vi − V n

i |p + |Ui − Un
i |p) ≤

C

np/2
.

We deduce

Proposition 11. If n → +∞, then θ̂N − θ̂
(n)
N = oPθ0

(1). If n = n(N) → +∞
in such a way that n

N → +∞, then
√

N(θ̂N − θ̂
(n)
N ) = oPθ0

(1).

7 Simulation study

Several models are simulated. For each SDE model, 100 datasets are generated

with N subjects on the same time interval [0, T ] and three experimental designs:

(N = 20, T = 5), (N = 50, T = 5) and (N = 50, T = 10). The empirical mean

and variance of the MLE are computed from the 100 datasets. When possible,

N−1I−1
N (θ0) is also computed and compared with the empirical variance.

13



7.1 When b(x) = c σ(x)

Let us consider the case where b(x) = c σ(x), with c 6= 0 known. Then we have

Vi = c2T, Ui = c

∫ T

0

dXi(s)

σ(Xi(s))
. (18)

The estimators of µ0, ω
2
0 are simple and explicit:

µ̂N =
1

c2TN

N∑

i=1

Ui =
1

c2T
ŪN , ω̂2

N =
1

(c2T )2

(
1

N

N∑

i=1

(Ui − ŪN )2 − c2T

)
.

Using that Ui = c2Tφi + cWi(T ), an elementary study shows that µ̂N and ω̂2
N

are strongly consistent, that
√

N(µ̂N − µ0) has distribution N (0, ω2
0 + 1/(c2T ))

and that
√

N(ω̂2
N −ω2

0) converges in distribution to N (0, 2(ω2
0 +1/(c2T ))2). The

asymptotic variances of µ̂N and ω̂2
N are increased in comparison with the case

of non random effects.

We stress the fact that, whatever the drift funtion b(.), when b(.)/σ(.) is con-

stant, the estimators have the same distribution.

Example 1. Consider a mixed-effects Brownian motion with drift

dXi(t) = φidt + σ dWi(t), Xi(0) = 0,

with φi ∼ N (µ, ω2). This model is considered by Ditlevsen and De Gaetano

(2005) and the estimators are the same. We use two sets of population parame-

ters: (µ = −1, ω2 = 1) and (µ = 5, ω2 = 1). All simulations are performed with

a discretization step-size δ = 0.001 on [0, T ] and σ = 1 (σ known). Results, pre-

sented in Table 1, are satisfactory overall. Increasing N improves the accuracy

of both estimates µ̂N and ω̂2
N . For T = 5, both estimates are less biased when

the number of subjects is 50 instead of 20. The variance of the estimates is also

decreased with larger values of N . In general the empirical variances coincide

with the values of the asymptotic variances. Apparently, increasing T does not

have any significant impact on the properties of the estimates. Additional simu-

lations with other values for µ0 and ω2
0 have basically shown that the properties

of the estimates degrade when ω2
0 takes bigger values.

[Table 1 about here.]

We have also considered simulations of the mixed-effects geometric Brownian

motion where b(x) = x, σ(x) = σ x and the model where b(x) =
√

1 + x2,
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σ(x) = σ
√

1 + x2. On our simulated data, the true parameter values were

correctly estimated.

7.2 General case

Example 2. Consider an Ornstein-Uhlenbeck process with one random effect

dXi(t) = φiXi(t)dt + σ dWi(t), Xi(0) = 0,

with φi ∼ N (µ, ω2). We separate three situations: i) ω2 is known (θ = µ), ii) µ

is known (θ = ω2), iii) both parameters are unknown (θ = (µ, ω2)). When ω2
0 is

known, we use the explicit expression of µ̂N . Otherwise, numerical optimization

procedures are required for maximizing the log-likelihood with respect to µ and

ω2. In situations i) and ii), the asymptotic variance of the estimate has an ex-

plicit expression and is computed. Each individual diffusion is simulated with a

discretization step-size δ = 0.001 on [0, T ] and σ = 1. Several sets of parameter

values are used: (µ = −5, ω2 = 1) and (µ = 10, ω2 = 1). Table 2 displays

the results of the three inferences i), ii) and iii). Results highlight the accuracy

of the estimates of both parameters µ and ω2 whatever the design and the pa-

rameter values. In the three considered inference situations, increasing N leads

to smaller bias of the parameter estimates and smaller variances. Moreover, we

notice great similarities between N−1I−1
N (θ0) and the empirical variance of θ̂N ,

especially when N is large. Finally, we don’t observe any significant impact of

T neither on the bias nor on the variance of the parameter estimates.

[Table 2 about here.]

Example 3. Consider an Ornstein-Uhlenbeck process with two random effects

dXi(t) = (−φ1
i Xi(t) + φ2

i )dt + σ dWi(t), Xi(0) = 0,

with φi = (φ1
i , φ

2
i )

′ ∼ N2(µ,Ω), µ = (µ1, µ2)
′ and a diagonal matrix Ω with

components (ω2
1 , ω2

2). For this model, assumption (H8) is satisfied. Indeed

Vi =
1

σ2

( ∫ T

0
X2

i (s)ds
∫ T

0
Xi(s)ds∫ T

0
Xi(s)ds T

)
.

Using the equality case in the Cauchy-Schwarz inequality, we see that det(Vi) =

0 if and only if Xi(t) ≡ cste on [0, T ] which is impossible. The estimation of
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θ = (µ1, µ2, ω
2
1 , ω2

2) is obtained by optimizing numerically the log-likelihood.

Each individual diffusion is simulated with a discretization step-size δ = 0.001

on [0, T ] and σ = 1. Several sets of parameter values are used: (µ1 = 0.1, µ2 =

1, ω2
1 = 0.01, ω2

2 = 1) and (µ1 = 0.1, µ2 = 1, ω2
1 = 0.001, ω2

2 = 1). Table 3

displays the results of estimation. Parameters are well estimated although µ2

has a larger bias when ω2
2 is greater. Biases decrease when N increases. Again,

the influence of T is small.

[Table 3 about here.]

Example 4. Consider the process with single random effect

dXi(t) = φiXi(t)dt + σ
√

1 + Xi(t)2dWi(t), Xi(0) = 0,

with φi ∼ N (µ, ω2). We obtain the estimate for θ = (µ, ω2) by numerical

optimization of the log-likelihood with respect to µ and ω2. We simulate N

individual diffusions with a discretization step-size δ = 0.001 on [0, T ], and

several sets of parameter values are used: (µ = −1, ω2 = 1) and (µ = 5, ω2 = 1).

Table 4 displays the results of estimation. The results are satisfactory overall,

although parameter ω2 is estimated with larger bias than parameter µ. Bias and

empirical variances of the estimates decrease when N becomes larger. T = 10

leads to better results (smaller bias) for the estimation of ω2 than T = 5.

[Table 4 about here.]

8 Concluding remarks

In this paper, we have studied maximum likelihood estimation for i.i.d. obser-

vations of stochastic differential equations including a random effect in the drift

term. When the drift term depends linearly on the random effect, we prove

that the likelihood is given by a closed-form formula and that the exact MLE

is strongly consistent and asymptotically Gaussian as the number of observed

processes tends to infinity.

For the clarity of exposure, we have considered only one-dimensional SDEs, but

the theory can be done in the same way for multidimensional SDEs. For a drift

term depending linearly on the random effects, the likelihood is still explicit

although its formulae may be much more cumbersome.

One could also include non random effects in the drift without much changes.
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9 Appendix: proofs

Proof of Proposition 1. Consider the two-dimensional SDE:

dXi(t) = b(Xi(t), φi(t))dt + σ(Xi(t))dWi(t), Xi(0) = xi,

dφi(t) = 0, φi(0) = φi.

Under (H1), the above system admits a unique strong solution and there exists a

functional F such that Xi(.) = F.(x
i, φi, Wi(.)) where F. : R×R

d×C(R+, R) →
C(R+, R) is measurable (see e.g. Karatsas and Shreve, 1997, p.310).

Moreover, Xϕ
i (.) = F.(x

i, ϕ,Wi(.)). By the Markov property of the joint process

((Xi(t), φi(t) ≡ φi), t ≥ 0), the conditional distribution of Xi(.) given φi =

ϕ is identical to the distribution of Xϕ
i (.). As (φi, Wi(.)) are independent,

18



the processes (Xi(.)) are independent. As (xi, φi) is the initial condition, the

moment result follows. �

Proof of Proposition 2. Under (H1)-(H2), the first part is classical (see e.g.

Lipster and Shiryaev, 2001).

To prove the continuity in ϕ, two kinds of terms are to be studied. The first is,

for a given Xi, the ordinary integral

ϕ →
∫ Ti

0

b2(Xi(s), ϕ)

σ2(Xi(s))
ds. (19)

Using (H1)-(H3) and the continuity theorem for ordinary integrals, we obtain

easily the continuity of (19).

Second, the stochastic integral

ϕ →
∫ Ti

0

b(Xi(s), ϕ)

σ2(Xi(s))
dXi(s) := I1(ϕ) + I2(ϕ), (20)

with

I1(ϕ) =

∫ Ti

0

b(Xi(s), ϕ)

σ2(Xi(s))
b(Xi(s), ϕ0)ds,

I2(ϕ) =

∫ Ti

0

b(Xi(s), ϕ)

σ2(Xi(s))
(dXi(s) − b(Xi(s), ϕ0)ds) .

The function ϕ → I1(ϕ) is studied using (H1)-(H3) and the continuity theo-

rem for ordinary integrals again. For I2(ϕ), using the Burkholder-Davis-Gundy

inequality, we get, using (H1)-(H3):

EQi (I2(ϕ) − I2(ϕ
′))

2k ≤ CkEQi

[∫ Ti

0

(b(Xi(s), ϕ) − b(Xi(s), ϕ
′))

2

σ2(Xi(s))
ds

]k

≤ Ck|ϕ − ϕ′|2k
EQi

[∫ Ti

0

c2K(1 + |Xi(s)|2γ)(1 + |Xi(s)|)2ds

]k

≤ C(k, γ)|ϕ − ϕ′|2k

∫ Ti

0

(1 + EQi(|Xi(s)|2(γ+1))ds.

Using (3) and choosing 2k > d, the Kolmogorov criterion (see e.g. Revuz and

Yor, 1999) yields that ϕ → I2(ϕ) admits a continuous version Qi-a.s..

As Xi → LTi
(Xi, ϕ) is measurable for all ϕ and ϕ → LTi

(Xi, ϕ) is continuous

for all Xi, the joint measurability can be proved as follows. For m ∈ N and

k = (k1, . . . , kd) ∈ Z
d, set Bk,m =

∏d
i=1[ki/2m, (ki + 1)/2m[. These sets are

disjoint and for all m, R
d = ∪k∈ZdBk,m. Let ϕk,m = (ki/2m, i = 1, . . . , d) and
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set:

Lm(Xi, ϕ) =
∑

k∈Zd

LTi
(Xi, ϕk,m)1Bk,m

(ϕ).

Thus, Lm(Xi, ϕ) is jointly measurable. As LTi
(Xi, ϕ) is continuous w.r.t. ϕ,

Lm(Xi, ϕ) →m→+∞ LTi
(Xi, ϕ). Hence, the result. �

Proof of Proposition 3. For H a positive measurable function on CTi
, we have:

EQi
θ
(H(Xi)) = EP i

θ
(H(Xi)) = EP i

θ
[EP i

θ
(H(Xi)|φi)].

By Propositions 1 and 2, as LTi
(Xi, ϕ) is the density of Qxi,Ti

ϕ w.r.t. Qi, we get:

EP i
θ
(H(Xi)|φi = ϕ) = E

Q
xi,Ti
ϕ

(H(Xi)) = EQi (H(Xi)LTi
(Xi, ϕ)) .

Using the joint measurability of LTi
(Xi, ϕ) w.r.t. (Xi, ϕ), the Fubini theorem

yields:

EQi
θ
(H(Xi)) =

∫

Rd

g(ϕ, θ)dν(ϕ)EQi (H(Xi)LTi
(Xi, ϕ))

= EQiH(Xi)

∫

Rd

g(ϕ, θ)LTi
(Xi, ϕ)dν(ϕ).

Thus, the density of Qi
θ w.r.t. Qi is computed as:

dQi
θ

dQi
(Xi) =

∫

Rd

LTi
(Xi, ϕ)g(ϕ, θ)dν(ϕ) := λi(Xi, θ).

The formula for the exact likelihood follows. �

Proof of Proposition 4. We need compute first the joint density of (φi, Xi) w.r.t.

dϕ ⊗ dQi:

exp

(
ϕUi −

ϕ2

2
Vi

)
× 1

ω
√

2π
exp

[
− 1

2ω2
(ϕ − µ)2

]
.

Developping the exponent yields:

Ei = −1

2

[
ϕ2(Vi + ω−2) − 2ϕ(Ui + ω−2µ)

]
− 1

2
ω−2µ2. (21)

Let us set:

mi =
Ui + ω−2µ

Vi + ω−2
=

µ + ω2Ui

1 + ω2Vi
, σ2

i = (Vi + ω−2)−1 =
ω2

1 + ω2Vi
. (22)

Thus, the conditional distribution of φi given Xi is the Gaussian law N (mi, σ
2
i ).

After some elementary algebra, we get:

Ei = − 1

2σ2
i

(ϕ − mi)
2 − 1

2
Vi(1 + ω2Vi)

−1(µ − V −1
i Ui)

2 +
1

2
V −1

i U2
i .

Thus, the result. �

Proof of Lemma 1. For the proof, we set γ1(θ) = γ1 and I1(ω
2) = I1 (see
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(11)). Let l(X1, θ) = log λ1(X1, θ) and set θ(u) = (µ + u, ω2). Developping

(U1 − (µ + u)V1)
2, we get:

l(X1, θ(u)) = l(X1, θ) + uγ1 −
u2

2
I1.

Here, ∂
∂µ l(X1, θ) = γ1 and ∂2

∂µ2 l(X1, θ) = −I1. Taking exponential yields:

λ1(X1, θ) exp (uγ1) = λ1(X1, θ(u)) exp (
u2

2
I1).

Integrating w.r.t. the dominating measure Q1, we obtain, as I1 ≤ 1/ω2,

Eθ exp (uγ1) = Eθ(u) exp (
u2

2
I1) ≤ exp (

u2

2ω2
) < +∞.

Now, as uµ ≤ (u + µ)2/4,

Eθ(exp (u
U1

1 + ω2V1
)) ≤ Eθ exp (uγ1) exp (

(u + µ)2

4ω2
) < +∞.

�

Proof of Proposition 5. We set γ1(θ) = γ1 and I1(ω
2) = I1. Let θ = (µ, ω2) and

τ = (0, ω2) and set

p1(θ) =
λ1(X1, θ)

λ1(X1, τ)
=

dQ1
θ

dQ1
τ

= exp

(
µ

U1

1 + ω2V1
− µ2

2

V1

1 + ω2V1

)
,

so that
∫

CT
p1(θ)dQ1

τ = 1. Provided that we can interchange derivation w.r.t. µ

and integration w.r.t. Q1
τ , we have for j ≥ 1,

∫

CT

∂jp1

∂µj
(θ)dQ1

τ = 0. (23)

Before justifying the interchange of derivation and integration, let us compute

the successive derivatives of p1(θ). We have:

∂p1

∂µ
(θ) = γ1p1(θ),

∂2p1

∂µ2
(θ) =

(
γ2
1 − I1

)
p1(θ),

∂3p1

∂µ3
(θ) =

(
γ3
1 − 3γ1 I1

)
p1(θ),

∂4p1

∂µ4
(θ) =

(
γ4
1 − 6γ2

1 I1 + 3I2
1

)
p1(θ).

Therefore, (23) for j = 1, 2, 3, 4 imply the announced moments relations.

It remains to justify the interchange of derivation and integration. Let us fix µ̄

and ε > 0. For µ ∈ [µ̄ − ε, µ̄ + ε], we have the bound

|∂p1

∂µ
(θ)| ≤

(
| U1

1 + ω2V1
| + C

ω2

)(
exp ((µ̄ − ε)

U1

1 + ω2V1
) + exp ((µ̄ + ε)

U1

1 + ω2V1
)

)
,

where C = |µ̄+ ε|+ |µ̄− ε|. The upper bound is integrable w.r.t. Q1
τ by Lemma

1 and independent of µ. Therefore, the interchange is justified. We proceed

analogously for the other derivatives. �
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Proof of Proposition 6. We set γ1(θ) = γ1 and I1(ω
2) = I1. Let us compute the

second derivatives of the loglikelihood. Using that

∂γi/∂µ = −Ii, ∂γi/∂ω2 = −γiIi, ∂Ii/∂ω2 = −I2
i (ω2),

we obtain

∂2

∂µ2
LN (θ) = −

N∑

i=1

Ii(ω
2),

∂2

∂µ∂ω2
LN (θ) = −

N∑

i=1

γi(θ)Ii(ω
2), (24)

∂2

∂ω2∂ω2
LN (θ) = −1

2

N∑

i=1

(
2γ2

i (θ)Ii(ω
2) − I2

i (ω2)
)
. (25)

We use the simple law of large numbers, the standard central limit theorem and

Proposition 5 to conclude. �

Proof of Proposition 7. First note that λ1(X1, θ) = λ1(U1, V1, θ) depends on X1

only through (U1, V1). Hence, under Q1
θ, by (H4), the couple (U1, V1) admits

a density w.r.t. the Lebesgue measure equal to fθ(u, v) = λ1(u, v, θ)f(u, v).

Assuming that Q1
θ = Q1

θ0
implies that fθ(u, v) = fθ0

(u, v) a.e., by the continuity

of the functions fθ(u, v), fθ0
(u, v), the equality holds everywhere. As f(u, v) is

positive on an open ball B of R × (0,+∞), we deduce that, on the ball B, the

following equality holds:
(

1 + ω2
0v

1 + ω2v

)1/2

= exp

[
− v

2(1 + ω2
0v)

(
µ0 −

u

v

)2

+
v

2(1 + ω2v)

(
µ − u

v

)2
]
.

The left-hand side is a function of v only while the right-hand side is a function

of (u, v). This is only possible if ω = ω0 and µ = µ0. As K(Q1
θ0

, Q1
θ) ≥ 0 and

= 0 if and only if Q1
θ0

= Q1
θ, we get (i).

Let L1(θ) = log λ1(X1, θ) (see (4)-(8)). We have

K(Q1
θ0

, Q1
θ) = Eθ0

(L1(θ0) − L1(θ)).

Rearranging terms, we get:

L1(θ0) − L1(θ) =
1

2
log

(
1 + ω2V1

1 + ω2
0V1

)
+

1

2

(ω2
0 − ω2)U2

1

(1 + ω2V1)(1 + ω2
0V1)

+
µ2V1

2(1 + ω2V1)
− µU1

1 + ω2V1
−
(

µ2
0V1

2(1 + ω2
0V1)

− µ0U1

1 + ω2
0V1

)
.

Let us prove that this r.v. has finite expectation under Eθ0
. We have the upper

bound:
0 <

1 + ω2V1

1 + ω2
0V1

< 1 +
ω2

ω2
0

.

Introducing the function h(x) = x− 1 − log x, which is defined on (0,+∞) and
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non-negative, we get the lower bound:

log

(
1 + ω2V1

1 + ω2
0V1

)
= h

(
1 + ω2

0V1

1 + ω2V1

)
+ (ω2 − ω2

0)
V1

1 + ω2V1
≥ (ω2 − ω2

0)
V1

1 + ω2V1
.

Thus,

| log

(
1 + ω2V1

1 + ω2
0V1

)
| ≤ log (1 +

ω2

ω2
0

) +
|ω2 − ω2

0 |
ω2

. (26)

For the second term, we write:

0 <
U2

1

(1 + ω2V1)(1 + ω2
0V1)

=

(
U1

1 + ω2
0V1

)2
1 + ω2

0V1

1 + ω2V1
≤
(

U1

1 + ω2
0V1

)2

(1 +
ω2

0

ω2
)

(27)

which has finite Eθ0
-expectation by Lemma 1. For the last terms, we only need

to check that Eθ0
|U1/(1 + ω2V1)| < +∞. For this, we remark that:

U1

1 + ω2V1
=

U1

1 + ω2
0V1

(
1 + (ω2

0 − ω2)
V1

1 + ω2V1

)
.

Therefore,

| U1

1 + ω2V1
| ≤ | U1

1 + ω2
0V1

|
(

1 +
|ω2

0 − ω2|
ω2

)
. (28)

By Lemma 1, the right-hand side has finite Eθ0
-expectation. The function

θ → L1(θ0) − L1(θ) is continuous. For all θ = (µ, ω2) ∈ [µ, µ] × [ω2, ω2] ⊂
R × (0,+∞), using inequalities (26)-(27)-(28), we can easily obtain an upper

bound for |L1(θ0) − L1(θ)| which has finite Eθ0
-expectation and is uniform on

the interval [µ, µ]× [ω2, ω2]. The continuity of the Kullback information follows.

This gives (ii). �

Remark 3. It is worth noting that, although we have an explicit expression of

K(Q1
θ0

, Q1
θ), we cannot prove directly, using this expression, that K(Q1

θ0
, Q1

θ) =

0 implies θ = θ0.

Proof of Proposition 8. We first prove 1. As (1/N)(LN (θ0) − LN (θ) converges

to K(Q1
θ0

, Q1
θ) in Qθ0

-probability, the loglikelihood −(1/N)LN (θ) is a contrast

process with contrast function θ → K(Q1
θ0

, Q1
θ). Following the usual standard

proof of consistency of minimum contrats estimators (see e.g. van der Vaart,

1998), it remains to study the continuity modulus of −(1/N)LN (θ) defined by:

wN (η) = sup
‖θ−θ′‖≤η,θ,θ′∈Θ

|LN (θ) − LN (θ′)|/N.

We simply use wN (η) ≤ η supθ∈Θ ‖∇LN (θ)/N‖ and bound the score function

(12). By (H5), we have Θ ⊂ [µ, µ]× [ω2, ω2] with µ < µ, 0 < ω2 < ω2. We have:
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γi(θ) =
Ui

1 + ω2
0Vi

(
1 +

(ω2
0 − ω2)Vi

1 + ω2Vi

)
− µ

Vi

1 + ω2Vi
.

Thus,

sup
θ∈Θ

|γi(θ)| ≤ | Ui

1 + ω2
0Vi

|
(

2 +
ω2

0

ω2

)
+

|µ|
ω2

. (29)

Therefore, there is a constant C such that

Eθ0
wN (η) ≤ C η Eθ0

(
| U1

1 + ω2
0V1

| + (
U1

1 + ω2
0V1

)2
)

.

This leads to the consistency of θ̂N .

For the second point, the proof follows the standard scheme. By the consistency

and (H5), Qθ0
(θ̂N ∈ ◦

Θ) → 1. For the proof, let θ̂N,i, θ0,i be the components of

θ̂N , θ0. Set UN (θ) = −(1/N)LN (θ) and denote by U ′
N,i, U

′′
N,ij the derivatives of

UN w.r.t. θi or θiθj . The Taylor formula writes:

0 = U ′
N,i(θ̂N ) = U ′

N,i(θ0) +
∑

j=1,2

(θ̂N,j − θ0,j)(U
′′
N,ij(θ0) + RN ),

with

RN =

∫ 1

0

(
U ′′

N,ij(θ0 + s(θ̂N − θ0)) − U ′′
N,ij(θ0)

)
ds.

Using Propositions 8 and 6, it remains to check that RN tends in Qθ0
-probability

to 0. For this, we compute the third derivatives of UN using (24)-(25):

1

N

∂3

∂µ3
LN (θ) = 0,

1

N

∂3

∂ω2∂ω2∂ω2
LN (θ) =

1

N

N∑

i=1

[
3γ2

i (θ)I2
i (ω2) − I3

i (ω2)
]
,

1

N

∂3

∂2µ∂ω2
LN (θ) =

1

N

N∑

i=1

I2
i (ω2),

1

N

∂3

∂µ∂ω2∂ω2
LN (θ) =

2

N

N∑

i=1

γi(θ)I
2
i (ω2).

Using (29), we obtain, for C a constant depending on Θ

|RN | ≤ C |θ̂N − θ0|
1

N

N∑

i=1

(1 +

(
| Ui

1 + ω2
0Vi

| + (
Ui

1 + ω2
0Vi

)2
)

.

As we have proved the consistency, RN tends to 0. Hence the result. �

Proof of Lemma 2. The matrix Vi + Ω−1 is symmetric and satisfies, for all

x ∈ R
d, x 6= 0, x′(Vi + Ω−1)x = x′Vix + x′Ω−1x > 0 as Vi and Ω−1 are

positive definite. Thus Vi + Ω−1 is positive definite hence invertible. Noting

that Id + ViΩ = (Ω−1 + Vi)Ω and Id + ΩVi = Ω(Ω−1 + Vi) yields that both

matrices are invertible. �
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Proof of Proposition 9. We compute the joint density of (φi, Xi) w.r.t. dϕ⊗dQi:

exp

(
ϕ′Ui −

1

2
ϕ′Viϕ

)
× exp

[
−1

2
(ϕ − µ)′Ω−1(ϕ − µ)

]
.

Let

Ei = −1

2

[
ϕ′(Vi + Ω−1)ϕ − 2ϕ′(Ui + Ω−1µ)

]
− 1

2
µ′Ω−1µ, (30)

and set:

mi = Σi(Ui + Ω−1µ), Σ2
i = (Vi + Ω−1)−1. (31)

Thus, the conditional distribution of φi given Xi is the Gaussian law N (mi,Σ
2
i ).

Hence, we have

Ei = −1

2
(ϕ−mi)

′Σ−1
i (ϕ−mi)−

1

2
(µ− V −1

i Ui)
′R−1

i (µ− V −1
i Ui) +

1

2
U ′

iV
−1
i Ui.

Thus, the result. �

Proof of Proposition 10. For the first point, we proceed as in Lemma 1. Let

γ1(θ) = γ1, I1(Ω) = I1, l(X1, θ) = log λ1(X1, θ) and θ(u) = (µ + u, Ω). Devel-

opping ((µ + u) − V −1
1 U1)

′R−1
1 ((µ + u) − V −1

1 U1) yields:

l(X1, θ(u)) = l(X1, θ) + u′γ1 −
1

2
u′I1u.

Thus
λ1(X1, θ) exp (u′γ1) = λ1(X1, θ(u)) exp (

1

2
u′I1u).

Remark that u′I1u ≤ u′Ω−1u as I1 = Ω−1 − (ΩV1Ω + Ω)−1. Integrating w.r.t.

Q1, we obtain,

Eθ exp (u′γ1) = Eθ(u) exp (
1

2
u′I1u) ≤ exp (

1

2
u′Ω−1u) < +∞.

Now, we can write, as u′I1µ = 1
4 ((u + µ)′I1(u + µ) − (u − µ)′I1(u − µ)) ≤

1
4 (u + µ)′I1(u + µ):

Eθ(exp (u′(Id + ΩVi)
−1U1)) ≤ Eθ exp (u′γ1) exp

(
1

4
(u + µ)′Ω−1(u + µ)

)
< +∞.

This gives 1. The proof of the second point and third points is analogous to

Proposition 5 and Proposition 6. �

Proof of Lemma 3. We only treat the case p ≥ 2. Assumptions imply that b2/σ2

is Lipschitz say with constant L. Using the Hölder inequality twice, we get

Eθ0
|Vi − V

(n)
i |p ≤ Lp T p−1

n−1∑

k=0

∫ tk+1

tk

Eθ0
|Xi(s) − Xi(tk)|pds.
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Now, for 0 ≤ t ≤ t + h ≤ T , we have

Xi(t + h) − Xi(t) =

∫ t+h

t

φib(Xi(s))ds +

∫ t+h

t

σ(Xi(s))dWi(s).

Using φib(Xi(s)) ≤ φ2
i /2 + b2(Xi(s))/2 and the Hölder inequality, we get

|Xi(t+h)−Xi(t)|p ≤ C

(
φ2p

i hp +

∫ t+h

t

b2p(Xi(s))ds hp−1 + |
∫ t+h

t

σ(Xi(s))dWi(s)|p
)

.

We use that b and σ have linear growth, the Burkholder-Davis-Gundy inequality

and Mk = sups∈[0,T ] Eθ0
|Xi(s)|k < ∞ for all k, then

Eθ0
|Xi(t+h)−Xi(t)|p ≤ C

(
hp

Eθ0
φ2p

i + hp (1 + M2p) + hp/2(1 + Mp)
)
≤ Chp/2.

Thus we obtain

Eθ0
|Vi − V

(n)
i |p ≤ C

np/2
.

For the difference Ui − Un
i , we have

Ui − Un
i =

n−1∑

k=0

∫ tk+1

tk

(
b

σ2
(Xi(s)) −

b

σ2
(Xi(tk))

)
dXi(s) = A1 + A2

where A1 is a term analogous to the one already studied above and

A2 =

n−1∑

k=0

∫ tk+1

tk

(
b

σ2
(Xi(s)) −

b

σ2
(Xi(tk))

)
σ(Xi(s))dWi(s).

We introduce the process

H(n)
s =

n−1∑

k=0

1]tk,tk+1](s)

(
b

σ2
(Xi(s)) −

b

σ2
(Xi(tk))

)
σ(Xi(s))

so that A2 =
∫ T

0
H

(n)
s dWi(s). We treat Eθ0

|A2|p using the Burkholder-Davis-

Gundy inequality and similar tools as above. �
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Tables

True N = 20, T = 5 N = 50, T = 5 N = 50, T = 10
value Mean (Var) 1

N I−1
N Mean (Var) 1

N I−1
N Mean (Var) 1

N I−1
N

µ = −1 -0.97 (0.06) 0.06 -0.99 (0.02) 0.02 -0.99 (0.03) 0.02
ω2 = 1 0.91 (0.16) 0.14 0.99 (0.06) 0.06 0.97 (0.06) 0.05
µ = 5 5.01 (0.06) 0.06 5.00 (0.03) 0.02 5.01 (0.02) 0.02
ω2 = 1 0.99 (0.16) 0.14 0.97 (0.05) 0.06 0.97 (0.05) 0.05

Table 1: Example 1: Mixed Brownian motion with drift. Empirical mean and
variance (in brackets) of µ̂N and ω̂2

N computed from 100 datasets for three
designs and two sets of parameters (µ, ω2). The exact asymptotic variance
diag

(
N−1I−1

N (θ0)
)

is also computed.

N = 20, T = 5 N = 50, T = 5 N = 50, T = 10
True value Mean (Var) 1

N I−1
N Mean (Var) 1

N I−1
N Mean (Var) 1

N I−1
N

µ estimated, ω2 fixed
µ = −5, ω2 = 1 µ̂N -5.03 (0.14) 0.11 -5.01 (0.06) 0.05 -4.99 (0.04) 0.02
µ = 10, ω2 = 1 µ̂N 9.90 (0.05) 0.05 9.91 (0.01) 0.02 9.90 (0.02) 0.02

µ fixed, ω2 estimated
µ = −5, ω2 = 1 ω̂2

N 0.96 (0.31) 0.62 0.96 (0.14) 1.49 0.93 (0.16) 0.27
µ = 10, ω2 = 1 ω̂2

N 0.99 (0.08) 0.20 1.00 (0.04) 0.04 0.97(0.03) 0.05
µ and ω2 estimated

µ = −5, ω2 = 1 µ̂N -4.95 (0.22) - -4.99 (0.07) - -4.96 (0.03) -
ω̂2

N 0.74 (1.00) - 0.91 (0.34) - 0.99 (0.21) -
µ = 10, ω2 = 1 µ̂N 9.85 (0.05) - 9.85 (0.02) - 9.84 (0.01) -

ω̂2
N 0.94 (0.08) - 0.95 (0.04) - 0.94 (0.05) -

Table 2: Example 2: Mixed Ornstein-Uhlenbeck model with one random effect.
Estimation of µ when ω2

0 is known, of ω2 when µ0 is known and simultaneous
estimation of µ and ω2, for different values of (N , T ) and different parame-
ter values. Empirical mean, variance (in brackets) and estimated value of the
asymptotic variance diag

(
N−1I−1

N (θ0)
)

are computed from 100 repeated simu-
lated datasets.
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True parameter N = 20, T = 5 N = 50, T = 5 N = 50, T = 10
values Mean (Var) Mean (Var) Mean (Var)
µ1 = 0.1 0.095 (0.082) 0.102 (0.059) 0.102 (0.028)
µ2 = 1 1.007 (0.275) 1.020 (0.193) 0.984 (0.175)
ω2

1 = 0.01 0.010 (0.014) 0.010 (0.009) 0.010 (0.005)
ω2

2 = 1 0.919 (0.526) 0.956 (0.342) 1.029 (0.278)
µ1 = 0.1 0.123 (0.073) 0.104 (0.047) 0.106 (0.019)
µ2 = 1 1.085 (0.287) 1.010 (0.166) 1.022 (0.171)
ω2

1 = 0.001 0.002 (0.004) 0.002 (0.004) 0.001 (0.002)
ω2

2 = 1 1.095 (0.488) 1.005 (0.353) 1.024 (0.253)

Table 3: Example 3: Mixed Ornstein-Uhlenbeck model with two random ef-
fects. Empirical mean, variance (in brackets) are computed from 100 repeated
simulated datasets for different values of (N , T ) and different parameter values.

True N = 20, T = 5 N = 50, T = 5 N = 50, T = 10
value Est Mean (Var) Mean (Var) Mean (Var)

µ = −1 µ̂N -1.03 (0.12) -0.98 (0.04) -1.02 (0.03)
ω2 = 1 ω̂2

N 0.95 (0.42) 0.94 (0.11) 0.98 (0.09)
µ = 5 µ̂N 4.99 (0.05) 5.00 (0.02) 5.04 (0.03)
ω2 = 1 ω̂2

N 0.96 (0.17) 0.97 (0.04) 1.00 (0.04)

Table 4: Example 4. Empirical mean and variance (in brackets) of the estimates
µ̂N and ω̂2

N computed from 100 datasets for different values of (N , T ) and
different parameter values.
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