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This article introduces a novel class of active contour models for image segmentation. It makes use of non-local comparisons between pairs of patches within each region to be segmented. The corresponding variational segmentation problem is implemented using a level set formulation that can handle an arbitrary number of regions. The pairwise interaction of features only constrains the local homogeneity of image features, which is crucial to capture regions with smoothly spatially varying features. This segmentation method is generic and can be adapted to various segmentation problems by designing an appropriate metric between patches. We instantiate this framework using several classes of features and metrics. Piecewise smooth grayscale and color images are handled using L 2 distance between image patches. We show examples of efficient segmentation of natural color images. Locally oriented textures are segmented using the L 2 distance between patches of Gabor coefficients. We introduce a Wasserstein distance between local empirical distributions for locally homogenous random textures. A correlation metric between local motion signatures is able to segment piecewise smooth optical flows.

1. Introduction. Image segmentation is a fundamental imaging problem that requires an efficient modeling of image and texture features. This article proposes a novel class of active contour models that unifies patch processing and piecewise regular image models. It makes use of non-local comparisons between pairs of patches within the segmented regions. We thus refer to it as a "non-local" approach, following the terminology initiated in [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]. The model provides a general framework since it can be adapted to various segmentation problems by designing a metric between patches.

1.1. Edge-based vs. Region-based Active Contours. Many existing active contour methods segment an image according to either edge or region information. The evolution of the segmenting curve is driven by the minimization of some variational energy that takes into account these information. A popular way to implement numerically such an active contour evolution is though the level set framework of Osher and Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF].

Edge-based active contours. Edge-based active contour models use some edge detector and evolve the segmenting curve towards sharp gradients of pixel intensity. Starting from the snakes model of Kass et al. [START_REF] Kass | Snakes: Active contour models[END_REF], many edge-based active contour models have been proposed, and in particular geometric snakes based on geodesic energies [START_REF] Caselles | A geometric model for active contours in image processing[END_REF][START_REF] Cohen | On active contour models and balloons[END_REF][START_REF] Malladi | Shape modeling with front propagation: A level set approach[END_REF][START_REF] Caselles | Geodesic active contours[END_REF][START_REF] Kichenassamy | Gradient flows and geometric active contour models[END_REF].

Region-based active contours. These local edge-based models tend to be sensitive to the noise that affects edge detectors. To avoid the difficult problem of edge localization, region-based active contour models incorporate more global information to obtain segmented region with homogeneous features. One of the first region-based method is the Mumford-Shah model [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] where the image is approximated using a smooth function inside each region. Many variants of this initial model have been proposed that allow simpler and more efficient implementations [START_REF]Avoiding local minima for deformable curves in image analysis[END_REF]. Chan and Vese (CV) [START_REF] Chan | Active contours without edges[END_REF] proposed an active contour method which approximates an image with a constant function inside each region. This CV model has been extended to deal with vector valued images [START_REF] Chan | Active contours without edges for vector-valued images[END_REF] and to textures [START_REF] Sandberg | A level-set and Gabor based active contour algorithm for segmenting textured images[END_REF].

Hybrid active contours. Several hybrid models have been proposed to make use of both local (edge-based) and global (region-based) information. Kimmel [START_REF] Kimmel | Fast edge integration, Geometric Level Set Methods in Imaging, Vision, and Graphics[END_REF] designs an energy mixing both the geodesic and the CV energies. Sagiv et al. [START_REF] Sagiv | Integrated active contours for texture segmentation[END_REF] use a similar energy (Integrated Active Contours, IAC) that is also extended to vectorvalued images and texture segmentation.

1.2. Piecewise Smooth Active Contours. Natural images exhibit smooth variations of features values (e.g. color gradients or texture orientation variations) over both the objects composing the scene and the background. It is thus important to design segmentation methods that can handle piecewise smooth images.

The initial Mumford-Shah approach [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] takes into account piecewise smooth images, and has been implemented for instance in [START_REF] Blake | [END_REF][START_REF] Tsai | Curve evolution implementation of the mumfordshah functional for image segmentation, denoising, interpolation, and magnification[END_REF][START_REF] Vese | A multiphase level set framework for image segmentation using the mumford and shah model[END_REF]. This model remains however difficult to implement numerically. A simpler class of piecewise-smooth models has been introduced more recently [START_REF] Brox | On the statistical interpretation of the piecewise smooth mumfordshah functional[END_REF][START_REF] Piovano | Efficient segmentation of piecewise smooth images[END_REF][START_REF] Wang | An efficient local chan-vese model for image segmentation[END_REF]. They estimate in parallel to the segmentation process a piecewise smooth parameter field such as the local mean of the features. Of particular interest is the locally binary fitting (LBF) model [START_REF] Li | Implicit active contours driven by local binary fitting energy[END_REF][START_REF] Wang | Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[END_REF][START_REF] Wang | Active contours driven by local gaussian distribution fitting energy[END_REF] that shares some similarity with our method.

Our non-local model also tackles the problem of designing piecewise smooth active contours, but it uses a different approach, that does not require the estimation of a spatially varying parameter field. A chief advantage of our method is that it only requires the design of a metric to compare patches extracted around each pixel. It is thus easy to apply the method to a wide variety of features, and we show in the numerical results several instances of our method for pixels, textures, local statistics and video features.

1.3. Multi-phase Active Contours. Several methods have been proposed to extend general binary segmentation energies to the case of an arbitrary number of regions, see for instance [START_REF] Zhao | A variational level set approach to multiphase motion[END_REF][START_REF] Yezzi | A statistical approach to snakes for bimodal and trimodal imagery[END_REF][START_REF] Paragios | Geodesic active regions: A new framework to deal with frame partition problems in computer vision[END_REF][START_REF] Samson | A level set model for image classification[END_REF][START_REF] Vese | A multiphase level set framework for image segmentation using the mumford and shah model[END_REF]. In this paper we focus on two particular level set methods. The approach of Samson et al. [START_REF] Samson | A level set model for image classification[END_REF] introduces a single level set function per region, and makes use of an additional repulsive energy to avoid the overlap of the regions. The approach of Chan and Vese [START_REF] Vese | A multiphase level set framework for image segmentation using the mumford and shah model[END_REF] requires only log 2 (N ) level set functions to partition the image in N non-overlapping regions depending on all possible combination of the level set signs.

We extend our non-local energy in a multi-phase framework using two different approaches borrowed from [START_REF] Vese | A multiphase level set framework for image segmentation using the mumford and shah model[END_REF] and [START_REF] Samson | A level set model for image classification[END_REF]. An important benefit of using these non-local multi-phase energies is that a smaller number of level set functions is required to perform complicated segmentations into multiple regions. Each of these two approaches has advantages and inconvenient, and we show in the numerical examples how our method fits perfectly in these two frameworks.

1.4. Non-local Image Processing. Non-local processing refers to the general methodology of designing energies using non-local comparisons of patches extracted in the image. Starting from the initial paper of Buades et al. [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], non-local energies have proved to be efficient for many imaging problems, including denoising [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF][START_REF] Kindermann | Deblurring and denoising of images by nonlocal functionals[END_REF], inverse problems [START_REF]Nonlocal operators with applications to image processing[END_REF][START_REF] Peyré | Non-local regularization of inverse problems[END_REF], semi-supervised classification [START_REF] Gilboa | Nonlocal linear image regularization and supervised segmentation[END_REF][START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF][START_REF] Houhou | Semi-supervised segmentation based on non-local continuous min-cut[END_REF] and unsupervised segmentation [START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF][START_REF] Caldairou | A nonlocal fuzzy segmentation method: Application to brain mri[END_REF].

In our work, we use a non-local energy that enforces the non-local similarity of patches inside each region to be segmented. This patch comparison principle drives the active contour to optimize the homogeneity of each region. Note that this approach differs significantly from previous patch-based segmentation methods such as [START_REF] Gilboa | Nonlocal linear image regularization and supervised segmentation[END_REF][START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF][START_REF] Houhou | Semi-supervised segmentation based on non-local continuous min-cut[END_REF][START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF][START_REF] Caldairou | A nonlocal fuzzy segmentation method: Application to brain mri[END_REF] where non-local energies are used to regularize the contour.

1.5. Examples of Images Features. All these previous works have been implemented using a wide variety of feature spaces, depending on the specificity of the images to be segmented. Beside classical gray-values and color features (that are usually compared using an L 2 norm), we detail below some popular features that we consider in the applications and numerical illustrations of our method.

Gabor Features. For locally oriented textures segmentation, a popular class of features is computed as the output of filter banks. Gabor filters [START_REF] Gabor | Theory of communication[END_REF] have been used to discriminate the local orientation and frequency of the texture [START_REF] Lee | Texture segmentation by minimizing vector-valued energy functionals: The coupled-membrane model[END_REF][START_REF] Deriche | Geodesic active contours for supervised texture segmentation[END_REF][START_REF] Sandberg | A level-set and Gabor based active contour algorithm for segmenting textured images[END_REF][START_REF] Sagiv | Integrated active contours for texture segmentation[END_REF]. The CV energy [START_REF] Chan | Active contours without edges for vector-valued images[END_REF] has been used by Sandberg et al. [START_REF] Sandberg | A level-set and Gabor based active contour algorithm for segmenting textured images[END_REF] to impose a global homogeneity of the texture orientation in each region. The IAC of Sagiv et al. [START_REF] Sagiv | Integrated active contours for texture segmentation[END_REF] extends the hybrid region/edge based active contour of [START_REF] Kimmel | Fast edge integration, Geometric Level Set Methods in Imaging, Vision, and Graphics[END_REF] to deal with vector valued features.

Statistical features.

To deal with more random textured images, it is possible to make use of the empirical statistics within each region to be segmented. The resulting statistical region-based active contours make use of pointwise similarity measures between distributions (such as the Kullback-Leibler divergence) to compare the distributions, in a parametric or non-parametric (using Parzen windows) fashion, see for instance [START_REF] Kim | A nonparametric statistical method for image segmentation using information theory and curve evolution[END_REF][START_REF] Zhu | Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation[END_REF][START_REF] Paragios | Geodesic active regions: A new framework to deal with frame partition problems in computer vision[END_REF][START_REF] Jehan-Besson | Segmentation of Vectorial Image Features Using Shape Gradients and Information Measures[END_REF][START_REF] Herbulot | Segmentation of vectorial image features using shape gradients and information measures[END_REF]. Traditional pointwise statistical distances are simple to compute, but are unstable when using localized distributions. To address these issues, Ni et al. [START_REF] Ni | Local histogram based segmentation using the wasserstein distance[END_REF] propose to use the L 1 Wasserstein distance in order to extend the segmentation model of Chan and Vese [START_REF] Chan | Active contours without edges[END_REF]. This work is extended to color image segmentation in [START_REF] Bao | Variational color image segmentation via chromaticity-brightness decomposition[END_REF] using a Wasserstein metric only on the brightness channel, thus resulting in a 1-D optimal transport metric. The Wasserstein metric fits nicely into our non-local framework, and we propose to use an approximate distance initially introduced in [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF] to handle features in arbitrary dimension (e.g. colors in 3-D).

Motion features.

Motion segmentation aims at grouping together pixels undergoing the same motion. Most existing works jointly compute an optical flow and a segmentation [START_REF] Cremers | Motion competition: A variational framework for piecewise parametric motion segmentation[END_REF][START_REF] Brox | Variational motion segmentation with level sets[END_REF]. Shi and Malik propose in [START_REF] Shi | Motion segmentation and tracking using normalized cuts[END_REF] to avoid the difficult estimation of the optical flow. They perform the segmentation using features representing a local probability distribution of motions. We make use of the same local features that is integrated into our non-local energy. The resulting method is able to detect moving objets with a smoothly varying motion.

1.6. Contributions. The main contribution of this paper is a novel class of segmentation energies that impose a local homogeneity of patch features. It is thus a non-local method (because it compares patches that are not necessary neighbors) but that enables a fine tuning of the scale at which these patches are compared (hence the local homogeneity).

Let us note that we use a mathematically rigorous derivation of the evolution PDEs using shape gradient flows. To the best of our knowledge, it is the first time multi-phase evolutions are performed within such a shape gradient framework.

A second contribution of the paper is a systematic exploration of this approach on a wide range of segmentation problems, that includes grayscale and color images, textures, random vector fields, and videos. We show comparisons with several other popular edge-based, region-based and hybrid methods (extended to patches) to enlight the benefit of patch comparisons. 1.7. Organization. Section 2 recalls the generic variational level set framework that we use to implement the active contour evolutions, and presents our computation of the gradient of new energy terms we use in our models. Section 3 introduces our new model, first in a simplified (un-normalized) case, and then in a more advanced (normalized) setting. Section 4 describes the competitor methods that we have tested in the numerical sections, and how we extend them to use patches with arbitrary metrics. Sections 5, 6, 7 and 8 show numerical examples of applications of our method to various settings (image, textures, videos). Section 9 details two different extensions of our method to handle an arbitrary number of regions.

Note that the some early results making use of this NL segmentation method were presented in the conference papers [START_REF] Jung | Nonlocal active contours[END_REF][START_REF]Nonlocal segmentation and inpainting[END_REF][START_REF]Texture segmentation via non-local non-parametric active contours[END_REF].

2. Variational Image Segmentation. This section recalls some basic notions about image segmentation as well are more advanced concepts using shape gradients. This will be used in the remaining part of the paper.

2.1. Variational Minimization. The goal is to segment an input image f 0 using a feature map f : [0, 1] 2 → R d computed from f 0 , where d is dimensionality of the feature space. Since we aim at proposing a generic segmentation framework, we do not specify the exact nature of the features in this section, and how f is computed from f 0 . Several examples of features are detailed in Sections 5, 6, 7 and 8.

Let Ω ⊂ [0, 1] 2 be some region that captures the objects of interest. We aim at finding a contour that represents the boundary ∂Ω of the region. We consider a variational minimization problem min

Ω E(Ω) = E(Ω) + γL(Ω) (2.1)
where E is a region energy that we will define in the following sections, and L a smoothing term that regularizes the boundary ∂Ω of the region. In the numerical experiments, L(Ω) = |∂Ω| is simply the length of the boundary. The parameter γ > 0 should be adapted to the expected regularity of the boundary of the region.

Parametric Active Contours with Shape Gradients.

A mathematically sound way to derive a minimizating partial differential equation (PDE) of the energy (2.1) makes use of the so called "shape gradients", see for instance [START_REF] Aubert | Image segmentation using active contours: calculus of variations or shape gradients?[END_REF][START_REF] Jehan-Besson | Segmentation of Vectorial Image Features Using Shape Gradients and Information Measures[END_REF][START_REF] Herbulot | Segmentation of vectorial image features using shape gradients and information measures[END_REF][START_REF] Zolésio | Shapes and Geometries[END_REF].

The shape gradient E ′ (Ω) of an energy E evaluated at Ω is a scalar field E ′ (Ω)(x) defined on each point the boundary x ∈ ∂Ω. It is characterized by introducing a family of smooth deformations Ω τ = T (τ, Ω) for τ 0 where T : R + × [0, 1] 2 → [0, 1] 2 and T (0, x) = x, so that Ω 0 = Ω. We denote v(x) = ∂T ∂τ (0, x) the associated velocity field. The energy E has a shape gradient E ′ (Ω) at some Ω if it satisfies

E(Ω τ ) = E(Ω) + τ v, E ′ (Ω)n Ω ∂Ω + o(τ )
see [START_REF] Aubert | Image segmentation using active contours: calculus of variations or shape gradients?[END_REF], where n Ω is the unit normal of ∂Ω pointing outward, and the inner product along the boundary between two vector fields v(x), w(

x) ∈ R 2 is v, w ∂Ω = ∂Ω v(x), w(x) dx.
A parametric active contour is represented for each time t 0 of the evolution by an explicit parameterization s → γ(s, t) of the boundary ∂Ω of Ω. The shape gradient defines an evolution equation that minimizes the energy

E ∂γ ∂t (s, t) = -E ′ (Ω)(γ(s, t))n Ω (γ(s, t)) (2.2)
where Ω is the shape associated to γ(•, t) at time t. The curve γ(•, t) converges as t → +∞ to the boundary of some Ω which is a stationary point of E (it satisfies E ′ (Ω) = 0).

2.3.

Level Set Active Contours. In order to compute numerically a contour evolution to minimize (2.1), following [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Chan | Active contours without edges[END_REF], the segmented region Ω is represented using a level set function ϕ : [0, 1] 2 → R so that Ω = {x \ ϕ(x) > 0}.

The descent direction -E ′ (Ω)n Ω is extended to level sets by selecting a valid level set gradient ∇E(ϕ) so that

∀ x ∈ ∂Ω, ∇E(ϕ)(x) = ||∇ϕ(x)||E ′ (Ω)(x).
(2.

3)

The parametric evolution (2.2) is turned into a level set evolution (2.4) of ϕ(x, t) with an artificial time t 0

∂ϕ ∂t = -∇E(ϕ) = -(∇E(ϕ) + γ∇L(ϕ)) . (2.4)
We detail in the following section the expressions of level set shape gradients in some particular cases that will be used in the remaining part of this article.

Shape Gradient Examples. For a boundary energy written as

L g (Ω) = ∂Ω g(x)dx,
where dx refers to 1-D integration along the boundary of Ω, a valid shape gradient extended to a level set function reads [START_REF] Aubert | Image segmentation using active contours: calculus of variations or shape gradients?[END_REF] ∇L g (ϕ) = -||∇ϕ||div g ∇ϕ ||∇ϕ|| .

(2.5)

For instance, in the original minimization (2.1), using the length of the boundary, one has L = L g with g = 1.

The following proposition gives a level set gradient for the simplest region-based energy written as

E g (Ω) = Ω g(x)dx (2.6) 
(note that g does not depend on Ω). Proposition 1. A level set gradient of E g reads

∇E g (ϕ) = ||∇ϕ||g. (2.7)
Proof. The usual balloon force corresponds to g = 1 [START_REF] Cohen | Finite Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images[END_REF], see for instance [START_REF] Aubert | Image segmentation using active contours: calculus of variations or shape gradients?[END_REF] for the general case.

In the following propositions, we derive the level set gradients of two types of region-based energies. We first consider a region-based energy defined using pairwise interactions terms

F g (Ω) = Ω×Ω g(x, y)dxdy.
(2.8)

Proposition 2. A level set shape gradient of F g is

∇F g (ϕ)(x) = ||∇ϕ(x)|| Ω g(x, y) + g(y, x) dy.
(2.9)

Proof. One has F g (Ω) = Ω G x (Ω)dx where G x (Ω) = Ω g(x, y)dy. Note that for a fixed x, G x (Ω) is of the form (2.7), and following (2.8), its shape gradient is G ′

x (Ω) = g(x, •). Thus, if τ is a smooth deformation of Ω, and v is its velocity field, then

G x (Ω τ ) = G x (Ω) + τ v, g(x, •)n Ω ∂Ω + o(τ ).
(2.10)

Integrating with respect to x the previous expression on Ω τ gives

F g (Ω τ ) = Ωτ G x (Ω)dx + τ Ωτ g(x, •)dx n Ω , v ∂Ω + o(τ ) = Ω Ωτ g(y, x)dydx + τ Ωτ g(x, •)dx n Ω , v ∂Ω + o(τ ). (2.11)
Once again the inner term Ωτ g(y, x)dy in (2.12) can be expressed, similarly to (2.11), as

Ωτ g(y, x)dy = Ω g(y, x)dy + τ v, g(•, x)n Ω ∂Ω + o(τ ).
This derives the equation for the shape gradient of the energy F g (Ω τ )

F g (Ω τ ) = F g (Ω) + τ Ω g(x, •) + g(•, x) dx n Ω , v ∂Ω + o(τ ).
Lastly, we will consider more complicated pairwise interactions of the form

F f,g,h (Ω) = Ω f (x) G x (Ω) H x (Ω) dx where G x (Ω) = Ω g(x, y)dy, H x (Ω) = Ω h(x, y)dy.
(2.12)

The following proposition derives the expression of a level set gradient.

Proposition 3. A level set gradient of F f,g,h is ∇F f,g,h (ϕ)(x) = ||∇ϕ(x)|| f (x) G x (Ω) H x (Ω) + Ω f (y) g(y, x)H y (Ω) -h(y, x)G y (Ω) H y (Ω) 2 dy .
(2.13)

Proof. For a fixed x, let A x (Ω) = G x (Ω)/H x (Ω). One has A x (Ω τ ) = G x (Ω) + τ g(x, •)n Ω , v ∂Ω + o(τ ) H x (Ω) + τ h(x, •)n Ω , v ∂Ω + o(τ ) = A x (Ω) + τ A ′ x (Ω)n Ω , v ∂Ω + o(τ ) (2.14)
where the shape gradient of A x reads

A ′ x (Ω) = g(x, •)H x (Ω) -h(x, •)G x (Ω) H x (Ω) 2 .
Integrating (2.15) multiplied by f (x) on Ω τ gives

F f,g,h (Ω τ ) = Ωτ α(x)dx + o(τ ),
where

α(x) = f (x) (A x (Ω) + τ A ′ x (Ω)n Ω , v ∂Ω )
and hence the result by expanding

Ωτ α(x)dx = Ω α(x)dx + τ αn Ω , v ∂Ω + o(τ ).
Let us mention that the shape gradient of an energy Ẽ(Ω) = E(Ω c ) associated to the complementary domain

Ω c = [0, 1] 2 \Ω is easily derived as Ẽ′ (Ω) = -E ′ (Ω c ) =⇒ ∇ Ẽ(ϕ) = -∇E(-ϕ) (2.15)
since -ϕ is a level set function associated to Ω c . In the following, we will make use of the identities (2.6), (2.8), (2.10) and (2.14) to derive the expression of ∇E(ϕ) for the different energies E considered.

Numerical Implementation.

The segmentation is applied to a discretized image f of n × n pixels. The gradient and divergence operators appearing in (2.6) are computed using first order finite difference approximations. Integrals such as Ω f (x)dx are approximated by 1

n 2 i f (i/n) where i ∈ {0, . . . , n -1} 2 .
The gradient flow (2.4) is then discretized using a gradient descent

ϕ (ℓ+1) = ϕ (ℓ) -ξ ℓ ∇E(ϕ (ℓ) ) + γ∇L(ϕ (ℓ) ) , (2.16) 
where ξ ℓ > 0 is a suitable time step size.

To ensure the stability of the level set evolution (2.4), one needs to re-initialize it from time to time. This corresponds to replacing ϕ by the signed distance function to the level set {x \ ϕ(x) = 0}.

3. Non-local Active Contours. This section introduces two region based energies that integrate pairwise interactions between pairs of patches inside and outside the region Ω. These energies constrain the local homogeneity of image features.

Un-normalized Non

-local Active Contours. 3.1.1. Pairwise Patch Interaction. A patch in some image f around a pixel x ∈ [0, 1] 2 is defined as p x (t) = f (x + t), ∀ t ∈ [-τ /2, τ /2] 2 . (3.1)
The non-local interaction between two patches is measured using a metric d(•, •) 0 that accounts for the similarity between patches. Typically d(p x , p y ) should be small for patches that are "similar", where the similarity is typically problem-dependent. 

E U NL (Ω) = ĒU NL (Ω) + ĒU NL (Ω c ) where ĒU NL (Ω) = Ω×Ω K(x, y)dxdy (3.2) 
where Ω c = [0, 1] 2 \Ω is the complementary of the region Ω, and where the pairwise interaction kernel is

K(x, y) = G σ (x, y)d(p x , p y ). (3.3)
The kernel G σ (x, y) is a decaying function of ||x -y||. For the numerical examples, we use a truncated Gaussian function so that G σ (•, y) has a bounded support inside a square of width ξ

G σ (x, y) = e -||x-y|| 2 2σ 2 if ||x -y|| ∞ ξ 0 otherwise.
The parameter σ > 0 is important since it controls the scale of the local homogeneity one requires for the segmented object. If the region is made of a nearly constant pattern, one should use a large σ. In contrast, if the region exhibits fast features variations, σ should be chosen smaller. For simplicity, we use the same scale for both inside and outside the region, but one could of course use two distinct parameters. This scale should also be adapted to the initial curve at time t = 0. If this initial curve is far away from the object boundary, a large windowing function might be required.

The level set gradient of this NL-U energy is computed as

∇E U NL (ϕ) = ∇ ĒU NL (ϕ) -∇ ĒU NL (-ϕ) where ∇ ĒU NL (ϕ) = ∇F K (ϕ) (3.4)
where ∇F K is defined in Proposition 2. Note that we have used the rule (2.16) to derive the gradient of the complementary region Ω c . For the numerical implementation of the evolution (2.4), the distance between neighboring patches d(p x , p y ) are pre-computed only once in a pre-processing step, so that this evolution is quite fast to compute.

Limitations.

The non-local active contours model works well when the size of patches is small. Section 5.2 reports several examples of segmentation using pixel features and a weighted L 2 distance between patches. The local homogeneity property of the energy (3.2) enables this model to correctly detect objects which are only locally homogeneous, and can deal with separated objects with different features.

Section 5.3 however shows that this un-normalized model suffers from a segmentation bias when the patch width τ is large. The segmented region is shifted away from the object boundary with an amount proportional to the patch width τ . This becomes problematic when used with large patches, because of the lack of precision of the resulting segmentation. Large patches are however desirable as the noise level increases, since robustness requires more pixels to evaluate the local homogeneity.

Normalized Non-local Active Contours.

To reduce the segmentation bias introduced by the non-local active contour energy (3.2), we define a novel normalized non-local (NL-N) energy

E N NL (Ω) = ĒN NL (Ω) + ĒN NL (Ω c ) (3.5)
where

ĒN NL (Ω) = Ω Ω K(x, y)dy Ω G σ (x, y)dy dx where K(x, y) is defined in (3.
3). Note that the un-normalized energy NL-U defined in (3.2) is recovered by setting the denominator Ω G σ (x, y)dy to 1. In practice, the correction factor Ω G σ (x, y)dy is far from being constant, in particular when the size of patches is large. This normalization is thus crucial to reduce the disparities that increase as a pixel approaches the boundary of the segmented region.

The level set gradient of this energy is computed as

∇E N NL (ϕ) = ∇ ĒN NL (ϕ) -∇ ĒN NL (-ϕ) (3.6)
where we use the shape gradient derivative (2.14) as follow

∇ ĒN NL (ϕ) = ∇F 1,K,Gσ (ϕ).
4. Other Methods. In the following sections, we compare our non-local active contour model with some previously proposed segmentations methods. To perform a fair comparison with our method, we extend (when this is possible) these technics to handle patches with a comparison function d(•, •).

Chan-Vese Active Contours (CV).

The Chan-Vese (CV) model [START_REF] Chan | Active contours without edges[END_REF] assumes that the inside Ω and outside Ω c of the region to be segmented are globally homogeneous, by measuring the average variation with respect to templates patches

p 1 , p 2 E CV (Ω, p 1 , p 2 ) = ĒCV (Ω, p 1 )+ ĒCV (Ω c , p 2 ) where ĒCV (Ω, p) = Ω d(p x , p)dx. (4.1)
Here we extended the original CV model by using a general distance incorporating with patches instead of L 2 distance of intensity values.

The level set gradient of this energy

∇E CV (ϕ, p 1 , p 2 ) = ∇E g1 (ϕ) -∇E g2 (-ϕ) where g i (x) = d(p x , p i )
where ∇E g is defined in (2.8) (here p 1 and p 2 are assumed to be fixed). Following [START_REF] Chan | Active contours without edges[END_REF], the active contour evolution is obtained by performing a gradient descent step (2.5) with ∇E(ϕ (ℓ) ) = ∇E CV (ϕ (ℓ) , p 1 , p 2 ). After each gradient step, the value of the templates p 1 , p 2 is updated as

p 1 = Γ 1 (Ω), p 2 = Γ 1 (Ω c ) where Γ U (Ω) = argmin p Ω U (x)d(p x , p)dx (4.2)
where Ω = x \ ϕ (ℓ) (x) > 0 (note that here U (x) = 1). We detail in the following section (see (5.2) and (7.5)) how to compute Γ 1 for the special case of the L 2 and 1-D Wasserstein metrics d(•, •).

Geodesic Active Contours (GAC).

The geodesic active contour [START_REF] Caselles | Geodesic active contours[END_REF] looks for a curve that has a minimum length according to a metric g(x) 0

E GAC (Ω) = ∂Ω g(x)dx. (4.3)
The metric g is usually defined using an edge detector. In the numerical experiments, it is computed by rescaling a gradient-based detector g to [0, 1] using an affine transform. We used

g(x) = 1 δ + G b ⋆ ||∇f (x)|| q (4.4)
where ⋆ is the spatial convolution with Gaussian filters G b (x) = 1 2πb 2 e -||x|| 2 /2b 2 . We fix in the numerical examples δ = 0.1, q = 1, and adapt b > 0 for each tested image.

The active contour evolution is derived by performing a gradient descent of E GAC , with an additional ballon force [START_REF] Cohen | On active contour models and balloons[END_REF] 

∂ϕ ∂t = -∇E GAC (ϕ) + ηg||∇ϕ|| (4.5)
where ∇E GAC = ∇L g as defined in (2.6), and ηg||∇ϕ|| helps to avoid poor local minima by forcing moving the curve forward/outward (depending on the sign of η).

Integrated Active Contours (IAC).

The integrated active contours model, introduced by [START_REF] Sagiv | Integrated active contours for texture segmentation[END_REF] is a weighted average of the GAC (4.3) and CV (4.1) energies incorporated with patches

E IAC (ϕ, p 1 , p 2 ) = E CV (ϕ, p 1 , p 2 ) + µE GAC (ϕ). (4.6)
The active contour evolution is computed as described in Section 4.1 for the CV model.

Locally Binary Fitting (LBF).

The Chan-Vese region based model (4.1) imposes a global homogeneity of the regions to be segmented. To cope with spatially varying regions, the LBF model [START_REF] Li | Implicit active contours driven by local binary fitting energy[END_REF] makes the templates p 1 (x) and p 2 (x) of the energy vary spatially

E LBF (Ω, p 1 , p 2 ) = Ω [0,1] 2 G σ (x, y)d(p x , p 1 (y))dydx + Ω c [0,1] 2 G σ (x, y)d(p x , p 2 (y))dydx. (4.7)
Here we extended the original LBF model by using a general distance d(•, •) between patches instead of L 2 distance of intensity values.

The active contour evolution is computed as described in Section 4.1 for the CV model, where the level set of the LBF energy (assuming p 1 and p 2 fixed) reads

∇E LBF (ϕ, p 1 , p 2 ) = ∇E g1 (ϕ) -∇E g2 (-ϕ) where g i (x) = [0,1] 2 G σ (x, y)d(p x , p i (y))dy
where ∇E g is defined in (2.8). The value of p 1 , p 2 is updated at iterations ℓ defined in (2.5),

p 1 (y) = Γ Gσ (Ω), p 2 (y) = Γ Gσ (Ω c ) where Γ Gσ (Ω) = argmin p Ω G σ (x, y)d(p x , p)dx (4.8)
as defined in (4.2) and where Ω = x \ ϕ (ℓ) (x) > 0 .

4.5. Parameters of the Methods. Our NL method as well as the competitor methods require to set-up several parameters that can have a significant impact on the segmentation results. To ensure the reproducibility of the comparisons reported in the following numerical section, we provide the list of parameters for each experiment in each figure's captions. Furthermore, the implementation of the methods can be retrieved online 1Here are the parameters of the different methods

• n: width of the image.

• γ: weight of the curve regularization (see (2.1)). • µ: weight between edge and region terms (see (4.6)), only for IAC.

• λ: weight for the energy preventing the domains to overlap (see (9.3)), only for MR. In the next four sections, we apply all the formalism introduced so far to different segmentation problems using different kinds of features and metrics. for color images. In this section we use a weighted L 2 distance (5.1), similarly to the patch distance used for non-local denoising [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF],

d(p x , p y ) = t G a (t)||p x (t) -p y (t)|| 2 dt.
(5.1)

The Gaussian weight G a (t) = e -||t|| 2 2a 2

is used to give more influence to the central pixel. To implement the CV and LBF models described in Sections 4.1 and 4.4, the update operator defined in (4.2) and (4.8) reduces to a linear averaging

Γ U (y) = Ω U (x)p x dx Ω U (x)dx . (5.2) 

Examples with Un-normalized Model (NL-U)

. This section presents results of the L 2 distance (5.1) with intensity and color features. In all the examples, we use small size of patches of width τ = 3/n for a discretized image of size n × n and a = 0.5/n.

In Figures 5.1 and 5.2, we test our method on several synthetic images with spatially varying background and/or object, or with several separated objects with different intensities. In all the examples, our model correctly detects the objects due to the local homogeneity property, in contrast to the two-phase Chan-Vese model [START_REF] Chan | Active contours without edges[END_REF] requiring a global homogeneity in each region. The first example in Figure 5.1 well demonstrates the effect of this property, and the second example shows in addition the detection of an interior contour. The bottom object in the first example in Figure 5.2 has spatially varying intensities, and moreover the intensities of its left side are close to the ones of the background. Thus, the Chan-Vese model fails to segment this piecewise smooth object, regarding its left side as background, as shown in Figure 5.3, while our model captures the boundary with small gradients. Furthermore, Figure 5.2 shows detection of multiple separated objects with different intensities.

Figure 5.3 shows segmentation results on the same image with the methods described in Section 4: CV, GAC and IAC. For the IAC model, two final curves are shown with two different but close parameters µ (µ 1 > µ 2 ). Because µ is a balancing term between the region-based and edge-based energies, when µ > µ 1 (or µ < µ 2 ), the model tends to act like the geodesic snake model (or Chan-Vese model). Thus, with the given initial curves, all the models fail to detect the correct object boundaries. Note that, with good initial curves surrounding all the boundaries, the IAC model would be able to detect the boundaries with large values of µ, but in our model one circle around the objects as an initial curve is enough to achieve a correct segmentation. Thus, our model is less sensitive to the choice of initial curves than edge-based active contour models.

Figure 5.4 presents segmentation results with our NL-U method on grayscale images. We compare our model with the CV and IAC models. Our model detects objects in the image with spatially varying background and multiple objects with different intensities, while both CV and IAC models fails to segment objects correctly. Figure 5.5 shows segmentation results with our NL-U method on natural color images. We compare our model with the vector-valued Chan-Vese model [START_REF] Chan | Active contours without edges for vector-valued images[END_REF] and the IAC model. By using an initial curve near the boundary of object(s) and a small windowing function, our model detects the boundary of non-homogeneous object(s). The segmentation result is fairly good, compared with CV and IAC models that only capture part of object(s). On the other hand, these examples also show a limitation of our model: in order to detect the boundary of non-homogeneous objects, the initial curve needs to be located near the object boundary so that a small windowing function can be used.

Comparison of Un-normalized and Normalized models.

The unnormalized energy (3.2) works well with a small size of patches or pixel values, as seen in Figures 5.1-5.5. However, this energy has a segmentation bias near the object boundary, when using a large size of patches, even though contour is attracted to the boundary. Despite this limitation of the energy (3.2), we keep it as our model due to its simplicity as well as that there are many cases where the use of a small size of patches or pixel values are enough to segment regions. Figures 5.6 presents examples that require a large size of patches, and compare the results of our un-normalized (3.2) and normalized (3.5) energies. It makes use of the L 2 distance (5.1) with intensity feature. In this example, the un-normalized model does not provide satisfactory results with any kind of patches: patches of width τ = 1/n (1 pixel), τ = 3/n (3 × 3 pixels) with a = ∞. By using patches of width τ = 1/n, the un-normalized model produces noisy final curves, and by using patches of width τ = 3/n, it results in smoother final curves that are however not located on the object boundaries in spite of adjusting the smoothness parameter γ. On the other hand, the normalized model with patches of width τ = 5/n provides a smooth final curve, located exactly on the boundary.

Section 7.4 shows other comparisons of NL-U and NL-N in the case of local statistical features. The conclusion remains the same, namely that the normalized model helps to reduce the segmentation bias. set of Gabor filters, see for instance [START_REF] Sandberg | A level-set and Gabor based active contour algorithm for segmenting textured images[END_REF][START_REF] Sagiv | Integrated active contours for texture segmentation[END_REF].

Locally Oriented Textures Segmentation. A popular set of features to discriminate the local orientation of textures are computed from the responses to a

Gabor features.

Given an input image f 0 : [0, 1] 2 → R, f (x) ∈ R d is defined as the modulus of the filtering of f 0 with d complex filters

f ℓ (x) = |f 0 ⋆ h ℓ |, ∀ ℓ ∈ {0, . . . , d -1} (6.1) with x = (x 1 , x 2 ) ∈ [0, 1] 2 and h ℓ (x) = e 2iπ n η ℓ (cos(θ ℓ )x1+sin(θ ℓ )x2) G s ℓ (x).
The parameter η ℓ > 0 is the frequency of the filtering, θ ℓ ∈ [0, π) is the orientation and s ℓ > 0 is the spatial width of the filter. In the numerical examples, the parameters η ℓ , θ ℓ , s ℓ are adapted to obtain the best texture segmentation, and f ℓ are rescaled to [0, 1] using an affine transform.

The resulting feature map f (x) is a multi-channels image and the patches p x are compared using the weighted L 2 norm (5.1).

6.2.

Examples. Figure 6.1 shows a comparison between the non-local un-normalized (NL-U) and the Chan-Vese (CV) models applied to Gabor coefficients [START_REF] Sandberg | A level-set and Gabor based active contour algorithm for segmenting textured images[END_REF]. In this case, we use d = 8 filters with η ℓ ∈ {2, 2.5, 3, 3.5}, θ ℓ ∈ {0, π/2}, s ℓ = 2. We have also tested the CV method with a larger number d = 64 of features with η ℓ ∈ {2, 3, 4, 5},

θ ℓ ∈ {0, π/4, π/2, 3π/4}, s ℓ ∈ {2, 2 √ 2, 4, 4 √ 2}.
The Gabor based CV method fails to detect the object on the top right side because the intensity values of that object in the Gabor domain are small and comparable with the coefficients of the background. Using a larger number of features helps, but is not enough. In contrast, our model detects correctly all the objects thanks to the local homogeneity criterion. Figure 6.2 shows an example where both the object and the background are composed of textures with smoothly varying orientations, simulating perspective. We use d = 4 filters with η ℓ ∈ {0.7, 1.6}, θ ℓ = 0, s ℓ ∈ {4, 4 √ 2} in the first example, and d = 8 filters with η ℓ ∈ {2, 3, 4, 5}, θ ℓ = 0, s ℓ ∈ {4, 4 √ 2} in the second one. Similarly to Figure 5.1, the Gabor based Chan-Vese model [START_REF] Sandberg | A level-set and Gabor based active contour algorithm for segmenting textured images[END_REF] fails to segment the object, while our model does a correct segmentation. For the IAC model, we use another rescaled edge function g(x) as follows, which provides better (cleaner) edges than using (4.4),

g(x) = 1 δ + ||∇(G b ⋆ f )(x)|| q (6.2)
with fixed δ = 0.1 and q = 2. IAC model detects the object in the first example but not in the second one, which shows the difficulty to design a good edge detector g(x) for texture features. In contrast, our model can segment the object in both cases without the need for any edge detector.

7. Statistical Segmentation. While Gabor features described in Section 6 are useful to deal with locally oriented geometrical textures, textures with more randomness require the use of statistical features. We propose in this section a simple framework that estimates the local first order statistics of the pixel distribution. A key idea is to use an optimal transport distance to compare the local statistics, which is important to deal with arbitrary pixel statistics. Note that more advanced statistical features could be used (e.g. distribution of pairs of pixels), but this is outside the scope of this paper. 

µ X = 1 P P -1 i=0 δ Xi where X i ∈ R d .
Here d = 1 for grayscale image and d = 3 for color image. We simply estimate the pixel value density around a pixel x as the empirical distribution µ px where p x is a patch of P = τ 2 pixel extracted around x. Note that it is possible to use a more advanced estimation procedure such as a Parzen window method. The estimation µ px using a sum of Diracs has the advantage of simplicity and leads to statistical distances that are quite fast to compute.

The L 2 Wasserstein distance between two distributions µ X , µ Y in R d is defined as where Σ P is the set of all the permutations of P elements. For simplicity we have restricted our attention to distributions having the same number P of points, which is the case for our application to segmentation. Note also that our method can handle arbitrary L q Wasserstein metrics for q 1, but we only use the L 2 in the numerical examples.

W (µ X , µ Y ) 2 = min σ∈Σ P P -1 i=0 X i -Y σ(i) 2 (7.1)
The permutation σ minimizing (7.1) is the optimal assignment between the two points clouds. This optimal assignment problem can be solved using combinatorial optimization schemes in O(P 5/2 log(P )) operations when d > 1, see [START_REF] Burkard | Assignment Problems[END_REF].

In the 1-D case, the optimal assignment σ that solves (7.1) can be computed in 

X σ X (i) X σ X (i+1) and Y σ Y (i) Y σ Y (i+1)
with two permutations σ X , σ Y ∈ Σ N . The Wasserstein distance is then the L 2 norm of the sorted vectors

W (µ X , µ Y ) 2 = N -1 i=0 |X σ X (i) -Y σ Y (i) | 2 . ( 7.2) 
Note the major computational difference between the assignment problem (7.1) in dimension d = 1 and in higher dimensions d > 1, where no O(P log(P )) algorithm is available.

7.2. Sliced Wasserstein Distance. The numerical complexity of solving (7.1) in dimension d > 1 is prohibitive for imaging applications such as our segmentation problem. To obtain a fast numerical scheme, we follow the work of Rabin et al. [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF] that introduces a sliced Wasserstein distance. It is defined as a sum of 1-D Wasserstein distances of projected distributions

SW (µ X , µ Y ) 2 = θ∈Θ W (µ X θ , µ Y θ ) 2 , where X θ = { X i , θ } P -1 i=1 . (7.3) 
Here X θ , Y θ ⊂ R are projected 1-D distributions and Θ ⊂ R d is a discrete set of directions, sampled on the unit sphere (i.e. θ ∈ R d with ||θ|| = 1). Evaluating this sliced distance (7.3) has a complexity of O(|Θ|P log(P )) operations which is advantageous over the original Wasserstein distance (7.1) if Θ is not too large. Although there is no mathematical proof of the quality of the approximation of W using SW , numerical observations suggest that SW is a good approximation to solve minimization problems involving the Wasserstein metric, see [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF]. Note that other approximations of the Wasserstein distance have been proposed, in particular [], but we found that the sliced approximation (7.3) was precise enough for color image segmentation.

The sliced approximation (7.3) is used to measure the similarity between patches to perform statistical region-based segmentation. We thus define a new similarity measure between patches as

d(p x , p y ) = SW (µ px , µ py ) 2 .
(7.4)

7.
3. Wasserstein Barycenter. It is possible to compute in close form the CV and the LBF update operators (4.2) and (4.8) in the case of 1-D features (d = 1). In this case, it corresponds to an averaging of the sorted values

Γ U (Ω) = p where p(i) = Ω U (x)p x (σ x (i))dx Ω U (x)dx (7.5) 
where σ x ∈ Σ P is a permutation such that the values (p x (σ x (i))) i are sorted in increasing order. There is no close form expression for Γ U (Ω) in the general case d > 1, although an approximation algorithm have been introduced in [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF]. It is however beyond the scope of this paper to extend LBF and CV to the case of multidimensional distributions.

Examples.

In the numerical examples, we use a L 2 sliced Wasserstein distance (which corresponds to q = 2).

Figure 7.1 presents simple examples where the L 2 patch distance (5.1) cannot be applied because the black and white stripe pattern is a texture that is not homogenous in the pixel domain. Furthermore, these examples require a large patch size to capture the texture statistics. This figure presents comparisons of the un-normalized model (3.2), the normalized model (3.5), CV (4.1) and LBF models (4.7), using the 1-D Wasserstein distance (7.2), and also presents the mis-matching rate (R%) between a resulting curve and the ideal curve exactly located on the object boundary.

As we already mentioned in Section 5.3, the un-normalized model introduces a segmentation bias near the object boundary when using large size of patches. This bias cannot be reduced completely by adjusting the parameter γ. The normalized model (3.5), in column 3, reduces the bias to some extent, independently of the value of γ. The LBF model seems to provide similar results with our normalized model, but it results in more biased curve than our model in the first example using large size of patches (τ = 15/n). Columns 4 shows that the CV model also suffers from a segmentation bias: the curves are located a few pixels far away from the boundaries. Although our models and CV/LBF models have similar behaviors on globally homogeneous textures, this example highlights the importance of our normalization. Figure 7. [START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF] shows examples of color texture segmentation using the sliced Wasserstein distance (7.3). We considered only |Θ| = 3 projection directions, i.e. Θ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, which was enough to obtain satisfactory segmentations in all the given examples. We also compare our model with the vector-valued Chan-Vese model [START_REF] Chan | Active contours without edges for vector-valued images[END_REF], and with the color extension [START_REF] Bao | Variational color image segmentation via chromaticity-brightness decomposition[END_REF] of the original method proposed in [START_REF] Ni | Local histogram based segmentation using the wasserstein distance[END_REF]. In all the examples, our model correctly detects the boundary of objects and segments separated multiple objects with different distributions of color values, in contrast to the other models that do not locate the curve on the exact boundaries, detect only part of objects or fail to detect objects. Note that the second example was degraded by the random-valued implusive noise (noise with any intensity value is randomly distributed over the entire image), of density 0.3 (probability of the corrupted image pixels).

8. Motion Segmentation. To perform motion segmentation, we use the motion profile features introduced by Shi and Malik in [START_REF] Shi | Motion segmentation and tracking using normalized cuts[END_REF][START_REF]Normlaized cuts and image segmentation[END_REF] within our non-local active contour framework.

Motion features.

The goal is to segment moving objects between two consecutive frames f 0 , f 1 of a video sequence. The local movement at a pixel x is represented by a motion profile f (x) ∈ R d . In the following we use a patch of size τ × τ so that f (x) = p x is a motion profile.

The profile p x ∈ R d is a local signature where (p x ) i is an estimation of the probability that pixel x in frame f 0 moves toward pixel x + δ i , where (δ i ) d-1 i=0 ⊂ R 2 is a discrete grid of 2-D relative movements, as seen in Figure (8.1). For the numerical examples, we use δ i that ranges on a uniform square grid of step 1/n and of width 11/n (which means that the expected displacement amplitude is 5 pixels).

To evaluate the movement, the patch π 0 x of size τ m × τ m extracted from f 0 around pixel x is compared to the patches π 1 x+δi extracted from frame f 1 around pixels x+δ i . Following [START_REF] Shi | Motion segmentation and tracking using normalized cuts[END_REF][START_REF]Normlaized cuts and image segmentation[END_REF] the value of the profile is a decaying function of the L 2 distance between the patches

(p x ) i = 1 Z x e -||π 0 x -π 1 x+δ i || 2 2σ 2 m
where the constant Z x ensures that i (p x ) i = 1 so that p x resembles a density distribution of movements.

The non-local segmentation method is then applied to the segmentation of the profiles p x using a correlation distance between the square root of the profiles

d(p x , p y ) = 1 - i (p x ) i (p y ) i . (8.1)
Note that we compute the square root of the motion profile, instead of using the motion profile itself as in [START_REF] Shi | Motion segmentation and tracking using normalized cuts[END_REF][START_REF]Normlaized cuts and image segmentation[END_REF], in order to ensure that d(p x , p x ) = 0. show the two input images f 0 and f 1 . In the first example, both objects translate with opposite directions and also exhibit a change of size (scaling). The second example shows a simpler movement (uniform translation) but the object has a uniform texture. The third example shows two 3-D objects which are both translating and rotating in space. The fourth example shows a single object which is rotating. These examples shows different types of movements that are not uniform translation and result in smoothly varying motion profile, thus being well suited for our non-local segmentation method. To better show the movement in these sequences, column (c) shows the optical flow computed using the Lucas-Kanade method [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]. Note that this flow is given for illustration purpose only, and is not used to compute the segmentation. It is important because optical flow computation is a difficult task that would often lead to poor segmentation results. The last column (d) shows the segmentation results using our normalized energy with the motion distance.

Figure 8.3 shows that our model is able to segment a moving car of a video sequence. The initial curve is given only in the 1st frame (it needs to be quite close to the car), and the resulting curve is used as the initial curve for the next frame. The segmentation results are shown when f 0 is the 1st, 13th, 31th frame of a movie sequence.

For these numerical examples, we use motion patches of width τ m = 3/n, excepted for the taxi sequence where τ m = 7/n. The motion profile are computed using a variance that is adapted manually for each case. We use σ m = 0.2/nτ m for the 1st and 2nd examples, σ m = 0.06/nτ m for the 3rd, σ m = 0.08/nτ m for the 4th, and σ m = 0.25/nτ m for the taxi sequences.

We note that we try to initially locate curves outside moving objects, especially when objects have little textures where the motion profiles are almost flat, see for instance the first and third examples. In this way, our model can detect the object boundary where the variation of motion profiles is largest. 9. Multi-phase segmentation. This section generalizes the models proposed in the previous sections to handle an arbitrary number N 2 of regions. This is performed by extending the energy E(Ω) associated to a single domain Ω to an energy E M (Ω 1 , . . . , Ω m ) on m domains, and then replacing the original problem (2.1) by a joint minimization on the m domains min Ω1,...,Ωm

E M (Ω 1 , . . . , Ω m ) = E M (Ω 1 , . . . , Ω m ) + γ m j=1 L(Ω j ).
(9.1) Section 9.1 recalls the multi-phase extension proposed in [START_REF] Zhao | A variational level set approach to multiphase motion[END_REF][START_REF] Samson | A level set model for image classification[END_REF] where the number of segmented regions N is equal to the number of domains N = m. Section 9.2 details an alternative extension where N = 2 m , that follows closely [START_REF] Vese | A multiphase level set framework for image segmentation using the mumford and shah model[END_REF]. The problem (9.1) can be solved using a level set function ϕ j to represent each domain Ω j = {x \ ϕ j (x) > 0}. The active contour evolution is obtained by performing a gradient descent of (9.1), which leads to a system of m coupled PDE's

∀ i = 1, . . . , m, ∂ϕ i ∂t = - ∂E M ∂ϕ i (ϕ 1 , . . . , ϕ m ) -γ∇L(ϕ i ) (9.2)
where ∂EM ∂ϕi is a level set gradient direction associated to the mapping Ω i → E M (Ω 1 , . . . , Ω m ). 9.1. Multiphase Repulsive (MR) Method. Following the multiphase representation [START_REF] Zhao | A variational level set approach to multiphase motion[END_REF][START_REF] Samson | A level set model for image classification[END_REF], we introduce an energy to enforce that {Ω 1 , . . . , Ω m } are disjoint

F (Ω 1 , . . . , Ω m ) = [0,1] 2 m j=1 χ Ωj (x) -1 2 dx
where we have used the indicator function

χ Ω (x) = 1 if x ∈ Ω, 0 otherwise. 
Any single region energy E(Ω) is extended into a multi-phase energy as

E M (Ω 1 , . . . , Ω m ) = λF (Ω 1 , . . . , Ω m ) + m j=1 E(Ω j ) (9.3)
where λ > 0 is a parameter that should be large enough to prevent the domains to overlap. The active contour evolution (9.2) is implemented using

∂E M ∂ϕ i (ϕ 1 , . . . , ϕ m )(x) = λ ∂F ∂ϕ i (ϕ 1 , . . . , ϕ m )(x) + ∇E(ϕ i )
where ∇E is the level set gradient of the energy considered, and where ∂F ∂ϕi is detailed in the following proposition.

Proposition 4. One has, for i = 1, . . . , m,

∂F ∂ϕ i (ϕ 1 , . . . , ϕ m )(x) = ||∇ϕ i (x)|| -1 + 2 j =i χ Ωj (x)
where Ω j = {x \ ϕ j (x) > 0}.

Proof. One can write

F (Ω 1 , . . . , Ω m ) = Ωi j =i χ Ωj (x) 2 dx + Ω c i j =i χ Ωj (x) -1 2 dx.
Using Proposition 1, one has

∂F ∂ϕ i (ϕ 1 , . . . , ϕ m )(x) = j =i χ Ωj (x) 2 - j =i χ Ωj (x) -1 2 
and hence the result. 9.2. Multiphase Intersection (MI) Method. Following the method introduced in [START_REF] Vese | A multiphase level set framework for image segmentation using the mumford and shah model[END_REF], we consider all possible intersections obtained using the sets {Ω j , Ω c j } m j=1 . This gives a segmentation of the image using N = 2 m non-overlapping regions.

Any single-region energy E(Ω) is extended to a multi-phase setting as

E M (Ω 1 , . . . , Ω m ) = s∈{+1,-1} m E(Ω s1 1 ∩ . . . Ω sm m ) (9.4)
where we have use the notation Ω +1 j = Ω j and Ω -1 j = Ω c j . Note that the minimization (9.1) is performed on m domains, but it produces a segmentation in 2 m regions.

Computing the partial level set gradient ∂E ∂ϕj can be quite involved since it is made of 2 m terms. To obtain simpler formula, the following proposition makes use of the special structure of our non-local energies, and introduces the indicator functions of a set (Ω × Ω) ∪ (Ω c × Ω c ) χΩ (x, y) = 1 if (x, y) ∈ (Ω × Ω) ∪ (Ω c × Ω c ), 0 otherwise.

Proposition 5. Let ϕ 1 , . . . , ϕ m be fixed level set functions. For i = 1, . . . , m, we denote, for any function f (x, y), f [i] (x, y) = f (x, y) j =i χΩj (x, y). where K is defined in (3.3). For E = ĒN NL of equation (3.5), a level set gradient is given, for j = 1, . . . , m, by

∂E M ∂ϕ i (ϕ 1 , . . . , ϕ m ) = ∇F 1,K [i] ,G [i] σ (ϕ i ) -∇F 1,K [i] ,G [i] σ (-ϕ i )
where ∇F is defined in (2.14).

Proof. The multiphase extension of the un-normalized energy (3.2) can be conveniently written as follows

E NL-U M (Ω 1 , . . . , Ω m ) = m i=1 K [i] (x, y) χΩi (x, y)dydx = m i=1 F K [i] (Ω i ) + F K [i] (Ω c i )
(9.5) where F g is defined in (2.9). The result follows from Proposition 2, using the fact that K [i] is a symmetric kernel.

The multiphase extension of the normalized energy (3.5) (NL-N) is written as follow 

F 1,K [i] ,G [i] σ (Ω i ) + F 1,K [i] ,G [i] σ (Ω c i ) (9.6)
where F f,g,h is defined in (2.13). The result follows from Proposition 3. Note that for the CV energy, there is an additional parameter for each of the N regions to be segmented, which generalizes the pair (p 1 , p 2 ) of parameters in the original energy (4.1). Each parameter is updated during the active contour evolution in a way similar to (4.2).

Figure 9.1 presents segmentation results of the multiphase model MR with our un-normalized energy NL-U using the L 2 patch distance (5.1) and the CV energy. Since two foreground objects are touching, the non-local energy requires multi-phase extensions to perform a correct segmentation. Due to the fact that our non-local energy can segment the region with spatially smoothly varying features and separated regions with different features with one level set function, the multiphase model MR with our NL-U energy also could segment the regions with smoothly varying intensity values, and it could segment the regions with small number of level set functions (m = 3 for the 1st example, m = 2 for the 2nd example). On the other hand, the CV 10. Conclusion. In this article, we have proposed a novel class of non-local energies for image segmentation, which makes use of patches and allows to constrain local homogeneity of features. We have illustrated superiority of our models over existing active contour models. Due to the local homogeneity property, our segmentation model is able to detect regions with smoothly spatially varying features and segment separated objects with different features with a level set function. We have instantiated our models based on intensity, color, texture or motion information, by designing appropriate metrics between patches such as L 2 norm for piecewise smooth features (intensity, color values or Gabor features for locally oriented textures), Wasserstein distance for locally homogeneous random field, or motion signature correlation. The Wasserstein distance and its sliced approximation allow to segment complicated textural features in arbitrary dimension, and the motion distance enables to detect moving objects with locally varying motion. We also extend our models to the multi-phase level set frameworks that enable to segment an image with multiple junctions. Our multi-phase models are also able to partition regions with smoothly varying features and with smaller number of level set functions, due to the local homogeneity property. All these properties are significant extensions of existing region-based models crucial to solve difficult image segmentation problems.
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 31 Fig. 3.1: Schematic display of the patch comparison principle using a large value of σ (left) and a smaller value of σ (right). Only patches p x and p y located jointly inside or outside Ω are compared. The dotted box on the right figure shows the set of locations y around x where G σ (x, y) is non-zero. Only pairs of patches located inside this area are compared. 3.1.2. Pairwise Interaction Energy. The local homogeneity of the region (and of its complementary) is measured by considering all possible pairwise patch interactions at a given scale σ > 0, as seen Figure (3.1). This gives rise to the following non-local unnormalized (NL-U) energy of a region

  • τ : patch width (see (3.1)). • (σ, ξ): scale of the patch comparison function (see (3.3) and (4.7)), only for NL-U, NL-N and LBF. • b: smoothing bandwidth of the edge-detector (see (4.4), (6.2)), only for GAC and IAC. • η: amplitude of the balloon force (see (4.5)), only for GAC.

5 .

 5 Pixel-based Segmentation. 5.1. Weighted L 2 patch distance. The simplest features are simply the pixel values f (x) ∈ R d of the input image, where d = 1 for grayscale images, and d = 3
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 51 Fig. 5.1: Curve evolution for the segmentation of two images with spatially varying background and object using NL-U, and comparison with CV. ℓ is the iteration number. Parameters: n = 100, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 31/n), γ = 15/(n 5 ξ 2 τ 2 ) (NL-U), γ = 0.02 (CV).
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 5253 Fig. 5.2: Curve evolution for the detection of objects with spatially varying object, or with several separated objects with different intensities, using NL-U model. ℓ is the iteration number. Parameters: n = 100, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 31/n), γ = 15/(n 5 ξ 2 τ 2 ).
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 54 Fig. 5.4: Grayscale images segmentation. Final curves of our un-normalized model NL-U, CV and IAC. Parameters: n = 176, 121, (τ, a)=(3/n, 0.5/n), top: γ = 10/(n 5 ξ 2 τ 2 ), (σ, ξ) = (10/n, 31/n) (NL-U), γ = 0.2/n (CV), b = 0.5/n, µ = 0.3/n, γ = 0 (IAC), bottom: γ = 5/(n 5 ξ 2 τ 2 ), (σ, ξ) = (10/n, 21/n) (NL-U), γ = 0.005/n (CV), b = 0.5/n, µ = 0.5/n, γ = 0 (IAC).
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 55256 Fig. 5.5: Natural color images segmentation. Final curves of our un-normalized model NL-U, vector-valued CV [12], and IAC. Parameters: n = 189, 225, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 41/n), top: γ = 100/(n 5 ξ 2 τ 2 ) (NL-U), γ = 0.5/n (CV), b = 0.5/n, µ = 5/n, γ = 0 (IAC), bottom: γ = 60/(n 5 ξ 2 τ 2 ), (NL-U), γ = 0.3/n (CV), b = 0.5/n, µ = 1/n, γ = 0 (IAC).

AFig. 6 . 1 :Fig. 6 . 2 :

 6162 Fig. 6.1: Texture segmentation with Gabor features. Parameters: n = 202, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 31/n), γ = 40/(n 5 ξ 2 τ 2 ) (NL-U), γ = 0.5/n (CV).

7. 1 .

 1 Local Statistical Features. Our statistical features are discrete densities in R d made of P Dirac distributions:

  Fig. 7.1: Comparison of models with the Wasserstein distance function (7.2). R(%) indicates the mis-matching rate between a resulting curve and the ideal curve exactly located on the object boundary. Parameters: n = 100, τ = 15/n (top), τ = 11/n (bottom), (σ, ξ) = (∞, 31/n), γ variable (NL-U, LBF: γ = γ ′ /(n 5 ξ 2 τ 2 )).
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 72 Fig. 7.2: Segmentation results with Wasserstein distance (7.2). Left: Curve evolution using our NL-N model (3.5). Right: Plot of energy E(ϕ (ℓ) ) vs iteration ℓ. Parameters: n = 100, τ = 3/n, (σ, ξ) = (∞, 31/n), γ = 0.5/(n 3 τ 2 ).

τ 5 Fig. 7 . 3 :

 573 Fig. 7.3: Segmentation results with Wasserstein distance (7.2). Top row: Initial curves. Middle: Results of our NL-N model (3.5). Bottom: Results of the CV model extended with Wasserstein distance. Parameters: n = 148, 147, 202, 186 (left to right), τ variable, (σ, ξ) = (∞, 31/n), γ = γ ′ /(n 3 τ 2 ) variable. O(P log(P )) operations by ordering the points clouds X and Y
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 774 Fig. 7.4: Texture segmentation of our NL-N model (3.5) with the sliced Wasserstein distance (7.3) with |Θ| = 3 fixed directions, and comparison with the vector-valued Chan-Vese (CV) model [12] and the extended work (CV-Wass) [2] of [40]. Parameters: n = 185, τ = 11/n, (σ, ξ) = (∞, 31/n), γ = 1.5/(n 3 τ 2 ) . Parameters: n = 176, τ = 5/n, (σ, ξ) = (∞, 31/n), γ = 0.1/(n 3 τ 2 ) . Parameters: n = 192, τ = 9/n, (σ, ξ) = (∞, 31/n), γ = 0.5/(n 3 τ 2 ) . Parameters: n = 192, τ = 7/n, (σ, ξ) = (∞, 31/n), γ = 1/(n 3 τ 2 ) . Parameters: n = 193, τ = 7/n, (σ, ξ) = (∞, 31/n), γ = 0.5/(n 3 τ 2 ) .

Frame f 0 Frame f 1

 1 Motion profile px

Fig. 8 . 1 :

 81 Fig. 8.1: Schematic display of the computation of a motion profile p x for a translating disk. The blue patches π y where y = x + δ i for some i in frame f 1 shows the most probable patches that match π x in frame f 0 , thus resulting in a large value of (p x ) i (blue colors on the image in the last figure). separated multiple objects with different distributions of intensities. It also shows the curve evolution of our model starting from given initial curves, and displays the convergence of the energy E(ϕ (ℓ) ) as a function of the iteration index ℓ.Figure 7.3 presents texture segmentation results of our model (3.5) and comparison with CV model (4.1). Again due to the local homogeneity, our model discriminates different textures having different distributions of intensities, while CV fails for the correct discrimination.Figure7.[START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF] shows examples of color texture segmentation using the sliced Wasserstein distance (7.3). We considered only |Θ| = 3 projection directions, i.e. Θ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, which was enough to obtain satisfactory segmentations in all the given examples. We also compare our model with the vector-valued Chan-Vese model[START_REF] Chan | Active contours without edges for vector-valued images[END_REF], and with the color extension[START_REF] Bao | Variational color image segmentation via chromaticity-brightness decomposition[END_REF] of the original method proposed in[START_REF] Ni | Local histogram based segmentation using the wasserstein distance[END_REF]. In all the examples, our model correctly detects the boundary of objects and segments separated multiple objects with different distributions of color values, in contrast to the other models that do not locate the curve on the exact boundaries, detect only part of objects or fail to detect objects. Note that the second example was degraded by the random-valued implusive noise (noise with any intensity value is randomly distributed over the entire image), of density 0.3 (probability of the corrupted image pixels).

Figure 7 .

 7 3 presents texture segmentation results of our model (3.5) and comparison with CV model (4.1). Again due to the local homogeneity, our model discriminates different textures having different distributions of intensities, while CV fails for the correct discrimination.
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 82 Fig. 8.2: Segmentation of moving objects with our NL-N model (3.5) and the motion distance (8.1). Parameters: n = 120, 100, 150, 200 (top to bottom), τ = 11/n, (σ, ξ) = (∞, 31/n), γ = 0.005/n, 0.005/n, 0.03/n, 0.008/n (top to bottom) .
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 83 Fig. 8.3: Segmentation of a moving car with our NL-N model (3.5) and the motion distance (8.1). Initial curve (1st column) on the 1st frame and final curves (2nd-4th columns) curves on the 1st, 13th, 31th frame of the sequence are shown. Parameters: n = 191, τ = 11/n, (σ, ξ) = (∞, 41/n), γ = 0.005/n. 8.2. Examples. Figures 8.2 and 8.3 present some motion segmentation results with the motion distance (8.1). The first two columns (a) and (b)show the two input images f 0 and f 1 . In the first example, both objects translate with opposite directions and also exhibit a change of size (scaling). The second example shows a simpler movement (uniform translation) but the object has a uniform texture. The third example shows two 3-D objects which are both translating and rotating in space. The fourth example shows a single object which is rotating. These examples shows different types of movements that are not uniform translation and result in smoothly varying motion profile, thus being well suited for our non-local segmentation method. To better show the movement in these sequences, column (c) shows the optical flow computed using the Lucas-Kanade method[START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]. Note that this flow is given for illustration purpose only, and is not used to compute the segmentation. It is important because optical flow computation is a difficult task that would often lead to poor segmentation results. The last column (d) shows the segmentation results using our normalized energy with the motion distance.

For

  E = ĒU NL of equation (3.2), a level set gradient is given, for j = 1, . . . , m, by ∂E M ∂ϕ i (ϕ 1 , . . . , ϕ m ) = ||∇ϕ i (x)|| Ωi K [i] (x, y)dy -Ω c i K [i] (x, y)dy

E

  NL-N M (Ω 1 , . . . , Ω m ) = m i=1 K [i] (x, y) χΩi (x, y)dy G [i] σ (x, y) χΩi (x, y)dy dx = m i=1

Fig. 9 . 1 :

 91 Fig. 9.1: Segmentation results of multi-phase method MR with the NL-U energy and the CV energy. Parameters: n = 100, τ = 1/n, (σ, ξ) = (∞, 31/n), NL-U: γ = 100/(n 5 ξ 2 τ 2 ), λ = 200/(n 5 ξ 2 τ 2 ) (top), λ = 300/(n 5 ξ 2 τ 2 ) (bottom), CV: (γ, λ) = (0.1/(n 3 τ 2 ), 0.1/(n 2 τ 2 )).
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 92 Fig. 9.2: Segmentation results of multi-phase method MI with the NL-U energy and the CV energy. Parameters: n = 100, τ = 1/n, (σ, ξ) = (∞, 31/n), γ = 100/(n 5 ξ 2 τ 2 ) (NL-U), γ = 0.1/(n 3 τ 2 ) (CV). 9.3. Examples. In the following numerical experiments, we consider the multiphase extensions of the Chan-Vese (CV) energy E CV defined in (4.1), the NL-U energy defined in (3.2) and the NL-N energy defined in (3.5).Note that for the CV energy, there is an additional parameter for each of the N regions to be segmented, which generalizes the pair (p 1 , p 2 ) of parameters in the original energy (4.1). Each parameter is updated during the active contour evolution in a way similar to (4.2).Figure9.1 presents segmentation results of the multiphase model MR with our un-normalized energy NL-U using the L 2 patch distance (5.1) and the CV energy. Since two foreground objects are touching, the non-local energy requires multi-phase extensions to perform a correct segmentation. Due to the fact that our non-local energy can segment the region with spatially smoothly varying features and separated regions with different features with one level set function, the multiphase model MR with our NL-U energy also could segment the regions with smoothly varying intensity values, and it could segment the regions with small number of level set functions (m = 3 for the 1st example, m = 2 for the 2nd example). On the other hand, the CV
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MR method

MR method MI method energy fails to segment the first example due to the spatially varying intensity values, and it needs more level set functions for the second example. This figure also displays the convergence of the energy E M using the MR method (9.3) with the NL-U energy as a function of the iteration index ℓ. Figure 9.2 presents segmentation results of the multiphase model MI with our unnormalized energy NL-U using the L 2 patch distance (5.1) and the CV energy. The multiphase model MI with our NL-U energy could segment the regions with smoothly varying background with two level set functions, while the CV energy fails in the segmentation due to the spatially varying background. This figure also displays the convergence of the energy E M using the MI method (9.5) with the NL-U energy as a function of the iteration index ℓ.

Figure 9.3, shows the result with our normalized energy (NL-N) using the sliced Wasserstein distance between patches (7.4). The sliced distance for color distributions in R 3 is implemented using Θ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The first two examples are grayscale and color textures that are handled efficiently using our statistical patch distance. Although there are 5 regions, the MR method gives a correct segmentation with m = 3 level set functions. In these examples, the repulsive force plays an important role to make the curves evolve to the boundaries, especially when a small value of σ (locality parameter) is used.

The third example is contaminated by Salt-and-Pepper noise (noisy pixel takes either salt value 1 or pepper value 0) with noise density 0.05 (salt noise and pepper noise have a noise density of 0.05/2).This shows a complicated segmentation situation because four regions are meeting at some locations. The MI method gives a correct segmentation with m = 3 functions that can segment up to eight phases. Note that the MR method would have required at least m = 4 function. This is however much smaller than what would have been required (at least m = 6) if the CV energy had been used instead of NL-N.