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NONLOCAL ACTIVE CONTOURS∗

MIYOUN JUNG, GABRIEL PEYRÉ AND LAURENT D. COHEN†

Abstract. This article introduces a novel class of active contour models for image segmentation.
It makes use of non-local comparisons between pairs of patches within each region to be segmented.
The corresponding variational segmentation problem is implemented using a level set formulation
that can handle an arbitrary number of regions. The pairwise interaction of features only constrains
the local homogeneity of image features, which is crucial to capture regions with smoothly spatially
varying features. This segmentation method is generic and can be adapted to various segmentation
problems by designing an appropriate metric between patches. We instantiate this framework using
several classes of features and metrics. Piecewise smooth grayscale and color images are handled
using L2 distance between image patches. We show examples of efficient segmentation of natural
color images. Locally oriented textures are segmented using the L2 distance between patches of
Gabor coefficients. We introduce a Wasserstein distance between local empirical distributions for
locally homogenous random textures. A correlation metric between local motion signatures is able
to segment piecewise smooth optical flows.

Key words. image segmentation, active contours, level sets, non-local method, patch, Wasser-
stein distance, texture, motion, multiphase.

AMS subject classifications.

1. Introduction. Image segmentation is a fundamental imaging problem that
requires an efficient modeling of image and texture features. This article proposes a
novel class of active contour models that unifies patch processing and piecewise regular
image models. It makes use of non-local comparisons between pairs of patches within
the segmented regions. We thus refer to it as a “non-local” approach, following the
terminology initiated in [7]. The model provides a general framework since it can be
adapted to various segmentation problems by designing a metric between patches.

1.1. Edge-based vs. Region-based Active Contours. Many existing active
contour methods segment an image according to either edge or region information.
The evolution of the segmenting curve is driven by the minimization of some varia-
tional energy that takes into account these information. A popular way to implement
numerically such an active contour evolution is though the level set framework of
Osher and Sethian [41].

Edge-based active contours. Edge-based active contour models use some edge
detector and evolve the segmenting curve towards sharp gradients of pixel intensity.
Starting from the snakes model of Kass et al. [28], many edge-based active contour
models have been proposed, and in particular geometric snakes based on geodesic
energies [10, 14, 36, 11, 29].

Region-based active contours. These local edge-based models tend to be sensitive
to the noise that affects edge detectors. To avoid the difficult problem of edge local-
ization, region-based active contour models incorporate more global information to
obtain segmented region with homogeneous features. One of the first region-based
method is the Mumford-Shah model [38] where the image is approximated using a
smooth function inside each region. Many variants of this initial model have been
proposed that allow simpler and more efficient implementations [15]. Chan and Vese
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(CV) [13] proposed an active contour method which approximates an image with a
constant function inside each region. This CV model has been extended to deal with
vector valued images [12] and to textures [48].

Hybrid active contours. Several hybrid models have been proposed to make use of
both local (edge-based) and global (region-based) information. Kimmel [31] designs
an energy mixing both the geodesic and the CV energies. Sagiv et al. [46] use a
similar energy (Integrated Active Contours, IAC) that is also extended to vector-
valued images and texture segmentation.

1.2. Piecewise Smooth Active Contours. Natural images exhibit smooth
variations of features values (e.g. color gradients or texture orientation variations)
over both the objects composing the scene and the background. It is thus important
to design segmentation methods that can handle piecewise smooth images.

The initial Mumford-Shah approach [38] takes into account piecewise smooth
images, and has been implemented for instance in [3, 51, 52]. This model remains
however difficult to implement numerically. A simpler class of piecewise-smooth mod-
els has been introduced more recently [6, 44, 55]. They estimate in parallel to the
segmentation process a piecewise smooth parameter field such as the local mean of the
features. Of particular interest is the locally binary fitting (LBF) model [34, 54, 53]
that shares some similarity with our method.

Our non-local model also tackles the problem of designing piecewise smooth active
contours, but it uses a different approach, that does not require the estimation of a
spatially varying parameter field. A chief advantage of our method is that it only
requires the design of a metric to compare patches extracted around each pixel. It
is thus easy to apply the method to a wide variety of features, and we show in the
numerical results several instances of our method for pixels, textures, local statistics
and video features.

1.3. Multi-phase Active Contours. Several methods have been proposed to
extend general binary segmentation energies to the case of an arbitrary number of
regions, see for instance [57, 56, 42, 47, 52]. In this paper we focus on two particular
level set methods. The approach of Samson et al. [47] introduces a single level set
function per region, and makes use of an additional repulsive energy to avoid the
overlap of the regions. The approach of Chan and Vese [52] requires only log2(N)
level set functions to partition the image in N non-overlapping regions depending on
all possible combination of the level set signs.

We extend our non-local energy in a multi-phase framework using two different
approaches borrowed from [52] and [47]. An important benefit of using these non-local
multi-phase energies is that a smaller number of level set functions is required to per-
form complicated segmentations into multiple regions. Each of these two approaches
has advantages and inconvenient, and we show in the numerical examples how our
method fits perfectly in these two frameworks.

1.4. Non-local Image Processing. Non-local processing refers to the general
methodology of designing energies using non-local comparisons of patches extracted
in the image. Starting from the initial paper of Buades et al. [7], non-local energies
have proved to be efficient for many imaging problems, including denoising [7, 32],
inverse problems [21, 43], semi-supervised classification [20, 18, 23] and unsupervised
segmentation [4, 9].

In our work, we use a non-local energy that enforces the non-local similarity of
patches inside each region to be segmented. This patch comparison principle drives the
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active contour to optimize the homogeneity of each region. Note that this approach
differs significantly from previous patch-based segmentation methods such as [20, 18,
23, 4, 9] where non-local energies are used to regularize the contour.

1.5. Examples of Images Features. All these previous works have been im-
plemented using a wide variety of feature spaces, depending on the specificity of the
images to be segmented. Beside classical gray-values and color features (that are
usually compared using an L2 norm), we detail below some popular features that we
consider in the applications and numerical illustrations of our method.

Gabor Features. For locally oriented textures segmentation, a popular class of
features is computed as the output of filter banks. Gabor filters [19] have been used
to discriminate the local orientation and frequency of the texture [33, 39, 48, 46]. The
CV energy [12] has been used by Sandberg et al. [48] to impose a global homogeneity
of the texture orientation in each region. The IAC of Sagiv et al. [46] extends the
hybrid region/edge based active contour of [31] to deal with vector valued features.

Statistical features. To deal with more random textured images, it is possible to
make use of the empirical statistics within each region to be segmented. The result-
ing statistical region-based active contours make use of pointwise similarity measures
between distributions (such as the Kullback-Leibler divergence) to compare the dis-
tributions, in a parametric or non-parametric (using Parzen windows) fashion, see
for instance [30, 58, 42, 24, 22]. Traditional pointwise statistical distances are simple
to compute, but are unstable when using localized distributions. To address these
issues, Ni et al. [40] propose to use the L1 Wasserstein distance in order to extend
the segmentation model of Chan and Vese [13]. This work is extended to color image
segmentation in [2] using a Wasserstein metric only on the brightness channel, thus
resulting in a 1-D optimal transport metric. The Wasserstein metric fits nicely into
our non-local framework, and we propose to use an approximate distance initially
introduced in [45] to handle features in arbitrary dimension (e.g. colors in 3-D).

Motion features. Motion segmentation aims at grouping together pixels under-
going the same motion. Most existing works jointly compute an optical flow and a
segmentation [17, 5]. Shi and Malik propose in [49] to avoid the difficult estimation of
the optical flow. They perform the segmentation using features representing a local
probability distribution of motions. We make use of the same local features that is
integrated into our non-local energy. The resulting method is able to detect moving
objets with a smoothly varying motion.

1.6. Contributions. The main contribution of this paper is a novel class of
segmentation energies that impose a local homogeneity of patch features. It is thus a
non-local method (because it compares patches that are not necessary neighbors) but
that enables a fine tuning of the scale at which these patches are compared (hence
the local homogeneity).

Let us note that we use a mathematically rigorous derivation of the evolution
PDEs using shape gradient flows. To the best of our knowledge, it is the first time
multi-phase evolutions are performed within such a shape gradient framework.

A second contribution of the paper is a systematic exploration of this approach
on a wide range of segmentation problems, that includes grayscale and color images,
textures, random vector fields, and videos. We show comparisons with several other
popular edge-based, region-based and hybrid methods (extended to patches) to en-
light the benefit of patch comparisons.
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1.7. Organization. Section 2 recalls the generic variational level set framework
that we use to implement the active contour evolutions, and presents our computation
of the gradient of new energy terms we use in our models. Section 3 introduces our
new model, first in a simplified (un-normalized) case, and then in a more advanced
(normalized) setting. Section 4 describes the competitor methods that we have tested
in the numerical sections, and how we extend them to use patches with arbitrary
metrics. Sections 5, 6, 7 and 8 show numerical examples of applications of our method
to various settings (image, textures, videos). Section 9 details two different extensions
of our method to handle an arbitrary number of regions.

Note that the some early results making use of this NL segmentation method
were presented in the conference papers [25, 26, 27].

2. Variational Image Segmentation. This section recalls some basic notions
about image segmentation as well are more advanced concepts using shape gradients.
This will be used in the remaining part of the paper.

2.1. Variational Minimization. The goal is to segment an input image f0

using a feature map f : [0, 1]2 → R
d computed from f0, where d is dimensionality of

the feature space. Since we aim at proposing a generic segmentation framework, we
do not specify the exact nature of the features in this section, and how f is computed
from f0. Several examples of features are detailed in Sections 5, 6, 7 and 8.

Let Ω ⊂ [0, 1]2 be some region that captures the objects of interest. We aim
at finding a contour that represents the boundary ∂Ω of the region. We consider a
variational minimization problem

min
Ω

E(Ω) = E(Ω) + γL(Ω) (2.1)

where E is a region energy that we will define in the following sections, and L a
smoothing term that regularizes the boundary ∂Ω of the region. In the numerical
experiments, L(Ω) = |∂Ω| is simply the length of the boundary. The parameter γ > 0
should be adapted to the expected regularity of the boundary of the region.

2.2. Parametric Active Contours with Shape Gradients. A mathemati-
cally sound way to derive a minimizating partial differential equation (PDE) of the en-
ergy (2.1) makes use of the so called “shape gradients”, see for instance [1, 24, 22, 37].

The shape gradient E ′(Ω) of an energy E evaluated at Ω is a scalar field E ′(Ω)(x)
defined on each point the boundary x ∈ ∂Ω. It is characterized by introducing a
family of smooth deformations Ωτ = T (τ,Ω) for τ > 0 where T : R+ × [0, 1]2 → [0, 1]2

and T (0, x) = x, so that Ω0 = Ω. We denote v(x) = ∂T
∂τ (0, x) the associated velocity

field. The energy E has a shape gradient E ′(Ω) at some Ω if it satisfies

E(Ωτ ) = E(Ω) + τ〈v, E ′(Ω)nΩ〉∂Ω + o(τ)

see [1], where nΩ is the unit normal of ∂Ω pointing outward, and the inner product
along the boundary between two vector fields v(x), w(x) ∈ R

2 is

〈v, w〉∂Ω =

∫

∂Ω

〈v(x), w(x)〉dx.

A parametric active contour is represented for each time t > 0 of the evolution by
an explicit parameterization s 7→ γ(s, t) of the boundary ∂Ω of Ω. The shape gradient
defines an evolution equation that minimizes the energy E

∂γ

∂t
(s, t) = −E ′(Ω)(γ(s, t))nΩ(γ(s, t)) (2.2)
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where Ω is the shape associated to γ(·, t) at time t. The curve γ(·, t) converges as
t → +∞ to the boundary of some Ω which is a stationary point of E (it satisfies
E ′(Ω) = 0).

2.3. Level Set Active Contours. In order to compute numerically a contour
evolution to minimize (2.1), following [41, 13], the segmented region Ω is represented
using a level set function ϕ : [0, 1]2 → R so that Ω = {x \ ϕ(x) > 0}.

The descent direction −E ′(Ω)nΩ is extended to level sets by selecting a valid level
set gradient ∇E(ϕ) so that

∀x ∈ ∂Ω, ∇E(ϕ)(x) = ||∇ϕ(x)||E ′(Ω)(x). (2.3)

The parametric evolution (2.2) is turned into a level set evolution (2.4) of ϕ(x, t) with
an artificial time t > 0

∂ϕ

∂t
= −∇E(ϕ) = − (∇E(ϕ) + γ∇L(ϕ)) . (2.4)

We detail in the following section the expressions of level set shape gradients in
some particular cases that will be used in the remaining part of this article.

2.4. Shape Gradient Examples. For a boundary energy written as

Lg(Ω) =

∫

∂Ω

g(x)dx,

where dx refers to 1-D integration along the boundary of Ω, a valid shape gradient
extended to a level set function reads [1]

∇Lg(ϕ) = −||∇ϕ||div

(

g
∇ϕ

||∇ϕ||

)

. (2.5)

For instance, in the original minimization (2.1), using the length of the boundary, one
has L = Lg with g = 1.

The following proposition gives a level set gradient for the simplest region-based
energy written as

Eg(Ω) =

∫

Ω

g(x)dx (2.6)

(note that g does not depend on Ω).
Proposition 1. A level set gradient of Eg reads

∇Eg(ϕ) = ||∇ϕ||g. (2.7)

Proof. The usual balloon force corresponds to g = 1 [16], see for instance [1] for
the general case.

In the following propositions, we derive the level set gradients of two types of
region-based energies. We first consider a region-based energy defined using pairwise
interactions terms

Fg(Ω) =

∫

Ω×Ω

g(x, y)dxdy. (2.8)
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Proposition 2. A level set shape gradient of Fg is

∇Fg(ϕ)(x) = ||∇ϕ(x)||
∫

Ω

(

g(x, y) + g(y, x)
)

dy. (2.9)

Proof. One has Fg(Ω) =
∫

Ω
Gx(Ω)dx where Gx(Ω) =

∫

Ω
g(x, y)dy. Note that

for a fixed x, Gx(Ω) is of the form (2.7), and following (2.8), its shape gradient is
G′

x(Ω) = g(x, ·). Thus, if τ is a smooth deformation of Ω, and v is its velocity field,
then

Gx(Ωτ ) = Gx(Ω) + τ〈v, g(x, ·)nΩ〉∂Ω + o(τ). (2.10)

Integrating with respect to x the previous expression on Ωτ gives

Fg(Ωτ ) =

∫

Ωτ

Gx(Ω)dx + τ〈
∫

Ωτ

g(x, ·)dx nΩ, v〉∂Ω + o(τ)

=

∫

Ω

∫

Ωτ

g(y, x)dydx + τ〈
∫

Ωτ

g(x, ·)dx nΩ, v〉∂Ω + o(τ). (2.11)

Once again the inner term
∫

Ωτ
g(y, x)dy in (2.12) can be expressed, similarly to (2.11),

as
∫

Ωτ

g(y, x)dy =

∫

Ω

g(y, x)dy + τ〈v, g(·, x)nΩ〉∂Ω + o(τ).

This derives the equation for the shape gradient of the energy Fg(Ωτ )

Fg(Ωτ ) = Fg(Ω) + τ〈
∫

Ω

(

g(x, ·) + g(·, x)
)

dx nΩ, v〉∂Ω + o(τ).

Lastly, we will consider more complicated pairwise interactions of the form

Ff,g,h(Ω) =

∫

Ω

f(x)
Gx(Ω)

Hx(Ω)
dx where

{

Gx(Ω) =
∫

Ω
g(x, y)dy,

Hx(Ω) =
∫

Ω
h(x, y)dy.

(2.12)

The following proposition derives the expression of a level set gradient.
Proposition 3. A level set gradient of Ff,g,h is

∇Ff,g,h(ϕ)(x) = ||∇ϕ(x)||
(

f(x)
Gx(Ω)

Hx(Ω)
+

∫

Ω

f(y)
g(y, x)Hy(Ω) − h(y, x)Gy(Ω)

Hy(Ω)2
dy

)

.

(2.13)

Proof. For a fixed x, let Ax(Ω) = Gx(Ω)/Hx(Ω). One has

Ax(Ωτ ) =
Gx(Ω) + τ〈g(x, ·)nΩ, v〉∂Ω + o(τ)

Hx(Ω) + τ〈h(x, ·)nΩ, v〉∂Ω + o(τ)

= Ax(Ω) + τ〈A′
x(Ω)nΩ, v〉∂Ω + o(τ) (2.14)

where the shape gradient of Ax reads

A′
x(Ω) =

g(x, ·)Hx(Ω) − h(x, ·)Gx(Ω)

Hx(Ω)2
.
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Integrating (2.15) multiplied by f(x) on Ωτ gives

Ff,g,h(Ωτ ) =

∫

Ωτ

α(x)dx + o(τ),

where

α(x) = f(x) (Ax(Ω) + τ〈A′
x(Ω)nΩ, v〉∂Ω)

and hence the result by expanding

∫

Ωτ

α(x)dx =

∫

Ω

α(x)dx + τ〈αnΩ, v〉∂Ω + o(τ).

Let us mention that the shape gradient of an energy Ẽ(Ω) = E(Ωc) associated to
the complementary domain Ωc = [0, 1]2\Ω is easily derived as

Ẽ′(Ω) = −E′(Ωc) =⇒ ∇Ẽ(ϕ) = −∇E(−ϕ) (2.15)

since −ϕ is a level set function associated to Ωc.

In the following, we will make use of the identities (2.6), (2.8), (2.10) and (2.14)
to derive the expression of ∇E(ϕ) for the different energies E considered.

2.5. Numerical Implementation. The segmentation is applied to a discretized
image f of n × n pixels. The gradient and divergence operators appearing in (2.6)
are computed using first order finite difference approximations. Integrals such as
∫

Ω
f(x)dx are approximated by 1

n2

∑

i f(i/n) where i ∈ {0, . . . , n − 1}2.

The gradient flow (2.4) is then discretized using a gradient descent

ϕ(ℓ+1) = ϕ(ℓ) − ξℓ

(

∇E(ϕ(ℓ)) + γ∇L(ϕ(ℓ))
)

, (2.16)

where ξℓ > 0 is a suitable time step size.

To ensure the stability of the level set evolution (2.4), one needs to re-initialize it
from time to time. This corresponds to replacing ϕ by the signed distance function
to the level set {x \ ϕ(x) = 0}.

3. Non-local Active Contours. This section introduces two region based en-
ergies that integrate pairwise interactions between pairs of patches inside and outside
the region Ω. These energies constrain the local homogeneity of image features.

3.1. Un-normalized Non-local Active Contours.

3.1.1. Pairwise Patch Interaction. A patch in some image f around a pixel
x ∈ [0, 1]2 is defined as

px(t) = f(x + t), ∀ t ∈ [−τ/2, τ/2]2. (3.1)

The non-local interaction between two patches is measured using a metric d(·, ·) > 0
that accounts for the similarity between patches. Typically d(px, py) should be small
for patches that are “similar”, where the similarity is typically problem-dependent.
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Fig. 3.1: Schematic display of the patch comparison principle using a large value of σ
(left) and a smaller value of σ (right). Only patches px and py located jointly inside or
outside Ω are compared. The dotted box on the right figure shows the set of locations
y around x where Gσ(x, y) is non-zero. Only pairs of patches located inside this area
are compared.

3.1.2. Pairwise Interaction Energy. The local homogeneity of the region
(and of its complementary) is measured by considering all possible pairwise patch
interactions at a given scale σ > 0, as seen Figure (3.1). This gives rise to the
following non-local unnormalized (NL-U) energy of a region

EU
NL(Ω) = ĒU

NL(Ω) + ĒU
NL(Ω

c) where ĒU
NL(Ω) =

∫

Ω×Ω

K(x, y)dxdy (3.2)

where Ωc = [0, 1]2\Ω is the complementary of the region Ω, and where the pairwise
interaction kernel is

K(x, y) = Gσ(x, y)d(px, py). (3.3)

The kernel Gσ(x, y) is a decaying function of ||x−y||. For the numerical examples,
we use a truncated Gaussian function so that Gσ(·, y) has a bounded support inside
a square of width ξ

Gσ(x, y) =

{

e−
||x−y||2

2σ2 if ||x − y||∞ 6 ξ
0 otherwise.

The parameter σ > 0 is important since it controls the scale of the local ho-
mogeneity one requires for the segmented object. If the region is made of a nearly
constant pattern, one should use a large σ. In contrast, if the region exhibits fast
features variations, σ should be chosen smaller. For simplicity, we use the same scale
for both inside and outside the region, but one could of course use two distinct pa-
rameters. This scale should also be adapted to the initial curve at time t = 0. If this
initial curve is far away from the object boundary, a large windowing function might
be required.

The level set gradient of this NL-U energy is computed as

∇EU
NL(ϕ) = ∇ĒU

NL(ϕ) −∇ĒU
NL(−ϕ) where ∇ĒU

NL(ϕ) = ∇FK(ϕ) (3.4)

where ∇FK is defined in Proposition 2. Note that we have used the rule (2.16) to
derive the gradient of the complementary region Ωc.

For the numerical implementation of the evolution (2.4), the distance between
neighboring patches d(px, py) are pre-computed only once in a pre-processing step, so
that this evolution is quite fast to compute.
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3.1.3. Limitations. The non-local active contours model works well when the
size of patches is small. Section 5.2 reports several examples of segmentation using
pixel features and a weighted L2 distance between patches. The local homogeneity
property of the energy (3.2) enables this model to correctly detect objects which are
only locally homogeneous, and can deal with separated objects with different features.

Section 5.3 however shows that this un-normalized model suffers from a segmen-
tation bias when the patch width τ is large. The segmented region is shifted away
from the object boundary with an amount proportional to the patch width τ . This
becomes problematic when used with large patches, because of the lack of precision
of the resulting segmentation. Large patches are however desirable as the noise level
increases, since robustness requires more pixels to evaluate the local homogeneity.

3.2. Normalized Non-local Active Contours. To reduce the segmentation
bias introduced by the non-local active contour energy (3.2), we define a novel nor-
malized non-local (NL-N) energy

EN
NL(Ω) = ĒN

NL(Ω) + ĒN
NL(Ω

c) (3.5)

where

ĒN
NL(Ω) =

∫

Ω

∫

Ω
K(x, y)dy

∫

Ω
Gσ(x, y)dy

dx

where K(x, y) is defined in (3.3). Note that the un-normalized energy NL-U defined
in (3.2) is recovered by setting the denominator

∫

Ω
Gσ(x, y)dy to 1.

In practice, the correction factor
∫

Ω
Gσ(x, y)dy is far from being constant, in par-

ticular when the size of patches is large. This normalization is thus crucial to reduce
the disparities that increase as a pixel approaches the boundary of the segmented
region.

The level set gradient of this energy is computed as

∇EN
NL(ϕ) = ∇ĒN

NL(ϕ) −∇ĒN
NL(−ϕ) (3.6)

where we use the shape gradient derivative (2.14) as follow

∇ĒN
NL(ϕ) = ∇F1,K,Gσ

(ϕ).

4. Other Methods. In the following sections, we compare our non-local active
contour model with some previously proposed segmentations methods. To perform a
fair comparison with our method, we extend (when this is possible) these technics to
handle patches with a comparison function d(·, ·).

4.1. Chan-Vese Active Contours (CV). The Chan-Vese (CV) model [13]
assumes that the inside Ω and outside Ωc of the region to be segmented are globally
homogeneous, by measuring the average variation with respect to templates patches
p1, p2

ECV(Ω, p1, p2) = ĒCV(Ω, p1)+ĒCV(Ωc, p2) where ĒCV(Ω, p) =

∫

Ω

d(px, p)dx. (4.1)

Here we extended the original CV model by using a general distance incorporating
with patches instead of L2 distance of intensity values.
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The level set gradient of this energy

∇ECV(ϕ, p1, p2) = ∇Eg1(ϕ) −∇Eg2(−ϕ) where gi(x) = d(px, pi)

where ∇Eg is defined in (2.8) (here p1 and p2 are assumed to be fixed). Follow-
ing [13], the active contour evolution is obtained by performing a gradient descent
step (2.5) with ∇E(ϕ(ℓ)) = ∇ECV(ϕ(ℓ), p1, p2). After each gradient step, the value of
the templates p1, p2 is updated as

{

p1 = Γ1(Ω),
p2 = Γ1(Ω

c)
where ΓU (Ω) = argmin

p

∫

Ω

U(x)d(px, p)dx (4.2)

where Ω =
{

x \ ϕ(ℓ)(x) > 0
}

(note that here U(x) = 1). We detail in the following
section (see (5.2) and (7.5)) how to compute Γ1 for the special case of the L2 and 1-D
Wasserstein metrics d(·, ·).

4.2. Geodesic Active Contours (GAC). The geodesic active contour [11]
looks for a curve that has a minimum length according to a metric g(x) > 0

EGAC(Ω) =

∫

∂Ω

g(x)dx. (4.3)

The metric g is usually defined using an edge detector. In the numerical experi-
ments, it is computed by rescaling a gradient-based detector g̃ to [0, 1] using an affine
transform. We used

g̃(x) =
1

δ + Gb ⋆ ||∇f(x)||q (4.4)

where ⋆ is the spatial convolution with Gaussian filters Gb(x) = 1
2πb2 e−||x||2/2b2 . We

fix in the numerical examples δ = 0.1, q = 1, and adapt b > 0 for each tested image.
The active contour evolution is derived by performing a gradient descent of EGAC,

with an additional ballon force [14]

∂ϕ

∂t
= −∇EGAC(ϕ) + ηg||∇ϕ|| (4.5)

where ∇EGAC = ∇Lg as defined in (2.6), and ηg||∇ϕ|| helps to avoid poor local minima
by forcing moving the curve forward/outward (depending on the sign of η).

4.3. Integrated Active Contours (IAC). The integrated active contours
model, introduced by [46] is a weighted average of the GAC (4.3) and CV (4.1)
energies incorporated with patches

EIAC(ϕ, p1, p2) = ECV(ϕ, p1, p2) + µEGAC(ϕ). (4.6)

The active contour evolution is computed as described in Section 4.1 for the CV
model.

4.4. Locally Binary Fitting (LBF). The Chan-Vese region based model (4.1)
imposes a global homogeneity of the regions to be segmented. To cope with spatially
varying regions, the LBF model [34] makes the templates p1(x) and p2(x) of the
energy vary spatially

ELBF(Ω, p1, p2) =

∫

Ω

∫

[0,1]2
Gσ(x, y)d(px, p1(y))dydx

+

∫

Ωc

∫

[0,1]2
Gσ(x, y)d(px, p2(y))dydx. (4.7)
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Here we extended the original LBF model by using a general distance d(·, ·) between
patches instead of L2 distance of intensity values.

The active contour evolution is computed as described in Section 4.1 for the CV
model, where the level set of the LBF energy (assuming p1 and p2 fixed) reads

∇ELBF(ϕ, p1, p2) = ∇Eg1
(ϕ) −∇Eg2

(−ϕ)

where gi(x) =

∫

[0,1]2
Gσ(x, y)d(px, pi(y))dy

where ∇Eg is defined in (2.8). The value of p1, p2 is updated at iterations ℓ defined
in (2.5),

{

p1(y) = ΓGσ
(Ω),

p2(y) = ΓGσ
(Ωc)

where ΓGσ
(Ω) = argmin

p

∫

Ω

Gσ(x, y)d(px, p)dx (4.8)

as defined in (4.2) and where Ω =
{

x \ ϕ(ℓ)(x) > 0
}

.

4.5. Parameters of the Methods. Our NL method as well as the competitor
methods require to set-up several parameters that can have a significant impact on
the segmentation results. To ensure the reproducibility of the comparisons reported in
the following numerical section, we provide the list of parameters for each experiment
in each figure’s captions. Furthermore, the implementation of the methods can be
retrieved online1

Here are the parameters of the different methods
• n: width of the image.
• γ: weight of the curve regularization (see (2.1)).
• τ : patch width (see (3.1)).
• (σ, ξ): scale of the patch comparison function (see (3.3) and (4.7)), only for

NL-U, NL-N and LBF.
• b: smoothing bandwidth of the edge-detector (see (4.4), (6.2)), only for GAC

and IAC.
• η: amplitude of the balloon force (see (4.5)), only for GAC.
• µ: weight between edge and region terms (see (4.6)), only for IAC.
• λ: weight for the energy preventing the domains to overlap (see (9.3)), only

for MR.
In the next four sections, we apply all the formalism introduced so far to different

segmentation problems using different kinds of features and metrics.

5. Pixel-based Segmentation.

5.1. Weighted L2 patch distance. The simplest features are simply the pixel
values f(x) ∈ R

d of the input image, where d = 1 for grayscale images, and d = 3
for color images. In this section we use a weighted L2 distance (5.1), similarly to the
patch distance used for non-local denoising [7],

d(px, py) =

∫

t

Ga(t)||px(t) − py(t)||2dt. (5.1)

The Gaussian weight Ga(t) = e−
||t||2

2a2 is used to give more influence to the central
pixel.

1https://sites.google.com/site/miyounjungr/
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ℓ = 0 ℓ = 10 ℓ = 20 ℓ = 150 CV

Fig. 5.1: Curve evolution for the segmentation of two images with spatially varying
background and object using NL-U, and comparison with CV. ℓ is the iteration num-
ber.
Parameters: n = 100, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 31/n), γ = 15/(n5ξ2τ2)
(NL-U), γ = 0.02 (CV).

To implement the CV and LBF models described in Sections 4.1 and 4.4, the
update operator defined in (4.2) and (4.8) reduces to a linear averaging

ΓU (y) =

∫

Ω
U(x)pxdx
∫

Ω
U(x)dx

. (5.2)

5.2. Examples with Un-normalized Model (NL-U). This section presents
results of the L2 distance (5.1) with intensity and color features. In all the examples,
we use small size of patches of width τ = 3/n for a discretized image of size n × n
and a = 0.5/n.

In Figures 5.1 and 5.2, we test our method on several synthetic images with
spatially varying background and/or object, or with several separated objects with
different intensities. In all the examples, our model correctly detects the objects due
to the local homogeneity property, in contrast to the two-phase Chan-Vese model [13]
requiring a global homogeneity in each region. The first example in Figure 5.1 well
demonstrates the effect of this property, and the second example shows in addition
the detection of an interior contour. The bottom object in the first example in Figure
5.2 has spatially varying intensities, and moreover the intensities of its left side are
close to the ones of the background. Thus, the Chan-Vese model fails to segment this
piecewise smooth object, regarding its left side as background, as shown in Figure 5.3,
while our model captures the boundary with small gradients. Furthermore, Figure
5.2 shows detection of multiple separated objects with different intensities.

Figure 5.3 shows segmentation results on the same image with the methods de-
scribed in Section 4: CV, GAC and IAC. For the IAC model, two final curves are
shown with two different but close parameters µ (µ1 > µ2). Because µ is a balancing
term between the region-based and edge-based energies, when µ > µ1 (or µ < µ2), the
model tends to act like the geodesic snake model (or Chan-Vese model). Thus, with
the given initial curves, all the models fail to detect the correct object boundaries.
Note that, with good initial curves surrounding all the boundaries, the IAC model
would be able to detect the boundaries with large values of µ, but in our model one
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ℓ = 0 ℓ = 10 ℓ = 20 ℓ = 50 final curve

Fig. 5.2: Curve evolution for the detection of objects with spatially varying object, or
with several separated objects with different intensities, using NL-U model. ℓ is the
iteration number.
Parameters: n = 100, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 31/n), γ = 15/(n5ξ2τ2).

Initial curve GAC IAC with µ = µ1 IAC with µ = µ2 CV

Fig. 5.3: Comparison of CV, GAC and IAC (different µ values).
Parameters: b = 0.5/n, η = −0.3/n (GAC), (µ1, µ2)=(3.6/n, 3.5/n) (top),
(1/n, 0.9/n) (bottom) γ = 0 (IAC), γ = 0.02/n (CV).

circle around the objects as an initial curve is enough to achieve a correct segmenta-
tion. Thus, our model is less sensitive to the choice of initial curves than edge-based
active contour models.

Figure 5.4 presents segmentation results with our NL-U method on grayscale
images. We compare our model with the CV and IAC models. Our model detects
objects in the image with spatially varying background and multiple objects with
different intensities, while both CV and IAC models fails to segment objects correctly.

Figure 5.5 shows segmentation results with our NL-U method on natural color
images. We compare our model with the vector-valued Chan-Vese model [12] and the
IAC model. By using an initial curve near the boundary of object(s) and a small
windowing function, our model detects the boundary of non-homogeneous object(s).
The segmentation result is fairly good, compared with CV and IAC models that only
capture part of object(s). On the other hand, these examples also show a limitation
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Initial curve NL-U CV IAC

Fig. 5.4: Grayscale images segmentation. Final curves of our un-normalized model
NL-U, CV and IAC.
Parameters: n = 176, 121, (τ, a)=(3/n, 0.5/n), top: γ = 10/(n5ξ2τ2), (σ, ξ) =
(10/n, 31/n) (NL-U), γ = 0.2/n (CV), b = 0.5/n, µ = 0.3/n, γ = 0 (IAC), bot-
tom: γ = 5/(n5ξ2τ2), (σ, ξ) = (10/n, 21/n) (NL-U), γ = 0.005/n (CV), b = 0.5/n,
µ = 0.5/n, γ = 0 (IAC).

of our model: in order to detect the boundary of non-homogeneous objects, the initial
curve needs to be located near the object boundary so that a small windowing function
can be used.

5.3. Comparison of Un-normalized and Normalized models. The un-
normalized energy (3.2) works well with a small size of patches or pixel values, as
seen in Figures 5.1-5.5. However, this energy has a segmentation bias near the object
boundary, when using a large size of patches, even though contour is attracted to the
boundary. Despite this limitation of the energy (3.2), we keep it as our model due
to its simplicity as well as that there are many cases where the use of a small size of
patches or pixel values are enough to segment regions.

Figures 5.6 presents examples that require a large size of patches, and compare
the results of our un-normalized (3.2) and normalized (3.5) energies. It makes use
of the L2 distance (5.1) with intensity feature. In this example, the un-normalized
model does not provide satisfactory results with any kind of patches: patches of width
τ = 1/n (1 pixel), τ = 3/n (3 × 3 pixels) with a = ∞. By using patches of width
τ = 1/n, the un-normalized model produces noisy final curves, and by using patches
of width τ = 3/n, it results in smoother final curves that are however not located on
the object boundaries in spite of adjusting the smoothness parameter γ. On the other
hand, the normalized model with patches of width τ = 5/n provides a smooth final
curve, located exactly on the boundary.

Section 7.4 shows other comparisons of NL-U and NL-N in the case of local
statistical features. The conclusion remains the same, namely that the normalized
model helps to reduce the segmentation bias.

6. Locally Oriented Textures Segmentation. A popular set of features to
discriminate the local orientation of textures are computed from the responses to a
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Initial curve NL-U CV IAC

Fig. 5.5: Natural color images segmentation. Final curves of our un-normalized model
NL-U, vector-valued CV [12], and IAC.
Parameters: n = 189, 225, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 41/n), top: γ =
100/(n5ξ2τ2) (NL-U), γ = 0.5/n (CV), b = 0.5/n, µ = 5/n, γ = 0 (IAC), bottom:
γ = 60/(n5ξ2τ2), (NL-U), γ = 0.3/n (CV), b = 0.5/n, µ = 1/n, γ = 0 (IAC).

NL-U (τ = 1/n) NL-U (τ = 3/n) NL-U (τ = 3/n)
γ = 200/(n5ξ2τ2) γ = 3000/(n5ξ2τ2) γ = 5000/(n5ξ2τ2)

NL-N (τ = 3/n) NL-N (τ = 5/n)
γ = 0.5/(n3τ2) γ = 0.5/(n3τ2)

Fig. 5.6: Comparison of our un-normalized (3.2) and normalized (3.5) models using
the L2 distance (5.1).
Parameters: n = 100, τ variable, a = ∞, (σ, ξ) = (∞, 31/n), γ variable.
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set of Gabor filters, see for instance [48, 46].

6.1. Gabor features. Given an input image f0 : [0, 1]2 → R, f(x) ∈ R
d is

defined as the modulus of the filtering of f0 with d complex filters

fℓ(x) = |f0 ⋆ hℓ|, ∀ ℓ ∈ {0, . . . , d − 1} (6.1)

with x = (x1, x2) ∈ [0, 1]2 and

hℓ(x) = e
2iπ
n

ηℓ(cos(θℓ)x1+sin(θℓ)x2)Gsℓ
(x).

The parameter ηℓ > 0 is the frequency of the filtering, θℓ ∈ [0, π) is the orientation
and sℓ > 0 is the spatial width of the filter. In the numerical examples, the parameters
ηℓ, θℓ, sℓ are adapted to obtain the best texture segmentation, and fℓ are rescaled to
[0, 1] using an affine transform.

The resulting feature map f(x) is a multi-channels image and the patches px are
compared using the weighted L2 norm (5.1).

6.2. Examples. Figure 6.1 shows a comparison between the non-local un-normalized
(NL-U) and the Chan-Vese (CV) models applied to Gabor coefficients [48]. In this
case, we use d = 8 filters with ηℓ ∈ {2, 2.5, 3, 3.5}, θℓ ∈ {0, π/2}, sℓ = 2. We have also
tested the CV method with a larger number d = 64 of features with ηℓ ∈ {2, 3, 4, 5},
θℓ ∈ {0, π/4, π/2, 3π/4}, sℓ ∈ {2, 2

√
2, 4, 4

√
2}. The Gabor based CV method fails to

detect the object on the top right side because the intensity values of that object in
the Gabor domain are small and comparable with the coefficients of the background.
Using a larger number of features helps, but is not enough. In contrast, our model
detects correctly all the objects thanks to the local homogeneity criterion.

Figure 6.2 shows an example where both the object and the background are
composed of textures with smoothly varying orientations, simulating perspective. We
use d = 4 filters with ηℓ ∈ {0.7, 1.6}, θℓ = 0, sℓ ∈ {4, 4

√
2} in the first example, and

d = 8 filters with ηℓ ∈ {2, 3, 4, 5}, θℓ = 0, sℓ ∈ {4, 4
√

2} in the second one. Similarly to
Figure 5.1, the Gabor based Chan-Vese model [48] fails to segment the object, while
our model does a correct segmentation. For the IAC model, we use another rescaled
edge function g̃(x) as follows, which provides better (cleaner) edges than using (4.4),

g̃(x) =
1

δ + ||∇(Gb ⋆ f)(x)||q (6.2)

with fixed δ = 0.1 and q = 2. IAC model detects the object in the first example
but not in the second one, which shows the difficulty to design a good edge detector
g(x) for texture features. In contrast, our model can segment the object in both cases
without the need for any edge detector.

7. Statistical Segmentation. While Gabor features described in Section 6 are
useful to deal with locally oriented geometrical textures, textures with more ran-
domness require the use of statistical features. We propose in this section a simple
framework that estimates the local first order statistics of the pixel distribution. A
key idea is to use an optimal transport distance to compare the local statistics, which
is important to deal with arbitrary pixel statistics. Note that more advanced statisti-
cal features could be used (e.g. distribution of pairs of pixels), but this is outside the
scope of this paper.
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A feature fℓ NL-U CV with d = 8 (left) and 64 (right)

Fig. 6.1: Texture segmentation with Gabor features.
Parameters: n = 202, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 31/n), γ = 40/(n5ξ2τ2)
(NL-U), γ = 0.5/n (CV).

A feature fℓ NL-U CV Edge g̃ (6.2) IAC

Fig. 6.2: Texture segmentation of smoothly varying textures with Gabor features.
Parameters: n = 200, 196, (τ, a)=(3/n, 0.5/n), (σ, ξ) = (10/n, 41/n), γ =
100/(n5ξ2τ2) (NL-U), γ = 0.2/n (CV), b = 3.75/n (top), b = 0.5/n (bottom),
µ = 20/n, γ = 0 (IAC) .

7.1. Local Statistical Features. Our statistical features are discrete densities
in R

d made of P Dirac distributions:

µX =
1

P

P−1
∑

i=0

δXi
where Xi ∈ R

d.

Here d = 1 for grayscale image and d = 3 for color image. We simply estimate the
pixel value density around a pixel x as the empirical distribution µpx

where px is a
patch of P = τ2 pixel extracted around x.

Note that it is possible to use a more advanced estimation procedure such as a
Parzen window method. The estimation µpx

using a sum of Diracs has the advantage
of simplicity and leads to statistical distances that are quite fast to compute.

The L2 Wasserstein distance between two distributions µX , µY in R
d is defined

as

W (µX , µY )2 = min
σ∈ΣP

P−1
∑

i=0

‖Xi − Yσ(i)‖2 (7.1)
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R(%) : 2.74 (left), 1.5 (right) 2.73 3.84 3.95

R(%) : 1.89 (left), 2.44 (right) 1.91 10.1 1.97

NL-U (top: γ′ = 104, ·105)) NL-N CV LBF
(bottom: γ′ = 2 · 104, 105) (γ = 5/(n3τ2)) (γ = 5/(n3τ2)) (γ′ = 2000)

Fig. 7.1: Comparison of models with the Wasserstein distance function (7.2). R(%)
indicates the mis-matching rate between a resulting curve and the ideal curve exactly
located on the object boundary.
Parameters: n = 100, τ = 15/n (top), τ = 11/n (bottom), (σ, ξ) = (∞, 31/n), γ
variable (NL-U, LBF: γ = γ′/(n5ξ2τ2)).
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Fig. 7.2: Segmentation results with Wasserstein distance (7.2). Left: Curve evolution

using our NL-N model (3.5). Right: Plot of energy E(ϕ(ℓ)) vs iteration ℓ.
Parameters: n = 100, τ = 3/n, (σ, ξ) = (∞, 31/n), γ = 0.5/(n3τ2).

where ΣP is the set of all the permutations of P elements. For simplicity we have
restricted our attention to distributions having the same number P of points, which
is the case for our application to segmentation. Note also that our method can handle
arbitrary Lq Wasserstein metrics for q > 1, but we only use the L2 in the numerical
examples.

The permutation σ minimizing (7.1) is the optimal assignment between the two
points clouds. This optimal assignment problem can be solved using combinatorial
optimization schemes in O(P 5/2 log(P )) operations when d > 1, see [8].

In the 1-D case, the optimal assignment σ that solves (7.1) can be computed in
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τ = 11/n, γ′ = 0.5 τ = 7/n, γ′ = 0.5 τ = 11/n, γ′ = 0.5 τ = 11/n, γ′ = 0.5

τ = 11/n, γ′ = 5 τ = 7/n, γ′ = 1 τ = 11/n, γ′ = 5 τ = 11/n, γ′ = 5

Fig. 7.3: Segmentation results with Wasserstein distance (7.2). Top row: Initial
curves. Middle: Results of our NL-N model (3.5). Bottom: Results of the CV model
extended with Wasserstein distance.
Parameters: n = 148, 147, 202, 186 (left to right), τ variable, (σ, ξ) = (∞, 31/n),
γ = γ′/(n3τ2) variable.

O(P log(P )) operations by ordering the points clouds X and Y

XσX(i) 6 XσX(i+1) and YσY (i) 6 YσY (i+1)

with two permutations σX , σY ∈ ΣN . The Wasserstein distance is then the L2 norm
of the sorted vectors

W (µX , µY )2 =

N−1
∑

i=0

|XσX(i) − YσY (i)|2. (7.2)

Note the major computational difference between the assignment problem (7.1) in
dimension d = 1 and in higher dimensions d > 1, where no O(P log(P )) algorithm is
available.

7.2. Sliced Wasserstein Distance. The numerical complexity of solving (7.1)
in dimension d > 1 is prohibitive for imaging applications such as our segmentation
problem. To obtain a fast numerical scheme, we follow the work of Rabin et al. [45]
that introduces a sliced Wasserstein distance. It is defined as a sum of 1-D Wasserstein
distances of projected distributions

SW (µX , µY )2 =
∑

θ∈Θ

W (µXθ
, µYθ

)2, where Xθ = {〈Xi, θ〉}P−1
i=1 . (7.3)
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Here Xθ, Yθ ⊂ R are projected 1-D distributions and Θ ⊂ R
d is a discrete set of

directions, sampled on the unit sphere (i.e. θ ∈ R
d with ||θ|| = 1).

Evaluating this sliced distance (7.3) has a complexity of O(|Θ|P log(P )) opera-
tions which is advantageous over the original Wasserstein distance (7.1) if Θ is not too
large. Although there is no mathematical proof of the quality of the approximation
of W using SW , numerical observations suggest that SW is a good approximation
to solve minimization problems involving the Wasserstein metric, see [45]. Note that
other approximations of the Wasserstein distance have been proposed, in particular [],
but we found that the sliced approximation (7.3) was precise enough for color image
segmentation.

The sliced approximation (7.3) is used to measure the similarity between patches
to perform statistical region-based segmentation. We thus define a new similarity
measure between patches as

d(px, py) = SW (µpx
, µpy

)2. (7.4)

7.3. Wasserstein Barycenter. It is possible to compute in close form the CV
and the LBF update operators (4.2) and (4.8) in the case of 1-D features (d = 1). In
this case, it corresponds to an averaging of the sorted values

ΓU (Ω) = p where p(i) =

∫

Ω
U(x)px(σx(i))dx
∫

Ω
U(x)dx

(7.5)

where σx ∈ ΣP is a permutation such that the values (px(σx(i)))i are sorted in
increasing order.

There is no close form expression for ΓU (Ω) in the general case d > 1, although an
approximation algorithm have been introduced in [45]. It is however beyond the scope
of this paper to extend LBF and CV to the case of multidimensional distributions.

7.4. Examples. In the numerical examples, we use a L2 sliced Wasserstein dis-
tance (which corresponds to q = 2).

Figure 7.1 presents simple examples where the L2 patch distance (5.1) cannot be
applied because the black and white stripe pattern is a texture that is not homogenous
in the pixel domain. Furthermore, these examples require a large patch size to capture
the texture statistics. This figure presents comparisons of the un-normalized model
(3.2), the normalized model (3.5), CV (4.1) and LBF models (4.7), using the 1-D
Wasserstein distance (7.2), and also presents the mis-matching rate (R%) between a
resulting curve and the ideal curve exactly located on the object boundary.

As we already mentioned in Section 5.3, the un-normalized model introduces a
segmentation bias near the object boundary when using large size of patches. This
bias cannot be reduced completely by adjusting the parameter γ. The normalized
model (3.5), in column 3, reduces the bias to some extent, independently of the value
of γ. The LBF model seems to provide similar results with our normalized model,
but it results in more biased curve than our model in the first example using large
size of patches (τ = 15/n). Columns 4 shows that the CV model also suffers from
a segmentation bias: the curves are located a few pixels far away from the bound-
aries. Although our models and CV/LBF models have similar behaviors on globally
homogeneous textures, this example highlights the importance of our normalization.

Figure 7.2 shows more complicated examples of grayscale (d = 1) synthetic tex-
tures segmentation. This shows that our normalized model (3.5) with the Wasserstein
distance (7.2) detects objects with smoothly varying distributions of intensities and
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Initialization NL-N CV CV-Wass

Fig. 7.4: Texture segmentation of our NL-N model (3.5) with the sliced Wasserstein
distance (7.3) with |Θ| = 3 fixed directions, and comparison with the vector-valued
Chan-Vese (CV) model [12] and the extended work (CV-Wass) [2] of [40].
Parameters: n = 185, τ = 11/n, (σ, ξ) = (∞, 31/n), γ = 1.5/(n3τ2) .
Parameters: n = 176, τ = 5/n, (σ, ξ) = (∞, 31/n), γ = 0.1/(n3τ2) .
Parameters: n = 192, τ = 9/n, (σ, ξ) = (∞, 31/n), γ = 0.5/(n3τ2) .
Parameters: n = 192, τ = 7/n, (σ, ξ) = (∞, 31/n), γ = 1/(n3τ2) .
Parameters: n = 193, τ = 7/n, (σ, ξ) = (∞, 31/n), γ = 0.5/(n3τ2) .
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Frame f0 Frame f1 Motion profile px

Fig. 8.1: Schematic display of the computation of a motion profile px for a translating
disk. The blue patches πy where y = x + δi for some i in frame f1 shows the most
probable patches that match πx in frame f0, thus resulting in a large value of (px)i

(blue colors on the image in the last figure).

separated multiple objects with different distributions of intensities. It also shows
the curve evolution of our model starting from given initial curves, and displays the
convergence of the energy E(ϕ(ℓ)) as a function of the iteration index ℓ.

Figure 7.3 presents texture segmentation results of our model (3.5) and compari-
son with CV model (4.1). Again due to the local homogeneity, our model discriminates
different textures having different distributions of intensities, while CV fails for the
correct discrimination.

Figure 7.4 shows examples of color texture segmentation using the sliced Wasser-
stein distance (7.3). We considered only |Θ| = 3 projection directions, i.e. Θ =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, which was enough to obtain satisfactory segmentations in
all the given examples. We also compare our model with the vector-valued Chan-Vese
model [12], and with the color extension [2] of the original method proposed in [40].
In all the examples, our model correctly detects the boundary of objects and segments
separated multiple objects with different distributions of color values, in contrast to
the other models that do not locate the curve on the exact boundaries, detect only
part of objects or fail to detect objects. Note that the second example was degraded
by the random-valued implusive noise (noise with any intensity value is randomly
distributed over the entire image), of density 0.3 (probability of the corrupted image
pixels).

8. Motion Segmentation. To perform motion segmentation, we use the mo-
tion profile features introduced by Shi and Malik in [49, 50] within our non-local active
contour framework.

8.1. Motion features. The goal is to segment moving objects between two
consecutive frames f0, f1 of a video sequence. The local movement at a pixel x is
represented by a motion profile f(x) ∈ R

d. In the following we use a patch of size
τ × τ so that f(x) = px is a motion profile.

The profile px ∈ R
d is a local signature where (px)i is an estimation of the

probability that pixel x in frame f0 moves toward pixel x + δi, where (δi)
d−1
i=0 ⊂ R

2 is
a discrete grid of 2-D relative movements, as seen in Figure (8.1). For the numerical
examples, we use δi that ranges on a uniform square grid of step 1/n and of width
11/n (which means that the expected displacement amplitude is 5 pixels).

To evaluate the movement, the patch π0
x of size τm×τm extracted from f0 around

pixel x is compared to the patches π1
x+δi

extracted from frame f1 around pixels x+δi.
Following [49, 50] the value of the profile is a decaying function of the L2 distance
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(a) f0 (b) f1 (c) Optical flow (d) NL-N

Fig. 8.2: Segmentation of moving objects with our NL-N model (3.5) and the motion
distance (8.1).
Parameters: n = 120, 100, 150, 200 (top to bottom), τ = 11/n, (σ, ξ) = (∞, 31/n),
γ = 0.005/n, 0.005/n, 0.03/n, 0.008/n (top to bottom) .

between the patches

(px)i =
1

Zx
e

−||π0
x−π1

x+δi
||2

2σ2
m

where the constant Zx ensures that
∑

i(px)i = 1 so that px resembles a density
distribution of movements.

The non-local segmentation method is then applied to the segmentation of the
profiles px using a correlation distance between the square root of the profiles

d(px, py) = 1 −
∑

i

√

(px)i(py)i. (8.1)

Note that we compute the square root of the motion profile, instead of using the
motion profile itself as in [49, 50], in order to ensure that d(px, px) = 0.
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Fig. 8.3: Segmentation of a moving car with our NL-N model (3.5) and the motion
distance (8.1). Initial curve (1st column) on the 1st frame and final curves (2nd-4th
columns) curves on the 1st, 13th, 31th frame of the sequence are shown.
Parameters: n = 191, τ = 11/n, (σ, ξ) = (∞, 41/n), γ = 0.005/n.

8.2. Examples. Figures 8.2 and 8.3 present some motion segmentation results
with the motion distance (8.1). The first two columns (a) and (b) show the two
input images f0 and f1. In the first example, both objects translate with opposite
directions and also exhibit a change of size (scaling). The second example shows a
simpler movement (uniform translation) but the object has a uniform texture. The
third example shows two 3-D objects which are both translating and rotating in
space. The fourth example shows a single object which is rotating. These examples
shows different types of movements that are not uniform translation and result in
smoothly varying motion profile, thus being well suited for our non-local segmentation
method. To better show the movement in these sequences, column (c) shows the
optical flow computed using the Lucas-Kanade method [35]. Note that this flow is
given for illustration purpose only, and is not used to compute the segmentation. It is
important because optical flow computation is a difficult task that would often lead
to poor segmentation results. The last column (d) shows the segmentation results
using our normalized energy with the motion distance.

Figure 8.3 shows that our model is able to segment a moving car of a video
sequence. The initial curve is given only in the 1st frame (it needs to be quite close
to the car), and the resulting curve is used as the initial curve for the next frame.
The segmentation results are shown when f0 is the 1st, 13th, 31th frame of a movie
sequence.

For these numerical examples, we use motion patches of width τm = 3/n, excepted
for the taxi sequence where τm = 7/n. The motion profile are computed using a
variance that is adapted manually for each case. We use σm = 0.2/nτm for the 1st
and 2nd examples, σm = 0.06/nτm for the 3rd, σm = 0.08/nτm for the 4th, and
σm = 0.25/nτm for the taxi sequences.

We note that we try to initially locate curves outside moving objects, especially
when objects have little textures where the motion profiles are almost flat, see for
instance the first and third examples. In this way, our model can detect the object
boundary where the variation of motion profiles is largest.

9. Multi-phase segmentation. This section generalizes the models proposed
in the previous sections to handle an arbitrary number N > 2 of regions. This
is performed by extending the energy E(Ω) associated to a single domain Ω to an
energy EM(Ω1, . . . ,Ωm) on m domains, and then replacing the original problem (2.1)
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by a joint minimization on the m domains

min
Ω1,...,Ωm

EM(Ω1, . . . ,Ωm) = EM(Ω1, . . . ,Ωm) + γ

m
∑

j=1

L(Ωj). (9.1)

Section 9.1 recalls the multi-phase extension proposed in [57, 47] where the number of
segmented regions N is equal to the number of domains N = m. Section 9.2 details
an alternative extension where N = 2m, that follows closely [52].

The problem (9.1) can be solved using a level set function ϕj to represent each
domain Ωj = {x \ ϕj(x) > 0}. The active contour evolution is obtained by performing
a gradient descent of (9.1), which leads to a system of m coupled PDE’s

∀ i = 1, . . . ,m,
∂ϕi

∂t
= −∂EM

∂ϕi
(ϕ1, . . . , ϕm) − γ∇L(ϕi) (9.2)

where ∂EM

∂ϕi
is a level set gradient direction associated to the mapping Ωi 7→ EM(Ω1, . . . ,Ωm).

9.1. Multiphase Repulsive (MR) Method. Following the multiphase repre-
sentation [57, 47], we introduce an energy to enforce that {Ω1, . . . ,Ωm} are disjoint

F (Ω1, . . . ,Ωm) =

∫

[0,1]2

(

m
∑

j=1

χΩj
(x) − 1

)2
dx

where we have used the indicator function

χΩ(x) =

{

1 if x ∈ Ω,
0 otherwise.

Any single region energy E(Ω) is extended into a multi-phase energy as

EM(Ω1, . . . ,Ωm) = λF (Ω1, . . . ,Ωm) +

m
∑

j=1

E(Ωj) (9.3)

where λ > 0 is a parameter that should be large enough to prevent the domains to
overlap. The active contour evolution (9.2) is implemented using

∂EM

∂ϕi
(ϕ1, . . . , ϕm)(x) = λ

∂F

∂ϕi
(ϕ1, . . . , ϕm)(x) + ∇E(ϕi)

where ∇E is the level set gradient of the energy considered, and where ∂F
∂ϕi

is detailed
in the following proposition.

Proposition 4. One has, for i = 1, . . . ,m,

∂F

∂ϕi
(ϕ1, . . . , ϕm)(x) = ||∇ϕi(x)||

(

− 1 + 2
∑

j 6=i

χΩj
(x)
)

where Ωj = {x \ ϕj(x) > 0}.
Proof. One can write

F (Ω1, . . . ,Ωm) =

∫

Ωi

(

∑

j 6=i

χΩj
(x)
)2

dx +

∫

Ωc
i

(

∑

j 6=i

χΩj
(x) − 1

)2
dx.

Using Proposition 1, one has

∂F

∂ϕi
(ϕ1, . . . , ϕm)(x) =

(

∑

j 6=i

χΩj
(x)
)2 −

(

∑

j 6=i

χΩj
(x) − 1

)2

and hence the result.
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9.2. Multiphase Intersection (MI) Method. Following the method intro-
duced in [52], we consider all possible intersections obtained using the sets {Ωj ,Ω

c
j}m

j=1.
This gives a segmentation of the image using N = 2m non-overlapping regions.

Any single-region energy E(Ω) is extended to a multi-phase setting as

EM(Ω1, . . . ,Ωm) =
∑

s∈{+1,−1}m

E(Ωs1
1 ∩ . . .Ωsm

m ) (9.4)

where we have use the notation Ω+1
j = Ωj and Ω−1

j = Ωc
j . Note that the minimiza-

tion (9.1) is performed on m domains, but it produces a segmentation in 2m regions.
Computing the partial level set gradient ∂E

∂ϕj
can be quite involved since it is made

of 2m terms. To obtain simpler formula, the following proposition makes use of the
special structure of our non-local energies, and introduces the indicator functions of
a set (Ω × Ω) ∪ (Ωc × Ωc)

χ̂Ω(x, y) =

{

1 if (x, y) ∈ (Ω × Ω) ∪ (Ωc × Ωc),
0 otherwise.

Proposition 5. Let ϕ1, . . . , ϕm be fixed level set functions. For i = 1, . . . ,m,

we denote, for any function f(x, y),

f [i](x, y) = f(x, y)
∏

j 6=i

χ̂Ωj
(x, y).

For E = ĒU
NL

of equation (3.2), a level set gradient is given, for j = 1, . . . ,m, by

∂EM

∂ϕi
(ϕ1, . . . , ϕm) = ||∇ϕi(x)||

(

∫

Ωi

K [i](x, y)dy −
∫

Ωc
i

K [i](x, y)dy

)

where K is defined in (3.3). For E = ĒN
NL

of equation (3.5), a level set gradient is

given, for j = 1, . . . ,m, by

∂EM

∂ϕi
(ϕ1, . . . , ϕm) = ∇F

1,K[i],G
[i]
σ

(ϕi) −∇F
1,K[i],G

[i]
σ

(−ϕi)

where ∇F is defined in (2.14).
Proof. The multiphase extension of the un-normalized energy (3.2) can be con-

veniently written as follows

ENL-U
M (Ω1, . . . ,Ωm) =

m
∑

i=1

∫∫

K [i](x, y)χ̂Ωi
(x, y)dydx =

m
∑

i=1

{

FK[i](Ωi) + FK[i](Ωc
i )
}

(9.5)
where Fg is defined in (2.9). The result follows from Proposition 2, using the fact
that K [i] is a symmetric kernel.

The multiphase extension of the normalized energy (3.5) (NL-N) is written as
follow

ENL-N
M (Ω1, . . . ,Ωm) =

m
∑

i=1

∫

∫

K [i](x, y)χ̂Ωi
(x, y)dy

∫

G
[i]
σ (x, y)χ̂Ωi

(x, y)dy
dx

=

m
∑

i=1

{

F
1,K[i],G

[i]
σ

(Ωi) + F
1,K[i],G

[i]
σ

(Ωc
i )
}

(9.6)

where Ff,g,h is defined in (2.13). The result follows from Proposition 3.
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Fig. 9.1: Segmentation results of multi-phase method MR with the NL-U energy and
the CV energy.
Parameters: n = 100, τ = 1/n, (σ, ξ) = (∞, 31/n), NL-U: γ =
100/(n5ξ2τ2), λ = 200/(n5ξ2τ2) (top), λ = 300/(n5ξ2τ2) (bottom), CV: (γ, λ) =
(0.1/(n3τ2), 0.1/(n2τ2)).
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Fig. 9.2: Segmentation results of multi-phase method MI with the NL-U energy and
the CV energy.
Parameters: n = 100, τ = 1/n, (σ, ξ) = (∞, 31/n), γ = 100/(n5ξ2τ2) (NL-U),
γ = 0.1/(n3τ2) (CV).

9.3. Examples. In the following numerical experiments, we consider the multi-
phase extensions of the Chan-Vese (CV) energy ECV defined in (4.1), the NL-U energy
defined in (3.2) and the NL-N energy defined in (3.5).

Note that for the CV energy, there is an additional parameter for each of the
N regions to be segmented, which generalizes the pair (p1, p2) of parameters in the
original energy (4.1). Each parameter is updated during the active contour evolution
in a way similar to (4.2).

Figure 9.1 presents segmentation results of the multiphase model MR with our
un-normalized energy NL-U using the L2 patch distance (5.1) and the CV energy.
Since two foreground objects are touching, the non-local energy requires multi-phase
extensions to perform a correct segmentation. Due to the fact that our non-local
energy can segment the region with spatially smoothly varying features and separated
regions with different features with one level set function, the multiphase model MR
with our NL-U energy also could segment the regions with smoothly varying intensity
values, and it could segment the regions with small number of level set functions
(m = 3 for the 1st example, m = 2 for the 2nd example). On the other hand, the CV
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MR method MR method MI method

Fig. 9.3: Segmentation results of MR and MI methods with NL-N energy and Wasser-
stein patch distance.
Parameters: n = 192, τ = 7/n, (σ, ξ) = (∞, 41/n), (γ, λ) = (0.7/(n3τ2), 3/(n2τ2)).
Parameters: n = 176, τ = 7/n, (σ, ξ) = (∞, 41/n), (γ, λ) = (0.8/(n3τ2), 4/(n2τ2)).
Parameters: n = 160, τ = 3/n, (σ, ξ) = (∞, 41/n), γ = 0.1/(n3τ2).

energy fails to segment the first example due to the spatially varying intensity values,
and it needs more level set functions for the second example. This figure also displays
the convergence of the energy EM using the MR method (9.3) with the NL-U energy
as a function of the iteration index ℓ.

Figure 9.2 presents segmentation results of the multiphase model MI with our un-
normalized energy NL-U using the L2 patch distance (5.1) and the CV energy. The
multiphase model MI with our NL-U energy could segment the regions with smoothly
varying background with two level set functions, while the CV energy fails in the
segmentation due to the spatially varying background. This figure also displays the
convergence of the energy EM using the MI method (9.5) with the NL-U energy as a
function of the iteration index ℓ.

Figure 9.3, shows the result with our normalized energy (NL-N) using the sliced
Wasserstein distance between patches (7.4). The sliced distance for color distributions
in R

3 is implemented using Θ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The first two examples are grayscale and color textures that are handled efficiently

using our statistical patch distance. Although there are 5 regions, the MR method
gives a correct segmentation with m = 3 level set functions. In these examples, the
repulsive force plays an important role to make the curves evolve to the boundaries,
especially when a small value of σ (locality parameter) is used.

The third example is contaminated by Salt-and-Pepper noise (noisy pixel takes
either salt value 1 or pepper value 0) with noise density 0.05 (salt noise and pepper
noise have a noise density of 0.05/2).This shows a complicated segmentation situation
because four regions are meeting at some locations. The MI method gives a correct
segmentation with m = 3 functions that can segment up to eight phases. Note that
the MR method would have required at least m = 4 function. This is however much
smaller than what would have been required (at least m = 6) if the CV energy had
been used instead of NL-N.
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10. Conclusion. In this article, we have proposed a novel class of non-local en-
ergies for image segmentation, which makes use of patches and allows to constrain
local homogeneity of features. We have illustrated superiority of our models over exist-
ing active contour models. Due to the local homogeneity property, our segmentation
model is able to detect regions with smoothly spatially varying features and segment
separated objects with different features with a level set function. We have instanti-
ated our models based on intensity, color, texture or motion information, by designing
appropriate metrics between patches such as L2 norm for piecewise smooth features
(intensity, color values or Gabor features for locally oriented textures), Wasserstein
distance for locally homogeneous random field, or motion signature correlation. The
Wasserstein distance and its sliced approximation allow to segment complicated textu-
ral features in arbitrary dimension, and the motion distance enables to detect moving
objects with locally varying motion. We also extend our models to the multi-phase
level set frameworks that enable to segment an image with multiple junctions. Our
multi-phase models are also able to partition regions with smoothly varying features
and with smaller number of level set functions, due to the local homogeneity property.
All these properties are significant extensions of existing region-based models crucial
to solve difficult image segmentation problems.
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