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A robust algebraic approach to fault diagnosis of uncertainlinear
systems

Abdouramane Moussa Ali, Cédric Join and Frédéric Hamelin

Abstract— This article proposes an algebraic method to fault
diagnosis for uncertain linear systems. The main advantage
of this new approach is to realize fault diagnosis only from
knowledge of input and output measurements without identi-
fying explicitly model parameters. Using tools and resultsof
algebraic identification and pseudospectra analysis, the issues
of robustness of the proposed approach compared to the
model order and noise measurement are examined. Numerical
examples are provided and discussed to illustrate the efficiency
of the proposed fault diagnosis method.

I. I NTRODUCTION

Fault diagnosis methods include some actions imple-
mented in order to detect, isolate and identify any abnormal
phenomenon on a system.

In [3], [7] and references therein the classical approaches
using analytical information are depicted. They allow robust
fault diagnosis in the presence of unknown entries and
parametric uncertainties. These methods depend not only
on structural knowledge of the system, but also require
knowledge of system parameters that can be more or less
accurate.

The algebraic approach to fault diagnosis presented in [11]
deals with actuator and sensor additive faults and requires
only the knowledge of the system order. This article is
devoted to analyse the robustness of this approach with
respect to the model order and measurement noises.

Throughout the paper, we adopt a distributional formula-
tion, as in [1]. It permits us to obtain explicit expressionsin
time domain, for the development of the approach.

The paper is organized as follows. In section 2, we fix
some notations used in this paper. Different assumptions on
the system structure and the fault signal structures are needed
to solve the fault diagnosis problem. Section 3 is devoted to
the outline of the approach discussed in this paper. In section
4, the question of the robustness, with respect to system
order, is addressed. Finally, the question of the robustness,
with respect to measurement noise, is the object of section
5 before the conclusion.

II. PRELIMINARIES AND PROBLEM FORMULATION

In order to better understand the aim of this paper, let us
begin with recall the outline of the proposed approach in
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[11]. This approach is performed in a distributional frame-
work using usual definitions and basic properties described
in [12]. First, recall some definitions and results from the
distribution theory and fix the notations we shall use in the
sequel. Letf be a locally measurable function on an open
set of R denoted byK. We define the regular distribution
Tf , for all smooth functionsφ with compact support inK,
by

< Tf , φ >=

∫

f(τ )φ(τ )dτ

Derivation, delay and integration can be formed from the
convolution producty(1) = δ(1) ⋆ y, y(t − τ) = δτ ⋆ y,
∫ t

0 y(τ)dτ = H ⋆ y and more generally
∫ t

0

· · ·

∫

︸ ︷︷ ︸

p times

y(τ )dτp = H ⋆ · · · ⋆ H
︸ ︷︷ ︸

p times

⋆y = H
⋆p

⋆ y

where δ is Dirac distribution, δτ is Dirac distribution
with delay τ and H is the unit step function (Heaviside
distribution). The distribution theory extends the concept
of derivation to all integrable functions. If functionf is
continuous except at pointx with a finite jump sx, the
associated distribution derivative is given byṪf = ḟ − sxδx,
where ḟ is the usual derivative of functionf (defined over
R r {x}). The next Theorem [12] is the main result from
which the proposed fault diagnosis algorithm is developed.

Theorem 2.1:If a distribution T has a compact support
Supp(T ) and a finite orderm, the productφT = 0 whenever
the smooth functionφ and all its derivatives of order≤ m

vanish onSupp(T ).
According to this theorem, it followstkδ(n) = 0 ∀k > n

because the support and order of Diracδn are {0} and n
respectively anddn

dtn
[tk]t=0 = 0 ∀k > n. For k ≤ n, we

obtain

tkδ(n) = (−1)k
n!

(n− k)!
δ(n− k) (1)

The systems under consideration are those whose control
signal ur(t) and output signalyr(t) satisfy a differential
equation described by

{

ẋ(t) = Ax(t) +Bur(t), x(t0) = x0

yr(t) = Cx(t) +Dur(t)
(2)

wherex ∈ R
n, ur ∈ R

nu andyr ∈ R
ny are respectively the

state vector, vector of real inputs (the actuator outputs) and
the vector of real outputs provided by the system. System
matricesA, B, C, D and initial conditionx0 are unknown
a priori.



The system (2) can be brought, in distributional frame-
work, into a set of MISO (multi inputs single output) models

P ⋆ yrj −

nu
∑

i=1

hji ⋆ uri = φj : j = 1, · · · , ny (3)

whereP andhji are differential polynomial functions given
by

P = anδ
(n) + an−1δ

(n−1) + · · ·+ a0δ (4a)

hji = bjin δ
(n) + b

ji
n−1δ

(n−1) + · · ·+ b
ji
0 δ (4b)

with scalarsak, bjik related to the system parameters,φj a
linear combination of Dirac distribution derivatives of order
less or equal thann − 1 containing the contribution of the
initial conditions.

In the presence of actuator faults and sensor faults modeled
respectively by causal functionsfai

(i = 1, · · · , nu) andfsj
(j = 1, · · · , ny), then the control inputu(t) computed by the
controller and the measured outputy(t) are given in terms
of real variables and fault signals as follows :

uri = ui + fai
, i = 1, · · · , nu (5a)

yrj = yj − fsj , j = 1, · · · , ny (5b)

The faulty system is then modeled by

P ⋆ yj −

nu
∑

i=1

hji ⋆ ui = P ⋆ fsj +

nu
∑

i=1

hji ⋆ fai
+ φj (6)

j = 1, · · · , ny

We deal with fault signals modeled by structured functions
[5]. The main fault signals found in literature (abrupt, ramp,
intermittent faults) can be modeled as structured signals [7].
If faults fai

and fsj are structured, then there exists two
differential polynomialsΓai

andΓsj such that

Γai
fai

= Γsjfsj = 0 (7)

For example the delayed Diracδτ and the delayed Heaviside
step functionH(t− τ) are structured and

[t− τ ]δτ = [(t− τ)
d

dt
]H(t− τ) = 0 (8)

III. FAULT DIAGNOSIS

Consider the simple case where the fault to be detected is
a bias on the actuatorλ, then

faλ
= laλ

H(t− τaλ
) (9)

whereτaλ
denoted the time occurrence andlaλ

the magni-
tude of the bias fault. We have

hj,λ⋆faλ
= laλ

[bnδ
(n−1)
τaλ

+· · ·+b1δτaλ
+b0H(t−τaλ

)] (10)

wherebi = b
j,λ
i , i = 0, · · · , n.

According to theorem (2.1), we obtain the equalities

[(t− τaλ
)n+1 d

dt
]hj,λ ⋆ faλ

= 0 and tnφj = 0 (11)

The faulty system is given by (6) by settingfsj = 0 and
fai

= 0 if i 6= λ :

P⋆yj−

nu
∑

i=1

hj,i⋆ui = hj,λ⋆faλ
+φj : j = 1, · · · , ny (12)

To eliminate the singularities appearing in the faulty model,
let us just multiply equation (12) by

Γ = tn+1(t− τaλ
)n+1 d

dt
(13)

which can be rewritten as follows

Γ = βn+2Γn+2 − βn+1Γn+1 − · · · − β1Γ1 (14)

where

Γk = tn+k d

dt
(15a)

βk = −(−τaλ
)n+2−k (n+ 1)!

(k − 1)!(n+ 2− k)!
(15b)

k = 1, · · · , n+ 2
The multiplication of (12) byΓ provides the equalities

Γ[P ⋆ yj −

nu
∑

i=1

hji ⋆ ui] = 0 : j = 1, · · · , ny (16)

For t ≤ τaλ
, equality (16) is satisfied in spite ofτaλ

(τaλ
is

not identifiable before fault occurrence) because, in this case

tn+1[P ⋆ yj −

nu
∑

i=1

hji ⋆ ui] = 0 : j = 1, · · · , ny (17)

However, fort > τaλ
, application of successive integrations

allows to generatem redundancy relations which can be
rearranged to obtain the spectral equality on which the
diagnosis task will be based

[Aj,n+2 − βn+1Aj,n+1 − ...− β1Aj,1]X = 0 (18)

where the lineµ of matrix Aj,ν ∈ R
m×(n+1)(nu+1) (com-

pletely defined according to measured signalsu andy) and
vector X are respectively given by
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






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(19)

By taking p ≥ n+ 1, integrations ensure the elimination of
all derivatives (numerically less robust than integrations).

Then parameterβi (i = 1, ..., n + 1) can be estimated
by computing the generalised eigenvalues of a couple of



matrices(BAj,n+2, BAj,i) whereB is a non-zero matrix
verifying :

BAj,n+2 6= 0 andBAj,k = 0, ∀k 6= i (20)

The computation of this matrixB can be achieved byQR
factorization. To proceed like that, just take the number of
redundancy relationsm > n(n + 1)(nu + 1). The matrices
couple (BAj,n+2, BAj,i) has more than one generalised
eigenvalue. When the fault occurs, one of these generalised
eigenvalues becomes stationary. After estimating components
of vectorβ, we may, according to them, estimateτaλ

. For
example, by means of (15b) we have

τaλ
=
βn+1

n+ 1
(21)

which can be estimated also as generalised eigenvalue of
the matrices couple (BAj,n+2, (n + 1)BAj,n+1) where the
nonzero matrixB verified conditions (20) withi = n + 1.
Note θ the associated generalised eigenvector, normalized
with θ(nu−λ+1)(n+1)+1 = 1. Thanks to (1), (9) and (12) we
obtain the equality

[tn+1(t−τaλ
)n
d

dt
][P⋆yj−

nu
∑

i=1

hji⋆ui] = ±bλ,nlaλ
τn+1
aλ

n!δτaλ

(22)
The estimation oflaλ

can be achieved, based on (22) and
τaλ

estimation, by

p!

[Aj,n+1(:, 1) +
n−1
∑

k=0

Cn
k (−τaλ

)Aj,k+1(:, 1)]θ

τn+1
aλ

n!(t− τaλ
)p

(23)

In this equality as in the following, if it does not confusion,
we use the same notations for exact values and estimates.

Like any diagnosis algorithm, the decision is based on the
time evolution of estimates. Faultfaλ

is detected and iso-
lated when estimates ofτaλ

and laλ
simultaneously become

stationary. Let consider the casen = 2, nu = 1 andny = 2.
The corresponding spectral equalities are

[A1,4 − 3τaλ
A1,3 + 3τ2aλ

A1,2 − τ3aλ
A1,1]X = 0 (24a)

[A2,4 − 3τaλ
A2,3 + 3τ2aλ

A2,2 − τ3aλ
A2,1]X = 0 (24b)

rewritten as
[

[

A1,4 −3A1,3

]

− τ2aλ

[

−3A1,2 A1,1

]

]

Θ = 0
[

[

A2,4 −3A2,3

]

− τ2aλ

[

−3A2,2 A2,1

]

]

Θ = 0

whereΘ =
[

XT τaλ
XT

]T
.

τ2aλ
is estimated as a generalised eigenvalue of matrices

couples

([ A1,4 −3A1,3 ], [ −3A1,2 A1,1 ]) (25)

and
([ A2,4 −3A2,3 ], [ −3A2,2 A2,1 ]) (26)

Figures (1) and (2) illustrate graphically the simulation
results in noise-free case. The loop is closed according a
PI controller. The actuator fault occurs at timeτa1

= 1 and

is characterized by constant magnitudela1
= −0.8 on the

actuator. When the estimated quantities are outliers, thatis
to say clearly far from the stationarity (e. g. fluctuations),
we consider that fault has not occurred and set the values
estimated at zero. As we can see on figures (2(a)) and (2(b)),
independently of the output considered, the simulated fault
is well detected since the estimates ofτaλ

and laλ
become

stationary just after the fault occurrence, around the exact
values.
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Fig. 1. System with two outputs and one input, in presence of an actuator
bias
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Fig. 2. Temporal evolution of estimates

Note that, based on temporal evolution ofτaλ
estimation,

we can define a residual signal as in classical approaches as
follows :

r(t) =

{

1 if τ̇aλ
= 0 andτaλ

6= 0

0 otherwise
(27)



This signal is zero when there is no fault and it is equal to
1 when a fault occurs.

The above algorithm can be applied for all types of faults
modelled by structured signals.
The case of sensor faults can be treated identically to the
case of actuator faults. However, in contrast of the case of
actuator faults, a sensor faultfsj detection is accomplished
from yj only. This makes easier the isolation of the faulty
sensor.

In the following, without loss of generality, we focus
our study on single input single output systems modeled
by differential equations of ordern given in distributional
framework by

any
(n) + · · ·+ a0y = φ0 + bu (28)

whereφ0 contains contribution of initial conditions.
The approach presented in this section is developed under

the assumption that the exact order of the system is known
and that no noise corrupt the signals. Before reviewing the
questions of robustness, with respect to the model order and
measurement noises, the proposed approach is extended in
the next section in order to take into account some a priori
information.

IV. ROBUSTNESS WITH RESPECT TO SYSTEM ORDER

One of the most important parameters useful to apply
the algorithm developed in section (III) is the order of the
system. This section is devoted to the study of the algorithm
behavior in the case of system over-modeling or system
under-modeling of the considered system. Note that many
methods are available in system identification framework to
determine the system order [8].

Let N be the real order of the system under consideration
andn the order of the associate model. Under the assumption
of the occurrence of an actuator faultfa and a sensor fault
fs, the faulty system (

∑

) and model (M ) can be represented
as

(
∑

) : αNy
(N) + · · ·+ α0y = βu+ ψ0

+ βfa + αNf
(N)
s + ...+ α0fs (29)

(M) : any
(n) + · · ·+ a0y = bu+ φ0 + E

+ bfa + anf
(n)
s + ...+ a0fs (30)

Initial conditions are included inψ0 and φ0 which are
distributions [12] with common support{0} and order,
respectively,N − 1 andn− 1.

ψ0 =

N
∑

k=1

αk

k−1
∑

i=0

y(i)(0)δ(k−i−1) (31)

φ0 =

n
∑

k=1

ak

k−1
∑

i=0

y(i)(0)δ(k−i−1) (32)

E contains modeling error such that (29) and (30) are
consistent.

A. Over-modeling

In the case of an exact modeling (n = N andE = 0),
we obtain an efficient algorithm to diagnose actuator and
sensor faults. The same performance can be expected when
the model ordern is greater than system orderN (over-
modeling). Indeed, in this case, it is easy to see that

• the modeling errorE is zero,
• the annihilator ofφ0, fa andf (n)

s (in (30)) cancels also
the termsψ0, fa andf (N)

s (in (29)),
• estimates ofaN ,...,a0 and b given by the approach are

exactly the estimates of the system parametersαN ,...,α0

andβ respectively.

Thus the steps of the proposed approach led to a problem
of type (18). In order to illustrate this, let us consider a first
order input-output system. A second order model is used to
detect and identify an actuator fault modeled byfa(t) =
H(t − 1). The faulty system (

∑

) and model (M ) can be
represented as

(
∑

) : α1y
(1) + α0y = βu+ α1y(0)δ + βH(t− τa)

(M) : a2y
(2) + a1y

(1) + a0y = bu+ a2y(0)δ̇ +

(a2ẏ(0) + a1y(0))δ + bH(t− τa)

The estimation ofτa (fault occurrence time) andla (magni-
tude), based on model (33), is represented on figure (3).

0 1 2 3 4 5

1  
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−0.5

0

0.8
1

Fig. 3. estimation ofτa (top) andla (down)

B. Under-modeling

When the order of the system is under estimated, i.eN >

n, the associated equation (18) does not hold. Instead, we
will have rather

[Ak − βk−1Ak−1 − ...− β1A1]X = R 6= 0 (33)

The jth element (j = 1, ...,m) of residual vectorR is given
by

N∑

k=n+1

αk

∫ t

0
...

∫

︸ ︷︷ ︸

p+j times

Γ
(

(−y+fs)
(k)+

k−(n+1)
∑

i=0

y(i)(0)δ(k−1−i)
)

dτp+j

(34)

Indeed, annihilatorΓ of φ0, fa andf (n)
s (in (30)) satisfies

Γf (i)
s = 0, ∀i ≤ n andΓψ0 =

N
∑

k=n+1

k−(n+1)
∑

i=0

y(i)(0)δ(k−1−i)



The residual vector is function of some initial conditions
and derivatives of high order ofy and fs (in the case of
sensor fault). When the difference of order is important, or
when the parameters of high indices, appearing in (34) are
not negligible compared to the parameters of low indices,
then the proposed method may not identify the fault. These
remarks are illustrated through figures (4) and (5). The first
one is obtained with the system

0.3ÿ + 4.2ẏ + 9y = 9u

and the second one with

4ÿ + 4.2ẏ + 9y = 9u

These systems are characterized by the same static gain
(equal to1) and poles (−2.64 ; −11.35) and (−0.52+1.4i ;
−0.52−1.4i) respectively. Both are corrupted by an actuator
fault fa = −H(t − 1.5). Using a first order model, we see
on figure (4) that the estimates do not become stationary, but
fluctuate around the true values, contrary to the case of over-
modeling. Nevertheless, because of their low fluctuations,
we can conclude to the occurrence of an actuator fault with
magnitude (constant)la ≃ −1 at timeτa ≃ 1.5.

On the other side, as we can see on figure (5) none of
the generalised eigenvalues obtained with1st order model
admits a behavior close to the stationarity. These results are
not useful to conclude to the occurrence or not of a fault.
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Fig. 4. Estimation ofτa (top) andla (down) obtained with model0.3ÿ+
4.2ẏ + 9y = 9u
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Fig. 5. Temporal evolution of all generalised eigenvalues obtained with
model4ÿ + 4.2ẏ + 9y = 9u

Given the results of the study in this section, it is of interest
to consider a higher order (but not too at risk of obtaining
sparse matrices) to generate signals on which faults diagnosis
is based.

V. ROBUSTNESS WITH RESPECT TO MEASUREMENT

NOISES

The question of robustness of the proposed approach with
respect to high frequency measurement noises is addressed
in this section.

In addition to faultsfa andfs, measurementy is assumed
to be corrupted by an unstructured perturbation notedπ. The
generation of redundancy relations leads to

[(Ak−∆Ak)−βk−1(Ak−1−∆Ak−1)−...−β1(A1−∆A1)]X = 0
(35)

where matricesAi are expressed in terms of known signals
u andy, while matrices∆Ai are linked to perturbationπ.

The robustness analysis is based on

• the analysis of the filters generating elements of matri-
cesAi and

• the properties of pseudospectra of matrix pencilA2 −
λA1 notedΛ(A2, A1).

Studies of these two points are made in sections below.

A. Analysis of the filters generating matricesAi

By considering annihilatorΓ from which we obtained
equation (18) and based on properties

1) (Cauchy)
∫ t

0
...
∫

f(τ)dτp =
∫ t

0
(t−τ)p−1

(p−1)! f(τ)dτ

2) tkδ(n) =
∑inf(k,n)

j=0 Ck
j (−1)j n!

(n−j)! [t
k−jy](n−j)

3) (Newton)(t− τ)k =
∑k

j=0(−1)jCk
j t

k−jτ j

matricesAi are reduced to the expression

Ai(j, µ) =

∫ t

0

fi,j,µ(t− τ)y(τ)dτ, µ = 1, ..., n+ 1

Ai(j, n+ 2) =

∫ t

0

gi,j(t− τ)u(τ)dτ

wherefi,j,µ andgi,j are polynomial functions of appropriate
degrees and depending on the assumptions of the diagnosis
problem.

The transfer matrix betweene =

[

u

y

]

and Ai(j, :),

considered as linear filter, has impulse response

h(t) =











0 fi,j,1(t)
...

...
0 fi,j,n+1(t)

gi,j(t) 0











(36)

This transfer matrix corresponds to a low-pass filter (accord-
ing to the polynomial form offi,j,µ andgi,j), i.e. only low
frequencies pass and high frequencies (noise) are signifi-
cantly attenuated. One can find the performance evaluation of
this filter in discrete time domain in [6], where the authors
approximate the integral using a trapezoidal discretization
regularly spaced.

The choice of the annihilatorΓ is not unique. We obtain
a filter of the same nature as previously by considering the
differential operator given forw ∈ R

+ by

Γexp = e−wtΓ

The development of the proposed approach is not based on
statistical-noise properties. When a priori knowledge of these
properties is available, it can be taken into account to choose
filter parameters (fi,j,1, gi,j , w, · · · ) in order to improve the
robustness with respect to measurement noises.



B. ǫ-pseudospectra of matrix pencilsA− λB

The steps of our approach lead to a study of generalized
eigenvalue of a couple of matrices (A,B). In practice, the
elements of these matrices are obtained by measurements,
thus corrupted by error :

A = Ã+ ǫ∆A, B = B̃ + ǫ∆B (37)

where matricesA and B are expressed in terms of input
signal u and output signaly, while matrices∆A and∆B
are linked to perturbation (or noise). In such situations, quan-
titative information obtained from only the spectra analysis
of the matrices couple (A, B) may be false. Also, note
that traditional methods of solving generalized eigenvalues
problem do not often give a solution. The robustness analysis
can also be based on the properties ofǫ-pseudospectra of
matrix pencilsA− λB ([2] and [13]).

For two matricesA andB in R
m×n, λ is said to be aǫ-

pseudo eigenvalue of the matrices couple(A,B), if it exists
a vectorν 6= 0 (the associating pseudo eigenvector) such that

||(A− λB)ν|| ≤ ǫ (38)

The set ofǫ-eigenvalues of(A,B) is calledǫ-pseudospectra
of (A,B) and it is notedΛǫ(A,B). When the norm in (38)
is the Euclidean norm, then

Λǫ(A,B) = {λ ∈ R : σmin(A− λB) ≤ ǫ} (39)

whereσmin(M) means the smallest singular value of matrix
M .

Let consider again the example of a bias diagnosis on a1st

order system. The input and output signals are represented
on figures (6) and (7). A centered gaussian white noise with
variance0.01 is added to the outputy before generating the
two matricesA2 andA1. The inputu is also corrupted by
the noise since the system is simulated in closed-loop using
aPI controller. Figure (8) shows the graphical results of the
estimations (ofτa andla) given by the proposed algorithms.
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Fig. 6. Input signalu

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

5

6

Fig. 7. Output signaly

Analysis of these figures confirms the robustness of the
proposed approach regarding to additive noise with rapid
fluctuations. One can find in [4], [9] and [10] other theo-
retical reasons explaining the robustness to noise.
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Fig. 8. Temporal evolution ofτa (top) andla (down) estimations obtained
with Γexp = [e−0.3tt3 d

dt
]− τa[e−0.3tt2 d

dt
]

VI. CONCLUSION

This paper has dealt with an algebraic approach to fault
diagnosis as part of a new deterministic theory of estimation,
based the functional calculus. We focus our study on the
diagnosis of actuator and sensor faults in a class of un-
certain linear continuous dynamic systems. Algorithms for
detection, isolation and identification of faults are based
on structural properties of the system and fault signals.
The main advantage of this approach is that the system
parameters can be unknown and we do not need to estimate
them explicitly. Simulation results show that the proposed
approach gives good results for fault diagnosis of uncertain
linear systems. Because of the cancelation of the contribution
of initial conditions and quick computations (due to explicit
expressions), a local diagnosis can be made possible. This
would also allow to extend the approach to systems slowly
evolving over time. The analysis of robustness respect to the
structure of faults will be future work.
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