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Abstract

The Hébraud-Lequeux model is a model describing the flow of soft
glassy material in a simple shear flow configuration. It is given by a
kinetic/Fokker-Planck type of equation whose coefficients depend on the
shear rate of the experiment. In this paper we want to study what happens
to the stationary solutions of this model when the shear rate is asymptoti-
cally large. In order to that, we expand the solution of the equation using
singular perturbation tools. In the end, we rigorously prove the estimate
of Hébraud and Lequeux that the material asymptotically behaves as a
Newtonian fluid.
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1 Introduction

We are interested in the behaviour at large shear rates of the Hébraud-Lequeux
model (referred to as HL in the sequel for brevity), derived by Hébraud and
Lequeux in [?]. This model is a Fokker-Planck-like model which aims at de-
scribing the behaviour of a generic soft glassy material. This model has been
studied by various authors, both in its nonstationary version and its stationary
one. One can cite [?] for a PDE approach of the well-posedness and [?] for a
stochastic analysis of the Cauchy problem. The well-posedness of the stationary
problem has been adressed in [?] and [?]. The study of the glass transition in this
model has been conducted in [?] with a direct approach which is very specific
to the 1d setting of the HL model and was revisited in [?] with a more robust
method on which this paper is modelled. The need for a robust approach to
this question arise when we try to justify a multidimensional model generalizing
the one of Hébraud and Lequeux in [?].

Let us now review the description of the HL model. In this model the state
of a sample of the material undergoing a shear rate γ̇ is described by means of a
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probability density p over the stress space. The stress of the sample is noted τ .
Because of the elastoviscoplastic nature of soft glassy material, when submitted
to a shear rate, we expect it to have a transitory phase followed by a sationary
phase. The HL model can handle both regimes but we will be interested only on
the final stationary phase. In this phase p is a probability density which follows
the following dimensionless equation:

− µΓ∂2
σp+ hp+ y∂σp = Γδ0,∫

R

p(σ)dσ = 1,

p ≥ 0,

(1)

where h stands for the characteristic function of the set R \ [−1, 1]. The term
δ0 is the Dirac mass. The parameter y is a dimensionless shear rate γ̇/γ̇c where
γ̇c is a critical shear rate depending on the material. The positive real number
µ is a dimensionless constant describing the state of the material with respect
to the glass transition.

In [?] we proved that when the shear rate is small, that means when y � 1
we can get various behaviour for the model depending on the value of µ. More
precisely, we proved that when µ > 1/2 the behaviour of the model is at main
order the behaviour of a Newtonian fluid, when µ < 1/2 the behaviour is the
one of a threshold fluid of Hershell-Bulkley type and when µ = 1/2 we have a
power-law fluid with exponent 1/5. In the present paper we are interested in the
large shear rate behaviour of the fluid, that is to say y � 1 and we will prove
that the behaviour is the one of a Newtonian fluid independently of the value
of µ, which is the experimental behaviour expected for soft glassy materials [?].

Finally Γ is called the fluidity and is related to the integral constraint
∫
p = 1.

We can see by integrating the differential equation that

Γ =

∫
|σ|>1

p(σ)dσ. (2)

Because p is a probability density, Γ is none other than the probability to find
|σ| > 1 and thus

0 ≤ Γ ≤ 1. (3)

The stress of a sample of material in this model is recovered by

τ =

∫
R

σp(σ)dσ. (4)

Our aim is to study the link between y which is given and τ which is computed
via (??) where p is the solution of (??). We have already done so in the limiting
case y → 0 in another paper [?] (with M. Renardy) and wish to understand
the other limiting case y → +∞. For the sequel of the paper we note y = 1/ε.

We are thus interested in the behaviour of an elliptic ODE with a perturba-
tion of the form ∂σp/ε. This problem often arises in the study of the asymptotic
behaviour of various models. One can refer for instance to the vanishing Rossby
number approximation in oceanography [?]. What is specific in our model is
first that it is set in an unbounded domain while the singular limits we men-
tionned are set in bounded domains. The consequence is that, if we try to take
the näı ve limit ε → 0, we end up with the limit equation ∂σp = 0 which has
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only 0 as a solution on an unbounded domain. This limit is not rich enough
to describe the limiting behaviour of the model. Moreover, the second specific
feature of our model is that we have

∫
p = 1 which is true for all ε > 0 and

must remain true at the limit. This is clearly incompatible with the näıve limit
p = 0 that we just mentionned. This difficulty is related to the fact that, despite
appearances, our problem is truly nonlinear and the integral constraint makes
System (??) quite rigid.

To overcome these difficulties we must describe the solution of (??) more
accurately than with just the limit. This is why we decompose the solution into
three parts corresponding to the intervals ]−∞, 0[, ]0, 1[ and ]1,+∞[ completed
with transmission conditions at 0 and 1 which are given by the expected global
regularity of the solution of (??). We will see that these three parts behave very
differently when ε→ 0. The situation is a bit different from the limit y → 0 we
studied in [?] for which we divided in ]−∞,−1[, ]−1, 1[ and ]1,+∞[ in order to
study the passage from a density with support in R to a density with support
in ]− 1, 1[.

To conlude this introduction we would also like to point out that we used
here a standard method of a priori estimates on the remainder of the expansion
of p to prove the “convergence” while in [?] we took advantage of the 1d setting
to use the singular perturbation theory of [?] and get directly the convergence
of the asymptotic expansion. The method used in this paper can, however, be
extended fairly straightforwardly, for instance to multi dimensional version of
the HL model.

2 Main Results

Let us first recall the well-posedness theo on which the sequel of the study relies
on:

Theorem 1. The stationary Hébraud-Lequeux model,
− µΓ∂2

σp+ hp+
1

ε
∂σp = Γδ0,∫

R

p(σ)dσ = 1,
(5)

has a unique solution p ∈ H1(R) which decays exponentially when |σ| → +∞,
for every ε > 0.

For the proof we refer to [?, ?]. We can now state the main result of this
paper:

Theorem 2. Let us note p the solution to (??) and τ given by (??) then for
ε→ 0 we have

τ ∼ 1

ε
,

or more precisely

τ =
1

ε
+O(1).
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For the material, this means that when the shear rate is large the rheological
law is at main order the law of Newtonian fluid with a viscosity independent of
µ. This theo is the main goal of this paper but it will need some intermediate
results. The main idea which we have already used in [?] is to work directly on
p instead of working on τ . For p we have the following asymptotic result:

Proposition 1. The solution p to the HL problem given by theo ?? can be
expanded when ε→ 0 as p = papp+prem,where papp has the following expression:

papp =


ε exp

(
σ
µε

)
if σ ≤ 0,

ε if 0 ≤ σ ≤ 1,

ε exp (−ε(σ − 1)) if 1 ≤ σ,
(6)

and prem verifies the following estimates:∥∥∥∥exp

(
− ·

2µε

)
prem

∥∥∥∥
L2(]−∞,0[)

= O(ε5/2), (7)

‖prem‖L2(]0,1[) = O(ε3/2), (8)∥∥∥exp
(ε

2
(· − 1

)
prem

∥∥∥
L2(]1,+∞[)

= O(ε3/2). (9)

This asymptotic expansion relies on the following estimate on Γ:

Lemma 1. The following expansion of the fluidity Γ is true:

Γ = 1 +O(ε). (10)

This lemma only requires papp. The scheme of proof is then the following:

1. Compute formally the main order of p, papp and the remainder problem
(??).

2. Prove Proposition ?? assuming Lemma ??. This justifies the formal
asymptotic expansion and also gives estimate on the remainder prem.

3. Prove theo ??.

4. Prove Lemma ??.

The organization of the paper follows the scheme of proof: we carry out the
formal expansions in Section ?? and give the remainder problem in Section ??.
Then we prove inequalities (??)-(??) assuming Lemma ??. Then we use the
estimates obtained to prove the theo in Section ??. Finally, to complete the
proof, we show Lemma ?? in Section ??. We prefered to delay the proof of
Lemma ?? because it is a bit long and we did not wish to interrupt the proof
of theo ??.

3 Formal Expansions

Since we are interested in what happens to the system when y is large, we set
y = 1/ε and study the behaviour as ε→ 0+. As we did before for the low shear
rate asymptotics, we use asymptotic expansions on p instead of working directly
on τ . We get these asymptotics in a suitable space so that we can go from p to
τ just by integrating the expansion of p against σ.
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3.1 Rewriting of the System

We are interested in the limit behaviour as ε→ 0 of the model given by (??):
− µΓ∂2

σp+ hp+
1

ε
∂σp = Γδ0,∫

R

p(σ)dσ = 1.

For this study we have to rewrite the equations in terms of what happens on
R∗−,[0, 1] and ]1,+∞[. We note

p− = p|R∗
−
, p+,i = p|[0,1] p+,e = p|[1,+∞[.

We rewrite this system in terms of these new variables:

− µΓ∂2
σp− + hp− +

1

ε
∂σp− = 0,

− µΓ∂2
σp+,i +

1

ε
∂σp+,i = 0,

− µΓ∂2
σp+,e + p+,e +

1

ε
∂σp+,e = 0,

p+,i(0) = p−(0),

p+,e(1) = p−,i(1),

∂σp+,i(0) = ∂σp−(0)− 1

µ
,

∂σp+,e(1) = ∂σp+,i(1),∫ 0

−∞
p−(σ)dσ +

∫ 1

0

p+,i(σ)dσ +

∫ +∞

1

p+,e(σ)dσ = 1.

(11)

Transmission conditions

p+,i(0) = p−(0),

p+,e(1) = p−,i(1),

come from the fact that p is continuous. The condition

∂σp+,i(0) = ∂σp−(0)− 1

µ
,

takes into account the Dirac mass at 0 while the last transmission condition

∂σp+,e(1) = ∂σp+,i(1),

comes from the fact that we assume ∂σp to be continuous at 1 (nothing in (??)
could balance a jump in the derivative at 1). Now we change variables to find
the right profiles equation. We set

p−(σ) = q−

(σ
ε

)
, p+,i(σ) = q+,i(σ) + qbl

(
1− σ
ε

)
,

p+,e(σ) = q+,e(ε(σ − 1)),
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and we note z the variable of q−,qbl and q+,e (and also the one of q+,i for
simplicity). As qbl describes a boundary layer in the neighbourhood of σ = 1 we
assume exponential decay of qbl and all its derivatives for all z 6= 0. We finally
write the system which will allow us to compute the equations of the profile:

− 1

ε2
µΓ∂2

zq− + hεq− +
1

ε2
∂zq− = 0,

− µΓ∂2
zq+,i +

1

ε
∂zq+,i = 0,

− µΓ∂2
zqbl − ∂zqbl = 0,

− µΓε2∂2
zq+,e + q+,e + ∂zq+,e = 0,

q+,i(0) + qbl

(
1

ε

)
= q−(0),

q+,e(0) = q+,i(1) + qbl(0),

∂zq+,i(0)− 1

ε
∂zqbl

(
1

ε

)
=

1

ε
∂zq−(0)− 1

µ
,

∂zq+,e(0) =
1

ε
∂zq+,i(1)− 1

ε2
∂zqbl(0),

ε

∫ 0

−∞
q−(z)dz +

∫ 1

0

q+,i(z)dz + ε

∫ 1/ε

0

qbl(z)dz +
1

ε

∫ +∞

0

q+,e(z)dz = 1,

(12)
where we have defined

hε(z) = h(εz).

Note that since h = 1R\[−1,1], we have

hε(z) =

{
1 if |z| ≥ 1

ε ,

0 otherwise.

Now if the expansion we make is ever to be valid we must have q− expo-
nentially decreasing when z decreases to −∞. Then if we consider the func-
tion z 7→ hε(z) exp(z) then it is easy to see that it is exponentially small (ie
∼ exp(−λ/ε) for some λ > 0) in any norm we could consider. Thus in the
following we will treat all terms multiplied by hε to be smaller than any εk for
any k ≥ 0. As a remark we cannot do this on the other side and have to break
it into the interior part q+,i and the exterior part q+,e.

3.2 Ansaetze

We make the following ansaetze:

q− = εq1
− + ε2q2

− + ε3q3
− + . . . , (13)

q+,i = εq1
+,i + ε2q2

+,i + ε3q3
+,i + . . . , (14)

qbl = ε3q3
bl + ε4q4

bl + . . . , (15)

q+,e = εq1
+,e + ε2q2

+,e + ε3q3
+,e . . . . (16)

Of course we could have put terms of order 0 for q−, q+,i and q+,e and terms
of order 0,1 and 2 for qbl. When one does that, by putting the ansaetze in the
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equations of (??), we would see that these terms must be 0; because they solve
linear Dirichlet problems with no exterior forces. We recall that we have (??)
which is the following consistency equation between Γ and p:

Γ =

∫
|σ|>1

p(σ)dσ

which can be rewritten in terms of q− and q+,e

Γ =
1

ε

∫ +∞

0

q+,e(z)dz + ε

∫ −1/ε

−∞
q−(z)dz.

With such an expression, if we assume enough regularity of the profiles (which
will be checked after we have computed them), we can derive the following
ansatz on Γ:

Γ = c0 + c1ε+ c2ε
2 + c3ε

3 . . . . (17)

with ∀k, ck =
∫ +∞

0
qk+1
+,e (z)dz because, as we remarked, the second term is

exponentially small.

3.3 Profiles

In this section we compute the profiles qk−, qk+,i and qk+,e for k = 1, 2 even if,
in the end, we will only use the approximation given by the terms of order 1.
Indeed, it can be interesting to compare the terms of order 2, that we give here,
to the approximation of (??) given in (??).

All we need to do is to plug (??) , (??) and (??) in (??) and identify the
formal powers of ε.

Order ε.
We first look for q1

+,e: 
∂zq

1
+,e + q1

+,e = 0,∫ +∞

0

q1
+,e(z)dz = 1,

which leads to

q1
+,e(z) = exp(−z). (18)

We also have that c0 = 1. Now we can look for q1
+,i which solves the following

problem {
∂zq

1
+,i = 0,

q1
+,i(1) = 1,

whose solution is obviously given by

q1
+,i = 1 (19)

identically. Finally we compute for q1
− which solves the problem:

− µ∂2
zq

1
− + ∂zq

1
− = 0,

q1
−(0) = 1,

∂zq
1
−(0) =

1

µ
,
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whose solution is
q1
−(z) = exp(z/µ). (20)

Order ε2. Once again we start from the right:
∂zq

2
+,e + q2

+,e = 0,∫ +∞

0

q2
+(z)dz = −

∫ 1

0

q1
+,i(z)dz = −1,

whose solution is q2
+,e(z) = − exp(−z). We also have c1 = −1. We continue by

correcting the derivative of the previous approximation with a boundary layer:{
− µ∂2

zq
3
bl − ∂zq3

bl = 0,

∂zq
3
bl(0) = −∂zq1

+,e(0) = −(−1),

for which we have the solution q3
bl(z) = −µ exp(−z/µ) + 1 up to an additive

constant. We choose to take this solution so that q3
bl(0) = 0. Only now do we

look for q2
+,i: {

∂zq
2
+,i = 0,

q2
+,i(1) = −1,

whose solution is q2
+,i = −1. Now we can find the profile q2

− by solving the
problem 

− µ∂2
zq

2
− + ∂zq

2
− = −µ∂2

zq
1
−,

q2
−(0) = −1,

∂zq
2
−(0) = 0,

whose solution is q2
−(z) = (z/µ− 1) exp(z/µ).

4 Proof of Proposition ??

To construct the main order of p in its behaviour as ε→ 0 we simply truncate the
expansions of (??)-(??) at first order, replace q1

−,q1
+,i and q1

+,e by the expressions
given at (??),(??) and (??). We introduce the notation:

papp
− (σ) = εq1

−

(σ
ε

)
,

papp
+,i (σ) = εq1

+,i(σ) + ε2q2
+,i(σ),

papp
+,e(σ) = εq1

+,e(ε(σ − 1)),

and this gives the expression of papp given in (??). Finally, we note prem
− =

p− − papp
− , prem

+,i = p+,i − papp
+,i and prem

+,e = p+,e − papp
+,e . We write the problem
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solved by the remainder terms:

− µΓ∂2
σp

rem
− + hprem

− +
1

ε
∂σp

rem
− = R−,

− µΓ∂2
σp

rem
+,i +

1

ε
∂σp

rem
+,i = 0,

− µΓ∂2
σp

rem
+,e + prem

+,e +
1

ε
∂σp

rem
+,e = R+,e,

prem
+,i (0) = prem

− (0),

prem
+,e (1) = prem

−,i (1),

∂σp
rem
+,i (0) = ∂σp

rem
− (0),

∂σp
rem
+,e (1)− ε2 = ∂σp

rem
+,i (1),∫ 0

−∞
prem
− (σ)dσ +

∫ 1

0

prem
+,i (σ)dσ +

∫ +∞

1

prem
+,e (σ)dσ = −ε+ µε2

(21)

where we have set

R− = µΓ∂2
σp

app
− − hpapp

− − 1

ε
∂σp

app
−

=

(
Γ− 1

µε
− εh

)
exp

(
σ

µε

)
,

R+,e = µΓ∂2
σp

app
+,e − p

app
+,e −

1

ε
∂σp

app
+,e

= µΓε3 exp(−ε(σ − 1)).

Note, for example, that we obtain the last transmission condition by writing:

∂σp+,e(1) = ∂σp+,i(1),

which becomes, using p = papp + prem,

∂σp
rem
+,e (1) + ∂σp

app
+,e(1) = ∂σp

rem
+,i (1) + ∂σp

app
+,i (1),

and thus, using the expressions of papp
+,e and papp

+,i ,

∂σp
rem
+,e (1)− ε2 = ∂σp

rem
+,i (1).

We will now prove the estimates (??)-(??) of Proposition ??. It is useful to
introduce p̃rem

− and p̃rem
+,e defined through,

prem
− = exp

(
σ

2µε

)
p̃rem
− ,

prem
+,e = exp

(
−ε

2
(σ − 1)

)
p̃rem

+,e .

This allows us to take advantage of the exponential decay of the right-hand sides
of (??) and explains the form of estimates (??) and (??): we are going to show
that p̃rem

− and p̃rem
+,e are bounded in L2(] −∞, 0[) and L2(]1,+∞[) respectively.
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We thus now rewrite the system we will study with the unknowns p̃rem
− , prem

+,i

and p̃rem
+,e :

∂σp
rem
− (σ) = exp

(
σ

2µε

)(
∂σp̃

rem
− (σ) +

1

2µε
p̃rem
− (σ)

)
,

∂2
σp

rem
− (σ) = exp

(
σ

2µε

)(
∂2
σp̃

rem
− (σ) +

1

µε
∂σp̃

rem
− (σ) +

1

4µ2ε2
p̃rem
− (σ)

)
,

∂σp
rem
+,e (σ) = exp

(
−ε

2
(σ − 1)

)(
∂σp̃

rem
+,e (σ)− ε

2
p̃rem

+,e (σ)
)
,

∂2
σp

rem
+,e (σ) = exp

(
−ε

2
(σ − 1)

)(
∂2
σp̃

rem
+,e (σ) + ε∂σp̃

rem
+,e (σ) +

ε2

4
p̃rem

+,e (σ)

)
.

We then replace in (??) and simplify both sides by the appropriate exponential:



− µΓ∂2
σp̃

rem
− +

(
h+

1

2µε2

(
1− Γ

2

))
p̃rem
− +

1− Γ

ε
∂σp̃

rem
− = R̂−,

− µΓ∂2
σp

rem
+,i +

1

ε
∂σp

rem
+,i = 0,

− µΓ∂2
σp̃

rem
+,e +

(
1

2
− µΓε2

4

)
p̃rem

+,e +

(
1

ε
− µΓε

)
∂σp

rem
+,e = R̂+,e,

prem
+,i (0) = p̃rem

− (0),

p̃rem
+,e (1) = prem

−,i (1),

∂σp
rem
+,i (0) = ∂σp̃

rem
− (0) +

1

2µε
p̃rem
− (0),

∂σp̃
rem
+,e (1)− ε

2
p̃rem

+,e − ε2 = ∂σp
rem
+,i (1),

(22)

where

R̂− = R− exp

(
− σ

2µε

)
=

(
Γ− 1

µε
− εh

)
exp

(
σ

2µε

)
,

R̂+,e = R+,e exp
(ε

2
(σ − 1)

)
= µΓε3 exp

(
−ε

2
(σ − 1)

)
.

We do an energy estimate on System (??). We multiply each equation by
its unknown, integrate on its domain and sum all the obtained equalities:
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µΓ

(∫ 0

−∞
(∂σp̃

rem
− )2 +

∫ 1

0

(∂σp
rem
+,i )2 +

∫ +∞

1

(∂σp̃
rem
+,e )2

)
+

∫ 0

−∞

(
h+

1

2µε2

(
1− Γ

2

))
(p̃rem
− )2 +

∫ +∞

1

(
1

2
− µΓε2

4

)
(p̃rem

+,e )2

− µΓ∂σp̃
rem
− (0)p̃rem

− (0) +
Γ− 1

ε

prem
− (0)2

2

− µΓ∂σp
rem
+,i (1)prem

+,i (1) + µΓ∂σp
rem
+,i (0)prem

+,i (0) +
1

ε

(
prem

+,i (1)2

2
−
prem

+,i (0)2

2

)

µΓ∂σp̃
rem
+,e (1)p̃rem

+,e (1)−
(

1

ε
− µΓε

)
p̃rem

+,e (1)2

2

=

∫ 0

−∞
R̂−p̃

rem
− +

∫ +∞

1

R̂+,e.

Then we use the various transmission conditions to simplify the left-hand side.
For example we have:

− µΓ∂σp̃
rem
− (0)p̃rem

− (0) +
1− Γ

ε

prem
− (0)2

2
+ µΓ∂σp

rem
+,i (0)prem

+,i (0)− 1

ε

prem
+,i (0)2

2

=µΓp̃rem
− (0)

(
∂σp

rem
+,i (0)− ∂σp̃rem(0)

)
+

(
1− Γ

ε
− 1

ε

)
prem
− (0)2

2

=µΓp̃rem
− (0)

(
1

µε
p̃rem
− (0)

)
− Γ

ε

prem
− (0)2

2

=0.

In the same way, the interface terms at σ = 1 simplify except for a term
µΓε2p̃rem

+,e (1) which comes from the discrepancy between the derivatives ∂σp
rem
+,e (1)

and ∂σp
rem
+,i (1). This term is actually of a high enough order for our purpose.

Then we have the following inequality:

µΓ

(∫ 0

−∞
(∂σp̃

rem
− )2 +

∫ 1

0

(∂σp
rem
+,i )2 +

∫ +∞

1

(∂σp̃
rem
+,e )2

)
+

∫ 0

−∞

(
h+

1

2µε2

(
1− Γ

2

))
(p̃rem
− )2 +

∫ +∞

1

(
1

2
− µΓε2

4

)
(p̃rem

+,e )2

≤ µΓε2|p̃rem
+,e (1)|+

∣∣∣∣∫ 0

−∞
R̂−p̃

rem
−

∣∣∣∣+

∣∣∣∣∫ +∞

1

R̂+,ep̃
rem
+,e

∣∣∣∣ . (23)

Our goal is to bound by above every term in the right-hand side by terms
appearing in the left hand side and by quantities independent of prem. Let us
assume for now Lemma ?? which will be proved in Section ??. Recall also that
we have Γ ≤ 1 from (??).

Bound for
∣∣∣∫ +∞

1
R̂+,ep̃

rem
+,e

∣∣∣.
11



Firstly we have by (??) and a direct computation of the integral that:∥∥∥R̂+,e

∥∥∥
L2(]1,+∞[)

= O(ε5/2),

so that by Hölder and Young’s inequality one may write:∣∣∣∣∫ +∞

1

R̂+,ep̃
rem
+,e

∣∣∣∣ ≤ ∥∥∥R̂+,e

∥∥∥
L2(]1,+∞[)

∥∥p̃rem
+,e

∥∥
L2(]1,+∞[)

≤
(

1

ε1/2

∥∥∥R̂+,e

∥∥∥
L2(]1,+∞[)

)(
ε1/2

∥∥p̃rem
+,e

∥∥
L2(]1,+∞[)

)
≤ 1

4ε

∥∥∥R̂+,e

∥∥∥2

L2(]1,+∞[)
+ ε

∥∥p̃rem
+,e

∥∥2

L2(]1,+∞[)

≤ O(ε4) + ε
∥∥p̃rem

+,e

∥∥2

L2(]1,+∞[)
.

(24)

Bound for
∣∣∣∫ 0

−∞ R̂−p̃
rem
−

∣∣∣.
By a direct computation of the integral we have on the one hand∥∥∥∥exp

(
σ

2µε

)∥∥∥∥
L2(]−∞,0[)

= O(ε1/2),

and on the other hand∥∥∥∥h(σ) exp

(
σ

2µε

)∥∥∥∥
L2(]−∞,0[)

= O
(

exp

(
−1

µε

))
.

From Lemma ?? we have
Γ− 1

µε
= O(1).

and these three equalities give us∥∥∥R̂−∥∥∥
L2(]−∞,0[)

= O(ε1/2).

Again, this L2 control and Hölder and Young inequalities give:∫ 0

−∞
R̂−p̃

rem
− ≤

∥∥∥R̂−∥∥∥
L2(]−∞,0[)

(∫ 0

−∞
(p̃rem
− )2

)1/2

≤
(
ε
∥∥∥R̂−∥∥∥

L2(]−∞,0[)

)
1

ε

(∫ 0

−∞
(p̃rem
− )2

)1/2

≤ O(ε3) +
1

8µε2

∫ 0

−∞
(p̃rem
− )2.

(25)

Bound for µΓε2|p̃rem
+,e (1)|.

By (??), µΓε2 = O(ε2), so all we need to do is bound from above |p̃rem
+,e (1)|.

To achieve this, we of course use the continuous embedding of H1(]1,+∞[) into

12



L∞(]1,+∞[) and note C∞ the constant of this embedding. We then use Young
inequality to get

µΓε2|p̃rem
+,e (1)| ≤ µΓε3/2C∞ε

1/2

(∫ +∞

1

(∂σp̃
rem
+,e )2 +

∫ +∞

1

(p̃rem
+,e )2

)1/2

≤ µΓ

(
ε3C2

∞ + ε

(∫ +∞

1

(∂σp̃
rem
+,e )2 +

∫ +∞

1

(p̃rem
+,e )2

))
≤ O(ε3) + µΓε

∫ +∞

1

(∂σp̃
rem
+,e )2 + µΓε

∫ +∞

1

(p̃rem
+,e )2

Final Form of the Energy Inequality (??).
Since we have Γ ≤ 1 by (??) and h nonnegative, we have

h+
1

2µε2

(
1− Γ

2

)
≥ 1

4µε2
. (26)

Also, by Lemma ?? we have that Γ → 1 when ε → 0 so that we may assume
Γ ≥ 1/2 for ε small enough. With that we can bound from below the left-hand
side of (??)

µΓ

(∫ 0

−∞
(∂σp̃

rem
− )2 +

∫ 1

0

(∂σp
rem
+,i )2 +

∫ +∞

1

(∂σp̃
rem
+,e )2

)
+

∫ 0

−∞

(
h+

1

2µε2

(
1− Γ

2

))
(p̃rem
− )2 +

∫ +∞

1

(
1

2
− µΓε2

4

)
(p̃rem

+,e )2

≥ µ

2

(∫ 0

−∞
(∂σp̃

rem
− )2 +

∫ 1

0

(∂σp
rem
+,i )2 +

∫ +∞

1

(∂σp̃
rem
+,e )2

)
+

1

4µε2

∫ 0

−∞
(p̃rem
− )2 +

∫ +∞

1

(
1

2
− µε2

4

)
(p̃rem

+,e )2.

We now bound from above the three terms of the right-hand side of (??)
using (??)-(??) to obtain that

µΓε2|p̃rem
+,e (1)|+

∣∣∣∣∫ 0

−∞
R̂−p̃

rem
−

∣∣∣∣+

∣∣∣∣∫ +∞

1

R̂+,ep̃
rem
+,e

∣∣∣∣
≤ O(ε3) +

1

8µε2

∫ 0

−∞
(p̃rem
− )2 + µε

∫ +∞

1

(∂σp̃
rem
+,e )2 + (µ+ 1)ε

∫ +∞

1

(p̃rem
+,e )2

We can now write the final form of the energy inequality:

µ

(
1

2
− ε
)∫ +∞

1

(∂σp̃
rem
+,e )2 +

(
1

2
− µε2

4
− (µ+ 1)ε

)∫ +∞

1

(p̃rem
+,e )2

+
µ

2

∫ 0

−∞
(∂σp̃

rem
− )2 +

1

8µε2

∫ 0

−∞
(prem
− )2 +

µ

2

∫ 1

0

(∂σp
rem
+,i )2 ≤ O(ε3). (27)

13



Proof of Inequalities (??)-(??).
We can extract from (??) the following estimates:

∥∥p̃rem
−
∥∥

L2(]−∞,0[)
= O(ε5/2), (28)∥∥p̃rem

+,e

∥∥
L2(1,+∞ = O(ε3/2), (29)

which are exactly (??) and (??). To complete the proof of Proposition ?? we
need to show the estimate (??). Since we do not get it directly from (??) we
have to use some kind of Poincaré inequality. For this we write, for σ ∈ [0, 1]:

(prem
+,i )2(σ) =

∫ σ

0

2∂σp
rem
+,i (s)prem

+,i (s)ds+ (prem
+,i (0))2. (30)

We can now use the transmission condition of (??) to write:

(prem
+,i )2(σ) =

∫ σ

0

2
√

2∂σp
rem
+,i (s)

1√
2
prem

+,i (s)ds+ (prem
− (0))2

≤ 2

∫ σ

0

(∂σp
rem
+,i (s))2ds+

1

2

∫ σ

0

(prem
+,i (s))2ds+

(∫ 0

−∞
∂σp

rem
−

)2

≤ 2

∫ 1

0

(∂σp
rem
+,i )2 +

1

2

∫ 1

0

(prem
+,i )2 +

(∫ 0

−∞
∂σp

rem
−

)2

.

(31)

We now integrate this inequality between 0 and 1 to obtain:∫ 1

0

(prem
+,i )2 ≤ 4

∫ 1

0

(∂σp
rem
+,i )2 + 2

(∫ 0

−∞
∂σp

rem
−

)2

. (32)

Now from (??) we already have:∫ 1

0

(∂σp
rem
+,i )2 = O(ε3). (33)

Moreover, we have seen that

∂σp
rem
− = exp

(
σ

2µε

)(
∂σp̃

rem
− (σ) +

1

2µε
p̃rem
− (σ)

)
.

and by (??) we have both∥∥∥∥ 1

2µε
p̃rem
−

∥∥∥∥
L2(]−∞,0[)

= O(ε3/2),∥∥∂σp̃rem
−
∥∥

L2(]−∞,0[)
= O(ε3/2),

so that by Hölder inequality,∫ 0

−∞
∂σp

rem
− =

∫ 0

−∞
exp

(
σ

2µε

)(
∂σp̃

rem
− (σ) +

1

2µε
p̃rem
− (σ)

)
dσ

≤
(∫ 0

−∞
exp

(
σ

µε

))1/2 ∥∥∥∥∂σp̃rem
− +

1

2µε
p̃rem
−

∥∥∥∥
L2(]−∞,0[)

≤ (µε)1/2

(∥∥∂σp̃rem
−
∥∥

L2(]−∞,0[)
+

∥∥∥∥ 1

2µε
p̃rem
−

∥∥∥∥
L2(]−∞,0[)

)
.

14



Consequently, (∫ 0

−∞
∂σp

rem
−

)2

= O(ε4),

which gives ∫ 1

0

(prem
+,i )2 = O(ε3),

that is (??). We have thus proved Proposition ??.

Remark 1. On a side note, the two equalities,

∂σp
rem
− (σ) = exp

(
σ

2µε

)(
∂σp̃

rem
− (σ) +

1

2µε
p̃rem
− (σ)

)
,

∂σp
rem
+,e (σ) = exp

(
−ε

2
(σ − 1)

)(
∂σp̃

rem
+,e (σ)− ε

2
p̃rem

+,e (σ)
)
,

the energy estimate (??) and (??) prove that we also have the estimate

‖p− papp‖H1(R) = O(ε3/2). (34)

5 Proof of theo ??

In this section, we deduce theo ?? from Proposition ??, which was proved in
the previous section.

Let us note first that by a direct computation we can show that:∫
σ∈R

σpapp(σ)dσ ∼ 1

ε
.

All that is left to prove is that the stress attached to the remainder is o(1/ε).
We use the symbol A . B to express that there is a positive constant C

independent of ε, such that
A ≤ C ·B.

Since we have a weighted control of the norm of prem
− and prem

+,e , we can use
the following inequalities, which are true for small ε:

∣∣∣∣∫ 0

−∞
σprem
− (σ)dσ

∣∣∣∣ ≤ (∫ 0

−∞
σ2 exp

(
σ

µε

)
dσ

)1/2 ∥∥p̃rem
−
∥∥

L2(]−∞,0[)

. (µε)3/2
∥∥p̃rem
−
∥∥

L2(]−∞,0[)
, (35)∣∣∣∣∫ +∞

1

σprem
+,e (σ)dσ

∣∣∣∣ ≤ (∫ +∞

1

σ2 exp (−ε(σ − 1)) dσ

)1/2 ∥∥p̃rem
−
∥∥

L2(]1,+∞[)

.
1

ε3/2

∥∥p̃rem
−
∥∥

L2(]1,+∞[)
, (36)

We also have ∣∣∣∣∫ 1

0

σprem
+,i (σ)dσ

∣∣∣∣ ≤ (∫ 1

0

σ2

)1/2 ∥∥prem
+,i

∥∥
L2(]0,1[)

.
∥∥prem

+,i

∥∥
L2(]0,1[)

(37)
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Then it suffices to combine inequalities (??) with (??), (??) with (??) and
(??) with (??) to obtain: ∣∣∣∣∫

σ∈R
σprem(σ)dσ

∣∣∣∣ ≤ O(1), (38)

so that we have the expansion

τ =
1

ε
+O(1), (39)

and theo ??.

6 Proof of Lemma ??

This section is devoted to the proof of Lemma ??. What’s interesting is that
the proof of this lemma requires the study of a singular limit by itself. Indeed to
gain an estimate on Γ we need to approximate the remainder problem (??) by a
linear approximate remainder problem (??). Contrary to what happens in the
small shear rate limit we carried out in [?] the expansion of p and τ are uniform
in µ and, as such, much simpler. The difficulty of the large shear rate limit,
however, is that there is no real limit in this problem. Indeed, a näıve approach
would be to say that since the singular term is 1/ε∂σp then, p should go toward
a constant function and this constant can only be 0. This is incompatible with
the fact that “in the limit” the integral should still be one.

Let us first introduce the approximate remainder problem and explain its
link to System (??):

we define the functions πC,ε− , πC,ε+,i and πC,ε+,e to be the solutions of the following
system, 

− µ(1 + Cε)∂2
σπ

C,ε
− + hπC,ε− +

1

ε
∂σπ

C,ε
− = R−,

− µ(1 + Cε)∂2
σπ

C,ε
+,i +

1

ε
∂σπ

C,ε
+,i = 0,

− µ(1 + Cε)∂2
σπ

C,ε
+,e + πC,ε+,e +

1

ε
∂σπ

C,ε
+,e = R+,e,

πC,ε+,i (0) = πC,ε− (0),

πC,ε+,e(1) = πC,ε+,i (1),

∂σπ
C,ε
+,i (0) = ∂σπ

C,ε
− (0),

∂σπ
C,ε
+,e(1)− ε2 = ∂σπ

C,ε
+,i (1),

(40)

where

R− =

(
C

µ
− εh

)
exp

(
σ

µε

)
,

R+,e = µ(1 + Cε)ε3 exp(−ε(σ − 1)).

We also define the two variable function

F (C, ε) =

∫ 0

−∞
πC,ε− +

∫ 1

0

πC,ε+,i +

∫ +∞

1

πC,ε+,i + ε− µε2. (41)
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Replace, in (??), C by Γrem and the system becomes (??) without the inte-
gral constraint. Thus the solution to (??) with C = Γrem, which is by definition
πΓrem,ε is also the solution to (??) prem. Consequently the integral constraint
of (??) is exactly the equation F (Γrem, ε) = 0. Conversely, for any C verifying
F (C, ε) = 0 we have that πC,ε satisfies completely the problem (??), including
the integral constraint and thus we have C = Γrem. This argument relies on the
unique solvability of (??) for fixed ε or, equivalently, on the unique solvability
of (??). This property has already been proved in [?] or [?].

Let us first state that we have the analogous to Proposition ?? for (??).
Since there will be a boundary layer on the left side of σ = 1 we introduce
θ, a C∞ localization function which is 1 on [1/2, 1], 0 on [0, 1/3] and strictly
increasing on ]1/3, 1/2[. Then we have the following approximation result:

Proposition 2. The solution to the remainder problem (??) noted by

(πC,ε− , πC,ε+,i , π
C,ε
+,e) can be expanded, when ε → 0, as πC,ε = πC,ε,app + πC,ε,rem

where:

πC,ε,app
− (σ) = Cε2

(
1− Cσ

µε

)
exp

(σ
ε

)
,

πC,ε,app
+,i (σ) = Cε2 + µε3θ(σ)

(
1− exp

(
σ − 1

µε

))
,

πC,ε,app
+,e (σ) = Cε2 exp (−ε(σ − 1)) ,

(42)

with the following weighted L2 controls:∥∥∥∥exp

(
− ·

2µε

)
πC,ε,rem
−

∥∥∥∥
L2(]−∞,0[)

= O(ε7/2),∥∥∥πC,ε,rem
+,i

∥∥∥
L2(]0,1[)

= O(ε5/2),∥∥∥exp
(ε

2
(· − 1)

)
πC,ε,rem

+,e

∥∥∥
L2(1,∞)

= O(ε5/2).

We will prove this proposition in Section ??. From this proposition we can
deduce the following result which will be detailed in Section ??.

Proposition 3. For a fixed C we have:

F (C, ε) = (C + 1)ε+O(ε2).

Because of the linear and elliptic nature of (??) it is clear that F must be
at least continuous in C, ε in the domain 1 + Cε > 0. Let us fix two constant
numbers C1 and C2 such that C1 < −1 < C2. Then because of Proposition ??
and because F is continuous there is an interval ]0, ε0[ on which we have

∀ε ∈]0, ε0[, F (C1, ε) < 0 < F (C2, ε).

Now for any fixed ε ∈]0, ε0[ we use the continuity in C of F and the intermediate
value theo to affirm that there must be a 0 of F (·, ε) on the interval [C1, C2].
But as we pointed out, the only 0 that F (·, ε) has is Γrem. Consequently,

∀ε ∈]0, ε0[, C1 < Γrem < C2,

which is exactly what Lemma ?? states.
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Remark 2. Note that C = −1 makes F (C, ε) vanish for ε → 0 faster than any
other value of C and indeed one could prove by expanding p at a higher order
that we formally have Γ = 1 − ε + O(ε2) and also that papp + π−1,ε,app is the
second order expansion of p.

6.1 Proof of Proposition ??

This section is devoted to construct an approximation to System (??) and to
estimate the remainder of this approximation. It is very similar to Sections ??
and ??. Consequently, we will not give as much details.

To find the asymptotic behaviour of πC,ε we once again change variables and
set, now classically:

πC,ε− (σ) = χ−

(σ
ε

)
, πC,ε+,i (σ) = χ+,i(σ) + χbl

(
1− σ
ε

)
,

πC,ε+,e(σ) = χ+,e(ε(σ − 1)),

so that the functions χ−, χ+,i, χbl and χ+,e satisfy the following problem:

− µ(1 + Cε)∂2
zχ− + ε2hεχ− + ∂zχ− = ε2

(
C

µ
− εhε

)
exp

(
z

µ

)
,

− µ(1 + Cε)∂2
σχ+,i +

1

ε
∂σχ+,i = 0,

− µ(1 + Cε)∂2
zχbl − ∂zχbl = 0,

− µε2(1 + Cε)∂2
zχ+,e + χ+,e + ∂zχ+,e = µ(1 + Cε)ε3 exp(−z),

χ+,i(0) + χbl

(
1

ε

)
= χ−(0),

χ+,e(0) = χ+,i(1),

∂σχ+,i(0) =
1

ε
∂zχ−(0),

ε∂zχ+,e(0)− ε2 = ∂σχ+,i(1)− 1

ε
∂zχbl,

(43)

and assume an expansion of the form

χ− = ε2χ1
− + ε2χ2

− + ε3χ3
− + . . . ,

χ+,i = ε2χ1
+,i + ε2χ2

+,i + ε3χ3
+,i + . . . ,

χbl = ε3χ3
bl + ε4χ4

bl + . . . ,

χ+,e = ε2χ1
+,e + ε2χ2

+,e + ε3χ3
+,e . . . .

Recall that, to obtain, (??) we used a truncation at order ε of the formal
expansion of p, so that prem is formally of order ε2. Now πrem,C,ε solves (??), a
problem which is very similar to (??), and which is hopefully at the same formal
ε order. It is thus natural to see that the first order of πrem,C,ε should be ε2.
The following analysis will prove that the previous formal expansions give the
correct ansaetze.

One interesting point here is that when solving the profile equations for (??),
we start with σ > 1 because the most singular term comes from equation
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ε

∫ 0

−∞
q−(z)dz +

∫ 1

0

q+,i(z)dz + ε

∫ 1/ε

0

qbl(z)dz +
1

ε

∫ +∞

0

q+,e(z)dz = 1.

But such a constraint has disappeared in (??) and the most singular term now
comes from

∂σχ+,i(0) =
1

ε
∂zχ−(0),

and we solve from left (σ < 0) to right (σ > 1). It is then not difficult to see
that the lowest order approximation of πC,ε is formally given by

πC,ε,app
− (σ) = Cε2

(
1− Cσ

µε

)
exp

(σ
ε

)
,

πC,ε,app
+,i (σ) = Cε2 + µε3θ(σ)

(
1− exp

(
σ − 1

µε

))
,

πC,ε,app
+,e (σ) = Cε2 exp (−ε(σ − 1)) .

These expressions should be compared to the second order profiles given in
Section ??. We now again set πC,ε,rem = πC,ε−πC,ε,app. Then πC,ε,rem

− ,πC,ε,rem
+,i

and πC,ε,rem
+,e solve the following problem:

− µ(1 + Cε)∂2
σπ

C,ε,rem
− + hπC,ε,rem

− +
1

ε
∂σπ

C,ε,rem
− = R̃−,

− µ(1 + Cε)∂2
σπ

C,ε,rem
+,i +

1

ε
∂σπ

C,ε,rem
+,i = R̃+,i,

− µ(1 + Cε)∂2
σπ

C,ε,rem
+,e + πC,ε,rem

+,e +
1

ε
∂σπ

C,ε,rem
+,e = R̃+,e,

πC,ε,rem
+,i (0) = πC,ε,rem

− (0),

πC,ε,rem
+,e (1) = πC,ε,rem

+,i (1),

∂σπ
C,ε,rem
+,i (0) = ∂σπ

C,ε,rem
− (0),

∂σπ
C,ε,rem
+,e (1) = ∂σπ

C,ε,rem
+,i (1),

(44)

where

R̃− = −C
(
σ

µ2
+
Cε

µ

)
exp

(
σ

2µε

)
−
(
Cε2

(
1− σ

µε

)
+ ε

)
h exp

(
σ

2µε

)
,

R̃+,i = −µε2θ′ + µ2ε3θ′′ + 3µε2θ′ exp

(
σ − 1

µε

)
− µ2ε3θ′′ exp

(
σ − 1

µε

)
,

R̃+,e = µε3(1 + Cε) exp
(
−ε

2
(σ − 1)

)
+ Cε4(1 + Cε) exp

(
−ε

2
(σ − 1)

)
.

Let us again introduce

πC,ε,rem
− = exp

(
σ

2µε

)
π̃C,ε,rem
− ,

πC,ε,rem
+,e = exp

(
−ε

2
(σ − 1)

)
π̃C,ε,rem

+,e .

(45)
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We are going to prove that π̃C,ε,rem
− and π̃C,ε,rem

+,e , are in L2(] − ∞, 0[) and

L2(]1,+∞[) respectively. Let us write the problem solved by π̃C,ε,rem
− , πC,ε,rem

+,i

and π̃C,ε,rem
+,e :

− µ(1 + Cε)∂2
σπ̃

C,ε,rem
− +

(
h+

1

4µε2
− C

4µε

)
π̃C,ε,rem
− − C

µ
∂σπ̃

C,ε,rem
− = R̃−,

− µ(1 + Cε)∂2
σπ

C,ε,rem
+,i +

1

ε
∂σπ

C,ε,rem
+,i = R̃+,i,

− µ(1 + Cε)∂2
σπ̃

C,ε,rem
+,e +

(
1

2
− µ(1 + Cε)ε2

4

)
π̃C,ε,rem

+,e

+

(
1

ε
− µ(1 + Cε)ε2

)
∂σπ̃

C,ε,rem
+,e = R̃+,e,

πC,ε,rem
+,i (0) = π̃C,ε,rem

− (0),

π̃C,ε,rem
+,e (1) = πC,ε,rem

+,i (1),

∂σπ
C,ε,rem
+,i (0) = ∂σπ̃

C,ε,rem
− (0) +

1

2µε
π̃C,ε,rem
− (0),

∂σπ̃
C,ε,rem
+,e (1)− ε

2
π̃C,ε,rem

+,e (1) = ∂σπ
C,ε,rem
+,i (1).

(46)
Now we can obtain the same kind of energy estimate as (??):

µ(1 + Cε)

(∫ 0

−∞
(∂σπ̃

C,ε,rem
− )2 +

∫ 1

0

(∂σπ
C,ε,rem
+,i )2 +

∫ +∞

1

(∂σπ̃
C,ε,rem
+,e )2

)
+

1

8µε2

∫ 0

−∞
(π̃C,ε,rem
− )2 +

1

2

∫ +∞

1

(π̃C,ε,rem
+,e )2

≤
∫ 0

−∞
R̃−π̃

C,ε,rem
− πC,ε,rem

+,i +

∫ 1

0

R̃+,i +

∫ +∞

1

R̃+,eπ̃
C,ε,rem
+,e ,

Once again we can absorb the right-hand side into the left hand side by noting
that: ∥∥∥R̃−∥∥∥

L2(]−∞,0[)
= O(ε3/2),∥∥∥R̃+,e

∥∥∥
L2(1,∞)

= O(ε5/2),∥∥∥R̃+,i

∥∥∥
L2(]0,1[)

= O(ε2).
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Also note that we have the following a priori estimate:∫ 1

0

(πC,ε,rem
+,i )2 . (πC,ε,rem

+,i (0))2 +

∫ 1

0

(∂σπ
C,ε,rem
+,i )2

.

(∫ 0

−∞
∂σπ

C,ε,rem
−

)2

+

∫ 1

0

(∂σπ
C,ε,rem
+,i )2

.

(∫ 0

−∞
∂σ

(
exp

(
σ

2µε

)
π̃C,ε,rem
−

))2

+

∫ 1

0

(∂σπ
C,ε,rem
+,i )2

.

(∫ 0

−∞
exp

(
σ

2µε

)(
∂σπ̃

C,ε,rem
− +

1

2µε
π̃C,ε,rem
−

))2

+

∫ 1

0

(∂σπ
C,ε,rem
+,i )2

. ε1/2

(∫ 0

−∞
(∂σπ̃

C,ε,rem
− )2 +

1

4µε2

∫ 0

−∞
(π̃C,ε,rem
− )2

)
+

∫ 1

0

(∂σπ
C,ε,rem
+,i )2.

When we combine the previous inequalities, we obtain for ε small enough,

∫ 0

−∞
(∂σπ̃

C,ε,rem
− )2 +

∫ 1

0

(∂σπ
C,ε,rem
+,i )2 +

∫ +∞

1

(∂σπ̃
C,ε,rem
+,e )2

+
1

µε2

∫ 0

−∞
(π̃C,ε,rem
− )2 +

1

2

∫ +∞

1

(π̃C,ε,rem
+,e )2 ≤ O(ε5),

which in turn gives the following controls:∥∥∥π̃C,ε,rem
−

∥∥∥
L2(]−∞,0[)

= O(ε7/2),∥∥∥πC,ε,rem
+,i

∥∥∥
L2(]0,1[)

= O(ε5/2),∥∥∥π̃C,ε,rem
+,e

∥∥∥
L2(1,∞)

= O(ε5/2),

and thus ends the proof of prop ??.
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6.2 Proof of Lemma ??

Using the expressions of (??) in (??), we can now expand F (C, ε) :

F (C, ε) =

∫ 0

−∞
πC,ε− +

∫ 1

0

πC,ε+,i +

∫ +∞

1

πC,ε+,i + ε− µε2

=

∫ 0

−∞
πC,ε,rem
− +

∫ 1

0

πC,ε,rem
+,i +

∫ +∞

1

πC,ε,rem
+,i

+

∫ 0

−∞
πC,ε,app
− +

∫ 1

0

πC,ε,app
+,i +

∫ +∞

1

πC,ε,app
+,i + ε− µε2

=

∫ 0

−∞
πC,ε,rem
− +

∫ 1

0

πC,ε,rem
+,i +

∫ +∞

1

πC,ε,rem
+,i

+ 2Cµε3 + Cε2 + ε3

∫ 1

0

θ(σ)

(
1− exp

(
σ − 1

µε

))
dσ + Cε+ ε− µε2

(47)

Let us first note that

sup
σ∈[0,1]

∣∣∣∣θ(σ)

(
1− exp

(
σ − 1

µε

))∣∣∣∣ ≤ 1,

so that

ε3

∫ 1

0

θ(σ)

(
1− exp

(
σ − 1

µε

))
dσ = O(ε3). (48)

We now estimate the integrals of πC,ε,rem
− , πC,ε,rem

+,i and πC,ε,rem
+,e . To achieve

this, we use prop ?? which gives us the order of the respective L2 norms of
π̃C,ε,rem
− and π̃C,ε,rem

+,e . Indeed we use Hölder inequality to get the following
controls, ∫ 0

−∞
πC,ε,rem
− =

∫ 0

−∞
exp

(
σ

µε

)
π̃C,ε,rem
−

. ε1/2
∥∥∥π̃C,ε,rem
−

∥∥∥
L2(]−∞,0[)

. O(ε3),∫ 1

0

πC,ε,rem
+,i .

∥∥πC,ε,rem
∥∥

L2(]0,1[)
. O(ε5/2),∫ +∞

1

πC,ε,rem
+,e =

∫ +∞

1

exp
(ε

2
(σ − 1)

)
π̃C,ε,rem

+,e

.
1

ε1/2

∥∥∥π̃C,ε,rem
+,e

∥∥∥
L2(1,∞)

. O(ε2).

since, by explicit integration, we get∥∥∥∥exp

(
·

2µε

)∥∥∥∥
L2(]−∞,0[)

= (µε)1/2,∥∥∥exp
(ε

2
(· − 1)

)∥∥∥
L2(+1,∞)

=
1

ε1/2
,

Finally we have∫ 0

−∞
πC,ε,rem
− +

∫ 1

0

πC,ε,rem
+,i +

∫ +∞

1

πC,ε,rem
+,i = O(ε2). (49)
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Now we use (??) and (??) in (??) to obtain:

F (C, ε) = (C + 1)ε+O(ε2), (50)

which is exactly what prop ?? states
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[2] Éric Cancès, Isabelle Catto, and Yousra Gati. Mathematical analysis of
a nonlinear parabolic equation arising in the modelling of non-Newtonian
flows. SIAM J. Math. Anal., 37(1):60–82 (electronic), 2005.
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