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A robust algebraic approach to fault diagnosis of uncertainlinear
systems

Abdouramane Moussa Ali, Cédric Join and Frédéric Hameli

Abstract— This article proposes an algebraic method to fault [11]. This approach is performed in a distributional frame-
diagnosis for uncertain linear systems. The main advantage work using usual definitions and basic properties described
of this new approach is to realize fault diagnosis only from in [12]. First, recall some definitions and results from the
knowledge of input and output measurements without identi- distribution theory and fix the notations we shall use in the
fying explicitly model parameters. Using tools and resultsof ~ sequel. Letf be a locally measurable function on an open
algebraic identification and pseudospectra analysis, thessues set of R denoted byK. We define the regular distribution
of robustness of the proposed approach compared to the T, for all smooth functionsp with compact support iriC,
model order and noise measurement are examined. Numerical by

examples are provided and discussed to illustrate the effiency
of the proposed fault diagnosis method. <Ty, ¢ >= /f(7)¢(7')d7
. INTRODUCTION Derivation, delay and integration can be formed from the

Fault diagnosis methods include some actions implestt)nvolution producty® = 6wy, y(t —7) = 5, * ¥,
mented in order to detect, isolate and identify any abnormg{]) y(7)dr = H xy and more generally
phenomenon on a system.

. . t
In [3], [7] and references therein the classical approaches / ~~~/y(7’)d7’p =Hx-xHxy=H"Pxy
using analytical information are depicted. They allow retbu 0 T
fault diagnosis in the presence of unknown entries and p times

parametric uncertainties. These methods depend not 0n|¥vhere 5 is Dirac distribution. §

. ~ is Dirac distribution
on structural knowledge of the system, but also requingiih delay 7 and H is the unit step function (Heaviside

knowledge of system parameters that can be more or Ie8i$5tributi0n). The distribution theory extends the cortcep

aC_T_lrJ]ratT' brai hto fault di . tedi 1£ derivation to all integrable functions. If functiofi is
€ algebraic approach to fauft diagnosis presented in [. ntinuous except at point with a finite jump s,, the

deals with actuator and sensor additive faults and requIreS o ciated distribution derivative is given By = f — 5,6

. . . - YTy
only the knowledge of the system order: This article o here f is the usual derivative of functioyi (defined over
devoted to analyse the robustness of this approach wi

respect to the model order and measurement noises > {z}). The next Theorem [12] is the main result from
P ‘ which the proposed fault diagnosis algorithm is developed.

tio:h;c;u%h[cﬁt ltth eerr);Fi)tes r’u\évfoac?&ztinae(isfigﬁu;fnraelsg?g;:Ia_ Theorem 2.1:If a distributionT" has a compact support
X - P P P Supp(T') and a finite ordem, the productT = 0 whenever

time domain, for the development of the approach. . : ]
The paper is organized as follows. In section 2, we fi)Ehe _smooth functior and all its derivatives of ordex m
vanish onSupp(T).

some notations used in this paper. Different assumptions on _ . . ks(n) _
the system structure and the fault signal structures argetee According to this theorem, it fO”OW$_5 =0k >n
to solve the fault diagnosis problem. Section 3 is devoted t%ecaus_e the SU%BOVEC and order of Disc are {0} andn
the outline of the approach discussed in this paper. Inaecti"€SPectively andg [t"]:—o = 0 Vk > n. Fork < n, we

datm
4, the question of the robustness, with respect to syste?rt?tam ol

order, is addressed. Finally, the question of the robustnes the() = (—1)F ———6(n — k) Q)
; i : . (n—k)!
with respect to measurement noise, is the object of section
5 before the conclusion. The systems under consideration are those whose control

Il. PRELIMINARIES AND PROBLEM FORMULATION signal u..(t) and output signaly,(t) satisfy a differential

In order to better understand the aim of this paper, let u(—‘équatlon described by
begin with recall the outline of the proposed approach in )
g prop PP &(t) = Az(t) + Bu,(t), x(to) = zo @
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The system (2) can be brought, in distributional frameThe faulty system is given by (6) by setting, = 0 and
work, into a set of MISO (multi inputs single output) modelsf,, =0 if ¢ # A :

Poye, =Y hjixup,=¢; : j=1,,n, @)  Pryj=) hjvui=hjsxfa,+¢; © j=1ny (12)
=1

=1
where P andh;; are differential polynomial functions given To eliminate the singularities appearing in the faulty mode
by let us just multiply equation (12) by
P = an5(n) + anfl(s(nil) +-+ a05 (4a) r'= tn+l(t - Tax)n—’_li (13)

y g dt
o piig(n) 4 pdt s(n=1) 4y it . .
hji = by 07 + by, 40 ot byo (4b) which can be rewritten as follows
with scalarsay, b, related to the system parameters, a T = Bpiolnis — Busilnp1 — - — Bl (14)
linear combination of Dirac distribution derivatives ofder
less or equal tham — 1 containing the contribution of the where

initial conditions. ik @

In the presence of actuator faults and sensor faults modeled Tp =t dt (15a)
respectively by causal functionfs, (: = 1,--- ,n,) andf;; B = —(— ok (n+1)! 156
(j =1,---,ny), then the control input(¢) computed by the k= —(=Tay) (k—D!(n+2—k)! (15b)

controller and the measured outpyt) are given in terms

of real variables and fault signals as follows : k=1,---,n+2

The multiplication of (12) byl” provides the equalities

um:ui—"fam izla"'anu (5a) Ty
Yr, =Yi — fo;n T=1,--- .y (5b) F[P*yj_zhji*ui]zo Py=Leemny (16)
=1
The faulty system is then modeled by Fort¢ < 7,,, equality (16) is satisfied in spite of,, (7., is
nu N not identifiable before fault occurrence) because, in tagec
P*yj_zh’ji*ui:P*fsj+Zhji*fai+¢j (6) Nna
=1 =1 Py =Y hjiku] =0 ¢ j=1,.n, (17)
jzla"'vny i=1

We deal with fault signals modeled by structured functionslowever, fort > 7,,, application of successive integrations
[5]. The main fault signals found in literature (abrupt, mm allows to generaten redundancy relations which can be
intermittent faults) can be modeled as structured sigr@ls [ rearranged to obtain the spectral equality on which the
If faults f,, and f,, are structured, then there exists twodiagnosis task will be based
differential polynomiald’,, andT'y. such that

! [Ajni2 = Bny1Ajni1 — .. — P1Aj1]X =0 (18)

Laifar =T, fs; =0 () where the liney of matrix A;, € R™*(+D(mu+1) (com-
For example the delayed Dira¢ and the delayed Heaviside Pletely defined according to measured signalandy) and

step functionH (¢t — 7) are structured and vector X are respectively given by
d T et my 17 - -
[t = 716, = [(t = ) JH(t =) = 0 (8) Hrr o« [Ty; ™) n
lIl. FAULT DIAGNOSIS 7 D) ao
Consider the simple case where the fault to be detected is —H*PHr % [l“l,u%’i)] by
a bias on the actuatoy, then : :
: and i 19
far = lay H(t — 7a,) (9) —H*PTH % [Tyun,] by 19)
wherer,, denoted the time occurrence ahd the magni- . ) i1
tude of the bias fault. We have —H P D] b
, _ (1) ... _ : ;
hj)\*fa)\ la, [bn(smA + —i—bl(STQA +b0H(t Tay )] (20) i gt [I‘Vul] ] I b‘%’n“ |

whereb; = b i=0,- n. _ N By takingp > n + 1, integrations ensure the elimination of
According to theorem (2.1), we obtain the equalities all derivatives (numerically less robust than integragijon

d Then parametef; (i = 1,...,n + 1) can be estimated
[(t - Tax)nﬂﬁ]hm *fay =0andt"¢; =0  (11) py computing the generalised eigenvalues of a couple of



matrices(BA, .2, BA; ;) where B is a non-zero matrix is characterized by constant magnituge = —0.8 on the
verifying : actuator. When the estimated quantities are outliers, ithat
. to say clearly far from the stationarity (e. g. fluctuatigns)

BAjnt2 #0andBA;x =0, Vk # 1 (20) e consider that fault has not occurred and set the values
The computation of this matri¥3 can be achieved bf) R  estimated at zero. As we can see on figures (2(a)) and (2(b)),
factorization. To proceed like that, just take the number dhdependently of the output considered, the simulated faul
redundancy relations: > n(n + 1)(n, + 1). The matrices is well detected since the estimates7of and/,, become
couple (BA; 12, BA;;) has more than one generalisedstationary just after the fault occurrence, around the texac
eigenvalue. When the fault occurs, one of these generalise@lues.
eigenvalues becomes stationary. After estimating compsne
of vector 5, we may, according to them, estimatg . For
example, by means of (15b) we have

_ Bn-{-l
Tay = i (22)

which can be estimated also as generalised eigenvalue of
the matrices coupleBA, ,, 42, (n + 1)BA; ,4+1) where the (a) Control input
nonzero matrixB verified conditions (20) withi = n + 1.
Note ¢ the associated generalised eigenvector, normalized
with 6(,,, —x11)(n+1)+1 = 1. Thanks to (1), (9) and (12) we
obtain the equality

d o
[ (t=7ay )" [Py — > hjixtti] = by nlay 74l
1=1

dt TTex :
. . . (22) (b) Output
The estimation of,,, can be achieved, based on (22) and
7., €stimation, by Fig. 1. System with two outputs and one input, in presencenaicuator
bias
n—1
[Ajnta (1) + kZ O (=T ) Aje+1 (5, 1)]0
! = 23
i Tl = 7ay)P @3) .

In this equality as in the following, if it does not confusjon
we use the same notations for exact values and estimates. =

Like any diagnosis algorithm, the decision is based on the
time evolution of estimates. Fault,, is detected and iso-
lated when estimates of,, andl,, simultaneously become
stationary. Let consider the case= 2, n,, = 1 andn,, = 2. s — -
The corresponding spectral equalities are

[A14 — 370, A3+ 37, A1 — 72 Aig]X =0 (24a)
[Ag 4 — 374, Aoz + 3T3AA2,2 — T; Az1]X =0 (24b) o

(a) 74, (top) andl,, (down) deduced fromy;

rewritten as

[[ Aiy —3A13 | =72 [ —3412 Aia ”@ =0

ax

[[ Asy —3A3 | —7'3)\ [ —3422 Az: ”@ -0 or—

where® = [ XT 7, XT ]T. -
2

7., IS estimated as a generalised eigenvalue of matrices (b) 7, (top) andla, (down) deduced fromy:
couples
Fig. 2. Temporal evolution of estimates
([ Ara =341 |,[ 3412 A1 ) (25)
and Note that, based on temporal evolutionmf estimation,
([ Aoy —3As3 ][ —3422 Asi]) (26) Wwe can define a residual signal as in classical approaches as

] ) . . _ follows :
Figures (1) and (2) illustrate graphically the simulation )
) {1 if 7,, =0andr,, #0
r(t) =

0 otherwise

results in noise-free case. The loop is closed according a

27
P1I controller. The actuator fault occurs at timg = 1 and @)



This signal is zero when there is no fault and it is equal té&\. Over-modeling

1 when a fault occurs. _ In the case of an exact modeling & N and ¢ = 0),
The above algorithm can be applied for all types of faultge ghtain an efficient algorithm to diagnose actuator and

modelled by structured signals. sensor faults. The same performance can be expected when

The case of sensor faults can be treated identically to thga model ordem is greater than system orde¥ (over-
case of actuator faults. However, in contrast of the case odeling). Indeed, in this case, it is easy to see that

actuator faults, a sensor fayff. detection is accomplished . .
: 4 . . « the modeling errog is zero,
from y; only. This makes easier the isolation of the faulty L (n)
« the annihilator ofpy, f, andfs’ (in (30)) cancels also

Sensor the termsyy, f. and £ (in (29)),

In the following, without loss of generality, we focus i b db ai by th h
our study on single input single output systems modeled * estimates o N,---do an b given by the approach are
exactly the estimates of the system parameters.. g

by differential equations of ordet given in distributional .
and 3 respectively.

framework by
(n) Thus the steps of the proposed approach led to a problem
any" + -+ aoy = do +bu (28)  of type (18). In order to illustrate this, let us consider atfir
where ¢, contains contribution of initial conditions. order input-output system. A second order model is used to

The approach presented in this section is developed undi§tect and identify an actuator fault modeled fiy(t) =
the assumption that the exact order of the system is know (¢ — 1)- The faulty systemXC) and model {7) can be
and that no noise corrupt the signals. Before reviewing tHgPresented as
guestions of robustness, with respect to the model order and
measuremenj[ nolises, the propoged approach is extend_eggr‘\ a1y® + apy = Bu + ary(0) + BH(t — 70)
the next section in order to take into account some a pri .
information. (M) = aoy® + a1y + aoy = bu + azy(0)0 +

IV. ROBUSTNESS WITH RESPECT TO SYSTEM ORDER (a29(0) + a1y(0))d + bH (¢ — 7a)

One of the most important parameters useful to applyhe estimation ofr, (fault occurrence time) ant} (magni-
the algorithm developed in section (lll) is the order of thgude), based on model (33), is represented on figure (3).
system. This section is devoted to the study of the algorithm
behavior in the case of system over-modeling or systel
under-modeling of the considered system. Note that mat L

methods are available in system identification framework t

determine the system order [8]. S : 4 s
Let N be the real order of the system under consideratic

andn the order of the associate model. Under the assumptic

of the occurrence of an actuator faylf and a sensor fault ©

fs, the faulty systemY") and model {/) can be represented o i

as

Fig. 3. estimation ofr, (top) andil, (down)
(3 any™ 4 -+ agy = fu+ o

N 4. 29
+ Blatan/iT 4t aofs (29) g Under-modeling
When the order of the system is under estimatedVi.e
. (n) ... — . .
(M) : any™  + + a0y )Z"H' P+ € n, the associated equation (18) does not hold. Instead, we
+ bfatanf + . +aofs (30) will have rather

Initial conditions are included in)y and ¢, which are
distributions [12] with common supporf0} and order, [Ak = Be-1Ap-1 — .. = 1A44]X =R#0  (33)

respectivelyN —1 andn — 1. 'kIJ'hejth element { = 1,...,m) of residual vector is given
y

N k—1
. . N k—(n+1)
Yo = Y o Y y@P(0)stkY B 3 /t/ P((otf)®+ S gD ©)st170 ) drrtd
k=1 i=0 k=n+1 0 , i=0
b1 p+J times (34)
bo = ar Y y@0)s*F—=D (32)  Indeed, annihilatof’ of ¢, f, and £™ (in (30)) satisfies
k=1 =0 N E—(ntl)

¢ contains modeling error such that (29) and (30) arg () — 0, Vi < n and['y = Z Z y D (0)sk=1-9
consistent. et 10



The residual vector is function of some initial conditions
and derivatives of high order af and f, (in the case of A~ AA N AA A AANX

. S - —Bro1(Ap—1—AAp_1)—...— - -0
sensor fault). When the difference of order is important, o[r( * €)= Be-1(A—a k1) Al 1] (35)
when the parameters of high indices, appearing in (34) arghere matricesd; are expressed in terms of known signals

not negligible compared to the parameters of low indices, andy, while matricesA 4; are linked to perturbation.
then the proposed method may not identify the fault. These The ropustness analysis is based on

remarks are illustrated through figures (4) and (5). The first

: . . « the analysis of the filters generating elements of matri-
one is obtained with the system

cesA; and

0.35 + 4.29 + 9y = 9u « the properties of pseudospectra of matrix pentil—
d th d ith AAl nOtEdA(AQ,Al).

and the second one wi Studies of these two points are made in sections below.

45+4.29+9y =9 . . . .
y+Lly+y “ A. Analysis of the filters generating matricds

These systems are characterized by the same stgtic gairBy considering annihilatof” from which we obtained
(equal tol) gnd poIe;{—2.64 ; —11.35) and (-0.52+1.47 ; equation (18) and based on properties
—0.52 —1.44) respectively. Both are corrupted by an actuator ¢ bt (=Pt
fault f, = —H(t — 1.5). Using a first order model, we see ) (Cauchy)fy ... [ f(r)dr? = [y “G=myr f (T)dr
on figure (4) that the estimates do not become stationary, but
fluctugte around the true values, contrary _to the case of_overz) thgn) — Z;ijé(k’n) Cf(—l)jm”f!j)![t’“_jy]("_j)
modeling. Nevertheless, because of their low fluctuations,
we can conclude to the occurrence of an actuator fault with . ‘ o
magnitude (constanf), ~ —1 at time 7, ~ 1.5. 3) (Newton)(t — 1) = 37 (=1)/Cjt* I 7

On the other side, as we can see on figure (5) none ofatricesA; are reduced to the expression
the generalised eigenvalues obtained with order model ¢
admits a behavior close to the stationarity. These restdts a A;(j, ) = / fiju@t—7my(r)dr, p=1,..,n+1
not useful to conclude to the occurrence or not of a fault. 0

Ai(],n+2):/0 gi,j(t—T)u(T)dT

wheref; ; , andg; ; are polynomial functions of appropriate

r

acf "\ degrees and depending on the assumptions of the diagnosis
il : _ problem. i
) o _ , The transfer matrix between = | © | and Ai(4,0),
Fig. 4. Estimation ofr, (top) andl, (down) obtained with mode).3¢ + ) ) ) ) ]
4.2 + 9y = 9u considered as linear filter, has impulse response
0 figa) |
hy=| : (36)
0 fijns1(t)
9i.5(t) 0

This transfer matrix corresponds to a low-pass filter (aatcor
ing to the polynomial form off; ; , andg; ;), i.e. only low
frequencies pass and high frequencies (noise) are signifi-
cantly attenuated. One can find the performance evaluation o
this filter in discrete time domain in [6], where the authors
pproximate the integral using a trapezoidal discretinati
egularly spaced.

The choice of the annihilatdr is not unique. We obtain
a filter of the same nature as previously by considering the
V. ROBUSTNESS WITH RESPECT TO MEASUREMENT differential operator given fow € R* by

NOISES

The question of robustness of the proposed approach with
respect to high frequency measurement noises is addres3dre development of the proposed approach is not based on
in this section. statistical-noise properties. When a priori knowledgeheke

In addition to faultsf, and f,, measuremenj is assumed properties is available, it can be taken into account to shoo
to be corrupted by an unstructured perturbation natetihe filter parametersf; ; 1, g; ;, w, - --) in order to improve the
generation of redundancy relations leads to robustness with respect to measurement noises.

Fig. 5. Temporal evolution of all generalised eigenvaluésaimed with
model4y + 4.2y + 9y = 9u

Given the results of the study in this section, it is of ingtre
to consider a higher order (but not too at risk of obtainin
sparse matrices) to generate signals on which faults dggno
is based.

Tewp = e~ vWiIr



B. e-pseudospectra of matrix pencis — AB

The steps of our approach lead to a study of generalize i
eigenvalue of a couple of matricegl (B). In practice, the 5 5

elements of these matrices are obtained by measuremer  °
thus corrupted by error : L

A=A+eAA, B=DB+eAB (37) s

V\{here matricesA and_B are ex_presse(_j in terms of Input Fig. 8. Temporal evolution of, (top) andl, (down) estimations obtained
signalu and output signal, while matricesAA and AB  with Tegp = [e 0343 L] — 7 [e=0-3142 4]

are linked to perturbation (or noise). In such situationsrg

titative information obtained from only the spectra analys

of the matrices coupleA4, B) may be false. Also, note VI. CONCLUSION

that traditional methoo_ls of solvi_ng generalized eigenealu _ This paper has dealt with an algebraic approach to fault
problem do not often give a solution. The robustness amlysiagnosis as part of a new deterministic theory of estimatio
can also be based on the propertieseqfseudospectra of pageq the functional calculus. We focus our study on the
matrix pencilsA — AB ([2] and [13]). diagnosis of actuator and sensor faults in a class of un-
For two matricesA and B in R™*", X is said to be &-  certain linear continuous dynamic systems. Algorithms for
pseudo eigenvalue of the matrices couple B), if it exists  getection, isolation and identification of faults are based
a vector 7 0 (the associating pseudo eigenvector) such thafy siryctural properties of the system and fault signals.

(A= AB)v|| < e (38) The main advantage of this approach is that the system
) ] parameters can be unknown and we do not need to estimate
The set ofe-eigenvalues of A, B) is callede-pseudospectra them explicitly. Simulation results show that the proposed
of (4, B) and it is noted\ (4, B). When the norm in (38) approach gives good results for fault diagnosis of unaertai
is the Euclidean norm, then linear systems. Because of the cancelation of the coniwibut
AdA,B) ={A€R: opin(A—AB) < ¢} (39) Of initial conditions and quick computations (due to exiplic
_ _expressions), a local diagnosis can be made possible. This
whereo i, (M) means the smallest singular value of matriXyould also allow to extend the approach to systems slowly

M. _ _ o _ evolving over time. The analysis of robustness respectedo th
Let consider again the example of a bias diagnosis b a strycture of faults will be future work.
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