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Abstract
This paper deals with the observability of the discrete mode of switching structured linear systems with unknown inputs. The

proposed method, based on a graph-theoretic approach, assumes only the knowledge of the system’s structure. We express, in

graphical terms sufficient conditions for the generic observability of the discrete mode. If these conditions are not satisfied, we also

propose a sensor placement procedure which allows to recover the mode observability. More precisely, we provide an exhaustive

location set for additional sensors to recover the given sufficient mode observability condition. Our approach uses algorithms

which have polynomial complexity orders and assumes only the knowledge of the system’s structure. It can be implemented by

classical graph-theory algorithms.

Keywords: Switching linear systems, mode observability, sensor location, graph theory.

1. INTRODUCTION

Hybrid systems, combining event-driven and time-driven dy-
namics, have received growing attention in the control commu-
nity as they can be used to describe a wide range of physical
and engineering systems [11, 1, 16]. For such systems, the
general problem of estimating the mode, the internal state and
the unknown input is of great interest in many control areas. In
the context of switching continuous time linear systems, studies
presented in [3, 7, 8, 20] are among the most significant works
which deal with observability. They characterize completely the
observability of the continuous internal state and/or the discrete
mode variable, which is assumed to be unknown and arbitrary.
Other definitions of observability for other kinds of hybrid
systems are also provided in the literature. For instance, [4, 6, 5]
study the observability of hybrid linear systems, where the
discrete mode depends on the state trajectory or is associated
to discrete outputs. Deterministic discrete-time switching linear
systems were considered in [19, 2, 4], knowing that, contrary
to classical linear systems, important differences exist between
the discrete and continuous time cases for switching linear
systems (SLS) [3]. Even if our study is only concerned by mode
observability, From the point of view of the class of systems
under study and observability definitions used here, our paper is
close to [3, 7, 20, 8]. But, our proposed method and the obtained
results present two main originalities. On the one hand, few
works deal with the observability of hybrid systems with un-
known inputs, which model disturbances or faults for example.
In fact, there exist some works ([13] and the references therein),
which aim at designing unknown input observers for SLS, but
they do not study state and input observability. [21] addresses
the problem of recovering the discrete mode variable and the
input given an output and an initial state but not simultane-
ous state and input observability. On the other hand, in most
cases, observability analysis for SLS deals with algebraic and
geometric tools and so requires the exact knowledge of the
state space matrices characterizing the systems’ model. In many
modeling problems or during conception stage, these matrices
have a number of fixed zero entries determined by the physical
laws while the remaining entries are not precisely known. In
these cases, to study the structural properties, like observability,
the idea is that we only keep the zero/non-zero entries in the

state space matrices. Thus, we consider models where the fixed
zeros are conserved while the non-zero entries are replaced
by free parameters. Many interesting works on these models,
called structured models, are related to the graph-theoretic ap-
proach and aim to analyse properties such as controllability,
observability . . . [9]. It results from these works that the graph-
theoretic approach provides quite simple and elegant analysis
tool.
In this context, the first part of the paper is proposed a graph-
based approach to provide sufficient conditions which ensure
the discrete mode observability for switching structured linear
systems (SSLS). In a second part, and using a graph-theoretic
approach, we address the problem of sensor placement in order
to recover discrete mode observability property. More precisely,
we answer to the following question: when the discrete mode
of a SLS is not generically observable, where can we place
efficiently additional sensors to recover this property ?
All the proposed results are based on classical combinatorial
algorithms with polynomial order complexity. This may be an
important criterion when we deal with large scale systems.
Moreover, since we consider structured systems, our approach
can be used during a conception stage.
The paper is organised as follows: after Section 2, which is
devoted to the problem formulation, some definitions related to
the graph-theoretic approach are given in Section 3. The main
results are enounced in Section 4 before a brief conclusion.

2. PROBLEM STATEMENT

Consider the following SLS

Σ :

{
ẋ(t) = A(rt)x(t) + B(rt)u(t)
y(t) = C(rt)x(t) + D(rt)u(t)

(1)

where x ∈ R
n, u ∈ R

m and y ∈ R
p are respectively

the state vector, the unknown input vector and the output
(measurement) vector and where A(·), B(·), C(·) and D(·)
are real matrices of compatible dimensions. The exogenous
and unobserved discrete mode variable (or switching signal)

r : [0,∞) → Q
def
= {1, . . . , N}, is assumed, as in [3], to be

right-continuous and only a finite number of jumps can occur
in any finite interval of [0,∞). It results that all the system



trajectories are well defined and infinitely right-differentiable
over [0,∞). Zeno behaviors can thus not occur, even though
no minimum dwell time is imposed. Note that, contrary to
non-hybrid linear systems, when we study observability, we
cannot remove the known inputs from the model, as discrete
mode observability depends also on input-output links [8].
Nevertheless, without loss of generality and for the sake of
homogeneity, all the inputs are assumed to be unknown. In
fact, the control input signals, whose values are known, are
considered to be measured i.e. we associate a virtual output
equation of the form yk′ = uk to these inputs. Moreover, our
aim is to address, in the same framework autonomous SLS and
SLS with known or unknown inputs. It results that, the discrete
mode observability as it is defined in [7], cannot be used since
it is dependent on input vector and so cannot be satisfied for
autonomous SLS. We choose here to release this constraint on
discrete mode observability to have a more general framework
by imposing mode distinguishability not for all but for generic
initial conditions x0 and unknown inputs u:

Definition 1. (Mode distinguishability) Two modes q ∈ Q and
q′ ∈ Q with (q 6= q′) are distinguishable if at least one of the
two following conditions holds:
- there exist an integer s ≥ 0 and an expression

Ψq(y, ẏ, . . . , y(s)) = 0 which is satisfied for mode q but is

not satisfied for mode q′ for almost all initial conditions x0 and
inputs u.
- there exist an integer s′ ≥ 0 and an expression

Ψq′(y, ẏ, . . . , y(s′)) = 0 which is satisfied for mode q′ but is
not satisfied for mode q for almost all initial conditions x0 and
inputs u.

Here, “ for almost all initial conditions x0 and inputs u(t) ” is

to be understood as “ for all (xT
0 , uT )T ∈ R

n+m except for the
zero set of some polynomials with real coefficients in the n+m
initial state and input components. These polynomials can be
written down explicitly, i.e. we can precisely describe when the
mode distinguishability fails to be true. Obviously u(t) ≡ 0
and x0 = 0 are two of these polynomials. The zero set of some
polynomial forms a proper algebraic variety of R

n+m which
has Lebesgue measure zero. So, by the expression “ for almost
all initial conditions x0 and input functions u ” we mean for
all initial conditions and inputs except the ones belonging to a
proper algebraic variety in the state and input space.
The interpretation of Definition 1 is that q is distinguishable
from q′ if, for generic initial states x0 and unknown input u,
we can rule out q or q′ when observing the output over [0, T ].
Relatively to the definitions of [3], our notion of distinguisha-
bility of q and q′ is equivalent to the fact that q is discernible
from q′ or vice-versa. The mutual mode discernibility, which
is a dissymmetric property in [3], is equivalent to have both
conditions of Definition 1 satisfied.

Definition 2. (Location observability) SLS (Σ) is location ob-
servable if its modes are all distinguishable two-by-two i.e.
∀q ∈ Q, ∀q′ ∈ Q, with q 6= q′, q and q′ are distinguishable.

Comparatively with the notion of location observability defined
in [8, 7], our definition concerns as well as autonomous and
non-autonomous systems. In [8, 7], location observability is
defined as the ability to reconstruct the mode starting from the
knowledge of the input and the output, for any nonzero input
value and for all initial conditions. Since we deal with unknown
input systems, this definition is not applicable and it cannot be
achieved for autonomous systems. In our definition, we relax
this by accepting that the reconstruction of the mode may be
possible not for all but for almost all inputs and initial condition
values.
Location observability analysis can be reduced to the study of

the distinguishability of each pair of modes. Thus, for the sake
of simplicity, there is no loss of generality in considering in
the first part of the paper, that we have only two modes. At the
end of Section 4, we extend the obtained results to the multiple
modes case.
Since we study structural properties, it is pertinent to deal
with structured systems, for which we assume that only the
sparsity pattern of matrices A(q), B(q), C(q) and D(q) is
known for q ∈ {1, 2}. So, to each entry of these matrices, we
only know whether its value is fixed to zero, or that it has an
unknown real value represented by a real parameter λi. The

vector of these parameters is Λ = (λ1, λ2, . . . , λh)
T

and it is

assumed that Λ can take any value in R
h or equivalently that

parameters λi are free. We denote by Aλ(q), Bλ(q), Cλ(q)
and Dλ(q) respectively the matrices obtained by replacing the
nonzeros in A(q), B(q), C(q) and D(q), for q ∈ {1, 2} by the
corresponding parameters λi and we denote

ΣΛ :

{
ẋ(t) = Aλ(rt)x(t) + Bλ(rt)u(t)
y(t) = Cλ(rt)x(t) + Dλ(rt)u(t)

(2)

If all parameters λi are numerically fixed, we obtain a so-called
admissible realization of SSLS (ΣΛ). We say that a property
is true generically for SSLS (ΣΛ) if it is true for almost its
realizations or equivalently for almost all parameters λi.
Location observability analysis is based on the distinguisha-
bility of the structured models associated to the two discrete
modes. So, it is pertinent and necessary to highlight the similar-
ities and the differences between the models associated to these
modes. Thus, we decompose each structured matrix into two
parts: the first one is common to the two modes and the second

one is specific to each mode i.e. for q ∈ {1, 2}, Aλ(q) = Aλ
0 +

Aλ
q , Bλ(q) = Bλ

0 +Bλ
q , Cλ(q) = Cλ

0 +Cλ
q and Dλ(q) = Dλ

0 +

Dλ
q . When we write the matrices under this form, we assume

that the entries of all these matrices are free. These notations
are generalized to the multi-mode case in subsection 4.5. To
summarize, our first aim is to provide sufficient conditions to
check if a SSLS is generically location observable i.e. is loca-
tion observable for almost all its realizations or equivalently for
almost all parameters λi. Next, when these conditions are not
satisfied, we provide additional sensors’ locations which allow
to recover the location observability property.

3. GRAPHICAL REPRESENTATION OF STRUCTURED
SWITCHING LINEAR SYSTEMS

The digraph associated to (ΣΛ) is noted G(ΣΛ). It is constituted
by a vertex set V and an edge set E i.e. G(ΣΛ) = (V, E). The
vertices are associated to the continuous state, the input and the
output components of (ΣΛ) and the directed edges represent
links between these variables. More precisely, V = X∪U∪Y,
where X = {x1, . . . ,xn}, U = {u1, . . . ,um} and
Y = {y1, . . . ,yp} are respectively the set of state,

input and output vertices. For q ∈ {0, 1, 2}, we define
Eq = Aq-edges ∪ Bq-edges ∪ Cq-edges ∪ Dq-edges, where,

for q ∈ {0, 1, 2}, Aq-edges = {(xj,xi) | Aq(i, j) 6= 0},

Bq-edges = {(uj,xi) | Bq(i, j) 6= 0}, Cq-edges =
{(xj,yi) | Cq(i, j) 6= 0} and Dq-edges =

{(uj,yi) | Dq(i, j) 6= 0}. Finally the edge set is E =

2⋃

q=0

Eq .

Here, M(i, j) is the (i, j)th element of matrix M and (v1,v2)
denotes a directed edge from vertex v1 ∈ V to vertex v2 ∈ V .
The edges included in E0 represent the common part of the
two modes’ models, while Eq , for q ∈ {1, 2} is related to the
specific part of each mode’s model. For the sake of clarity, the



vertices are written in bold fonts to differentiate them from
the corresponding variables. Each edge is associated to a free
non-zero parameter of the system’s model called the weight of
the edge. Note that number q is written under each Eq-edge and
represents its index.

Example 1. To the system defined by the following matrices,
we associate the digraph in Figure 1.

Aλ

0 =




0 0 0 0 0 0 0 0
0 0 λ1 0 0 0 0 0
0 λ2 0 0 0 0 0 0
0 0 0 0 λ3 0 0 λ4

0 λ5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 λ6 λ7 0 0
0 0 0 0 0 0 λ8 0




, Bλ

0 =




0
0
0
0
0

λ12

0
0




, Cλ

0 =

(
λ13 0 0 0 0 0 0 0
0 0 0 0 λ14 0 0 0
0 0 0 λ15 0 0 0 0
0 0 0 0 0 0 0 λ16

)
, all the entries of Aλ

1 are zero

except Aλ
1 (1, 2) = λ9, all the entries of Aλ

2 are zero ex-

cept Aλ
2 (5, 2) = λ10 and Aλ

2 (7, 6) = λ11, the elements of

matricesBλ
1 , Bλ

2 , Cλ
1 , Cλ

2 , Dλ
0 , Dλ

1 and Dλ
2 are equal to zero.
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Figure 1. Digraph associated to system of Example 1

The digraph representing the SSLS is built from the superpo-
sition of the digraphs related to each mode. In order to study
the properties of the system associated to a specific mode q, we
have to restrict the edge set to E0 ∪ Eq . In this context, many of
the functions and specific vertex subsets, defined below, present
an index q related to the considered mode.
Let us now give some useful definitions and notations.
• A path P is denoted P = vs0 → vs1 → . . . → vsi , where
(vsj ,vsj+1

) ∈ E for j = 0, 1, . . . , i − 1. We say in this case

that P covers vs0 , vs1 , . . . , vsi .
• The weight of P is the product of the weights of all its edges.
• A path is simple when every vertex occurs only once in this
path.
• A cycle is a path of the form vs0 → vs1 → . . . → vsi →
vs0 , where vs0 , vs1 , . . . , vsi are distinct.
• For q ∈ {1, 2}, we say that path P is included in E0 ∪ Eq if
all its edges are included in E0 ∪ Eq.
• Some paths (resp. cycles) are disjoint if they have no common
vertex.
• P is a Y-topped path if its end vertex belongs to Y. A Y-
topped path family consists of disjoint simple Y-topped paths.
In the sequel, V1 and V2 represent two subsets of V . We denote
by card(·) the cardinality function and V1 \ V2 is the set of
elements in V1 which are not in V2.
• A path P = vs0 → vs1 → . . . → vsi is said a V1–V2

path if vs0 ∈ V1 and vsi ∈ V2. Moreover, if the only vertex of
P which belongs to V1 is vs0 and the only vertex of P which
belongs to V2 is vsi , P is called a direct V1–V2 path.

• For q = {1, 2}, ρq

[
V1,V2

]
is the maximal number of disjoint

V1-V2 paths included in E0 ∪ Eq . Moreover, a set of ρq

[
V1,V2

]

disjoint V1-V2 paths included in E0 ∪ Eq is a maximum V1-V2
linking in E0 ∪ Eq.

• For q ∈ {1, 2}, Vess,q

[
V1,V2

]
is the vertex subset includ-

ing the vertices present in all the maximum V1–V2 linkings
included in E0 ∪ Eq .

• For q ∈ {1, 2}, there exists a unique vertex subset noted

So
q

[
V1,V2

]
and called minimum output separator which is the

set of begin vertices of all direct Vess,q

[
V1,V2

]
–V2 paths in-

cluded in E0 ∪ Eq .

In Example 1, ρ1

[
U,Y

]
= ρ2

[
U,Y

]
= 1 and

ρ1

[
{x1, x2, x3},Y

]
= ρ2

[
{x1, x2, x3},Y

]
= 2. More-

over, Vess,2

[
{x3},Y

]
= {x3, x2, x5} but Vess,1

[
{x3},Y

]
=

{x3, x2} because there exists in E0 ∪ E1 a path which from
x3 to Y which does not cover x5: x3 → x2 → x1 →
y1. Finally, So

1

[
U,Y

]
= {x8}, So

2

[
{x3},Y

]
= {x5} and

So
1

[
{x3},Y

]
= {x2}.

Function ρq and the two vertex subsets Vess,q and So
q constitute

the classical graphic-notions used in most of the results related
to the structural analysis using a graph-theoretic approach. In-
deed, ρq is associated to the generic rank of transfer matrices
and pencil matrices for example and is useful in the analysis
of many problems as disturbance-rejection, input-output decou-
pling, fault detection and isolation [9]. Subsets Vess,q and So

q

are often used, as we will see later, in the system’s decom-
position [17] or in the graph simplification because for some
properties, analysing all the graph is not always necessary.
• In G(ΣΛ), for each mode q, two vertices vi and vj are said to
be strongly connected in mode q, if it exists a path included in
E0 ∪ Eq from vi to vj and a path included in E0 ∪ Eq from vj to
vi. In each mode, the relation "is strongly connected to" is an
equivalence relation and we can define its equivalence classes.
We call each equivalent class related in mode q by a q-strongly
connected component (q-scc). These q-scc are well known in
the graph theory [12]. They can be ordered using a partial order
relation “4” defined between two q-scc Vi and Vj as Vi 4 Vj

if there exists a path, included in E0 ∪ Eq , from an element of
Vj to an element of Vi.
• For each mode q, a q-scc Vi is maximal if there is no distinct
q-scc Vj such that Vi 4 Vj.
• We define, for each mode q, the union of all maximal q-scc:

Vor,q = {v ∈ Vi, where Vi is a maximal q-scc}

=
⋃

Vi is a maximal q-scc

Vi

. In Example 1, the 1-scc are: {u1}, {x1}, {x2, x3}, {x4},
{x5}, {x6}, {x7}, {x8}, {y1}, {y2}, {y3}, {y4}. The
maximal ones are {u1} and {x2, x3} and so Vor,1 =
{u1, x2, x3}. Furthermore, So

1

[
Vor,1,Y

]
= {x2, x8}. In

mode 2, the strongly connected components are the same. How-
ever, since there is no edge between x2 and x1, the latter is
also a maximal 2-scc. Therefore, Vor,2 = {u1, x1, x2, x3}.

Furthermore, So
2

[
Vor,2,Y

]
= {y1, x5, x8}.

4. MAIN RESULTS

4.1 Preliminaries

In a first stage, hereafter we recall some existing results use-
ful to establish our observability conditions. These results are



mainly issued from [12, 14, 17, 18, 9].

Consider subset Wq = So
q

[
Vor,q,Y

]
. We have, according to

Menger’s Theorem, that card(Wq) = ρq

[
Vor,q,Y

]
. Further-

more, let us denote by X̄q all the state vertices belonging to
direct Wq-Y paths and which are not in Wq. The dynamics of

the state components associated to X̄q is then on the form :

Σ̄q :

{
˙̄xq = Āλ

q x̄q + B̄λ
q wq

y = C̄λ
q x̄q + D̄λ

q wq
(3)

where wq , x̄q are the input and state components associated

respectively to vertices of W̄q and X̄q .

Furthermore, since Wq = So
q

[
Vor,q,Y

]
, an important remark

can be done now and is summarized in the following lemma:

Lemma 1. Considering subsystem (Σ̄q) constituted by in-
put wq, state x̄q and output y. For each Yu =
{yi1 , yi2 , . . . , yik} ⊂ Y such that ρq

[
Wq,Yu

]
=

card(Wq), there exist, generically, a matrix G, a func-

tion ϕ and an integer ν ≤ nq
def
= card(Xq) such

that wq = ϕ(Yu, Ẏu, . . . , Y
(ν)
u ) + Gx̄q , where Yu

(ν) =

(y
(ν)
i1

, y
(ν)
i2

, . . . , y
(ν)
ik

)T

Proof: According to [9] (Theorem 4), for subsystem (Σ̄q),
the existence of Yu = {yi1 , yi2 , . . . , yik} ⊂ Y such that

ρq

[
Wq,Yu

]
= card(Wq), implies the invertibility of (Σ̄q) us-

ing only Yu. Thus, using the inversion algorithm of [15], we can
express the input of a such system i.e. wq in function of its state
x̄q and its output components Yu and their derivatives. Thus, we
have that there exist, generically, a matrix G, a function ϕ and

an integer ν ≤ nq such that wq = ϕ(Yu, Ẏu, . . . , Y
(ν)
u )+Gx̄q,

where Yu
(ν) = (y

(ν)
i1

, y
(ν)
i2

, . . . , y
(ν)
ik

)T . △
Substituting this in Equations (3) for mode q, we have:





˙̄xq = (Āλ
q + B̄λ

q G)x̄q + B̄λ
q ϕ(Yu, Ẏu, . . . , Y

(ν)
u )

def
= Ãx̄q + ϕx(Yu, Ẏu, . . . , Y

(ν)
u )

y =
(
C̄λ

q x̄q + D̄λ
q G)x̄q + D̄λ

q ϕ(Yu, Ẏu, . . . , Y
(ν)
u )

def
= C̃x̄q + ϕy(Yu, Ẏu, . . . , Y

(ν)
u )

(4)
Remark: To avoid heavy notations, even if function ϕ and

matrices G, Ã and C̃ depend on parameters λi and on mode q,
we omit to write superscript λ and subscript q on each of them.

4.2 Location observability analysis

Using the previous settings and definitions, we enounce the first
result of the paper. It characterizes a sufficient condition for
the existence of an algebraic equation depending on a specific
mode to ensure mode distinguishability.

Proposition 1. SSLS (ΣΛ), with two possible modes q ∈
{1, 2}, associated to digraph G(ΣΛ) is generically location
observable if for some q ∈ {1, 2}, there exists a direct

So
q

[
Vor,q,Y

]
–Y path included in E0 ∪ Eq and containing at

least one edge of Eq .

Proof:
Consider that this condition is satisfied and let denote by

vi the vertex of So
q

[
Vor,q,Y

]
from which there is a direct

So
q

[
Vor,q,Y

]
–Y path P included in E0 ∪ Eq and containing

at least an edge eκ of Eq . Let us denote by λκ the non-zero
parameter (or weight) associated to eκ. Let yj be the end of

P and ℓ its length. Since vi belongs to So
q

[
Vor,q,Y

]
, it exists

a subset Yor = {yi1 , yi2 , . . . , yik} ⊂ Y \ {yj} such that

ρq

[
So

[
Vor,q,Y],Yor

]
= card(So

q

[
Vor,q,Y

]
) without using

edges and vertices of P . Thus, as it is shown in Lemma 1, there
exist a matrix G, a function ϕ and an integer ν ≤ nq such that

the dynamics equation of subsystem (Σ̄q) is in the form (4).
Since the elements of G are represented by edges belonging to
the Yor-topped paths, they are independent from the elements

of Ã. From the characteristic equation of matrix Ã, we can write
an equation as

(
C̃jÃ

n1 + . . . + akC̃jÃ
k + . . . + a0C̃jÃ

)
X = 0 (5)

where also C̃j is the line of matrix C̃ related to output yj in

mode q in (4) i.e. yj = C̃jX + ϕy,j(Yor, Ẏor, . . . , Y
(ν)
or ) and

so, C̃jÃ
k
1,1X = y

(k)
j − C̃j

(
ϕ

(k−1)
x (Yor, Ẏor, . . . , Yor

(ν)) +

Ã1,1ϕ
(k−2)
x (Yor, Ẏor, . . . , Yor

(ν)) + . . . +

Ãk−2
1,1 ϕ̇x(Yor, Ẏor, . . . , Yor

(ν))
)
− ϕ

(k)
y,j (Yor, Ẏor, . . . , Y

(ν)
or ).

Since there exists a path of length ℓ from vi to yj containing

an edge eκ, term CjÃ
ℓ−1
1,1 ϕ

(k−ℓ)
x (Yor, Ẏor, . . . , Yor

(ν)), for all

k ≥ ℓ, is not zero and depends on the element of Aq denoted
previously λκ which is specific to location q. In particular,

first term C̃jÃ
n1 , which is present in relation (5) is not zero

and depends on λκ. Thus, equation (5) leads to an algebraic

equation Ψq(Y, Ẏ , . . . , Y (s)) = 0 parameterized by at least an
element of Aq and so satisfied only when mode q occurs. So,
the system is location observable. △

Comments and interpretation: To establish location
observability, we must first search in the graph the edges,
called specific edges, which are specific to one mode. Next, we
interest to the position of these edges w.r.t. the output vertices
in order to analyse if it is possible to obtain an algebraic
equation specific to a mode. If a specific edge belongs to any

So
q

[
Vor,q,Y

]
–Y path then the mode distinguishability is

possible.
Note that the condition of Proposition 1 generalizes the
condition [7, 8] of location observability for non autonomous
systems, where the inputs are measured (∃i ≥ 0 such that

Cλ(1)(Aλ)i(1)Bλ(1) 6= Cλ(2)(Aλ)i(2)Bλ(2)). Note that if
there exists an equation characterising mode q, then the one
characterizing mode q′ 6= q cannot be satisfied by mode q. So,
both the conditions of Definition 1 are satisfied and we can
rule out mode q′ when observing output related to mode q and
also mode q when observing output related to mode q′. Using
definition of [3], this means, that the two modes q and q′ are
mutually discernible.
Exemple 1 Let us see if it is possible to find a specific equation

characterizing mode 1. Recall that So
1

[
Vor,1,Y

]
= {x2, x8}.

Furthermore, there is one edge (x2,x1) which is specific

to mode 1 and which belongs to a So
1

[
Vor,1,Y

]
-Y path.

So, condition of Proposition 1 is satisfied and the system is
generically location observable. Indeed, this graphic condition

characterizes algebraic relation ẏ1

λ9λ13
− ẏ2

λ5λ14
= 0 depending

on λ9 which is specific to mode 1 only. This relation is not
satisfied for mode 2 because, in this case ẏ1 is identically zero.
Thus, relation ẏ1 = 0 is specific to mode 2 even if there is no
specific coefficient to mode 2 which appears.

4.3 Additional sensor location to recover the mode
distinguishability

The aim of this part of the paper is to study additional sensor
placement when the condition of Proposition 1 is not satisfied.



In the sequel, we define a new output vector Υ representing
the additional sensors which collect the new measurements
Υ(t) = Hλ

x x(t) + Hλ
uu(t) independently from the mode, for

practical consistency. Hence, we denote the completed system
by Σc

Λ:

Σc
Λ :





ẋ(t) = Aλ(rt)x(t) + Bλ(rt)u(t)
y(t) = Cλ(rt)x(t) + Dλ(rt)u(t)
Υ(t) = Hλ

x x(t) + Hλ
uu(t)

The additional sensor components can be represented by vertex
set Υ and edge subsets Hx-edges and Hu-edges from respec-
tively X to Υ and U to Υ.

Proposition 1. Consider SSLS (ΣΛ), with two
possible modes q ∈ {1, 2}, associated to
digraph G(ΣΛ). Let denote by Vs(q) =
{v ∈ V, v is the begin vertex of an edge belonging to Eq}.
To recover the sufficient condition of Proposi-

tion
⋃

q∈{1, 2}

(
Vess,q

[
Vor,q,Y

]
∩ {vi such that

∃ a simple vi − Y path covering an element of Vs(q)}
)

Proof: Assume that we place an additional sensor on a vertex

which is included in
⋃

q∈{1, 2}

(
Vess,q

[
Vor,q,Y

]
∩{vi such that

∃ a simple vi − Y path covering an element of Vs(q)}
)

.

Since this vertex denoted vi belongs to Vess,q

[
Vor,q,Y

]

and since it will exist a new path from it to an output
vertex (the additional sensor) then vi will be included
in the output separator set of the extended system i.e.

vi ∈ So
q

[
Vor,q,Y ∪ Υ

]
. Moreover, the fact that there exists

a simple vi-Y path covering an element of Vs(q) means that

there exists a direct So
q

[
Vor,q,Y ∪ Υ

]
–Y ∪ Υ path included

in E0 ∪ Eq and containing at least one edge of Eq . Therefore,

completed system (Σc
Λ) satisfies condition of Proposition 1

and the Proposition 1 follows. △

Example 2. Consider now the SSLS represented by the digraph
depicted in Figure 2. We have that, Vor,1 = Vor,2 =

 

y1

y2

x1

0,1

u1

y3

x2x3

x4

x5

x6 0

0,20

0 0

0

0

0

Figure 2. Digraph associated to system of Example 2

{u1, x3, x4} and so So
1

[
Vor,1,Y

]
= So

2

[
Vor,1,Y

]
=

{y1, y2, y3}. Thus, all the direct So
1

[
Vor,1,Y

]
-Y paths have

a zero length and so condition of Proposition 1 is not satisfied.
For mode 1, only x4 is a vertex which begins specific edge and
so Vs(1) = {x1}. For mode 2, Vs(1) = {x2}. Therefore, an
additional sensor in Υ = {x4, x2, x3} allows to ensure the
location observability property.

4.4 Computational issues

The conditions of Proposition 1 need few information about the
system. Moreover, it is quite easy to check it by means of well-
known combinatorial techniques. Indeed, from a computational
point of view, the first step of our procedure requires the
calculation of the strongly connected components which can
be done using an algorithm which complexity order equals
O(Nlog(N)) = O(nlog(n)) [10], where N = n + m + p
the number of vertices of our graphs. Note that, without loss of
generality, M = O(n2). After finding the strongly components,
we must order these components simply by comparison to
find the minimal elements with a O(n2) complexity order
algorithm. The third step is the computation of the output
separator between the maximal strongly connected components
and the output sets. It is based on the Ford-Fulkerson algorithm
which must be executed n+p times and so the complexity order
for this step is n × O(n3) = O(n4). To check the location
observability condition or to compute the possible additional
sensors’ locations, we must find all the vertices belonging to

direct So
q

[
Vor,q,Y

]
–Y paths and extract those which are the

begin vertices of specific edges. This is done by successor
and predecessor computation algorithms, which have O(n2)
complexity order. Therefore, without any simplification, the
complexity order of algorithms using this method is, in the
worst case, O(n4). The fact that the overall complexity order
is not exponential makes the proposed method suited to deal
with large scale systems. Obviously, some researches can be
done in order to lower the overall order complexity by reducing
the graph for example or subdividing it, but it is not the aim of
the paper.

4.5 Generalization to multi-mode case

Since state and input observability of each mode has to be
studied separately, the main difficulty is to generalize location
observability criterion and more precisely the matrix decompo-
sition related to each mode into two parts: a common one and a
specific one.

Consider SSLS (ΣΛ) defined in Equation (2), where Q
def
=

{1, 2, . . . , N}. We take the following notations: for q ∈
{1, 2, . . . , N}, q′ ∈ {1, 2, . . . , N} with q 6= q′, Aλ(q) =
Aλ

q,q′ + Aλ

q,q′
, where Aλ

q,q′ = Aλ
q′,q denotes the common part

between Aλ(q) and Aλ(q′) and Aλ

q,q′
represent the specific part

of Aλ(q) relatively to Aλ(q′). Similarly, Bλ(q) = Bλ
q,q′+Bλ

q,q′
,

Cλ(q) = Cλ
q,q′ + Cλ

q,q′
and Dλ(q) = Dλ

q,q′ + Dλ

q,q′
. We have

multiple decompositions for matrices Aλ(q), Bλ(q), Cλ(q) and

Dλ(q) useful only in location observability study. To each of
these matrices, we associate, as in Section 3, an edge subset.
Thus, we state:

Proposition 2. SSLS (ΣΛ) with N modes associated to di-
graph G(ΣΛ) is generically location observable if for each
pair q ∈ {1, 2, . . . , N}, q′ ∈ {1, 2, . . . , N} with q 6= q′,
Proposition 1 is satisfied by substituting edge subsets E0 by
Aq,q′-edges∪Bq,q′ -edges∪Cq,q′-edges∪Dq,q′-edges, E1 by
E

q,q′ = A
q,q′-edges∪B

q,q′-edges∪C
q,q′-edges∪D

q,q′-edges

and E2 by Eq′,q = Aq′,q-edges ∪ Bq′,q-edges ∪ Cq′,q-edges ∪
Dq′,q-edges.

Proof: The proof is quite immediate starting from Proposi-
tion 1 and considering that the location observability in multi-
mode case is equivalent to the distinguishability of each pair of
modes. △



In the multi-mode case, concerning the additional sensors
placement, we generalize the results of Proposition 1:

Proposition 3. Consider a multi-mode SSLS (ΣΛ)
with N modes associated to digraph G(ΣΛ). For
each, q ∈ {1, 2, . . . , N}, q′ ∈ {1, 2, . . . , N}
with q 6= q′, let denote by Vs(q,q′) ={
v ∈ V, v is the begin vertex of an edge belonging to E

q,q′

}

and Vs(q
′,q) = {v ∈ V, v is the begin vertex of an edge

belonging to Eq′,q}.
To recover the sufficient condition of Proposition 2, the
additional sensors Υ must measure at least one component in
each subset Sensq,q′ , q ∈ {1, 2, . . . , N}, q′ ∈ {1, 2, . . . , N}
with q 6= q′ defined by:

Sensq,q′ =
(
Vess,q

[
Vor,q,Y

]
∩ {vi s.t. ∃ a simple

vi − Ypath, covering an element of Vs(q,q′)
} )

∪
(
Vess,q′

[
Vor,q′ ,Y

]
∩ {vi s.t. ∃ a simple vi − Y path

covering an element of Vs(q
′, q̄)}

)

Proof: From Proposition 1, taking a measure on each set
Sensq,q′ guarantees the distinguishability of modes q and q′.
Thus, the location observability, which is equivalent to the
distinguishability of all the pairs q ∈ {1, 2, . . . , N}, q′ ∈
{1, 2, . . . , N} with q 6= q′ is ensured by measuring one
component in each subset Sensq,q′ , q ∈ {1, 2, . . . , N}, q′ ∈
{1, 2, . . . , N} with q 6= q′.

5. CONCLUSION

In this paper, we propose a graph-theoretic tool to analyze
generic mode location observability for switching structured
linear systems with unknown inputs. At first, we provide a
simple but not trivial sufficient condition to ensure the generic
location observability of switching structured linear systems.
Next, when this observability condition is not satisfied, we
study the location of additional sensors in order to recover
the generic location observability. This problem has not been
solved previously in the literature. It is shown also that our
approach uses classical programming techniques and is free
from numerical difficulties since it uses well-known combina-
torial techniques. Indeed, all the algorithms used in the paper
have polynomial complexity orders. This makes our proposed
method well-suited to large scale systems.
In future works, we will interest to complete this study by
providing quite simple necessary and sufficient location observ-
ability conditions and also a more complete procedure recover-
ing this property when it is not achieved. We will interest also in
coupling the presented approach based on a structural criterion
(here the location observability) with reliability indicators and
economic cost functions to propose a global strategy to design
large scale systems.

REFERENCES

[1] P. Antsaklis. Hybrid systems: Theory and applications.
Proceedings of the IEEE, 88(7 Special Issue):879 – 887,
2000.

[2] M. Babaali and M. Egerstedt. On the observability of
piecewise linear systems. In IEEE Conference on Deci-
sion and Control, pages 26–31, Bahamas, 2004.

[3] M. Babaali and G. J. Pappas. Observability of switched
linear systems in continuous time. In M. Morari and
L. Thiele, editors, Hybrid Systems: Computation and
Control, volume 3414 of Lecture Notes in Computer Sci-
ence, pages 103–117. Springer, Berlin, 2005.

[4] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Ob-
servability and controllability of piecewise affine and hy-
brid systems. IEEE Transactions on Automatic Control,
45(10):1864–1876, 2000.

[5] S. Chaib, D. Boutat, A. Benali, and J-P. Barbot. Observ-
ability of the discrete state for dynamical piecewise hybrid
systems. Nonlinear Analysis, 63(3):423–438, 2005.

[6] P. Collins and J. H. Van Schuppen. Observability of
piecewise-affine hybrid systems. In R. Alur and G. J.
Pappas, editors, Hybrid Systems: Computation and Con-
trol, volume 2993 of Lecture Notes in Computer Science,
pages 265–279. Springer, Berlin, 2004.

[7] E. De Santis, M. D. Di Benedetto, and G. Pola. Observ-
ability of internal variables in interconnected switching
systems. In IEEE Conference on Decision and Control,
pages 4121–4126, San Diego, USA, 2006.

[8] E. De Santis, M. D. Di Benedetto, and G. Pola. Ob-
servability and detectability of linear switching systems:
A structural approach. arXiv:0802.4045v1 [math.DS],
submitted on 2008.

[9] J. M. Dion, C. Commault, and J. W. van der Woude.
Generic properties and control of linear structured sys-
tems: a survey. Automatica, 39(7):1125–1144, 2003.

[10] L. K. Fleischer, Bruce Hendrickson, and A. Pinar. On
Identifying Strongly Connected Components in Parallel,
pages 505–511. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2000.

[11] R. Johansson and A. Rantzer (Eds). Hybrid systems in
automotive control. International Journal of Control,
80(11, Special issue), 2007.

[12] K. Murota. System Analysis by Graphs and Matroids.
Springer-Verlag, New York, U.S.A., 1987.

[13] L. Pina and A. Botto. Simultaneous state and input estima-
tion of hybrid systems with unknown inputs. Automatica,
42:755–762, 2006.

[14] K. J. Reinschke. Multivariable Control. A Graph The-
oretic Approach. Springer-Verlag, New York, U.S.A.,
1988.

[15] L. M. Silverman. Inversion of multivariable linear sys-
tems. IEEE Transactions on Automatic Control, AC -
14(3):270–276, 1969.

[16] A.J. van der Schaft and H. Schumacher. An introduction
to hybrid dynamical systems. In M. Thoma, editor, Lec-
ture Notes in Control and Information Sciences, volume
251. Springer, Berlin / Heidelberg, 2000.

[17] J. W. van der Woude. The generic number of invariant
zeros of a structured linear system. SIAM Journal of
Control and Optimization, 38(1):1–21, 2000.

[18] J. W. van der Woude, C. Commault, and J. M. Dion.
Zero orders and dimensions of some invariant subspaces
in linear structured systems. Mathematics of Control,
Signals and Systems, 16(2-3):225–237, 2003.

[19] R. Vidal, A. Chiuso, and S. Soatto. Observability and
identifiability of jump linear systems. In IEEE Conference
on Decision and Control, pages 3614–3619, Las Vegas,
USA, 2002.

[20] R. Vidal, A. Chiuso, S. Soatto, and S.S. Sastry. Ob-
servability of linear hybrid systems. In O. Maler and
A. Pnueli, editors, Hybrid Systems: Computation and
Control, volume 2623 of Lecture Notes in Computer Sci-
ence, pages 526–539. Springer, Berlin, 2003.

[21] L. Vu and D. Liberzon. On invertibility of switched linear
systems. In IEEE Conference on Decision and Control,
pages 4081–4086, San Diego, USA, 2006.


