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ASYMPTOTICS OF BROWNIAN MOTIONS ON CLASSICAL LIE GROUPS,

THE MASTER FIELD ON THE PLANE,

AND

THE MAKEENKO-MIGDAL EQUATIONS

THIERRY LÉVY

Abstract. We study the large N asymptotics of the Brownian motions on the orthogonal, uni-
tary and symplectic groups, extend the convergence in non-commutative distribution originally
obtained by Biane for the unitary Brownian motion to the orthogonal and symplectic cases,
and derive explicit estimates for the speed of convergence in non-commutative distribution of
arbitrary words in independent Brownian motions.

Using these results, we construct and study the large N limit of the Yang-Mills measure on
the Euclidean plane with orthogonal, unitary and symplectic structure groups. We prove that
the Wilson loops admit a deterministic limit, towards which they converge at a speed which is
uniform on sets of loops with bounded length and for which we obtain a simple explicit upper
bound.

Finally, we establish rigorously, both for finite N and in the large N limit, the Schwinger-
Dyson equations for the expectations of Wilson loops, which in this context are called the
Makeenko-Migdal equations. We study how these equations allow one to compute recursively
the expectation of a Wilson loop as a component of the solution of a differential system with
respect to the areas of the faces delimited by the loop.
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Introduction

The Euclidean two-dimensional Yang-Mills measure is a probability measure which was de-
fined, first by Ambar Sengupta [31] and later in a different way by the author [23, 26], as a
mathematically rigorous version of one of the functional integrals considered by physicists in re-
lation to quantum field theory, more precisely in relation to gauge theories. The two-dimensional
Yang-Mills measure is specified by the choice of a compact surface endowed with a volume form
and the choice of a compact connected Lie group whose Lie algebra is equipped with an invariant
scalar product. From a physical perspective, the surface plays the role of space-time, or rather
of space, since we are considering a Euclidean theory, and the Lie group characterises the kind of
interaction which one wishes to describe. Gauge theories are relevant to the description of three
of the four fundamental interactions, namely the electromagnetic, weak and strong interaction,
and the corresponding Lie groups are respectively U(1), SU(2) or U(2), and SU(3).

In 1974, Gerard ’t Hooft, in an attempt to understand quark confinement, considered in [36]
gauge theories with larger structure groups, namely the unitary groups U(N), and observed that
many quantities of interest become simpler in the limit where N tends to infinity. From there on,
the large N behaviour of gauge theories was extensively studied by physicists (see for example
[20, 21, 28, 30]), and the idea emerged that there should be a universal deterministic large N
limit to a broad class of matrix models (see [13] and the references therein). This limit was
named the master field and it is the main object of study of the present paper.

The master field on the Euclidean plane was first described mathematically at a conjectural
level in a visionary paper by I. Singer [34], where in particular the relation between the master
field and the theory of free probability was very convincingly sketched. A. Sengupta investigated
the problem in [32, 33], and during the preparation of the present paper, M. Anshelevitch and A.
Sengupta gave the first construction at a mathematical level of rigour of the master field on the
plane [1]. Their approach is based on the use of free white noise and of free stochastic calculus.
It differs from the one which we follow here pretty much in the same way A. Sengupta’s original
construction of the Yang-Mills measure [31] differed from that given by the author in [26].

It is interesting to note that the large N limit of the two-dimensional Yang-Mills theory was
specifically studied by Gross, Taylor and Matytsin [14, 15, 16], but in relation with string theory
rather than with the master field. We studied some of the formulas displayed in these papers in
our previous work [25], but we do not pursue this investigation in the present paper.

In the rest of this introduction, we present our main results, in an order which is not strictly
the same as in the body of the paper, but allows us to emphasise our motivation for the technical
results of Part 1.

The large N limit of the Brownian motions. One of the main ingredients of the Yang-Mills
measure is the Brownian motion on the structure group. In order to study the large N limit
of the Yang-Mills measure, we naturally start by studying the large N limit of the Brownian
motions on the orthogonal, unitary and symplectic groups SO(N), U(N) and Sp(N).

Let G be a compact connected Lie group. Endow the Lie algebra g of G with an invariant
scalar product, which we denote by 〈·, ·〉g. The Brownian motion on G is the Markov process on
G issued from the unit element and whose generator is the Laplace-Beltrami operator associated
with the bi-invariant Riemannian metric on G determined by 〈·, ·〉g.

For example, for each N ≥ 1, let us endow the Lie algebra u(N) of the unitary group U(N)
with the scalar product 〈X,Y 〉u(N) = −NTr(XY ), where Tr denotes the usual trace, so that
Tr(IN ) = N . Let us denote by (UN,t)t≥0 the associated Brownian motion on U(N). The random
matrices {UN,t : t ≥ 0} form a collection of elements of the non-commutative probability space
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(L∞(Ω,F ,P)⊗MN (C),E⊗ tr), where (Ω,F ,P) denotes the underlying probability space and tr
denotes the normalised trace, so that tr(IN ) = 1.

Philippe Biane proved in [4] that the non-commutative distribution of the collection {UN,t : t ≥
0} converges, as N tends to infinity, to the distribution of a free multiplicative Brownian motion,
that is, the distribution of a collection {ut : t ≥ 0} of unitary elements of a non-commutative
probability space (A, τ) such that the process (ut)t≥0 has free and stationary increments, and
such that these increments have the distribution whose moments are given by (23) and (24).

To say that there is convergence of the non-commutative distributions means that for each
integer n ≥ 1, each non-commutative polynomial p in 2n variables, and each choice of n non-
negative reals t1, . . . , tn, one has the convergence

lim
N→∞

E[tr(p(UN,t1 , U
∗
N,t1 , . . . , UN,tn , U

∗
N,tn))] = τ(p(ut1 , u

∗
t1 , . . . , utn , u

∗
tn)).

The first result which we prove in this paper extends this convergence to the orthogonal and
symplectic cases. After establishing some notation and collecting some preliminary information
in Section 1, we give in Section 2 a short proof of Biane’s result in the unitary case and adapt our
argument to prove that, with the correct normalisation of the invariant scalar products on so(N)
and sp(N), the orthogonal and symplectic Brownian motions have the same large N limit as the
unitary Brownian motion (this is Theorem 2.2). Our approach has a combinatorial flavour and
aims at proving that the differential systems satisfied by the moments of the limiting distributions
are the same as in the unitary case. The main novelty in the orthogonal and symplectic cases
is the appearance, fundamentally due to the Schur-Weyl duality, of Brauer diagrams in the
combinatorics, in place of permutations. Our analysis shows that the diagrams which are not
permutations do not contribute to the large N limit.

In our treatment, we consistently try to emphasise the similarities between the orthogonal,
unitary and symplectic groups, in particular by seeing them respectively as the real, complex and
quaternionic unitary groups. Accordingly, we denote them respectively by U(N,R) = SO(N),
U(N,C) = U(N) and U(N,H) = Sp(N).

The Yang-Mills field and the master field on the plane. Let us now jump forward in
the paper and discuss the Yang-Mills measure, or Yang-Mills field. Consider again a compact
connected Lie group G whose Lie algebra is endowed with an invariant scalar product. The
Yang-Mills field on the Euclidean plane is a collection (Hl)l∈L0(R2) of G-valued random variables
indexed by the set L0(R

2) of loops with finite length on R
2 based at the origin (see Section 4.1

for more detail about loops). Let us give a concise characterisation of the distribution of this
collection of random variables, by the following five rules. This presentation differs from the
more classical way in which we review the Yang-Mills field in Section 4.

YM1. For any two loops l1 and l2, one can form the concatenation l1l2 of l1 and l2, and one
has Hl1l2 = Hl2Hl1 almost surely.

YM2. If two loops l1 and l2 differ by the insertion or the deletion of finitely many sub-loops
formed by a path immediately followed by the same path traced backwards, we write l1 ∼ l2 and
in this case, Hl1 = Hl2 almost surely.

YM3. If a loop l has no self-intersection and surrounds a domain of area t, then Hl has the
distribution of the Brownian motion on G at time t.

YM4. If two loops l1 and l2 without self-intersection surround disjoint domains, then Hl1 and
Hl2 are independent.

YM5. If the loops {ln : n ≥ 1} can be parametrised in such a way that the sequence (ln)n≥1

converges uniformly to a loop l and if the length of ln converges to the length of l, we say that the
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sequence (ln)n≥1 converges to l and in this case, the sequence (Hln)n≥1 converges in probability
to Hl.

It may be useful to think of the collection (Hl)l∈L0(R2) as a Brownian motion on G indexed by
the set of loops on R

2. The area on the Euclidean plane plays the role of time for this Brownian
motion.

For each K ∈ {R,C,H} and each N ≥ 1, the Yang-Mills measure can be constructed with
G = U(N,K), the Lie algebra u(N,K) being endowed with the invariant scalar product for
which the convergence of classical Brownian motions holds. Let us denote by (HK

N,l)l∈L0(R2) the
corresponding collection of random matrices. Our main result (which is Theorem 5.19) states
that the non-commutative distribution of the collection {HK

N,l : l ∈ L0(R
2)} converges, as N

tends to infinity, to the distribution of a non-commutative process (hl)l∈L0(R2), defined on a non-
commutative probability space (A, τ), and whose distribution is characterised by the following
five rules, which are the free analogues of the five rules which characterise the Yang-Mills field.

MF1. For any two loops l1 and l2, one has hl1l2 = hl2hl1 .
MF2. If l1 ∼ l2, then hl1 = hl2 .
MF3. If a loop l has no self-intersection and surrounds a domain of area t, then hl has the

distribution of a free multiplicative Brownian motion at time t.
MF4. If two loops l1 and l2 without self-intersection surround disjoint domains, then hl1 and

hl2 are free.
MF5. If (ln)n≥1 converges to l, then the sequence (hln)n≥1 converges to hl in L2(A, τ).

The process (hl)l∈L0(R2) is what we propose to call the master field on the plane.

Just as in the case of the Brownian motion on U(N), this convergence in non-commutative
distribution means by definition that for each integer n ≥ 1, each non-commutative polynomial
p in 2n variables, and each choice of n loops l1, . . . , ln, one has the convergence

lim
N→∞

E[tr(p(HK

N,l1 , (H
K

N,l1)
∗, . . . , HK

N,ln , (H
K

N,ln)
∗))] = τ(p(hl1 , h

∗
l1 , . . . , hln , h

∗
ln)).

However, something new happens in this situation thanks to the fact that loops can be multiplied.
Thanks to YM1, any word in the random matrices HK

N,l1
, (HK

N,l1
)∗, . . . , HK

N,ln
, (HK

N,ln
)∗ is almost

surely equal to the random matrix Hl, where l is the same word read backwards in the loops
l1, l

−1
1 , . . . , ln, l

−1
n . Here, l−1

1 denotes the loop l1 traced backwards. A similar statement holds
for the non-commutative random variables (hl)l∈L0(R2). It follows from this observation that the
convergence in non-commutative distribution of the Yang-Mills process towards its large N limit
is equivalent to the convergence

(1) ∀l ∈ L0(R
2), lim

N→∞
E[tr(HK

N,l)] = τ(hl).

Uniform convergence of expectations of Wilson loops. The point towards which we focus
our attention in the first five sections of this paper is the proof of the convergence of the left-
hand side of (1), which then serves as a definition for the right-hand side. The proof of this
convergence follows roughly the construction of the Yang-Mills field itself, which is split into two
main parts: the first in which one deals with piecewise affine loop, and the second in which one
extends the construction to arbitrary loops with finite length.

The first step is mainly combinatorial, and given the convergence results for the classical
Brownian motions which we prove in Section 2, the existence of the limit on the left-hand side
of (1) when l is a piecewise affine loop is simply a matter of incorporating into the usual discrete
Yang-Mills theory a result of asymptotic freeness of large rotationally invariant matrices. Indeed,
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any piecewise affine loop can be written, up the relation ∼ defined in the rule YM2, as a word in
a finite number of loops which surround disjoint domains of R2. The random matrices associated
to these loops are asymptotically free and have a known distribution in the large N limit. This
is what we explain in Sections 5.1 and 5.2.

In the unitary case, the asymptotic freeness result on which this analysis relies is one of the
fundamental theorems of free probability theory and was proved by D. Voiculescu [37]. The
orthogonal and symplectic analogues of this result are known to hold, thanks to a work of B.
Collins and P. Śniady [7]. Nevertheless, we felt that the symplectic case deserved a slightly more
explicit treatment than it did receive in this work, and we devoted an appendix to a survey of
the proofs of this result in the three cases where we use it.

The second step of the proof of (1), in which we allow l to be an arbitrary loop with finite
length is more delicate. Our strategy is to prove that the convergence (1), which we have
established for piecewise affine loops, is uniform on sets of piecewise affine loops with bounded
length. To do this, the results of Section 2 do not suffice, for they deal qualitatively with
the convergence of one Brownian motion, whereas we find ourselves in need of a quantitative
information on the convergence of words in several Brownian motions. In Section 3, we achieve
an explicit control of the speed of convergence in non-commutative distribution of a word in
independent Brownian motions to its limit (Theorem 3.3). This speed naturally depends on a
certain measure of complexity of the word, which we call its Amperean area. It is a real number,
which is the sum over each independent Brownian motion appearing in the word of the time at
which this Brownian motion is taken, multiplied by the number of times it occurs in the word.
For example, if (UN,i,t)t≥0 with i ∈ {1, 2, 3} are three independent Brownian motions on U(N),
then the Amperean area of the word UN,1,t1UN,2,t2U

−1
N,1,t1

UN,3,t3 is 4t1 + t2 + t3.
In Section 5.4, we show that this estimate is relevant to the study of the large N limit of the

Yang-Mills field by proving that any piecewise affine loop can be expressed as a word of loops
surrounding disjoint domains in such a way that the corresponding word of Brownian motions has
an Amperean area which is controlled by the length of the loop. Hence, the speed of convergence
on the left-hand side of (1) is controlled by the length of l. It is then a matter of routine to
extend (1) to arbitrary loops with finite length.

A trace on the group of loops. In the last paragraphs of Section 5, we consider the question
of the non-commutative probability space on which the limiting process is defined. Inspired
by the point of view of Singer [34], we seek a description of the master field as a trace on the
group algebra of the group of loops on R

2. But whereas the note of Kobayashi cited by Singer
makes use of a hypothetic group of continuous loops endowed with an ill-defined operation of
concatenation-reduction, a work of B. Hambly and T. Lyons [18] allows one, among many other
things, to make rigorous sense of a group of rectifiable loops based at the origin. In few words,
the problem is the following. One says that a loop is tree-like if, as a continuous mapping from
the circle S1 to R

2, it factorises through a dendrite, the topological space underlying an R-tree.
One would then like to say that two loops are equivalent if the concatenation of the first loop
with the second traced backwards produces a tree-like loop. Unfortunately, when the loops are
only assumed to be continuous, it is not known whether this relation is transitive. Hambly
and Lyons proved that a loop with finite length is tree-like if only if its signature, an algebraic
object attached to a loop, is trivial. It follows then immediately that the relation is indeed an
equivalence relation on the set of loops with finite length.

We discuss this point in Section 5.7 and propose a proof of the transitivity of the relation
which is slightly less technical than the original proof of Hambly and Lyons, in that it does not
rely on the signature, but rather on the monotone-light decomposition of continuous mappings
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introduced by S. Eilenberg in [9], and on Lebesgue’s theory of covering dimension of topological
spaces (see [19]). Moreover, our proof remains valid for paths with finite p-variation for p < 2, a
case in which the equivalence for a loop between being tree-like and having a trivial signature is
not known.

The Makeenko-Migdal equations. In the last section of this paper, we address the problem
of the explicit computation of the master field, that is, of the actual computation of either
side of (1), when l is a piecewise affine loop. This is a question to which a brilliant piece of
answer was given by Y. Makeenko and A. Migdal [28], but in a very non-rigorous way. The
general idea, which also underlies the first part of this paper, is that when l is a loop traced in
a graph, the number τ(hl) should be studied as a function of the areas of the bounded faces of
the graph. What Makeenko and Migdal discovered is that some particular linear combinations
of the derivatives of τ(hl) have simple expressions, which can be computed graphically. More
precisely, they discovered that the alternated sum of the derivatives of τ(hl) with respect to the
areas of the four faces surrounding a point of self-intersection of l is equal to τ(hl1)τ(hl2), where
l1 and l2 are the two loops which are formed by changing the way in which the two strands of l
which are incoming at the self-intersection point are connected to the two outgoing strands (see
Figure 1).

+ +

−

−

l l1

l2

Figure 1. A graphical representation of the Makeenko-Migdal equations in the
large N limit. The signs indicate with respect to the areas of which faces the
derivatives must be taken, and with which signs.

In Section 6, we give statements and rigorous proofs of formulas which generalise the Makeenko-
Migdal equations. We then use these equations to ground a recursive algorithm to compute
quantities of the form E[tr(HK

N,l)], and a more efficient one for quantities of the form τ(hl).
Finally, we discuss a work of Kazakov which sheds some light of this problem of computation,

and offer a proof for a couple of statements made at the end of the beautiful paper [20].
Let us emphasise that the idea, on which the proof of the Makeenko-Migdal equation is based,

that certain combinatorial features of the unitary Brownian motion can be translated into com-
binatorial operations on loops, in relation with the computation of expectations of Wilson loops,
can be traced back to the work of L. Gross, C. King and A. Sengupta [17]. A related idea was
present in our previous work [24].

Before concluding this introduction, we would like to describe the way in which Makeenko and
Migdal originally formulated and proved the equation which now bear their names. The striking
contrast between the mathematically unorthodox character - to say the less - of the derivation
of the equation, and the beauty and simplicity of the equation itself was one of the motivations
of the author for undertaking the present study.
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Makeenko and Migdal derived their equations (see Propositions 6.16 and 6.17) as particular
instances of the Schwinger-Dyson equations, which are the equations which one obtains by for-
mally extending the integration by parts formula to the framework of functional integrals. It may
be helpful to start with the following familiar one-dimensional analogue of the Schwinger-Dyson
equations: for all smooth function f : R → R with bounded derivative, the equality

∫ +∞

−∞
f ′(t)e−

t2

2 dt =

∫ +∞

−∞
tf(t)e−

t2

2 dt

holds. This equality, which is proved by integration by parts, ultimately relies on the invariance
by translation of the Lebesgue measure on R.

The Schwinger-Dyson equations are the corresponding statement for functional integrals,
which most of the time are ill-defined. A general setting which contains that of Yang-Mills
theory is the following. We are given an affine space A, possibly infinite dimensional, and a
function S : A → R+. In a physical context, the elements of A are fields, and S is an action.
We are interested in a certain family of observables, that is, in a certain family of functions
ψ : A → R, and we are more precisely interested in computing integrals of the form

(2)
∫

A
ψ(A)e−

1
2
S(A) DA,

where DA is meant to be a properly normalised translation invariant measure on A. Such a
measure does not exist, at least not with the properties one would expect it to have for interesting
physical applications, but we shall choose to leave this point aside and to focus on the algebraic
manipulations which one is then able to make with these integrals.

Let η be a vector of the direction of the affine space A. The translation invariance of the
measure DA can be written

d

dt |t=0

∫

A
ψ(A+ tη)e−

1
2
S(A+tη) DA = 0,

from which one extracts the Schwinger-Dyson equation

(3)
∫

A
dAψ(η)e

− 1
2
S(A) DA =

1

2

∫

A
ψ(A)dAS(η)e

− 1
2
S(A) DA.

Here, dAψ(η) and dAS(η) denote respectively the differential of ψ and S at the point A in the
direction η.

In the case of the two-dimensional Yang-Mills measure, and in some other cases, a rigorous
definition can be given for the integral (2) as a whole, at least for a certain class of observables
ψ : A → R. To each such observable, one is able to associate a number, which physicists usually
denote by 〈ψ〉 and which we shall here denote by E[ψ], and which can be understood as the
rigorous version of (2). With this notation, the Schwinger-Dyson equation writes

E [dψ(η)] =
1

2
E [ψ dS(η)] .

Let us describe the context of two-dimensional Yang-Mills theory in which Makeenko and Migdal
found a beautiful application of these equations.

Consider a compact Lie group G and a principal G-bundle P →M over a surface M . Let A be
the space of connections on P . It is an affine space whose direction is the space Ω1(M, ad(P )) of
differential 1-forms on M with values in the adjoint bundle, which is the vector bundle associated
to P through the adjoint representation of G. In this paper, we consider the case where M = R

2

and in this case, after choosing a global section of P , we can think of A as the vector space
Ω1(R2, g) of differential 1-forms on R

2 with values in the Lie algebra of G.
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The curvature of an element A of A is a 2-form F with values in the vector bundle ad(P ),
and it is defined by the formula F = dA + 1

2 [A ∧ A]. If M = R
2 and a section of P is chosen,

the form F can also be seen as a g-valued 2-form on R
2, related to A by the equality F (X,Y ) =

dA(X,Y ) + [A(X), A(Y )]. The Yang-Mills action S : A → R+ is defined by

S(A) =

∫

M
〈F ∧ ∗F 〉g,

where 〈·, ·〉g is an invariant scalar product on g and ∗ is the Hodge operator of a Riemannian
metric on M . Since we use this operator between 2-forms and 0-forms, it depends only on the
Riemannian area induced by the Riemannian metric. In the case of R2 with the Euclidean metric,
if A writes A = Ax dx+Ay dy, then

S(A) =

∫

R2

‖∂xAy − ∂yAx + [Ax, Ay]‖
2
g dxdy.

Let us choose η ∈ Ω1(M, ad(P )) a tangent vector to A. A computation whose main difficulty
lies in the careful unfolding of the definitions of the objects involved shows that, for all A ∈ A,
one has

dAS(η) = 2

∫

M
〈η ∧ dA∗F 〉,

where dA is the covariant exterior differential, defined on Ω0(M, ad(P )) by dAα = dα+ [A,α].
Makeenko and Migdal chose to apply the Schwinger-Dyson equation in this context to a

particular observable, namely a Wilson loop. Let l : [0, 1] → R
2 be a loop, that is, a C1 curve

such that l(0) = l(1). For each A ∈ A, the holonomy of A along l is the element of G which
physicists denote by P exp

∮
lA and which is the final value of the solution of the differential

equation

h(0) = 1 and ḣ(t) = −h(t)A(l̇(t)), t ∈ [0, 1]

with unknown function h : [0, 1] → G. We shall use the notation hol(A, l) = h(1) for the
holonomy of A along l. It follows from the classical theory of differential equations that the
differential of the holonomy is given by

dA (hol(·, l)) (η) =

∫ 1

0
hol(A, l[0,t])η(l̇(t))hol(A, l[t,1]) dt.

Makeenko and Migdal consider the case where G is a matrix group, for example the unitary
group U(N), with the Lie algebra u(N) endowed with the scalar product 〈X,Y 〉 = −NTr(XY ).
This allows them to define a complex-valued observable ψl,X by choosing a loop l, an element X
of u(N) and by setting

ψl,X(A) = tr(Xhol(A, l)).

More precisely, they choose a loop l with a transverse self-intersection, such that for some t0 ∈
(0, 1), the equality l(t0) = l(0) holds and the vectors l̇(0) and l̇(t0) are not collinear. The vector
X is arbitrary, and meant to be given several special values in a moment. Finally, they choose
for η a distributional 1-form, which one could write as

∀m ∈M, ∀v ∈ TmM, ηm(v) = δm,l(0)
det(l̇(0), v)

det(l̇(0), l̇(t0))
X.

With this choice of η, the directional derivative of the holonomy is given by

dA(hol(·, l))(η) = hol(A, l[0,t0])Xhol(A, l[t0,1])
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and that of the action by dAS(η) = 2dA∗F (l̇(0)), although there might be a coefficient in front
of this expression. Neglecting this, the Schwinger-Dyson equation for the observable ψl,X and
the derivation in the direction η reads

E
[
tr
(
Xhol(A, l[0,t0])Xhol(A, l[t0,1])

)]
= −N2

E

[
tr(Xhol(A, l))tr(XdA∗F (l̇(0)))

]
.

Letting X take all the values of an orthonormal basis of u(N) and adding the equalities, they
find

E [tr(hol(A, l0))tr(hol(A, l1))] = −E

[
tr(hol(A, l)dA∗F (l̇(0)))

]
.

There remains to understand the right-hand side of this equation. For this, they use the fact that
the holonomy around the boundary of a disk of area ε around a point m is close to exp(ε∗F (m)).
Hence, a term ∗F (l(0)) in the holonomy would correspond to the adjunction of a small bump to
l at l(0). With the covariant differential dA, the right-hand side corresponds to the difference
between the expectations corresponding to two loops, one with a bump immediately after l(0),
the other immediately before. It should be apparent on Figure 2 that this can reasonably be
interpreted as an alternated sum of the derivatives of the expectation of tr(hol(A, l)) with respect
to the areas of the four faces which surround l(0).

−

+

+

−−

+

=

Figure 2. The right-hand side of the Schwinger-Dyson equation can be inter-
preted as the alternated sum of the derivatives with respect to the areas of the
faces surrounding the self-intersection point.

Part 1. Large N limit of Brownian motions.

In the first part of this paper, we study the large N limit of the Brownian motion on a
compact matrix group and prove two main convergence results. In the first result, we consider
the distribution of the eigenvalues of a matrix taken in a compact matrix group under the heat
kernel measure at a fixed time, and prove the convergence of this distribution as the size of the
group tends to infinity. By letting the size tend to infinity, we mean that we consider the three
series of special orthogonal, unitary and symplectic groups SO(N), U(N) and Sp(N), and let N
tend to infinity. From the point of view of the asymptotic distribution of the eigenvalues, there
is no difference between odd and even orthogonal groups.

In the unitary case, the result was proved by P. Biane [4] using harmonic analysis and, with
a more combinatorial approach relying on Schur-Weyl duality, by the author in [25]. We recall
and slightly improve the latter proof, and extend it to the orthogonal and symplectic cases by
showing that the polynomial differential system which characterises the limiting moments of
the distribution of the eigenvalues is the same as in the unitary case. In our treatment of this
problem, we try to emphasise the similarities between the three series by viewing each of them
as the series of unitary groups over one of the three associative real division algebras. We also
pay special attention to the symplectic case and to the signs associated to the multiplication of
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elements of the Brauer algebra, according to one of the very last sentences1 of Brauer’s original
article [6], on which a substantial part of the literature seems ultimately to rely.

Our first main result, combined with a general property of asymptotic freeness for large inde-
pendent and rotationally invariant matrices, proved by Voiculescu in the unitary case (see [37])
and by Collins and Śniady in the orthogonal and symplectic case (see [7]), implies a convergence
result for expected traces of words of independent matrices taken under the heat kernel measures
at various times. Our second main result is an explicit estimate of the speed of this convergence
in terms of a certain measure of the complexity of the word under consideration and which we
call its non-commutative Amperean area. This notion turns out to be very well suited to the
study which we develop in the second part of this work of the large N limit of the Yang-Mills
theory on the Euclidean plane.

This first part is divided in three sections. In the first section, we define the Brownian motions
which we consider, with the appropriate normalisations, and compute explicitly the Casimir
elements of the various Lie algebras involved. Then, the second section is devoted to the proof of
our first main theorem and the third and last section to the proof of our second main theorem.

1. Brownian motions on classical groups

In this section, we define the Brownian motion on the orthogonal, unitary, and symplectic
groups and establish a concise formula for the expected value of any polynomial function of
the entries of a sample of this Brownian motion at a given time. To the extent possible, we
treat these three cases on the same footing, by seeing them as the unitary group over the reals,
complex numbers, and quaternions. In particular, we avoid as much as possible considering the
symplectic group Sp(N) as a subgroup of U(2N).

1.1. Classical groups. Let K be one of the three associative real division algebras R, C and H.
If x ∈ K, we denote by x∗ the conjugate of x. If M ∈MN (K), the adjoint of M is the matrix M∗

defined by (M∗)ab = (Mba)
∗. We consider the following compact real Lie group, which depend

on an integer N ≥ 1 :
U(N,K) = {M ∈MN (K) :M∗M = IN}0,

where the exponent 0 indicates, for the needs of the real case, that we take the connected
component of the unit element. The Lie algebra of this Lie group is the real vector space

u(N,K) = {X ∈MN (K) : X∗ +X = 0}.

We thus have the following table, in which we include the value of classical parameter β = dimRK.

(4)

U(N,K) u(N,K) β
R SO(N) so(N) 1
C U(N) u(N) 2
H Sp(N) sp(N) 4

Let aN and sN denote respectively the linear spaces of skew-symmetric and symmetric real
matrices of size N . Denoting by {1, i, j, k} the standard R-basis of H, we have the equalities

(5) so(N) = aN , u(N) = aN ⊕ isN , and sp(N) = aN ⊕ isN ⊕ jsN ⊕ ksN ,

from which it follows that

(6) dimU(N,K) =
N(N − 1)

2
+ (β − 1)

N(N + 1)

2
=
β

2
N2 +

(
β

2
− 1

)
N.

1One has, however, to add a factor ϕ(S1, S2) on the right side, whose value is +1, −1 or 0. Brauer does not
give the definition of ϕ(S1, S2).
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Let us add to our list the special unitary group SU(N) = {U ∈ U(N), detU = 1} whose Lie
algebra is su(N) = {X ∈ u(N),Tr(X) = 0}, and which has dimension N2 − 1.

1.2. Invariant scalar products. The first step in defining a Brownian motion on a compact
Lie group is the choice of a scalar product on its Lie algebra invariant under the adjoint action.
Excepted the 1-dimensional centre of U(N), the Lie groups which we consider are simple, so that
their Lie algebras carry, up to a scalar multiplication, a unique invariant scalar product. For
a fixed N , a rescaling of the scalar product corresponds merely to a linear time-change for the
Brownian motion. However, since we are going to let N tend to infinity, the way in which we
normalise the scalar products matters.

Let Tr :MN (K) → K denote the usual trace, so that Tr(IN ) = N . We endow our Lie algebras
with the following scalar products :

(7) ∀X,Y ∈ u(N,K), 〈X,Y 〉 =
βN

2
ℜTr(X∗Y ) = −

βN

2
ℜTr(XY ),

and the scalar product on su(N) is the restriction of that on u(N). The real part is needed only
for the quaternionic case, as Tr(X∗Y ) is real whenever X and Y are complex anti-Hermitian.

1.3. Casimir elements. Let g ⊂ MN (K) be one of our Lie algebras, of dimension d. Let
{X1, . . . , Xd} be an orthonormal R-basis of g. The tensor

Cg =
d∑

k=1

Xk ⊗Xk,

seen abstractly as an element of g ⊗ g or more concretely as an element of MN (K) ⊗R MN (K),
does not depend on the choice of the orthonormal basis. It is called the Casimir element of g.

Let {Eab : a, b = 1 . . . N} denote the set of elementary matrices inMN (R), defined by (Eab)ij =
δi,aδj,b. Let us define two elements T and W of MN (R)⊗2 by

(8) T =
N∑

a,b=1

Eab ⊗ Eba and W =
N∑

a,b=1

Eab ⊗ Eab.

The letters T and W stand respectively for transposition and Weyl contraction. The operators
T and W can conveniently be depicted as in Figure 3 below.

Figure 3. The operators T and W .

On the other hand, set I(K) = {1, i, j, k} ∩ K and let us define two elements ReK and CoK of
K⊗R K by

(9) ReK =
∑

γ∈I(K)

γ ⊗ γ−1 and CoK =
∑

γ∈I(K)

γ ⊗ γ.

The names Re and Co stand for real part and conjugation, with the quaternionic case in mind.
Indeed, the following two relations hold, which will prove very useful: for all quaternion q,

(10) q − iqi− jqj− kqk = 4ℜ(q) and q + iqi+ jqj+ kqk = −2q∗.
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In the next lemma, and later in this work, we will use the natural identifications MN (K) ≃
MN (R)⊗K and MN (K)⊗n ≃MN (R)⊗n ⊗K

⊗n.

Lemma 1.1. The Casimir element of u(N,K) is given by

(11) Cu(N,K) =
1

βN

(
−T ⊗ ReK +W ⊗ CoK

)
.

Moreover, Csu(N) = Cu(N) −
1
N2 iIN ⊗ iIN .

Proof. The spaces aN and sN , each endowed with the scalar product 〈X,Y 〉 = 1
2Tr(X

∗Y ) are
Euclidean spaces in which we can compute the sum of the tensor squares of the elements of an
orthonormal basis. We find CaN = −T +W and CsN = T +W . The result follows from (5) and
(7). �

Because tensor products in (11) are over R, the expression in the case of U(N) is not the most
natural one. From now on, let us make the convention that tensor products are on R when we
deal with orthogonal or symplectic matrices, and over C when we deal with unitary ones. Then
in particular ReC = 2 and CoC = 0. Thus, we have

(12) Cso(N) = −
1

N
(T −W ) and Cu(N) = −

1

N
T.

The explicit expression (11) of the Casimir operators allows us to compute any expression of
the form

∑d
k=1B(Xk, Xk) where B is an R-bilinear map. For example, we can compute the sum

of the squares of the elements of an orthonormal basis.

Lemma 1.2. Let g ⊂ MN (K) be one of our Lie algebras, of dimension d. Let {X1, . . . , Xd} be

an orthonormal basis of g. Then
∑d

k=1X
2
k = cgIN , where the real constant cg is given by

(13) cu(N,K) = −1 +
2− β

βN
,

and csu(N) = −1 + 1
N2 .

Proof. This equality follows from Lemma 1.1 and the following facts: the images of T and W
by the mapping X ⊗ Y 7→ XY are respectively NIN and IN (see Figure 4 below for a graphical
proof), and the sums

∑
γ∈I(K) γγ

−1 and
∑

γ∈I(K) γγ are respectively equal to β and 2− β. �

X Y

Figure 4. The images of the operators T and W by the mapping X⊗Y 7→ XY
can be computed graphically by joining the top right dot to the bottom left dot
of the box. A loop carries a free index and produces a factor N .
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1.4. Brownian motions. Let g ⊂ MN (K) be one of our Lie algebras and let G be the corre-
sponding group. Let (Kt)t≥0 be the linear Brownian motion in the Euclidean space (g, 〈·, ·〉),
that is, the continuous g-valued Gaussian process such that for all X,Y ∈ g and all s, t ≥ 0, one
has

E [〈X,Kt〉〈Y,Ks〉] = min(s, t)〈X,Y 〉.

Alternatively, K can be constructed by picking an orthonormal basis (Xk)k=1...d of g, a collection
(B(k))k=1...d of independent standard real Brownian motions, and setting

(14) Kt =
d∑

k=1

B
(k)
t Xk.

The quadratic variation of K is easily expressed in terms of the Casimir operator of g: we have

(15) dKt ⊗ dKt = Cgdt,

from which one deduces, in the same way as Lemma 1.2 was deduced from Lemma 1.1,

(16) (dKdK)t = cgINdt.

The Brownian motion on G is defined as the solution (Vt)t≥0 of the following linear Itô sto-
chastic differential equation in MN (K) :

{
dVt = dKtVt +

cg
2
Vtdt,

V0 = IN .
(17)

Lemma 1.3. With probability 1, the matrix Vt belongs to G for all t ≥ 0.

Proof. One has dV ∗
t = −V ∗

t dKt +
1
2cgV

∗
t dt. Hence, Itô’s formula and the expression (16) of the

quadratic variation of K imply that d(V ∗
t Vt) = 0. This proves the assertion, except for SU(N).

In order to treat this case, write the stochastic differential equation satisfied by the columns of
Vt and deduce an expression of d(detVt). Using the fact that Tr(dKt) = 0 and the fact that
Csu(N) = − 1

N T + 1
N2 IN ⊗ IN in MN (C)⊗C MN (C), this yields d(detVt) = 0, as expected. �

We will adopt the following notational convention : the Brownian motions on SO(N), U(N)
and Sp(N) will respectively be denoted by (Rt)t≥0, (Ut)t≥0, and (St)t≥0.

1.5. Expected values of polynomials of the entries. Let n ≥ 1 be an integer and t ≥ 0
be a real. We give a formula for the expected value of all homogeneous polynomial functions of
degree n in the entries of the Brownian motion on one of our groups at time t.

For all integers i, j such that 1 ≤ i < j ≤ n, let us denote by ιi,j :MN (K)⊗2 →MN (K)⊗n the
linear mapping defined by

(18) ιi,j(X ⊗ Y ) = I
⊗(i−1)
N ⊗X ⊗ I

⊗(j−i−1)
N ⊗ Y ⊗ I

⊗(n−j)
N .

We will often write (X ⊗ Y )ij instead of ιi,j(X ⊗ Y )

Proposition 1.4. Let (Vt)t≥0 be the Brownian motion on one of the groups which we consider
with Lie algebra g. Let n ≥ 1 be an integer. Let t ≥ 0 be a real. We have

(19) E
[
V ⊗n
t

]
= exp


ncgt

2
+ t

∑

1≤i<j≤n

ιi,j(Cg)


 .



THE MASTER FIELD ON THE PLANE 15

In particular, if (Rt)t≥0 denotes the Brownian motion on SO(N), then

(20) E
[
R⊗n

t

]
= exp


−

N − 1

N

nt

2
−

t

N

∑

1≤i<j≤n

Tij −Wij


 .

If (Ut)t≥0 denotes the Brownian motion on U(N), then

(21) E
[
U⊗n
t

]
= exp


−

nt

2
−

t

N

∑

1≤i<j≤n

Tij


 .

Finally, if (St)t≥0 denotes the Brownian motion on Sp(N), then

(22) E
[
U⊗n
t

]
= exp


−

2N + 1

4N

nt

2
−

t

N

∑

1≤i<j≤n

(
(T ⊗ ReH)ij − (W ⊗ CoH)ij

)

 .

Proof. Both sides of (19) are equal to I⊗n
N for t = 0. Moreover, Itô’s formula for V ⊗n

t seen as an
element of MN (K)⊗n writes

d
(
V ⊗n
t

)
=




n∑

i=1

I
⊗(i−1)
N ⊗ dKt ⊗ I

⊗(n−i)
N +

ncg
2

+
∑

1≤i<j≤2

ιi,j(dKt ⊗ dKt)


V ⊗n

t .

Using (15), this implies that the time derivatives of both sides of (19) are equal. �

2. Convergence results for one Brownian motion

In this section, we analyse the asymptotic behaviour of the repartition of the eigenvalues of
the Brownian motion at time t on U(N,K) as N tends to infinity, the time t being fixed. We
start by briefly discussing the issue of eigenvalues in the symplectic case.

2.1. Moments of the empirical spectral measure. Let M be a real or complex matrix of
size N with complex eigenvalues λ1, . . . , λN . We define the empirical spectral measure of M by

µ̂M =
1

N

N∑

k=1

δλk
.

The moments of this measure can be expressed as traces of powers of M . Indeed, for all integer
n ≥ 0,

∫
C
zn µ̂M (dz) = 1

NTr(Mn) = tr(Mn), where tr denotes the normalised trace, so that
tr(IN ) = 1. If M is invertible, then these equalities hold for all n ∈ Z.

For a matrix with quaternionic entries, the very notion of eigenvalue must be handled with
care. A matrix M ∈MN (H) is said to admit the right eigenvalue q ∈ H if there exists a non-zero
vector X ∈ H

N such that MX = Xq. If q is a right eigenvalue of M , then any quaternion
conjugated to q is also a right eigenvalue of M , because for all non-zero quaternion u, one has
M(Xu−1) =M(Xu−1)uqu−1.

It is an elementary property of H that two quaternions are conjugated if and only if they
have the same real part and the same norm. In particular, each conjugacy class of H either
consists of a single real element, or meets C at exactly two conjugated non-real elements. Thus,
a matrix with quaternionic entries determines real eigenvalues, which are to be counted twice,
and conjugate pairs of complex eigenvalues.

It is convenient to momentarily see H as C⊕ jC, to write any vector X ∈ H
N as X = Z + jW

with Z,W ∈ C
N , and to write any matrix M ∈ MN (H) as M = A + jB with A,B ∈ MN (C).
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The mappings X 7→ X̃ =

(
Z
W

)
and M 7→ M̃ =

(
A −B
B A

)
are respectively an isomorphism of

right complex vector spaces H
N → C

2N and an injective homomorphism of involutive algebras
MN (H) →M2N (C). These morphisms are compatible, in that M̃X = M̃X̃ for all M ∈MN (H)
and X ∈ H

N .
It turns out that the complex eigenvalues of M̃ are exactly the complex right eigenvalues

of M , counted twice if they are real. Thus, M admits exactly 2N complex right eigenvalues
{λ1, λ

∗
1, . . . , λN , λ

∗
N}. We define the empirical spectral measure of M as the spectral empirical

measure of M̃ :

µ̂M =
1

2N

N∑

k=1

δλk
+ δλ∗

k
.

Observe that the mapping M 7→ M̃ does not preserve the trace, since Tr(M̃) = 2ℜTr(M).
Hence, the moments of µ̂M are given by

∫
C
zn µ̂M (dz) = 1

2NTr(M̃n) = ℜtr(Mn) for all n ≥ 0,
and also for all n ∈ Z if M is invertible. The situation is thus almost the same as in the real and
complex case, the only difference being that the trace is replaced by its real part. One should
however keep in mind that, from the point of view of eigenvalues, the natural non-normalised
trace on MN (H) is twice the real part of the usual trace. Indeed, with our way of counting, the
eigenvalue 1 of IN ∈MN (H) has multiplicity 2N .

Note finally that orthogonal and unitary matrices have eigenvalues of modulus 1. Similarly,
symplectic matrices have quaternionic right eigenvalues of norm 1, and in all cases, the empirical
spectral measures which we consider are supported by the unit circle of the complex plane, which
we denote by U = {z ∈ C : |z| = 1}.

2.2. First main result : convergence of empirical spectral measures. Let us introduce
the limiting measure which appears in our first main result and was first described by P. Biane
in the unitary case. It is a one-parameter family of probability measures on U which plays for
compact matrix groups the role played for Hermitian matrices by the Wigner semi-circle law.
The simplest description of this family is through its moments.

For all real t ≥ 0 and all integer n ≥ 0, set

(23) µn(t) = e−
nt
2

n−1∑

k=0

(−t)k

k!
nk−1

(
n

k + 1

)
.

It follows from Biane’s result (Theorem 2.1 below) that there exists a probability measure νt on
U such that for all integer n ≥ 0, one has

(24)
∫

U

zn νt(dz) =

∫

U

z−n νt(dz) = µn(t).

Although there is no simple expression for the density of this measure, some information about
this measure can be found in [4, 25]. The result in the unitary case is the following.

Theorem 2.1. Let (UN,t)t≥0 be the Brownian motion on the unitary group U(N), or on the
special unitary group SU(N). Let r ≥ 1 be an integer and m1, . . . ,mr ≥ 0 be integers. Let t ≥ 0
be a real. Then

lim
N→∞

E

[
tr(Um1

N,t) . . . tr(U
mr

N,t)
]
= µm1(t) . . . µmr(t).

Our first main result is the following.
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Theorem 2.2. Let (RN,t)t≥0 be the Brownian motion on the special orthogonal group SO(N),
and (SN,t)t≥0 be the Brownian motion on the symplectic group Sp(N). Let r ≥ 1 be an integer
and m1, . . . ,mr ≥ 0 be integers. Let t ≥ 0 be a real. Then

lim
N→∞

E

[
tr(Rm1

N,t) . . . tr(R
mr

N,t)
]
= lim

N→∞
E

[
ℜtr(Sm1

N,t) . . .ℜtr(S
mr

N,t)
]
= µm1(t) . . . µmr(t).

The rest of this section is devoted to the proof of Theorem 2.2.

2.3. Characterisation of the moments of the limiting distribution. Before we jump into
the computation of the limiting distribution of the eigenvalues of our Brownian motions, let us
say a few words about the disguise under which the moments (µn)n≥0 of the limiting distribution
will appear.

These moments are defined by (23) and this is the form under which they appear in the original
proof of Theorem 2.1 by P. Biane. There are at least two other ways in which they are amenable
to appear. The first is purely combinatorial and related to minimal factorisations of an n-cycle in
the symmetric group Sn. Recall the elementary fact that the n-cycle (1 . . . n) cannot be written
as a product of less than n− 1 transpositions, and the classical fact that the number of ways of
writing it as a product of exactly n − 1 transpositions is nn−2. More generally, the product of
(1 . . . n) and k transpositions cannot have more than k+1 cycles. The following result is proved
in [27] in a bijective way.

Proposition 2.3. Let Tn be the set of transpositions in the symmetric group Sn. Let k ≥ 0 be
an integer. The set

{
(τ1, . . . , τk) ∈ (Tn)

k : (1 . . . n)τ1 . . . τk has exactly k + 1 cycles
}

is empty if k ≥ n and has otherwise nk−1
(

n
k+1

)
elements.

This result, combined with the equality (21), allows one to give a quick proof of Theorem
2.1. It is however a proof which is not easily generalised to the orthogonal and symplectic cases,
because it is more difficult to count paths in the set of standard generators of the Brauer algebra
than in the symmetric group.

The second way in which the moments (µn)n≥0 may appear is the following. Define a sequence
of polynomials (Ln)n≥0 by setting L0(t) = 1 and, for all n ≥ 1,

(25) Ln(t) = e
nt
2 µn(t) =

n−1∑

k=0

(−t)k

k!
nk−1

(
n

k + 1

)
.

Lemma 2.4. The sequence (Ln)n≥0 is the unique sequence of functions of one real variable such
that L0 = 1 and

(26) ∀n ≥ 1, Ln(0) = 1 and L̇n = −
n

2

n−1∑

k=1

LkLn−k.

Despite the relatively simple explicit form of Ln, this statement seems to resist a direct ver-
ification. One way to prove it is to recognise the link between the recurrence relation (26) and
the problem of enumeration of paths in the symmetric group solved by Proposition 2.3, but this
could hardly be called a simple proof.

Proof. The shortest proof I know is to recognise that (26) is equivalent to an easily solved equation
in the reciprocal of the generating function of the sequence (Ln)n≥0. Indeed, consider the formal
series g(t, z) =

∑
n≥1 Ln(t)z

n. The recurrence relation (26) is equivalent to the differential
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equation ∂tg(t, z) = −zg(t, z)∂zg(t, z) with initial condition g(0, z) = z
1−z . This differential

equation is in turn equivalent, for the reciprocal formal series f(t, z), defined by f(t, g(t, z)) = z,
to the differential equation ∂tf(t, z) = zf(t, z), with the initial condition f(0, z) = z

1+z . This
last equation is solved by f(t, z) = z

1+z e
tz and Lagrange’s inversion formula yields the value of

the polynomials (Ln)n≥0. �

The reason why reciprocals of generating functions on one hand and paths of shortest length
in the symmetric group on the other hand, although apparently rather remote from each other,
allow one to prove Theorem 2.1, is that both are governed by the combinatorics of the lattice of
non-crossing partitions of a cycle (see [35, 5]).

2.4. The unitary case revisited. The basis of our proof in the orthogonal and symplectic
cases is the proof in the unitary case, which we review in this section. We take this opportunity
to introduce useful notation, and also to offer what we believe to be a simpler and clearer proof
than what can be found in the literature.

Before we start, let us make a short comment on our strategy of exposition. Rather than
spending a lot of time introducing from the beginning, and with little motivation, all the tools
which will be needed for the three series of groups, we have chosen to introduce the various objects
progressively. The drawback of this approach is that many tools will have to be redefined, some
more than once, each new definition containing and superseding the previous ones.

Proof of Theorem 2.1. Let n ≥ 1 be an integer. We denote by Sn the symmetric group of order n.
Let ρ : Sn → GL((CN )⊗n) denote the action given by ρ(σ)(x1⊗. . .⊗xn) = xσ−1(1)⊗. . .⊗xσ−1(n).
For all σ ∈ Sn, let us denote by ℓ(σ) the number of cycles of σ. To each σ ∈ Sn we associate
two complex-valued functions Pσ and pσ on MN (C) by setting

Pσ(M) = Tr⊗n
(
ρ(σ) ◦M⊗n

)
and pσ(M) = N−ℓ(σ)Pσ(M),

where by Tr⊗n(M1 ⊗ . . . ⊗Mn) we mean Tr(M1) . . .Tr(Mn). If the lengths of the cycles of the
permutation σ are m1, . . . ,mℓ(σ), then these functions can be written in more elementary terms
as

(27) Pσ(M) =

ℓ(σ)∏

i=1

Tr(Mmi) and pσ(M) =

ℓ(σ)∏

i=1

tr(Mmi).

Let (UN,t)t≥0 be a Brownian motion on the unitary group U(N). We are going to study the
complex-valued functions FN and fN defined on R+ ×Sn by

FN (t, σ) = E [Pσ(UN (t))] and fN (t, σ) = E [pσ(UN (t))] .

Let Tn ⊂ Sn denote the set of transpositions. An application of Itô’s formula and the fact that
the Casimir operator is equal to − 1

N T , where T is the flip operator on C
N ⊗C

N (see (12)), allow
us to prove the following fundamental relation : for all t ≥ 0 and all σ ∈ Sn, one has

∂

∂t
FN (t, σ) = E


Tr⊗n


ρ(σ) ◦


−

n

2
−

1

N

∑

1≤i<j≤n

ρ((i j))


 ◦ U⊗n

t






= −
n

2
FN (t, σ)−

1

N

∑

τ∈Tn

FN (t, στ).(28)

With the large N limit in view, it is preferable to work with the function fN rather than the
function FN : for example, one has FN (0, σ) = N ℓ(σ) but fN (0, σ) = 1. When we divide (28) by
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N ℓ(σ), we must take care about the number of cycles of the permutations στ , which is not the
same as that of σ. More precisely, for each τ , we have ℓ(στ) ∈ {ℓ(σ)+ 1, ℓ(σ)− 1}. Let us define

T±
n (σ) = {τ ∈ Tn : ℓ(στ) = ℓ(σ)± 1}.

With this notation, we have

(29)
∂

∂t
fN (t, σ) = −

n

2
fN (t, σ)−

∑

τ∈T+
n (σ)

fN (t, στ)−
1

N2

∑

τ∈T−
n (σ)

fN (t, στ).

Let us denote by LU(N) the linear operator on the space F(Sn) of complex-valued functions on
Sn defined by

(LU(N)f)(σ) = −
n

2
f(σ)−

∑

τ∈T+
n (σ)

f(στ)−
1

N2

∑

τ∈T−
n (σ)

f(στ),

and by ✶ ∈ F(Sn) the function identically equal to 1. We have the equality

∀t ≥ 0, fN (t, ·) = etLU(N)✶.

This expression allows us to let N tend to infinity very easily. Indeed, if L denotes the limit of
LU(N) as N tends to infinity (with n staying fixed), that is, the operator defined by

(30) (Lf)(σ) = −
n

2
f(σ)−

∑

τ∈T+
n (σ)

f(στ),

then it is readily checked that the sequence of functions fN , seen as a sequence of functions from
R+ to F(Sn), converges uniformly on every compact subset of R+ towards the function f(t, ·)
defined by

(31) ∀t ≥ 0, f(t, ·) = etL✶.

In order to compute this exponential, let us make the Ansatz that f(t, σ) factorises with respect
to the lengths of the cycles of σ, that is, that there exists a sequence (L̃n)n≥0 of functions such
that for all t ≥ 0 and all permutation σ with cycles of lengths m1, . . . ,mr, we have f(t, σ) =

e−
nt
2 L̃m1(t) . . . L̃mr(t). A little computation shows that (31) is equivalent to the recurrence

relation (26) for the sequence (L̃n)n≥0, of which we know that the sequence (Ln)n≥0 defined by
(25) is the unique solution. This proves the theorem. �

2.5. The Brauer algebra I. In the orthogonal and symplectic cases, the role played by the
symmetric group will be held by an algebra known as the Brauer algebra, which we now describe.

The integer n ≥ 1 being fixed, let Bn be the set of partitions of the set {1, . . . , 2n} by pairs.
Let λ be a real number. The real Brauer algebra Bn,λ admits, as a real vector space, a basis
which is in one-to-one correspondence with Bn and which we identify with it. For example, B2,λ

has dimension 3 and the basis B2 consists in the three pairings {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}
and {{1, 4}, {2, 3}}.

An element of Bn can be represented by a horizontal box with n dots on its bottom edge
labelled from 1 to n and n dots on its top edge labelled from n + 1 to 2n, both from left to
right, the appropriate pairs of dots being joined by lines inside the box. The product π1π2 of two
elements π1 and π2 of Bn is computed by putting the box representing π1 on the top of the box
representing π2. This produces a new pairing π between the points on the bottom of the box
representing π2 and those on the top of the box representing π1. The superposition of two boxes
may moreover lead to the formation of loops inside the box. If r loops appear in the process,
then we set π1π2 = λrπ (see Figure 5 for an example).
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= λ3

Figure 5. With π1 = {{1, 2}, {3, 4}, {5, 12}, {6, 11}, {7, 10}, {8, 9}} and π2 =
{{1, 2}, {3, 4}, {5, 12}, {6, 11}, {7, 8}, {9, 10}}, we have π1π2π1 = λ3π1.

Let Sn denote the symmetric group of order n. There is a natural inclusion Sn ⊂ Bn

which to a permutation σ ∈ Sn associates the pairing {{i, σ(i) + n} : i ∈ {1, . . . , n}}. Since
the multiplication of pairings associated with permutations does never make loops appear, this
correspondence determines an injective homomorphism of algebras R[Sn] →֒ Bn,λ, regardless of
the value of λ.

For all integers r, s such that 1 ≤ r < s ≤ n, we denote by (r s) the element of Bn corre-
sponding to the transposition which exchanges r and s. We also denote by 〈r s〉 the partition of
{1, . . . , 2n} which consists of the pairs {k, k + n} for k ∈ {1, . . . , n} \ {r, s}, and the two pairs
{r, s} and {r + n, s + n}. We call this pairing a Weyl contraction. We denote by Tn the set of
all transpositions and by Wn the subset of Bn which consists of all contractions. Note that the
algebra Bn,λ is generated by Tn ∪Wn.

For the needs of the orthogonal case, let us define an action of the Brauer algebra Bn,N on
(RN )⊗n, that is, a morphism of algebras ρ : Bn,N → MN (R)⊗n. Let (e1, . . . , eN ) denote the
canonical basis of R

N . Let π ∈ Bn be a basis vector of Bn,N , which we identify with the
partition in pairs of {1, . . . , 2n} which labels it. We set

(32) ρ(π) =
∑

i1,...,i2n∈{1,...,N}


 ∏

{k,l}∈π

δik,il


Ein+1,i1 ⊗ . . .⊗ Ei2n,in .

Consider two elements π1, π2 ∈ Bn. In the product ρ(π1)ρ(π2), the only non-zero contributions
come from the terms in which the n bottom indices of π1 are equal to the n top indices of π2.
Moreover, any loop carries a free index which runs from 1 to N and thus produces a factor N .
Hence, if r loops are formed in the product of π1 and π2, then ρ(π1π2) = N rρ(π1)ρ(π2). This
shows that the unique linear extension of ρ to Bn,N is a homomorphism of algebras ρ : Bn,N →

End
(
(RN )⊗n

)
.

The restriction of ρ to the subalgebra C[Sn] coincides with the action of the symmetric group
which we considered in the unitary case.

2.6. The orthogonal case. On the orthogonal group SO(N), the Casimir operator is equal to

(33) Cso(N) = −
1

N
(T −W )

so that for all i, j such that 1 ≤ i < j ≤ n, we have

(34) ιi,j(Cso(N)) = −
1

N
(ρ((i j))− ρ(〈i j〉)) .

Because of the presence of W , the orthogonal analogues of the functions (t 7→ FN (t, σ))σ∈Sn

do not satisfy a closed differential system anymore. We must therefore introduce new functions,
which are naturally indexed by the elements of the Brauer algebra.



THE MASTER FIELD ON THE PLANE 21

Proof of Theorem 2.2 in the orthogonal case. Let n ≥ 1 be an integer. To each element π ∈ Bn

we associate the function Pπ on MN (R) by setting

Pπ(M) = Tr⊗n
(
ρ(π) ◦M⊗n

)
.

For example, if π is the element of B6 depicted on the right-hand side of Figure 5, then Pπ(M) =
Tr(M tMM tM)Tr(M2). Note that when it is restricted to the orthogonal group, the function
M 7→ Pπ(M) can be a polynomial in the entries of M of degree strictly smaller than n. It
is possible, but unnecessary at this stage, to give for the function Pπ an expression similar to
(27). Our treatment of the symplectic case will however require such a formula, and it may be
instructive to take a glance at (39).

The correct definition of the normalised function pπ requires an appropriate definition of
the number of cycles of π. The simplest way to define this number is through the equality
Pπ(IN ) = N ℓ(π). Alternatively, it is the number of loops formed after completing the diagram
of π by the n vertical lines which join k to n + k for all k between 1 and n. We set, as in the
unitary case,

(35) pπ(M) = N−ℓ(π)Pπ(M).

We extend the definitions of Pπ and pπ by linearity to any b ∈ Bn,N . Note however that the
function ℓ is only defined on the elements of Bn. We need to extend it, for future use, to multiple
of basis elements by setting ℓ(cπ) = ℓ(π) for all complex number c 6= 0.

Let (RN,t)t≥0 be a Brownian motion on the orthogonal group SO(N). As in the unitary case,
we are going to study the functions FN and fN defined on R+ × Bn,N by

FN (t, b) = E [Pb(RN,t)] and fN (t, b) = E [pb(RN,t)] .

The normalisation has been chosen such that fN (0, π) = 1 for all π ∈ Bn. With these definitions
and considering the stochastic differential equation which defines the Brownian motion on SO(N),
an application of Itô’s formula yields the following fundamental relation : for all t ≥ 0 and all
b ∈ Bn,N , one has

(36)
∂

∂t
FN (t, b) = −

n(N − 1)

2N
FN (t, b)−

1

N

∑

τ∈Tn

FN (t, bτ) +
1

N

∑

κ∈Wn

FN (t, bκ),

from which it follows immediately that for all π ∈ Bn,
(37)
∂

∂t
fN (t, π) = −

n(N − 1)

2N
fN (t, π)−

∑

τ∈Tn

N ℓ(πτ)−ℓ(π)−1fN (t, πτ) +
∑

κ∈Wn

N ℓ(πκ)−ℓ(π)−1fN (t, πκ).

Note that in this equation, πτ and πκ might be non-trivial scalar multiples of basis elements,
thus possibly introducing extra powers of N in the expression. Note also that, for the same
reason, we are using the extended definition of the function ℓ.

In fact, the only case where a loop is formed is for the product πκ when κ = 〈i j〉 and the pair
{i, j} belongs to π. Moreover, in this case, πκ = Nπ.

Let us denote by LSO(N) the linear operator on the dual space B∗
n,N of linear forms on Bn,N

characterised by the fact that for all π ∈ Bn,

(LSO(N)f)(π) = −
n(N − 1)

2N
f(π)−

∑

τ∈Tn

N ℓ(πτ)−ℓ(π)−1f(πτ) +
∑

κ∈Wn

N ℓ(πκ)−ℓ(π)−1f(πκ).

We also denote by ✶ ∈ B∗
n,N the linear form equal to 1 on each basis vector. Then we have the

equality
∀t ≥ 0, fN (t, ·) = etLSO(N)✶.
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Let us now determine which powers of N appear in LSO(N). First of all, the observation which
we made just after (37) and an elementary verification show that LSO(N) is a polynomial of
degree at most 2 in N−1.

Now comes the crucial argument, namely the observation that multiplying a permutation by a
Weyl contraction does never create a loop nor increase the number of cycles. The first assertion
is a consequence of the fact that for all π ∈ Bn and all i, j ∈ {1, . . . , n} with i < j, the product
π〈i j〉 involves a loop if and only if the pair {i, j} belongs to π. If π is a permutation, this never
happens. Moreover, one checks, depending on whether i and j belong to the same cycle of σ or
not, that ℓ(π〈i j〉) belongs to {ℓ(π)− 1, ℓ(π)}. We also know already that if π is a permutation,
then ℓ(πτ) belongs to {ℓ(π)−1, ℓ(π)+1}. These observations imply that when π is a permutation,
the last term of (37) is dominated by N−1.

Recall the definition of the operator L from the unitary case (see (30)). The previous discussion
shows that, in the basis of B∗

n,N dual to Bn, split into dual permutations on one hand and the
other dual basis elements on the other hand, the matrix of LSO(N) is

LSO(N) =




LU(N) +
n
2N In! ∗

O(N−1) ∗


 ,

where the second column of this block matrix is a polynomial of degree 2 in N−1. In particular,
LSO(N) admits a limit as N tends to infinity and this limit is of the form

lim
N→∞

LSO(N) =

(
L ∗
0 ∗

)
.

Ignoring the second column of this matrix, we conclude that the sequence of functions (fN )n≥1,
restricted to R+×Sn, converges uniformly on every compact subset of R+ towards the function
f(t, ·) defined by

(38) ∀t ≥ 0, f(t, ·) = etL✶.

We recognise here the equation (31). �

2.7. The Brauer algebra II. In the treatment of the symplectic case, we will consider a
homomorphism of algebras ρH : Bn,−2N → MN (H)⊗n. This homomorphism will be constructed
as the tensor product of the homomorphism ρ considered in the orthogonal case and another
homomorphism γ : Bn,−2 → H

⊗n, which we define and study in this section.
In order to define γ, we need to discuss a cyclic structure on {1, . . . , 2n} associated to each

element of Bn. We have already implicitly considered this cyclic structure in the definition of
ℓ(π) just before (35).

Let us consider a pairing π of {1, . . . , 2n}. Let us consider the usual graph associated with π,
with vertices {1, . . . , 2n} and n edges, one joining i and j for each pair {i, j} ∈ π. We call these
n edges the primary edges. Let us add to this graph n other edges, one joining i to i+n for each
i ∈ {1, . . . , n}. We call these edges the secondary edges. We get a graph in which each vertex
has degree 2, being adjacent to one primary and one secondary edge. This graph is thus a union
of disjoint cycles of even length, for which π provides no canonical orientation. We decide to
orient each of these cycles by declaring that the primary edge adjacent to the smallest element
of each cycle is outgoing at this vertex. In this way, we get a partition of {1, . . . , 2n} by oriented
cycles, that is, a permutation of {1, . . . , 2n}, which we denote by Σπ. For an example of this
construction, see Figure 6.
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We are now going to use the permutation Σπ ∈ S2n to define a permutation σπ ∈ Sn and to
attach a sign to each integer {1, . . . , n}. Let us start with the signs. For each i ∈ {1, . . . , n}, we
set επ(i) = 1 if {i,Σπ(i)} is a primary edge and επ(i) = −1 otherwise. If (i n + i) is a cycle of
Σπ, then επ(i) = 1. Then, we define σπ as the permutation of {1, . . . , n} obtained by removing
the integers {n + 1, . . . , 2n} from their cycles in Σπ. Note that Σπ, and hence σπ, have exactly
ℓ(π) cycles. For example, if π is a permutation, then επ(i) = 1 for all i ∈ {1, . . . , n} and σπ = π.

1 2 3 4 5 6

7 8 9 10 11 12

1 2 3 4 5 6

7 8 9 10 11 12

Figure 6. Consider π = {{1, 8}, {2, 9}, {3, 7}, {4, 5}, {6, 10}, {11, 12}} ∈ B6. The
primary edges are represented on the left and the full graph on the right. There
are two cycles with respective smallest element 1 and 4. We thus have Σπ =
(1 8 2 9 3 7)(4 5 11 12 6 10) and σπ = (1 2 3)(4 5 6). For each i ∈ {1, . . . , 6}, επ(i) equals
1 if i is traversed upwards and −1 if i is traversed downwards. Here, επ(5) = −1 and the
other signs are 1.

The signification of the permutation σπ and the signs επ(1), . . . , επ(n) is given by the following
formula. Recall the definition of ρ from (32).

Proposition 2.5. Let π be an element of Bn. Let R1, . . . , Rn be elements of SO(N). Let us
write (i1 . . . is) 4 σπ if (i1 . . . is) is a cycle of σπ. Then

(39) Tr⊗n(ρ(π) ◦R1 ⊗ . . .⊗Rn) =
∏

(i1...is)4σπ

Tr(R
επ(is)
is

. . . R
επ(i1)
i1

).

The same identity holds with arbitrary matrices provided inverse matrices are replaced by trans-
posed ones.

Although one might say that this equality results from a direct computation, we give a short
proof.

Proof. If π is a permutation, then a direct computation shows that the formula holds. Now, let
us pick an arbitrary pairing π ∈ Bn, an integer i ∈ {1, . . . , n} and let us consider the pairing π′

obtained by exchanging i and n + i in the pairs to which they belong in π. We have σπ′ = σπ,
επ′(i) = −επ(i) and επ′(j) = επ(j) for all j 6= i. Moreover,

Tr⊗n(ρ(π′) ◦R1 ⊗ . . .⊗Rn) = Tr⊗n(ρ(π) ◦R1 ⊗ . . .⊗ tRi ⊗ . . .⊗Rn).

Hence, if (39) holds for π, it also holds for π′. It only remains to convince oneself that any
pairing can be turned into a permutation by a finite succession of exchanges of the sort which
we have just considered. �

Through the mapping π → (σπ, επ), we associate to each element of Bn an element of Sn and
an element of (Z/2Z)n, that is, an element of the hyperoctahedral group Hn = Sn ⋉ (Z/2Z)n ⊂
S2n. Since Bn, seen as the set of fixed point free involutions of {1, . . . , 2n}, is isomorphic to
the quotient S2n/Hn, it would be natural to expect a neater definition of the pair (σπ, επ), but
I was not able to find it.
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Let us now turn to the definition of the mapping γ. Recall that I(H) denotes the subset
{1, i, j, k} of H. For each pairing π ∈ Bn, set

(40) γ(π) =
1

(−2)n

∑

γ1,...,γn∈I(H)


 ∏

(i1...is)4σπ

(−2ℜ)(γis . . . γi1)


 γ

−επ(1)
1 IN ⊗ . . .⊗ γ−επ(n)

n IN .

If π is the pairing corresponding to the identity permutation, then γ(π) = I⊗n
N . We set

(41) ρH(π) = ρ(π)⊗ γ(π)

and will sometimes use the lighter notation ρHπ.
Recall (9) and observe that γ((1 2)) = −1

2Re
H, γ(〈1 2〉) = −1

2 Im
H, so that

ρH(1 2) = −
1

2
T ⊗ ReH and ρH〈1 2〉 = −

1

2
W ⊗ ImH,

and by comparing with (11), we have for all i, j with 1 ≤ i < j ≤ n the equality

(42) ιi,j(Csp(N)) = −
1

−2N
(ρH(i j)− ρH〈i j〉) .

This is a first piece of a justification for our arguably strange definition of γ. A second piece
of justification is given by the following lemma. By analogy with the real and complex cases,
we denote by ◦ the product in the algebra MN (H)⊗n, but we would like to emphasise that the
natural action of this algebra on (HN )⊗n which is implicit in this notation is the action of a real
algebra on the tensor product over R of real linear spaces. The trace denote by Tr on the other
hand is still the usual trace on Mn(H).

Lemma 2.6. For all n ≥ 1, all π ∈ Bn and all S1, . . . , Sn ∈ Sp(N), we have

(−2ℜTr)⊗n(ρH(π) ◦ S1 ⊗ . . .⊗ Sn) =
∏

(i1...is)4σπ

(−2ℜTr)(S
επ(is)
is

. . . S
επ(i1)
i1

).

Proof. Relabelling the matrices S1, . . . , Sn if necessary and using the fact that both ρ(π) and
γ(π) factorise according to the cycles of σπ, we may reduce the problem to the case where σπ has
a single cycle, and we may choose the cycle (n . . . 1). In this case, after developing the traces,
the equality results from the following identity, valid for all quaternions q1, . . . , qn:

∑

γ1,...,γn∈I(H)

γ1 . . . γnℜ(γ
−ε1
1 q1) . . .ℜ(γ

−εn
n qn) = q∗11 . . . q∗nn ,

where we set q∗ii = qi if εi = 1 and q∗ii = q∗i if εi = −1. �

The main property of γ is the following, which determined its definition.

Proposition 2.7. The unique extension of γ to a linear mapping Bn,−2 → H
⊗n is a homomor-

phism of algebras.

Proof. Since the algebra Bn,−2 is generated by Tn ∪Wn, it suffices to prove that for all pairing
π ∈ Bn and all i, j with 1 ≤ i < j ≤ n, we have γ(π(i j)) = γ(π)γ((i j)) and γ(π〈i j〉) =
γ(π)γ(〈i j〉). For each equality, there are three cases to consider: the case where i and j do not
belong to the same cycle of σπ, then the case where they do, which itself is subdivided into the
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sub-cases επ(i) = επ(j) and επ(i) = −επ(j). In each of the six cases, the key of the result is one
of the following elementary identities, valid for all q1, q2 ∈ H:

1

4

∑

γ1,γ2∈I(H)

(−2ℜ)(γ1γ2)(−2ℜ)(γ−1
1 q1)(−2ℜ)(γ−1

2 q2) = (−2ℜ)(q1q2),(I)

1

4

∑

γ1,γ2∈I(H)

(−2ℜ)(γ1γ2)(−2ℜ)(γ−1
1 q1)(−2ℜ)(γ2q2) = (−2ℜ)(q1q

∗
2),(II)

1

4

∑

γ1,γ2∈I(H)

(−2ℜ)(γ1γ2)(−2ℜ)(γ−1
1 q1γ

−1
2 q2) = (−2ℜ)(q1)(−2ℜ)(q2),(III)

1

4

∑

γ1,γ2∈I(H)

(−2ℜ)(γ1γ2)(−2ℜ)(γ−1
1 q1γ2q2) = (−2ℜ)(q1q

∗
2).(IV)

The first equality is the multiplication rule in H and the second follows by replacing q2 by q∗2.
The third and fourth equality follow from the identities (10).

Let us give the details of the proof of the equality γ(π)γ(〈i j〉) = γ(π〈i j〉) in the the case
where i and j belong to the same cycle of σπ and επ(i) = −επ(j). Recall the notation ιi,j from
(18). To start with, we have

γ(〈i j〉) =
1

4

∑

α1,α2∈I(H)

(−2ℜ)(α1α2)ιi,j(α
−1
1 ⊗ α2).

Let us write (i i1 . . . is j j1 . . . jt) the cycle of σπ which contains i and j. Reversing the orientation
of this cycle if necessary, we may assume that επ(i) = 1 and επ(j) = −1. In the expression of
γ(π)γ(〈i j〉), we have the sum over all possible values of γ1, . . . , γn, α1, α2 in I(H) of the product
of a term

1

4
(−2ℜ)(α1α2)(−2ℜ)(γjt . . . γj1γjγis . . . γi1γi) . . .

and a term
. . .⊗ γ−1

i α−1
1 ⊗ . . .⊗ γjα2 ⊗ . . . .

In this sum, we would like to perform a change of variables and to replace γi by α−1
1 γi and γj

by γjα
−1
2 . This would however introduce troublesome minus signs. The neatest way to do this

is to allow temporarily our variables to vary in the set I(H)∪−I(H) instead of I(H), to the price
of a factor 1

2 for each variable. This does not affect the sum otherwise, because each variable
appears exactly twice. The advantage is that I(H)∪−I(H) is a subgroup of H, so that the change
of variables is justified. After this change of variables, the two terms which we are considering
are replaced respectively by

1

4
(−2ℜ)(α1α2)(−2ℜ)(γjt . . . γj1γjα

−1
2 γis . . . γi1α

−1
1 γi) . . .

and
. . .⊗ γ−1

i ⊗ . . .⊗ γj ⊗ . . . .

Thanks to the third of the four elementary identities mentioned above, summing over α1 and α2

transforms the first term into

(−2ℜ)(γjt . . . γj1γjγi)(−2ℜ)(γis . . . γi1) . . . .

On the other hand, the cycles of σπ〈i j〉 are the same as those of σπ, except for (i i1 . . . is j j1 . . . jt)
which is replaced by (i j j1 . . . js)(i1 . . . is). Moreover, for all k ∈ {1, . . . , n}, we have επ〈i j〉(k) =
επ(k).
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Finally, it may happen that s = 0, in which case the cycle (i1 . . . is) is absent in π〈i j〉. In this
case, the fact that σπ(i) = j, επ(i) = 1 and επ(j) = −1 imposes that {i, j} is a pair of π. Since
we are working in Bn,−2, the appearance of a loop in the multiplication of π and 〈i j〉 brings the
missing factor −2. In fact, this is the only case in the whole proof where a loop is formed and
where the parameter of the Brauer algebra plays a role.

Let us indicate what differs in the proof of γ(π)γ((i j)) = γ(π(i j)) in the same case, when i
and j belong to the same cycle of σπ and επ(i) = −επ(j). With the same notation, using

γ((i j)) =
1

4

∑

α1,α2∈I(H)

(−2ℜ)(α1α2)ιi,j(α
−1
1 ⊗ α−1

2 )

and performing exactly the same steps, only applying the fourth elementary equality instead of
the third, we end up with a term

(−2ℜ)(γjt . . . γj1γjγ
−1
i1
. . . γ−1

is
γi) . . . .

A second change of variables is needed at this point, and justified as the first, by which we
replace γi1 , . . . , γis by their inverses. This comes in agreement with the fact that not only σπ(i j)
has (i is . . . i1 j j1 . . . js) as a cycle, but επ(i j)(ik) = −επ(ik) for all k ∈ {1, . . . , s}, the other signs
being unchanged.

Nothing new is needed to check the four other cases and we spare the reader a detailed account
of them. �

It follows from this result and from our earlier study of ρ that the linear extension ρH :
Bn,−2N →MN (H)⊗n is a homomorphism of algebras.

At this point, we can uniformise our definitions of the representations ρ and ρH. Indeed, we
have defined, for each K ∈ {R,C,H}, with the corresponding value of β = dimRK, a represen-
tation

(43) ρK : Bn,(2−β)N →MN (K)⊗n.

In the case K = C, we need to set ρC(π) = 0 whenever π ∈ Bn is not a permutation. We shall
henceforward use the notation ρK, that is, in particular, ρR instead of ρ.

We can now proceed to the proof of our first main theorem in the symplectic case.

2.8. The symplectic case. The symplectic case is similar to the orthogonal case, but more
complicated, since there is no expression of the Casimir operator which is really simpler than
(11). One possibility would be to work through the embedding Sp(N) → U(2N), but this is not
the approach which we choose.

Proof of Theorem 2.2 in the symplectic case. To each element π ∈ Bn, we associate the function
Pπ on MN (H) by setting

Pπ(M) = (−2ℜTr)⊗n
(
ρHπ ◦M⊗n

)
,

and the function pπ(M) = (−2N)−ℓ(π)Pπ(M). By Lemma 2.6, we have pπ(IN ) = 1.
Let (SN,t)t≥0 be a Brownian motion on the symplectic group Sp(N). We define the functions

FN and fN defined on R+ ×Bn by

FN (t, π) = E [Pπ(SN,t)] and fN (t, π) = E [pπ(SN,t)] ,

and extend them by linearity to R+ × Bn,−2N . The normalisation has been chosen such that
fN (0, π) = 1 for all π ∈ Bn.
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Let us apply Itô’s formula in this new context. Thanks to (42) and Proposition (2.7), we have,
for all t ≥ 0 and all b ∈ Bn,−2N ,

∂

∂t
FN (t, b) = E


ρH(b) ◦


−

2N + 1

2N

n

2
+

1

2N

∑

1≤i<j≤n

(ρH(i j)− ρH〈i j〉)


 ◦ S⊗n

t




= −
n(2N + 1)

4N
FN (t, b)−

1

−2N

∑

τ∈Tn

FN (t, bτ) +
1

−2N

∑

κ∈Wn

FN (t, bκ),(44)

which is the symplectic version of (36). From this equality, we deduce that for all π ∈ Bn,

∂

∂t
fN (t, π) = −

n(2N + 1)

4N
fN (t, π)−

∑

τ∈Tn

(−2N)ℓ(πτ)−ℓ(π)−1fN (t, πτ)(45)

+
∑

κ∈Wn

(−2N)ℓ(πκ)−ℓ(π)−1fN (t, πκ).

Recall that in (45), πτ and πκ can be scalar multiples of basis elements. Just as in the orthogonal
case, a loop is formed in the product πκ only when κ = 〈i j〉 and the pair {i, j} belongs to π,
and in this case, we have πκ = Nπ.

Let us denote by LSp(N) the linear operator on B∗
n,−2N defined by the following equality, valid

for all π ∈ Bn:

(LSp(N)f)(π) = −
n(2N + 1)

4N
f(π)−

∑

τ∈Tn

(−2N)ℓ(πτ)−ℓ(π)−1f(πτ)

+
∑

κ∈Wn

(−2N)ℓ(πκ)−ℓ(π)−1f(πκ).

We also denote by ✶ ∈ B∗
n,−2N the linear form equal to 1 on each element of Bn. Then we have

the equality

∀t ≥ 0, fN (t, ·) = etLSp(N)✶.

Our discussion of the powers of N involved in the operator LSO(N) did not depend on the signs
of the coefficients, or of factors independent of N . It remains thus entirely valid for the operator
LSp(N). Thus, in the basis of B∗

n,−2N dual to Bn, split as in the orthogonal case, the matrix of
LSp(N) is again

LSp(N) =




LU(N) +
n

2(−2N)In! ∗

O(N−1) ∗


 ,

where as in the orthogonal case, the second column is a polynomial of degree 2 in N−1. In fact,
we have, formally, the equality LSp(N) = LSO(−2N).

In particular, LSp(N) admits a limit as N tends to infinity and this limit is of the form

lim
N→∞

LSp(N) =

(
L ∗
0 ∗

)
.

We can conclude the proof as in the orthogonal case. �
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3. Speed of convergence for words of independent Brownian motions

Theorems 2.1 and 2.2, together with a classical result of Voiculescu and its extension to the
orthogonal and symplectic cases by Collins and Śniady, allow one to determine the limit of
expected traces of arbitrary words in independent Brownian motions on U(N,K) as N tends to
infinity. Our second main result provides a quantitative estimate of the rate of convergence of
such expected traces, in terms of a certain measure of the complexity of the word considered.

Let us start by recalling how the results of Voiculescu and Collins-Śniady apply in the present
context.

3.1. Free limits. We do not recall the main definitions of free probability theory. Instead, we
refer the reader to [29].

Recall from (24) the definition of the measures (νt)t≥0. A free multiplicative Brownian motion
is a family (ut)t≥0 of unitary elements of a non-commutative probability space (A, τ) such that
for all 0 ≤ t1 ≤ . . . ≤ tn, the increments ut2u

∗
t1 , . . . , utnu

∗
tn−1

are free and have respectively the
distributions νt2−t1 , . . . , νtn−tn−1 . Free multiplicative Brownian motions exist and can be realised
as the large N limit of the Brownian motion on the unitary group.

Theorem 3.1 (Biane, [4]). For each N ≥ 1, let (UN,t)t≥0 be a Brownian motion on U(N)
issued from IN , associated with the scalar product 〈X,Y 〉 = NTr(X∗Y ) on u(N), defined on
a probability space (ΩN ,AN ,PN ). Then the collection {UN,t : t ≥ 0} of elements of the non-
commutative probability space (L∞(ΩN ,AN ,PN )⊗MN (C),E⊗tr) converges in non-commutative
distribution as N tends to infinity to a free unitary Brownian motion. Moreover, independent
Brownian motions converge to free unitary Brownian motions which are mutually free.

It follows from our study of the orthogonal and symplectic case, and from a result of Collins
and Śniady [7, Thm. 5.2] that a similar result holds for orthogonal and symplectic Brownian
motions.

There is a small complication due to the fact that we do not regard symplectic matrices as
complex matrices. Indeed, the algebra L∞(ΩN ,AN ,PN ) ⊗MN (H) is a real algebra and not a
complex one, and we are slightly outside the usual framework of non-commutative probability
theory. Here is the short argument which we need to go back to it.

Consider a real involutive unital algebra A endowed with a linear form τ such that τ(1) and
for all a ∈ A, one has τ(aa∗) ≥ 0. We shall call such a pair (A, τ) a real non-commutative
probability space. It is straightforward to check that the complexified algebra A ⊗ C endowed
with the involution (a⊗z)∗ = a∗⊗ z̄ and the linear form τ⊗ idC is a non-commutative probability
space in the usual sense. Moreover, for all a ∈ A, the moments of a⊗ 1 in (A⊗ C, τ ⊗ idC) are
the same as those of a in (A, τ).

This being said, we take the liberty of using the language of free probability in a real non-
commutative probability space.

Theorem 3.2. For each N ≥ 1, let (RN,t)t≥0 be a Brownian motion on SO(N) issued from IN ,

associated with the scalar product 〈X,Y 〉 = N
2 Tr(

tXY ) on so(N), defined on a probability space
(ΩN ,AN ,PN ). Then the collection {RN,t : t ≥ 0} of elements of the non-commutative probability
space (L∞(ΩN ,AN ,PN )⊗MN (R),E⊗ tr) converges in non-commutative distribution as N tends
to infinity to a free unitary Brownian motion. Moreover, independent Brownian motions converge
to free unitary Brownian motions which are mutually free.

For each N ≥ 1, let (SN,t)t≥0 be a Brownian motion on Sp(N) issued from IN , associ-
ated with the scalar product 〈X,Y 〉 = 2NℜTr(X∗Y ) on sp(N), defined on a probability space
(ΩN ,AN ,PN ). Then the collection {SN,t : t ≥ 0} of elements of the non-commutative probability
space (L∞(ΩN ,AN ,PN ) ⊗ MN (H),E ⊗ ℜtr) converges in non-commutative distribution as N
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tends to infinity to a free unitary Brownian motion. Moreover, independent Brownian motions
converge to free unitary Brownian motions which are mutually free.

3.2. Second main result : speed of convergence. In this section, we state our second main
result, firstly in its most natural form and then in the form under which we will prove it.

Let K be one of our three division algebras. We denote generically by (VN,s)s≥0 a Brownian
motion on U(N,K) as defined in Section 1.4. We are going to consider several independent
copies of this Brownian motion, with which we are going to form a word, of which in turn we
will estimate the expected trace. The number of independent copies which we use to form our
word will not appear in our final estimates, and this is one of their main strengths. We will
nevertheless fix this number and denote it by q. Let us thus choose an integer q ≥ 1, which will
stay fixed until the end of Section 3.

We shall denote by Fq be the free group on q letters x1, . . . , xq. Let w be an element of Fq. Let
us write w in reduced form as xε1i1 . . . x

εr
ir

, where r ≥ 0 is the length of w, and ε1, . . . , εr belong
to {−1, 1}. If u1, . . . , uq are invertible elements of an algebra, we denote by w(u1, . . . , uq) the
element uε1i1 . . . u

εr
ir

of this algebra. We shall use this notation for matrices and for elements of non-
commutative probability spaces. The following notation will also be useful later: if U1, . . . , Uq

belong to U(N,K), we shall denote by w⊗(U1, . . . , Uq) the element U ε1
i1

⊗ . . .⊗U εr
ir

of MN (K)⊗r.
Observe that this second definition depends crucially on the fact that w was written in reduced
form.

We will use the free group Fq to produce a non-commutative probability space in the usual
way. Let C[Fq] be the complex algebra of the group Fq. It is isomorphic to the algebra
C〈x1, x

−1
1 , . . . , xq, x

−1
q 〉 of Laurent polynomials in q non-commuting indeterminates. It carries an

involution characterised by the equality (λxi)
∗ = λx−1

i , valid for all i ∈ {1, . . . , q} and all λ ∈ C.
Let us fix an integer N ≥ 1. Let (VN,1,s)s≥0, . . . , (VN,q,s)s≥0 be q independent Brownian

motions on the group U(N,K). Let also (u1,s)s≥0, . . . , (uq,s)s≥0 be q free unitary Brownian
motions which are mutually free, carried by a non-commutative probability space (A, ϕ).

In the words which we shall consider, each of our q Brownian motions will always be evaluated
at the same time. Since the increments of a Brownian motion are independent, and since the
number of independent Brownian motions which we consider does not affect our estimates, this
does not entail any loss of generality. The times at which we evaluate our Brownian motions are
of course important, and we put them into a vector t = (t1, . . . , tq) ∈ R

q
+.

Let us define a state τK,N

t on C[Fq] by setting, for all w ∈ Fq,

τK,N

t (w) =

{
E
[
tr
(
w(VN,1,t1 , . . . , VN,q,tq

)]
if K = R or C,

E
[
ℜtr

(
w(VN,1,t1 , . . . , VN,q,tq

)]
if K = H.

Theorems 3.1 and 3.2 assert that, as N tends to infinity, τK,N

t converges pointwise to the state
τt defined by

τt(w) = ϕ(w(u1,t1 , . . . , uq,tq)).

The main result of this section gives an explicit bound on |τK,N

t (w)− τt(w)|. This bound must
of course depend on the word w. It does so through a certain non-negative real which we assign
to each pair (w, t) ∈ Fq × R

q
+, and which we call its Amperean area, for a reason which shall

become clear in the second part of this work.
Let us define q functions n1, . . . , nq : Fq → N, which could be called partial lengths, as follows.

For all element w of Fq, written in reduced form as w = xε1i1 . . . x
εr
ir

, and all k ∈ {1, . . . , q}, we
define nk(w) as the total number of occurrences of the letter xk in w, that is,

(46) nk(w) = #{j ∈ {1, . . . , r} : ij = k}.
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We do not make any distinction between xk or x−1
k . For example, n3(x3x1x

−1
3 ) = 2. Using these

partial lengths, we define the Amperean area of the word w relative to t as the real number

(47) Āt(w) =

q∑

k=1

tknk(w)
2.

Let us emphasise that this number does not really depend on q. We could see the word w as
a word in infinitely many letters, and t as a infinite vector with only finitely many non-zero
components. The main estimate is the following.

Theorem 3.3. For all w ∈ Fq and all N ≥ 1, the following inequality holds:

(48)
∣∣τK,N

t (w)− τt(w)
∣∣ ≤





1

N2
Āt(w)e

Āt(w) if K = C,

1

N
Āt(w)e

Āt(w) if K = R or H.

We will in fact prove a more general result, which asserts that the same bounds hold for
quantities which are built from the word w but which are more general than τK,N

t (w) and τt(w).
Just as in the proofs of Theorems 2.1 and 2.2, this generalisation is meant to provide us with a
finite set of functions of t = (t1, . . . , tq) which satisfies an autonomous differential system. The
quantities which we will consider are very simlar to the functions fN (t, π) considered in these
proofs. In particular, we will need a larger set of quantities in the orthogonal and symplectic
cases as in the unitary case.

Let us start by the unitary case. For this, let us consider again an element w of Fq, written in
reduced form as w = xε1i1 . . . x

εr
ir

. Let us consider a permutation σ ∈ Sr. We write (j1 . . . js) 4 σ
to indicate that (j1 . . . js) is a cycle of σ. Recall from the beginning of Section 2.4 that we
defined ρC(σ) ∈ MN (C)⊗r. Recall also, from the beginning of the current section, the notation
w⊗(UN,1,t1 , . . . , UN,q,tq). In accordance with the convention made at the end of Section 1.4, we
denote respectively by R, U and S the orthogonal, unitary and symplectic Brownian motions.
With all this preparation, we set

pC,Nt (w, σ) = N−ℓ(σ)
E
[
Tr⊗r(ρC(σ) ◦ w⊗(UN,1,t1 , . . . , UN,q,tq))

]

= E


 ∏

(j1...js)4σ

tr

(
U

εj1
N,ij1 ,tij1

. . . U
εjs
N,ijs ,tijs

)
 ,

and
pt(w, σ) =

∏

(j1...js)4σ

ϕ
(
u
εj1
ij1 ,tj1

. . . u
εjs
ijs ,tjs

)
.

As usual, we extend these definitions by linearity with respect to σ, so as to allow an arbitrary
element of C[Sn] to replace σ.

In the orthogonal and symplectic cases, we introduce the analogous functions indexed by
pairings. Let r ≥ 1 be an integer. Let π ∈ Br be a pairing of {1, . . . , 2r}. Recall the construction
of the permutation σπ ∈ Sr and the signs επ(1), . . . , επ(r) made at the beginning of Section 2.8.
The following definitions imitate the equation (39). We define, in the orthogonal case,

pR,Nt (w, π) = N−ℓ(π)
E
[
Tr⊗r(ρR(π) ◦ w⊗(RN,1,t1 , . . . , RN,q,tq))

]

= E


 ∏

(j1...js)4σπ

tr

((
R

εjs
N,ijs ,tijs

)επ(s)
. . .

(
R

εj1
N,ij1 ,tij1

)επ(1)
)
 ,
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and, in the symplectic case,

pH,N

t (w, π) = (−2N)−ℓ(π)
E
[
(−2ℜTr)⊗r(ρH(π) ◦ w⊗(SN,1,t1 , . . . , SN,q,tq))

]

= E


 ∏

(j1...js)4σπ

ℜtr

((
S
εjs
N,ijs ,tijs

)επ(s)
. . .

(
S
εj1
N,ij1 ,tij1

)επ(1)
)
 .

We have left the case r = 0 aside. In this case, w is the empty word, the unit element of Fq, and
π the empty pairing of the empty set. For the sake of this case, we define pK,N

t (1,∅) = 1.
Let us also define, for both the orthogonal and symplectic cases, pt(1,∅) = 1 and

pt(w, π) =
∏

(j1...js)4σ

ϕ

((
u
εjs
ijs ,tjs

)επ(s)
. . .
(
u
εj1
ij1 ,tj1

)επ(1))
.

We extend these definitions by linearity with respect to π, in order to be able to replace π by an
arbitrary element of Br,N in the orthogonal case, or Br,−2N in the symplectic case.

If we apply these new definitions with σ = (1 . . . r), we find pK,N

t (w, (1 . . . r)) = τK,N

t (w) and
pt(w, (1 . . . n)) = τt(w), so that the following proposition implies Theorem 3.3.

Proposition 3.4. Let w ∈ Fq be an element whose reduced form is a word of length r ≥ 0. Let
N ≥ 1 be an integer. The following inequalities hold:

max
σ∈Sr

∣∣pC,Nt (w, σ)− pt(w, σ)
∣∣ ≤ 1

2N2
Āt(w)e

1
2
Āt(w),

and, for K = R or K = H,

max
π∈Br

∣∣pK,N

t (w, π)− pt(w, π)
∣∣ ≤ 1

N
Āt(w)e

Āt(w).

We will moreover get the following information from the proof of this proposition.

Proposition 3.5. For K = R or K = C, the expected trace of any word in independent Brownian
motions on U(N,K) is real.

3.3. Itô’s equation for words. With our present notation, Section 2 was devoted to the study
of quantities of the form pK,N

t (w, π) when w is a non-negative power of a single letter. In the
present setting, we need to extend this study in two respects : firstly, we need to allow more than
one letter to appear in w and secondly, we need to allow negative powers of letters to appear.
The treatment of the latter issue requires the introduction of some new notation, which is forced
upon us by Itô’s formula. Let us see how.

Let w ∈ Fq be a word of length r ≥ 0. In this paragraph, we will write Itô’s formula for
w⊗(VN,1,t1 , . . . , VN,q,tq) when among the times t1, . . . , tq, all but one are fixed. The integer N is
fixed in this section and we will omit it in the notation. The first fundamental relation is the
stochastic differential equation satisfied by V ∗

t , namely

dV ∗
t = −V ∗

t dKt +
cu(N,K)

2
V ∗
t dt.

The algebra MN (K)⊗r is both a left and right MN (K)-module in r different ways: for each
i ∈ {1, . . . , r} and all X,M1, . . . ,Mr ∈MN (K), we define

θ+i (X) ·M1 ⊗ . . .⊗Mr =M1 ⊗ . . .⊗XMi ⊗ . . .⊗Mr,

θ−i (X) ·M1 ⊗ . . .⊗Mr =M1 ⊗ . . .⊗MiX ⊗ . . .⊗Mr.(49)
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With this notation, we unify Itô’s formulas for Vt and V −1
t = V ∗

t . Indeed, for all ε ∈ {−1, 1},

(50) dV ε
t = εθε1(dKt) · V

ε
t +

cu(N,K)

2
V ε
t dt.

Here and thereafter, we identify the sets {−1, 1} and {−,+} in the obvious way without further
comment.

Note that θ+i and θ−i satisfy the following relation of adjunction: for all ξ1, ξ2 ∈MN (K)⊗r,

(51) Tr⊗r
(
(θ±i (X) · ξ1)ξ2

)
= Tr⊗r

(
ξ1(θ

∓
i (X) · ξ2)

)
.

Let us write w in its reduced form w = xε1i1 . . . x
εr
ir

. For each k ∈ {1, . . . , q}, let us record the
positions of xk and x−1

k in w by defining

(52) Xk(w) = {j ∈ {1, . . . , r} : ij = k}.

For example, if w = x2x
−1
1 x3x

2
1x2, then X1(w) = {2, 4, 5}. Recall that nk(w) is the cardinal of

Xk(w).

Lemma 3.6. Choose k ∈ {1, . . . , q}. Choose q − 1 reals t1, . . . , tk−1, tk+1, . . . , tq ≥ 0. Itô’s
formula for the process

(
w⊗(V1,t1 , . . . , Vq,tq)

)
tk≥0

reads

dtkw⊗(V1,t1 , . . . , Vq,tq) =
∑

l∈Xk(w)

εlθ
εl
l (dKtk) · w⊗(V1,t1 , . . . , Vq,tq)

+
nk(w)cu(N,K)

2
w⊗(V1,t1 , . . . , Vq,tq)dtk

+
∑

l,m∈Xk(w)
l<m

εlεm
(
θεll ⊗ θεmm

)
(Cg) · w⊗(V1,t1 , . . . , Vq,tq)dtk.(53)

In particular, for all π ∈ Br, or all π ∈ Sr if K = C,

∂

∂tk
pK,N

t (w, π) =
nk(w)cu(N,K)

2
pK,N

t (w, π)

+
∑

l,m∈Xk(w)
l<m

εlεmN
−ℓ(π)

E

[
Tr⊗r

[( (
θ−εl
l ⊗ θ−εm

m

)
(Cu(N,K)) · ρK(π)

)
w⊗(V1,t1 , . . . , Vq,tq)

]]
,(54)

or the same equality with N replaced by (−2N), Tr by (−2ℜTr) if K = H.

Proof. The equality (53) is only a matter of notation. We apply Itô’s formula in its most usual
form to w⊗(V1,t1 , . . . , Vq,tq), using Itô’s formula for a single Brownian motion as written in (50)
and with the help of the operators θ±i defined by (49). The Casimir operator appears thanks to
the expression (15) of the quadratic variation of (Kt)t≥0.

Equation (54) follows from (53), the definition of pK,N

t (w, π) given earlier in this section, and
the adjunction relation (51). �

3.4. The Brauer algebra III. It appears in (54) that we need to compute
(
θεll ⊗ θεmm

)
(Cu(N,K))·

ρ(π) when K = R or C, and
(
θεll ⊗ θεmm

)
(Cu(N,H)) · ρH(π). We are already familiar with this

quantity when εl = εm = −1, since in this case it is simply ρ(π)(Cu(N,K))lm or ρH(π)(Cu(N,H))lm.
Our aim in this last section devoted to the Brauer algebra is to describe these quantities for all

values of εl and εm. For this, we will introduce six linear operations on the Brauer algebra Bn,λ

which generalise the operations which we have already encountered of left and right multiplication
by transpositions and contractions. Note that we consider the Brauer algebra of order n, although
in the context of Section 3, we take n to be the length of our word w, which we denote by r.
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Let us choose n ≥ 1 and two distinct integers a, b in {1, . . . , 2n}. Let us start by describing
two simple linear operations associated to a and b on the Brauer algebra Bn,λ. For this, let us
choose a pairing π ∈ Bn. Let {a, a′} and {b, b′} be the pairs of π which contain a and b. These
pairs must not be distinct. The first operation which we define is the swap of a and b: we set

Sa,b(π) =
(
π \ {{a, a′}, {b, b′}}

)
∪ {{a, b′}, {b, a′}}.

The second operation is the forcing of the pair {a, b}: we set

Fa,b(π) =

{
(π \ {{a, a′}, {b, b′}}) ∪ {{a, b}, {a′, b′}}. if {a, b} /∈ π,
λπ if {a, b} ∈ π.

The factor λ in this definition can be understood as follows: applying Fa,b consists in adding
twice the pair {a, b}, once to form the pair itself, and once to form, by contiguity with the pairs
{a, a′} and {b, b′}, the pair {a′, b′}. If the pair {a, b} is already present in π, then this procedure
forms a loop, hence the factor λ.

We can now define the six operations which we are interested in. Let us choose two distinct
integers l,m in {1, . . . , n}. We define six linear endomorphisms of Bn,λ, which we denote by
T++
lm , T−−

lm , T+−
lm ,W++

lm , W−−
lm and W+−

lm , according to the following table, where the second row
defines the first.

T++
lm T−−

lm T+−
lm W++

lm W−−
lm W+−

lm

Sl,m Sn+l,n+m Fl,n+m Fl,m Fn+l,n+m Sl,n+m

We complete these definitions by setting T−+
lm = T+−

ml and W−+
lm = W+−

ml . One checks that if
{l,m} ∩ {i, j} = ∅, then with all possible choices of signs, the following commutation relations
hold:

(55) [T ∗∗
lm, T

∗∗
ij ] = [T ∗∗

lm,W
∗∗
ij ] = [W ∗∗

lm,W
∗∗
ij ] = 0.

It follows immediately from the definitions that the following equalities hold:

T++
lm (π) = π(l m), T−−

lm (π) = (l m)π, W++
lm (π) = π〈l m〉, W−−

lm (π) = 〈l m〉π.

The definitions of T+−
lm and W+−

lm may look inconsistent with the previous ones, but the following
lemma explains why we chose them in this way.

T−+
54

W−+
54

Figure 7. In the first line, the operation T−+
54 is applied to the pairing represented on

the left. The result is represented on the right. The second line is a similar representation
of the operation W−+

54 .

Lemma 3.7. Let π ∈ Bn be a pairing. Let l,m be distinct integers between 1 and n. Let εl, εm
be two elements of {−1, 1}. The following equalities hold in Bn,N :

(
θ−εl
l ⊗ θ−εm

m

)
(T ) · ρ(π) = ρ(T εlεm

lm (π)) and
(
θ−εl
l ⊗ θ−εm

m

)
(W ) · ρ(π) = ρ(W εlεm

lm (π)).
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Proof. In the case where εl = εm = −1, the first equality follows from the identity
(
θ+l ⊗ θ+m

)
(T )·

ρ(π) = ρ((l m))ρ(π) and the fact that ρ : Bn,N →MN (R)⊗r is a homomorphism of algebras (see
Section 2.5). The same arguments apply to the second equality, as well as to both equalities in
the case where εl = εm = 1.

Let us compute
(
θ−l ⊗ θ+m

)
(T ) · ρ(π). We will make the assumption that l < m but this plays

no role in the computation. We find

(
θ−l ⊗ θ+m

)
(T ) · ρ(π) =

N∑

i1,...,i2n,a,b=1


 ∏

{u,v}∈π

δiu,iv


 . . .⊗ Ein+l,ilEab ⊗ . . .⊗ EbaEin+m,im ⊗ . . .

=
N∑

i1,...,i2n,b=1


δil,in+m

∏

{u,v}∈π

δiu,iv


 . . .⊗ Ein+l,b ⊗ . . .⊗ Eb,im ⊗ . . . .

If {l, n+m} is a pair of π, then the factor δil,in+m
is already present in the product over the pairs

of π, the matrices Ein+l,b and Eb,im can be replaced by Ein+l,il and Ein+m,im , and we recover
ρ(π), multiplied by the factor N due to the now superfluous index b. If {l, n+m} is not a pair of
π, then we perform the summation over il and in+m which do not appear in the tensor product
anymore. We have the partial sum

∑
il,in+m

δil′ ,ilδil,in+m
δin+m,im′ = δil′ ,im′ . We finally use the

index b to reintroduce il and in+m, according to the relation
∑

b

. . .⊗ Ein+l,b ⊗ . . .⊗ Eb,im ⊗ . . . =
∑

il,in+m

δil,in+m
. . .⊗ Ein+l,il ⊗ . . .⊗ Ein+m,im ⊗ . . . ,

and find ourselves left with the very definition of ρ(T+−
lm (π)).

The computation of
(
θ−l ⊗ θ+m

)
(W ) · ρ(π) is similar, but the difference is significant enough

for us to deem it necessary to give some details. We have

(
θ−l ⊗ θ+m

)
(W ) · ρ(π) =

N∑

i1,...,i2n,a,b=1


 ∏

{u,v}∈π

δiu,iv


 . . .⊗ Ein+l,ilEab ⊗ . . .⊗ EabEin+m,im ⊗ . . .

=
N∑

i1,...,i2n,a,b=1


δil,aδin+m,b

∏

{u,v}∈π

δiu,iv


 . . .⊗ Ein+l,b ⊗ . . .⊗ Ea,im ⊗ . . . .

If {l, n+m} is a pair of π, then the only non-zero contributions come from the terms where a = b =
il = in+m and the last expression is equal to ρ(π). Otherwise, we can sum over in+m and il thanks
to
∑

in+m,il
δa,ilδil,il′ δb,in+m

δin+m,im′ = δa,il′ δb,im′ and use the same formula in the reverse direc-
tion, only exchanging il and in+m, thus replacing δa,il′ δb,im′ by

∑
in+m,il

δa,in+m
δin+m,il′ δb,ilδil,im′ .

If we finally replace a by in+m and b by il, we find ρ(W+−
lm (π)). �

In the unitary case, we are going to apply Lemma 3.7 only when π is a permutation and
considering only the actions derived from T . It follows from the observation made just after
their definition that T++

lm and T−−
lm leave the subspace C[Sn] of Bn,N invariant. The next lemma

asserts the same of T+−
lm .

Lemma 3.8. Let λ be a complex number. The linear subspace C[Sn] of Bn,λ is stable by T+−
lm .

More precisely, let σ be an element of Sn. For all distinct integers l,m between 1 and n, we have
the following equality in C[Sn] :

T+−
lm (σ) = λδσ(l),m(σ(l)m)σ.
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Proof. The pair {l, n +m} belongs to the pairing associated to σ if and only if σ(l) = m. The
formula is thus true in this case. Let us assume that σ(l) 6= m. Then T+−

lm (σ) is the pairing
associated to σ in which the pairs {l, n + σ(l)} and {σ−1(m), n + m} have been replaced by
{σ−1(m), n + σ(m)} and {l, n + m}. It is the pairing associated to a permutation σ̃, which
satisfies σ̃(i) = σ(i) for all i ∈ {1, . . . , n} \ {σ−1(m), l}, σ̃(σ−1(m)) = σ(l) and σ̃(l) = m. Thus,
σ̃ = (σ(l)m)σ, as expected. �

In the symplectic case, we will need, in addition to the tools developed for the unitary and
orthogonal cases, a description similar to that given by Lemma 3.7 of the behaviour of the
homomorphism γ defined by (40) with respect to the operations T+−

lm and W+−
lm . Recall from

(9) the definition of ReH and CoH.

Proposition 3.9. Let π ∈ Bn be a pairing. Choose two distinct integers l,m in {1, . . . , n}.
Then

(
θ−εl
l ⊗ θ−εm

m

) (
ReH

)
· γ(π) = γ(T εlεm

lm (π)),

(
θ−εl
l ⊗ θ−εm

m

) (
CoH

)
· γ(π) = γ(W εlεm

lm (π)).

Proof. When εl = εm = −1, the two assertions are a consequence of Proposition 2.7. The other
cases are treated exactly in the same way as we proved Proposition 2.7. We summarise in Figure
8 the information which is needed to the prove each equality on the model of the computation
given extensively in the proof of Proposition 2.7. This table contains in fact all cases, including
those of Proposition 2.7 itself. �

T++
lm T−−

lm T+−
lm W++

lm W−−
lm W+−

lm

Same
cycle
εl = 1

εm = 1
1 1

(III)

0∗ or 1 0 0
(IV)

0

εm = −1
0 0

(IV)

0 0∗ or 1 0† or 1
(III)

1

Different cycles
−1 −1

(I)

−1 −1 −1
(II)

−1

If and only if ∗σπ(l)=m or †σπ(m)=l.
∗,†A factor λ is produced.

Figure 8. The non-periodic table of the six operations on the Brauer

algebra Bn,λ. The table is read as follows. Consider a paring π ∈ Bn. Choose l,m
distinct integers between 1 and n. Whether l and m are in the same cycle of σπ or not,
and if they are, whether επ(l)επ(m) = 1 or −1 determines which row of the table we
must look at. When l and m are in the same cycle, we orient this cycle in such a way
that εl = 1. The entry of the table corresponding to the operation we are interested in
tells us how the number of cycles of π will be affected by this operation, if it will produce
a factor λ (the parameter of the Brauer algebra), and which of the four identities (I) -
(IV) is used in the proof of the corresponding part of Proposition 3.9.

3.5. The unitary case. We now turn to the proof of Proposition 3.4 in the unitary case. Just as
in the proof of the first main result, the strategy is to differentiate with respect to t = (t1, . . . , tq),
to show that pC,Nt (w, σ) and pt(w, σ) satisfy differential relations which are not very different.
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The difference with the first main result is that we will quantify the difference between the
differential systems and draw quantitative conclusions on the difference between pC,Nt (w, σ) and
pt(w, σ). The following elementary and well-known fact will be instrumental.

Lemma 3.10. Let d ≥ 1 be an integer. Let ‖ · ‖ be a norm of algebra on Md(C). Let A,B be
two elements of Md(C). Then

(56)
∥∥eA+B − eA

∥∥ ≤ ‖B‖emax(‖A+B‖,‖A‖).

Proof. We simply write

∥∥eA+B − eA
∥∥ =

∥∥∥∥
∫ 1

0

d

dt

[
et(A+B)e(1−t)A

]
dt

∥∥∥∥ ≤

∫ 1

0

∥∥∥et(A+B)Be(1−t)A
∥∥∥ dt

≤ ‖B‖

∫ 1

0
et‖A+B‖+(1−t)‖A‖ dt ≤ ‖B‖emax(‖A+B‖,‖A‖),

and find the expected inequality. �

We will apply this result with the norm on Md(C) associated to the ℓ∞ norm on C
d. It matters

for us that this norm is given explicitly, for a matrix A = (Aij)i,j=1...d, by

(57) ‖A‖ = max
i=1...d

d∑

j=1

|Aij |.

Proof of Proposition 3.4 in the unitary case. Let w = xε1i1 . . . x
εr
ir

be a an element of Fq written
in reduced form as a word of length r. Let σ ∈ Sr be a permutation. We start from the result
of Lemma 3.6 and more specifically from (54), applied to the word w, the pairing π = σ, and an
integer k ∈ {1, . . . , q}.

Let us apply Lemmas 3.7 and 3.8. Thanks to the expression (12) of Cu(N), we find that
d
dtk
pC,Nt (w, σ) + nk(w)

2 pC,Nt (w, σ) is equal to

−
∑

l,m∈Xk(w)
l<m

εlεmN
−ℓ(σ)−1

E
[
Tr⊗r

(
ρ(T εlεm

lm (σ)) ◦ w⊗(UN,1,t1 , . . . , UN,q,tq)
)]
.

Let us write l
σ
∼ m if l and m are in the same cycle of σ, and l 6

σ
∼ m otherwise. We find

(58)
d

dtk
pC,Nt (w, σ) = −

nk(w)

2
pC,Nt (w, σ)−

∑

l,m∈Xk(w)
l<m

(
✶
l
σ
∼m

+
1

N2
✶
l 6
σ
∼m

)
εlεmp

C,N

t (w, T εlεm
lm (σ))

Let us write (58) in its integral form

pC,Nt (w, σ) = 1 +

∫ t

0
(r.h.s. of (58) at t = s) ds.

As N tends to infinity, the pointwise convergence of pC,Nt (w, σ) towards pt(w, σ), the fact that∣∣pC,Nt (w, σ)
∣∣ ≤ 1 and the dominated convergence theorem imply that

pt(w, σ) = 1 +

∫ t

0
(r.h.s. of (58) at N = ∞ and t = s) ds.
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Hence, the family of functions {pt(w, σ) : σ ∈ Sr} satisfies the following differential system: for
all σ ∈ Sr,

d

dtk
pt(w, σ) = −

nk(w)

2
pt(w, σ)−

∑

l,m∈Xk(w)

l<m,l
σ
∼m

εlεmpt(w, T
εlεm
lm (σ)).

To the word w, and for each k ∈ {1, . . . , q}, we may thus associate two real r! × r! matrices
Ak and Ck, as follows. We define, for all σ, σ′ ∈ Sr,

(Ak)σ,σ′ = −
nk(w)

2
δσ,σ′ −

∑

l,m∈Xk(w)

l<m,l
σ
∼m

εlεmδT εlεm
lm

(σ),σ′

and

(Ck)σ,σ′ =−
∑

l,m∈Xk(w)

l<m,l
σ

6∼m

εlεmδT εlεm
lm

(σ),σ′ .

For all distinct k1, k2 ∈ {1, . . . , q}, the sets Xk1(w) and Xk2(w) are disjoint, so that (55)
implies the commutation relations

(59) [Ak1 , Ak2 ] = [Ak1 , Ck2 ] = [Ck1 , Ck2 ] = 0.

Let us define the vector pC,Nt (w) = (pC,Nt (w, σ))σ∈Sr
. Let us write explicitly the dependence of

pC,Nt (w) on t1, . . . , tq. We have

pC,N(t1,...,tq)
(w) = et1(A1+

1
N2C1)pC,N(0,t2,...,tq)

(w).

We have pC,N(0,...,0)(w) = ✶, the vector of Cr! whose components are all equal to 1. Thus, we have

(60) pC,N(t1,...,tq)
(w) =

(
q∏

k=1

e
tk

(
Ak+

1
N2Ck

))
✶,

where the order in this product is irrelevant, thanks to (59). Similarly, defining pt(w) =
(pt(w, σ))σ∈Sr

, we have

(61) p(t1,...,tq)(w) =

(
q∏

k=1

etkAk

)
✶.

We can express the ℓ∞ norm of the difference:

‖pC,N(t1,...,tq)
(w)− p(t1,...,tq)(w)‖∞ =

∥∥∥∥∥

(
q∏

k=1

e
tk

(
Ak+

1
N2Ck

)

−

q∏

k=1

etkAk(w)

)
✶

∥∥∥∥∥
∞

≤

q∑

l=1

∥∥∥∥∥

q∏

k=l+1

e
tk

(
Ak+

1
N2Ck

)(
e
tl

(
Al+

1
N2Cl

)

− etlAl

) l−1∏

k=1

etkAk✶

∥∥∥∥∥
∞

≤

q∑

l=1

q∏

k=l+1

etk‖Ak+
1

N2Ck‖

∥∥∥∥e
tl

(
Al+

1
N2Cl

)

− etlAl

∥∥∥∥
l−1∏

k=1

etk‖Ak‖.
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Recall from (57) the definition of the norm which we are using on Md(C). It is easy to check
that the following inequalities hold for all N ≥ 1:

(62) ‖Ak‖ ≤
nk(w)

2

2
, ‖Ck‖ ≤

nk(w)
2

2
, ‖Ak +

1

N2
Ck‖ ≤

nk(w)
2

2
.

Now, applying (56) and thanks to (62), we find

‖pC,N(t1,...,tq)
(w)− p(t1,...,tq)(w)‖∞ ≤

q∑

l=1

q∏

k=l+1

e
1
2
tknk(w)2 tlnl(w)

2

2N2
e

1
2
tlnl(w)2

l−1∏

k=1

e
1
2
tknk(w)2

=
1

2N2
Ā(w)e

1
2
Ā(w),

which is the expected inequality. �

3.6. The orthogonal case. The proof in the orthogonal case follows the same pattern as in
the unitary case.

Proof of Proposition 3.4 in the orthogonal case. Let w = xε1i1 . . . x
εr
ir

be an element of Fq of length
r. Let π ∈ Br be a pairing of {1, . . . , 2r}. We start again from (54), applied to w, π and an integer
k ∈ {1, . . . , q}. We find, thanks to Lemma 3.7 and (34), that d

dtk
pR,Nt (w, π)+ nk(w)(N−1)

2N pR,Nt (w, π)

is equal to

−
∑

l,m∈Xk(w)
l<m

εlεmN
−ℓ(π)−1

E
[
Tr⊗r

(
ρ(T εlεm

lm (π)−W εlεm
lm (π)) ◦ w⊗(RN,1,t1 , . . . , RN,q,tq)

)]
.

From this expression, we deduce

d

dtk
pR,Nt (w, π) =−

nk(w)(N − 1)

2N
pR,Nt (w, π)

−
∑

l,m∈Xk(w)
l<m

εlεmN
ℓ(T

εlεm
lm

(π))−ℓ(π)−1pR,Nt (w, T εlεm
lm (π))

+
∑

l,m∈Xk(w)
l<m

εlεmN
ℓ(W

εlεm
lm

(π))−ℓ(π)−1pR,Nt (w,W εlεm
lm (π)).(63)

We claim that the only exponents of N which can appear in this sum are 0, −1 and −2. For the
terms where εl = εm, this is something which we already discussed in the one-matrix case. Recall
in particular from the proof of Theorem 2.2 in the orthogonal case, which we gave in Section 2.6,
that in the case where 〈l m〉π = Nπ or π〈l m〉 = Nπ, we get a term of order N0. The situation
is the same for T+−

lm (π) and W+−
lm (π): both ℓ(T+−

lm (π)) − ℓ(π) and ℓ(W+−
lm (π)) − ℓ(π) belong to

{−1, 0, 1}. Moreover, in the case where T+−
lm (π) = Nπ, we get a term of order N0.

As in the unitary case, the integral form pR,Nt (w, π) = 1+
∫ t
0 (r.h.s. of (63) at t = s) ds of (63)

converges, as N tends to infinity, to pt(w, π) = 1 +
∫ t
0 (r.h.s. of (63) at N = ∞ and t = s) ds.
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Hence, the family of functions {pt(w, π) : π ∈ Br} satisfies the following differential system:
for all π ∈ Br,

d

dtk
pt(w, π) = −

nk(w)

2
pt(w, π)−

∑

l,m∈Xk(w),l<m

ℓ(T
εlεm
lm

(π))=ℓ(π)+1

εlεmpt(w, T
εlεm
lm (π))

+
∑

l,m∈Xk(w),l<m

ℓ(W
εlεm
lm

(π))=ℓ(π)+1

εlεmpt(w,W
εlεm
lm (π)).(64)

Let (2r)!! =
∏r

k=1(2k − 1) denote the cardinal of Br. To the word w, and for each k ∈
{1, . . . , q}, we associate three matrices Ak, Bk and Ck in M(2r)!!(R), as follows. We define, for
all π, π′ ∈ Br,

(Ak)π,π′ = −
nk(w)

2
δπ,π′ −

∑

l,m∈Xk(w),l<m

ℓ(T
εlεm
lm

(π))=ℓ(π)+1

εlεmδT εlεm
lm

(π),π′ +
∑

l,m∈Xk(w),l<m

ℓ(W
εlεm
lm

(π))=ℓ(π)+1

εlεmδW εlεm
lm

(π),π′ ,

(Bk)π,π′ =
nk(w)

2
δπ,π′ −

∑

l,m∈Xk(w),l<m

ℓ(T
εlεm
lm

(π))=ℓ(π)

εlεmδT εlεm
lm

(π),π′ +
∑

l,m∈Xk(w),l<m

ℓ(W
εlεm
lm

(π))=ℓ(π)

εlεmδW εlεm
lm

(π),π′ ,

(Ck)π,π′ = −
∑

l,m∈Xk(w),l<m

ℓ(T
εlεm
lm

(π))=ℓ(π)−1

εlεmδT εlεm
lm

(π),π′ +
∑

l,m∈Xk(w),l<m

ℓ(W
εlεm
lm

(π))=ℓ(π)−1

εlεmδW εlεm
lm

(π),π′ ,(65)

which satisfy commutation relations analogous to (59). Setting pR,Nt (w) = (pR,Nt (w, π))π∈Br
, we

have pR,N(0,...,0)(w) = ✶, the vector of R(2r)!! whose components are all equal to 1, and

(66) pR,N(t1,...,tq)
(w) =

(
q∏

k=1

e
tk

(
Ak+

1
N
Bk+

1
N2Ck

))
✶.

Similarly, if we define pt(w) = (pt(w, π))π∈Br
, we have

(67) p(t1,...,tq)(w) =

(
q∏

k=1

etkAk

)
✶.

The same computation as in the unitary case shows that ‖pR,Nt (w)− pt(w)‖∞ is smaller than
q∑

l=1

q∏

k=l+1

etk‖Ak+
1
N
Bk+

1
N2Ck‖

∥∥∥∥e
tl

(
Al+

1
N
Bl+

1
N2Cl

)

− etlAl

∥∥∥∥
l−1∏

k=1

etk‖Ak‖.

It is easy to check that the following inequalities hold for all N ≥ 1:

(68) ‖Ak‖ ≤ nk(w)
2 ,

∥∥∥∥Ak +
1

N
Bk +

1

N2
Ck

∥∥∥∥ ≤ nk(w)
2 ,

∥∥∥∥
1

N
Bk +

1

N2
Ck

∥∥∥∥ ≤
nk(w)

2

N
.

Now, applying (56) and thanks to (68), we find

‖pR,N(t1,...,tq)
(w)− p(t1,...,tq)(w)‖∞ ≤

q∑

l=1

q∏

k=l+1

etknk(w)2 tlnl(w)
2

N
etlnl(w)2

l−1∏

k=1

etknk(w)2

=
1

N
Ā(w)eĀ(w),
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which is the expected inequality. �

3.7. The symplectic case.

Proof of Proposition 3.4 in the symplectic case. Let w = xε1i1 . . . x
εr
ir

be an element of Fq of length
r. Let π ∈ Br be a pairing of {1, . . . , 2r}. By (54), Lemma 3.7, Proposition 3.9 and (42),
d
dtk
pH,N

t (w, π) + nk(w)(2N+1)
4N pH,N

t (w, π) is equal to

−
∑

l,m∈Xk(w)
l<m

εlεm(−2N)−ℓ(π)−1
E
[
(−2ℜTr)⊗r

(
T εlεm
lm (π)) ◦ w⊗(SN,1,t1 , . . . , SN,q,tq)

)]

+
∑

l,m∈Xk(w)
l<m

εlεm(−2N)−ℓ(π)−1
E
[
(−2ℜTr)⊗r

(
W εlεm

lm (π)) ◦ w⊗(SN,1,t1 , . . . , SN,q,tq)
)]
.

From this expression, we deduce

d

dtk
pH,N

t (w, π) =−
nk(w)(2N + 1)

4N
pH,N

t (w, π)

−
∑

l,m∈Xk(w)
l<m

εlεm(−2N)ℓ(T
εlεm
lm

(π))−ℓ(π)−1pH,N

t (w, T εlεm
lm (π))

+
∑

l,m∈Xk(w)
l<m

εlεm(−2N)ℓ(W
εlεm
lm

(π))−ℓ(π)−1pH,N

t (w,W εlεm
lm (π)).(69)

For the same reason as in the orthogonal case, the only exponents of N which can appear
in this sum are 0, −1 and −2. Still as in the unitary and orthogonal cases, the integral form
pR,Nt (w, π) = 1 +

∫ t
0 (r.h.s. of (69) at t = s) ds converges, as N tends to infinity, to pt(w, π) =

1 +
∫ t
0 (r.h.s. of (69) at N = ∞ and t = s) ds. We recover, in the limit, the differential system

(64).
To the word w, and for each k ∈ {1, . . . , q}, we associate the same matrices Ak and Ck in

M(2r)!!(R) defined by (65), and a matrix B′
k, which differs from Bk only by its diagonal terms,

to compensate the difference between cso(N) and csp(N): we define, for all π, π′ ∈ Br,

(B′
k)π,π′ = (Bk)π,π′ −

3nk(w)

4
δπ,π′ .

Setting pH,N

t (w) = (pH,N

t (w, π))π∈Br
, we have pH,N

(0,...,0)(w) = ✶, the vector of R(2r)!! whose compo-
nents are all equal to 1, and

(70) pH,N

(t1,...,tq)
(w) =

(
q∏

k=1

e
tk

(
Ak+

1
(−2N)

B′
k
+ 1

(−2N)2
Ck

))
✶.

By (67) and the same computation as in the other cases, ‖pH,N

t (w)− pt(w)‖∞ is smaller than

q∑

l=1

q∏

k=l+1

etk‖Ak−
1

2N
B′

k
+ 1

4N2Ck‖

∥∥∥∥e
tl

(
Al−

1
2N

B′
l
+ 1

4N2Cl

)

− etlAl

∥∥∥∥
l−1∏

k=1

etk‖Ak‖.

It is easy to check that the following inequalities hold for all N ≥ 1:

(71) ‖Ak‖ ≤ nk(w)
2 ,

∥∥∥∥Ak −
1

2N
Bk +

1

4N2
Ck

∥∥∥∥ ≤ nk(w)
2 ,

∥∥∥∥−
1

2N
Bk +

1

4N2
Ck

∥∥∥∥ ≤
nk(w)

2

N
.
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Now, applying (56) and thanks to (71), we find

‖pH,N

(t1,...,tq)
(w)− p(t1,...,tq)(w)‖∞ ≤

q∑

l=1

q∏

k=l+1

etknk(w)2 tlnl(w)
2

N
etlnl(w)2

l−1∏

k=1

etknk(w)2

=
1

N
Ā(w)eĀ(w),

which is the expected inequality. �

Part 2. The master field on the plane

In the second part of this work, we apply the results of the first part to the Yang-Mills measure
on the plane and, specifically, to its large N limit.

4. The Yang-Mills measure on the plane

Let us start by recalling the definition of the Yang-Mills measure on the plane. For a more
detailed presentation, we refer the reader to [23], although strictly speaking the case of the plane
was not treated there.

We consider the plane R2 endowed with the usual Euclidean metric and the Lebesgue measure.
It will be useful at a later stage to allow the measure to vary and to become a measure with
a bounded density with respect to the Lebesgue measure, but for the moment we ignore this
refinement.

Let us choose a connected compact Lie group G which will stay fixed in this section. The
examples which we have in mind are of course the special orthogonal, unitary and symplectic
groups which we studied in the first part of this work, but for the purposes of the definition of
the Yang-Mills measure, we do not need to specify G. We denote the Lie algebra of G by g and
we endow it with a scalar product invariant by the adjoint action of G, which we denote by 〈·, ·〉.
For example, one can think of G being U(N) for some N ≥ 1, so that g = u(N), and the scalar
product on g being given by 〈X,Y 〉 = NTr(X∗Y ).

The Yang-Mills measure, or rather, the Yang-Mills process, is a collection of random variables
with values in the group G, one for each loop with finite length on R

2. In order to construct
this collection, one proceeds by discrete approximation, considering at first only loops which are
traced in a fixed graph. We start by recalling the main aspects of this discrete theory.

4.1. Discrete Yang-Mills field. Let us start by giving precise definitions of the sets of paths
which we will consider. A parametrized path on R

2 is a Lipschitz continuous mapping c : [0, 1] →
R
2 which is either constant or such that its speed is bounded below by a positive constant. A

path is a parametrized path taken up to bi-Lipschitz increasing reparametrization. The set of
paths on R

2 is denoted by P(R2).
The endpoints of a path are denoted respectively by c = c(0) and c = c(1). Two paths c1 and

c2 such that c1 = c2 can be concatenated to form a new path denoted by c1c2. This partially
defined operation on P(R2) is associative. For each path c we define the path c−1 which is the
class of t 7→ c(1− t), the path c traced backwards.

A path whose endpoints coincide is called a loop. The set of loops on R
2 is denoted by L(R2).

A loop whose restriction to [0, 1) is injective is called a simple loop. The set of loops starting,
and hence finishing, at a point m ∈ R

2 is denoted by Lm(R2). For all m ∈ R
2, the set Lm(R2)

endowed with the operation of concatenation is a monoid. We shall explain later (see Section
5.7) that there is a natural, though not easy to define, equivalence relation on this monoid such
that the quotient is actually a group.
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For the time being, let us turn to graphs. An edge is a path which is either injective or a simple
loop. Note that an edge traced backwards is still an edge, though distinct from the original one.
A graph is a triple G = (V,E,F) such that the following properties are satisfied.

1. The set E is a finite subset of P(R2) consisting of edges. For all edge e ∈ E, the edge e−1

belongs to E. Any two edges of E which are distinct and not each other’s inverse meet, if at all,
only at some of their endpoints.

2. The set V is the set of endpoints of the elements of E.
3. The set F is the set of connected components of the complement in R

2 of the skeleton of
G, which is the subset Sk(G) =

⋃
e∈E e([0, 1]).

4. Each element of F is either a bounded subset of R2 homeomorphic to the open unit disk of
R
2, or an unbounded subset of R2 homeomorphic to the complement of the origin in R

2.
The elements of V,E,F are called respectively the vertices, edges, and faces of G. The fourth

condition is equivalent to the fact that the skeleton of the graph is connected (see [23, Proposition
1.3.10]). All faces of a graph are bounded but one, which we naturally call the unbounded face
and which we usually denote by F∞. We shall use the notation F

b = F \ {F∞} for the set of
bounded faces. For each bounded face F , we denote by |F | the area of F .

Let G be a graph. The set of paths which can be formed by concatenating edges of G is
denoted by P(G). The subset of P(G) consisting of loops is denoted by L(G). Each bounded
face of G is positively bounded by a loop which we call its boundary and which is ill-defined
because it has no preferred base point. Nevertheless, we denote by ∂F the boundary of the face
F , keeping in mind that this is not properly speaking a loop, but rather a collection of loops
which differ only by their starting point.

The discrete Yang-Mills measure associated with G is a probability measure on a space which
can be described in several equivalent and equally useful ways. Let P be a subset of P(R2). A
function h : P → G is said to be multiplicative if for any c ∈ P such that c−1 ∈ P one has
h(c−1) = h(c)−1, and for any two paths c1 and c2 in P such that c1 = c2 and c1c2 ∈ P one has

(72) h(c1c2) = h(c2)h(c1).

We denote the set of multiplicative functions from P to G by M(P,G). The discrete Yang-Mills
measure on G shall be defined as a probability measure on M(P(G), G).

Since any path traced in G is a concatenation of edges, a multiplicative function on P(G) is
completely determined by its restriction to the set of edges. Actually, one needs only to know its
value on one element of each pair {e, e−1}, where e spans the set of edges. We call orientation of
the edges of G a subset E+ of E which contains exactly one element in each pair {e, e−1}, e ∈ E.
An orientation of the edges of G being chosen, we have the following identifications

(73) M(P(G), G) ≃ M(E, G) ≃ M(E+, G) ≃ GE+
.

The last identification expresses the fact that any function from E
+ to G is multiplicative, since

the concatenation of two edges is never an edge. We call any of these spaces the configuration
space of the discrete theory and denote it by CG

G , or simply CG as long as the group G is kept
fixed. The reader who feels uncomfortable with such a row of identifications can take CG = GE+

as an efficient definition.
As announced, the discrete Yang-Mills measure is a Borel probability measure on CG, which

is naturally a compact topological space. The normalised Haar measure on the compact group
G determines, through the identifications above, a reference probability measure on CG which
we denote by dh =

⊗
e∈E+ dge+ . The Yang-Mills measure has a density with respect to this

uniform measure and in order to define it, we must introduce the heat kernel on G, which is a
one-parameter family of smooth positive functions on G, namely the fundamental solution of the
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heat equation. If G is one of the groups which we studied in the first part, then this function is
also the time-dependent density of the distribution of the Brownian motion on the group.

The Lie algebra g of G is the space of left-invariant first-order differential operators on G : to
each element X ∈ g, one associates the differential operator LX defined by the equality, valid for
all differentiable function f : G→ R and all g ∈ G, (LXf)(g) =

d
dt |t=0

f(getX).

Let d denote the dimension of G. Given an orthonormal basis (X1, . . . , Xd) of g with respect to
the invariant scalar product which we have chosen on g, we can form the second-order differential
operator

∑d
k=1 L

2
Xk

. This operator does not depend on the choice of the orthonormal basis, it is
called the Laplace operator on G and we denote it by ∆.

The heat kernel on G is the unique function Q : R∗
+ × G → R

∗
+ such that (∂t −

1
2∆)Q = 0

and the measure Q(t, g) dg converges weakly, as t tends to 0, to the Dirac measure at the unit
element of G. The measure Q(t, g) dg is simply the distribution of the Brownian motion on G
at time t.

We will denote the number Q(t, g) by Qt(g), thus seeing Q as a one-parameter family of func-
tions on G. A crucial property of these functions is that they are invariant by conjugation: they
satisfy, for all t > 0 and all x, y ∈ G, the equality Qt(yxy

−1) = Qt(x). This is a consequence of
the fact that the Laplace operator belongs to the centre of the algebra of left-invariant differential
operators on G.

We can now define the Yang-Mills measure YMG
G, or simply YMG, on CG. We need only to

make a last observation : if F is a face of a graph G, and if h is a multiplicative function on
P(G), then for all t > 0 the number Qt(h(∂F )) does not depend on the particular choice of the
origin of the loop ∂F . Indeed, changing the origin of ∂F alters h(∂F ) by conjugating it in G,
and this does not change the value of Qt. The following expression is thus well defined :

(74) YMG(dh) =
∏

F∈Fb

Q|F |(h(∂F )) dh.

This is indeed a probability measure, as one verifies by successively integrating over all edges using
the convolution property of the heat kernel, according to which

∫
GQt(xy

−1)Qs(y) dy = Qt+s(x),
and finally the fact that

∫
GQt(x) dx = 1. Note that the product in this definition is over the set

of bounded faces of G. In fact, Qt converges uniformly and exponentially fast to 1 as t tends to
infinity, and we could just as well include the unbounded face in the product, provided we make
the very natural convention Q∞ = 1.

With this definition, the Borel probability space (CG,YMG) is essentially the canonical space
of the stochastic process (Hc)c∈P(G), which is defined simply by Hc(h) = h(c) for all c ∈ P(G).
The fact that we are working with multiplicative functions implies that the stochastic process
H is trajectorially multiplicative. This means that if c1 and c2 can be concatenated, then the
functions Hc1Hc2 and Hc2c1 : CG → G are the same.

To conclude this section, let us observe that in the definition (74), the Lebesgue measure,
which is used to define the area of each bounded face of the graph, could be replaced by an
arbitrary Borel measure on R

2, again with the convention Q∞ = 1. In Section 6, we shall use
this possibility of replacing the Lebesgue measure by a measure which has a smooth positive
density with respect to it.

4.2. Continuous Yang-Mills field. The single most important property of the discrete Yang-
Mills field is that it is consistent with respect to the subdivision, or refinement, of the underlying
graph. The meaning of this assertion is the following. If G1 and G2 are two graphs, we say that
G2 is finer that G1 if P(G1) is a subset of P(G2). In this case, there is a natural mapping of
restriction M(P(G2), G) → M(P(G1), G) and the invariance of the Yang-Mills measure under
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refinement of the graph is the fact that the image of the measure YMG2 under this mapping is
YMG1 .

The practical consequence of this invariance is that if a certain set P of paths belongs to P(G1)
and P(G2) for two graphs G1 and G2 such that one is finer than the other, then the distribution
of the family of random variables (Hc)c∈P is the same when computed under YMG1 or under
YMG2 . The same conclusion holds if G1 and G2 are both finer than a third graph. Unfortunately,
such a third graph does not always exist.

The invariance under subdivision also allows one to take an inverse limit of the discrete con-
struction which we have recalled as the graphs become arbitrarily fine. However, the fact that
for two arbitrary graphs there does not always exist a third graph which is finer than both of
them spoils the projective structure of the set of graphs and forces the use of an approxima-
tion procedure in the construction of the Yang-Mills field. It is thus necessary to consider an
appropriate topology on the set of paths, which we now describe.

Let c1 and c2 be two paths. We denote by ℓ(c1) and ℓ(c2) respectively the lengths of c1 and
c2. The uniform distance between c1 and c2 is d∞(c1, c2) = infϕ1,ϕ2 sup{|c1(ϕ1(t))− c2(ϕ2(t))| :
t ∈ [0, 1]}, where the infimum is taken over all pairs of increasing bi-Lipschitz homeomorphisms
of [0, 1]. We define two distances between c1 and c2 by setting

d1(c1, c2) = |c1(0)− c2(0)|+

∫ 1

0
|ċ1(t)− ċ2(t)| dt

and
dℓ(c1, c2) = d∞(c1, c2) + |ℓ(c1)− ℓ(c2)|.

The first distance is the distance in 1-variation and the second we call the length distance.
Although the first is complete on P(R2) and the second is not, it can be shown that these
distances determine the same topology. We thus simply speak of convergence of paths, without
mentioning a distance. We shall frequently use the notion of convergence with fixed endpoints of
a sequence of paths, where all the paths of the sequence are required to have the same endpoints
as the limiting path.

The main theorem is the following.

Theorem 4.1. There exists on the space M(P(R2), G) endowed with the cylinder σ-algebra a
unique probability measure YMG such that the following two properties are satisfied.

1. For all graph G = (V,E,F), the family of random variables (Hc)c∈P(G) has the same

distribution under YMG as under YMG
G.

2. For all path c ∈ P(R2) and all sequence (cn)n≥1 of paths converging with fixed endpoints to
c, the sequence (Hcn)n≥1 converges in probability to Hc.

In [26], this theorem is proved on a compact Riemannian surface rather than on the plane R
2.

The proof is however valid without any modification.

4.3. The group of loops in a graph. In the next section, we shall undertake the proof of
the central result of the second part of this work, which asserts the existence of a limit for the
Yang-Mills process on the plane when the group G is one of the groups U(N,K) which we have
considered earlier and when N tends to infinity.

In a first step, we shall study the large N limit of the discrete Yang-Mills measure associated
with a graph on the plane, using a very explicit description of this measure in terms of a collection
of independent random matrices, some uniform and some distributed according to the heat kernel
measure. In preparation for this, we need to understand fairly concretely the structure of the
set of paths and loops on the graph G, and this is what we explain now. What we have to say
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in the present section is still valid for any compact connected Lie group G. The details of what
is explained below can be found in [26, Sec. 2.4].

Let G be a graph on R
2. There is a very natural equivalence relation on the set P(G), which

declares two paths equivalent if one can transform one into the other by a finite sequence of
insertions or erasures of paths of the form ee−1, where e is an edge. For example, the paths
e0e1e2e3e

−1
3 e−1

2 and e0e
−1
2 e2e1e3e

−1
4 e4e

−1
3 are equivalent. One proves that in each equivalence

class for this relation there is a unique path of shortest combinatorial length, that is, a unique
path which traverses a minimal number of edges. It is characterised by the fact that it is reduced,
which means that it does not contain any sub-path of the form ee−1. In the example above,
none of the two paths are reduced, and the unique reduced path to which they are equivalent
is e0e1. The equivalence relation thus defined preserves the endpoints and is compatible with
concatenation. For all vertex v ∈ V, the quotient of the set of loops Lv(G) based at v by this
equivalence relation becomes a group for the operation of concatenation. The unit element is the
class of the constant loop at v. Equivalently, one can consider the set RLv(G) of reduced loops
based at v, endowed with the operation of concatenation-reduction.

If v and w are two vertices of G, and if c is a path in G which joins v to w, then the mapping
l 7→ clc−1 induces an isomorphism of groups between RLw(G) and RLv(G). A crucial fact is that
for all v ∈ V, the group RLv(G) is a free group of rank equal to the number of bounded faces
of G. It is a very useful fact for the purposes of the discrete Yang-Mills theory that this group
possesses bases, indeed many bases, which are naturally indexed by the bounded faces of G. Let
us explain how to associate such a basis to each choice of a spanning tree of G, or rather of its
dual graph.

The dual graph of G is a graph which is not exactly of the same nature as G insofar its edges are
not concretely embedded in the plane. Technically, it is a rooted ribbon graph. It is a quadruple
Ĝ = (V̂, Ê, s, t), where V̂ = F is the set of faces of G, Ê is the set of triples (F0, e, F1) ∈ F×E×F

such that the edge e bounds F0 positively and F1 negatively, and s, t : Ê → V̂ are the two
mappings defined by s(F0, e, F1) = F0 and t(F0, e, F1) = F1. We call respectively the elements of
V̂ and Ê dual vertices and dual edges. Each edge e appears in a unique dual edge (F0, e, F1) which
we denote by ê. We define the inverse of the dual edge ê = (F0, e, F1) by ê−1 = (F1, e

−1, F0), so

that ê−1 = ê−1. Observe that the equality F0 = F1 is not excluded.
The unbounded face of G determines a particular dual vertex which we denote by v̂∞ and call

the dual root. For each dual vertex v̂ ∈ V̂, there is a cyclic order on the set {ê ∈ Ê : s(ê) = v̂}
of dual edges issued from this dual vertex, which is the order of the corresponding edges in the
positively oriented boundary of the corresponding face of G. Note that the boundary of the
unbounded face runs clockwise around the skeleton of the graph. Among all the dual edges
issued from the dual root, we select one and, breaking the cyclic order, call it the first edge
issued from v̂∞ (see Figure 9).

In order to construct a basis of the group of loops, we choose a spanning tree of Ĝ, that is,
a subset T̂ ⊂ Ê which is the set of edges, taken each with both orientations, of a connected
subgraph of Ĝ without cycle and which contains every vertex. The choice of the spanning tree
T̂, the order structure at each vertex and the total order on the edges issued from the dual root
determine for each vertex of T̂, that is, for each face of G, a label which is a word of integers : the
empty word for the dual root, a single integer for its neighbours, two integers for their neighbours
other than the dual root, and so on. Thus, listing the dual vertices in the lexicographical order
amounts to listing them in the order of first discovery by an explorer of the tree who starts from
the root and walks along the tree, keeping it on its left hand side.
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v̂∞ = ∅

1

2

212112112

2111

21111

21112

Figure 9. A graph and its dual. The white vertices are the dual vertices and the
dotted lines are the dual edges. The edge carrying an arrow is the first edge issued from
the root. The heavier edges are those of the spanning trees.

The set T = {e : ê /∈ T̂} is a spanning tree of G itself. Note that it is equivalent to choose T̂

or T first, as each of them completely determines the other. For any two vertices v, w of G, we
denote by [v, w]T the unique reduced path which goes from v to w using only edges of T.

Let v0 ∈ V be a vertex. To each bounded face of G we associate a loop based at v0 as follows.
Let F be a face, which we see as a dual vertex. Consider the dual edge ê of T̂ which starts from
this dual vertex in the direction of the dual root. Among all the vertices located on the boundary
of F , we distinguish the starting point of the edge e, which is directly on the right of the dual
edge ê. We define the loop λF as the loop obtained by reducing the loop which starts from v0,
goes along T to the distinguished vertex on the boundary of F , turns once positively around F
and goes back to v0 along the same path (see Figure 10).

∅
2111

v0

∅
2111

v0

Figure 10. The basis element of RLv0(G) associated with the face 2111 of the graph
of Figure 9. The distinguished vertex on the boundary of this face is indicated with a

square.

The following result summarises and completes our discussion.
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Proposition 4.2. Let G be a graph with dual graph Ĝ.

1. Spanning trees of G are in one-to-one correspondence with spanning trees of Ĝ, by the

formulas T = {e : ê /∈ T̂} and T̂ = {ê : e /∈ T}.

Let v0 be a vertex of G. Assume that an edge issued from the dual root has been chosen in Ĝ.
2. For all spanning tree T of G, the collection of loops ΛT = {λF : F ∈ F

b} constructed as
above is a basis of the free group RLv0(G).

3. For any path c in G, there exists a unique sequence of faces F1, . . . , Fn ∈ F
b and a unique

sequence of signs ε1, . . . εn ∈ {−1, 1}, of the same length, possibly empty and such that for all
k ∈ {1, . . . , n − 1} one has Fk 6= Fk+1 or εk = εk+1, such that c is equivalent to the path
[c, v0]Tλ

ε1
F1
. . . λεnFn

[v0, c]T.

We shall call lassos the loops of the form λF , and lasso basis associated to T or to T̂ the basis
ΛT, which we also denote by Λ

T̂
.

We are thus able to write any path as a word in a certain alphabet of elementary paths. The
number of these elementary paths is the number of edges of a spanning tree plus the number of
bounded faces. Let us denote by v, e, f the numbers of vertices, unoriented edges and bounded
faces of G. Here, by the number of unoriented edges, we mean the half of the number of elements
of E. There are v− 1 unoriented edges in T, so that the number of elementary paths is v+ f − 1.
On the other hand, Euler’s relation for G reads v − e + f = 1, hence v + f − 1 is the number of
edges of G. Let us choose an orientation E

+ of the edges of G and set T+ = T ∩ E
+. We can

add a new identification

(75) M(P(G), G) ≃ GE+
≃ GΛT ×GT+

to the row (73). The last isomorphism may be fairly complicated and it essentially encodes the
geometry of the graph (see Figure 11 for an example).

e1

e2

e3

e4

e5

e6

Figure 11. In this example, the last identification of (75) is the following :

(g1, g2, g3, g4, g5, g6) 7→ (g−1
4 g−1

5 g1, g
−1
4 g−1

6 g2g5g6, g3g6g4, g2, g3, g4).

It may be an instructive exercise to compute its inverse.

The interest of the last description of the configuration space of the discrete Yang-Mills theory
is that it allows a very pleasant description of the probability measure YMG

G.
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Proposition 4.3. Under the identification M(P(G), G) ≃ GΛT ×GT+
, the discrete Yang-Mills

measure YMG
G corresponds to the measure

⊗

F∈Fb

Q|F |(g) dg ⊗
⊗

e∈T+

dg.

In other words, under YMG
G, the random variables {HλF

: F ∈ F
b} ∪ {He : e ∈ T+} are indepen-

dent, each HλF
distributed according to the heat kernel measure at time |F | on G and each He

distributed according to the Haar measure on G.

With this description in hand, we can safely turn to the study of the large N limit of the
Yang-Mills field.

5. The master field on the plane

As announced at the beginning of the previous section, we turn to the proof of the main
result of the second part of this work, indeed the main motivation for this whole work. Our
goal is to describe the large N limit of the Yang-Mills field with structure group U(N,K) for
K ∈ {R,C,H}.

The study of this limit follows the construction of the field itself. We shall start by applying
the results of Section 2 to the discrete theory, on a graph ; then take an easy step and assemble
the results for a large family of graphs in order to be able to treat all piecewise affine loops at
once ; and finally, apply the results of Section 3 in order to tackle the approximation procedure
involved in the construction of the Yang-Mills field, and succeed in obtaining the limit for all
rectifiable loops.

5.1. Large N limit of the Yang-Mills field on a graph. Let us choose one of the three
division algebras R,C,H and denote it by K, as we did in the first part. For each N ≥ 1, let
us consider the Yang-Mills field on R

2 with structure group U(N,K), associated with the scalar
product given by (7). We denote by (HK

N,c)c∈P(R2) the corresponding process.

For each N ≥ 1, the random variables (HK
N,c)c∈P(G) form a family of non-commutative random

variables in the non-commutative probability space (L∞(CG

U(N,K),YM
G

U(N,K))⊗MN (K),E⊗ tr),
where tr must be replaced by ℜtr when K = H. When K = R or K = H, this is a real non-
commutative probability space, in the sense described just before the statement of Theorem 3.2.
The convergence result in the discrete setting is the following. Recall that a unitary element u
of a non-commutative probability space (A, τ) is said to be a Haar unitary if τ(un) = δn,0 for all
n ∈ Z.

Theorem 5.1. Let G be a graph. The collection of random matrices {HK
N,c : c ∈ P(G)} has

a limit in non-commutative distribution as N tends to infinity. This limit can be described as
follows.

Let v0 be a vertex of G. Let T be a spanning tree of G and {λF : F ∈ F
b} the corresponding

lasso basis of RLv0(G). Let (A, τ) be a non-commutative probability space such that A contains
a free family of unitary elements {hλF

: F ∈ F
b} ∪ {he : e ∈ T+} such that for each F ∈ F

b,
the distribution of hλF

is ν|F | and for each e ∈ T+, the element he is a Haar unitary. Then,

as N tends to infinity, the random variables {HK

N,λF
: F ∈ F

b} ∪ {HK
N,e : e ∈ T+} converge in

non-commutative distribution to {hλF
: F ∈ F

b} ∪ {he : e ∈ T+}.

Proof. The second part of the theorem is a direct consequence of Proposition 4.3 and the results
of asymptotic freeness which we recalled in Section 3.1. The first part of the theorem follows
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since, by the third part of Proposition 4.2, any path in G can be written as a word in the edges
of T+ and the lassos λF , F ∈ F

b. �

Theorem 5.1 provides us with the distribution of a family {hλF
: F ∈ F

b} ∪ {he : e ∈ T+} of
non-commutative random variables, from which we can form a family {hc : c ∈ P(G)} by using
the fact that the set of equivalence classes of paths in P(G) is generated as a groupoid by ΛT∪T

+.
Concretely, this means that each hc is a certain word in the variables {hλF

: F ∈ F
b} ∪ {he :

e ∈ T+}. The canonical space of the family {hc : c ∈ P(G)} is, as explained in Section 3.1, the
algebra of non-commutative polynomials C〈Xc, X

−1
c : c ∈ P(G)〉 endowed with the linear form

(76) τ(Xε1
c1 . . . X

εn
cn ) = lim

N→∞
E

[
tr
(
(HC

N,c1)
ε1 . . . (HC

N,cn)
εn
)]
,

for all c1, . . . , cn ∈ P(G) and all ε1, . . . , εn ∈ {−1, 1}.
In proceeding this way, we are however oblivious of the multiplicativity of the family {hc :

c ∈ P(G)}, that is, of the fact that hc1c2 = hc2hc1 whenever this makes sense. To the cost of
reducing the family of paths to the set of loops based at a certain vertex, or better, to the group
of reduced loops based at this vertex, we can gain a much nicer formulation. This restriction on
the set of paths is not a severe one, since hc is always a Haar unitary if c has distinct endpoints,
and the collection {hl : l ∈ RLv1(G)} is conjugated to the collection {hl : l ∈ RLv0(G)} for all
vertices v0, v1.

Let us choose a vertex v0 and consider the complex unital algebra C[RLv0(G)] endowed with
the usual involution for the algebra of a group, namely the involution given by

( ∑

l∈RLv0 (G)

λll

)∗

=
∑

l∈RLv0 (G)

λll
−1.

For each N ≥ 1 and each K ∈ {R,C,H}, let us define a linear form ΦG,K
N on C[RLv0(G)] by

setting, for all l ∈ RLv0(G),

ΦG,K
N (l) = E

[
tr
(
HK

N,l

)]
,

with tr replaced by ℜtr if K = H. Finally, let us define the collection {hl : l ∈ Lv0(G)} of
elements of C[RLv0(G)] by letting hl be equal to the unique reduced loop equivalent to l.

We can reformulate the convergence expressed by Theorem 5.1 as follows.

Proposition 5.2. Let G be a graph. Let v0 be a vertex of G. On the complex unital involutive

algebra C[RLv0(G)], the sequence of linear forms (ΦG,K
N )N≥1 converges pointwise to a linear form

ΦG which is a state.
Moreover, as N tends to infinity, and regardless of the value of K, the collection of random

matrices (HK

N,l)l∈Lv0 (G) converges in non-commutative distribution to the family (hl)l∈Lv0 (G).

Proof. Both assertions are straightforward consequences of Theorem 5.1. For the second, we
need only add that for all K and all N ≥ 1, and all loops l1, l2 which are equivalent, one has the
equality of random variables HK

N,l1
= HK

N,l2
. �

The state ΦG on the involutive algebra C[RLv0(G)] is the discrete counterpart of what we shall
call the master field on the plane.

5.2. Large N limit for piecewise affine loops. Having understood the large N limit of the
theory on a graph, it is easy to go one step beyond and to consider several graphs at once. As
in the construction of the Yang-Mills field itself, we can however not consider all graphs at once
but we must restrict ourselves to a class of graphs where any two graphs are dominated in the
partial order of fineness by a third one. Graphs with piecewise affine edges are such a class.
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Consider two graphs G1 and G2 such that G2 is finer than G1. Let v0 be a vertex of G1, hence
of G2. The inclusion L(G1) ⊂ L(G2) is of course compatible with the equivalence of paths, for
two loops in G1 which are equivalent in G1 are also equivalent in G2.

Lemma 5.3. Consider two graphs G1 and G2 such that G2 is finer than G1. If two elements of
L(G1) are equivalent in L(G2), then they are equivalent in L(G1).

Proof. It suffices to show that if a loop traced in G1 is not reduced in L(G2), it is not reduced
in L(G1) either. Let l ∈ L(G1) which is not reduced in L(G2). Thus, the decomposition of l as
a product of edges contains a sequence of the form ee−1. The final point of e must be a vertex
of G1, otherwise l could not backtrack at this point. Hence, e is the last segment in G2 of a
well-determined edge e′ of G1, and the decomposition of l as a product of edged of G1 must
contain the sequence e′e′−1. �

According to this lemma, we have an inclusion RLv0(G1) ⊂ RLv0(G2). The invariance under
refinement of the Yang-Mills measure can be expressed by saying that this inclusion is compatible
with the states ΦG1,K

N and ΦG2,K
N .

Note that a consequence of Lemma 5.3 is that any loop which can be traced in a graph has
a unique reduced representant, which is defined independently of the choice of a graph in which
the loop is traced. This is in particular the case for piecewise affine loops.

The collection of graphs with piecewise affine edges and which have the origin as a vertex,
ordered by the relation of fineness, is a directed set. The direct limit of the groups RL0(G) along
this directed set is naturally isomorphic to the group RAff0(R

2) of piecewise affine reduced loops
based at the origin, endowed with the operation of concatenation-reduction.

Thus, the direct limit of the family of non-commutative probability spaces (C[RL0(G)],ΦG,K
N )

along the set of graphs with piecewise affine edges and the origin as a vertex is the non-
commutative probability space (C[RAff0(R

2)],ΦAff,K
N ), where ΦAff,K

N is defined by

∀l ∈ RAff0(G), ΦAff,K
N (l) = E

[
tr
(
HK

N,l

)]
,

where as usual tr must be replaced by ℜtr if K = H.
The following result is still a consequence of Theorem 5.1. We denote by Aff0(R

2) the set of
piecewise affine loops on R

2 based at the origin.

Theorem 5.4. On the algebra C[RAff0(R
2)], regardless of K, the sequence of states (ΦAff,K

N )N≥1

converges pointwise to a state ΦAff .
Define the collection {hl : l ∈ Aff0(R

2)} of random variables on (C[RAff0(R
2)],ΦAff) by setting

hl equal to the unique reduced loop equivalent to l, seen as an element of C[RAff0(R
2)]. As N tends

to infinity, and regardless of the value of K, the collection of random matrices (HK

N,l)l∈Aff0(R2)

converges in non-commutative distribution to the family (hl)l∈Aff0(R2).

In their recent work [1], M. Anshelevitch and A. Sengupta prove a theorem similar to Theorem
5.4, and provide a model for the limiting distribution which is in a sense more natural than ours.
The authors consider a slightly different class of paths, which they call basic loops, and which are
finite concatenations of radial segments and paths which can be parametrised in polar coordinates
under the form θ 7→ (r(θ), θ). In the context of axial gauge fixing in which they work, this class
of paths plays essentially the role of our class of piecewise affine edges. Using free stochastic
calculus, the authors achieve the construction of a free process indexed by the set of basic loops
on the algebra of bounded operators on the full Fock space on L2(R2) ⊗ u(N). This is in very
suggestive agreement with the informal description of the Yang-Mills measure by means of a
functional integral, which through an appropriate choice of gauge, becomes a Gaussian measure
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on the Hilbert space L2(R2) ⊗ u(N). The transition from a commutative Gaussian setting to
a non-commutative semi-circular setting is thus naturally reflected in the transition from the
symmetric Fock space to the full Fock space, although the former usually stays hidden behind
the probabilistically more amenable white noise. M. Anshelevitch and A. Sengupta worked with
the unitary group, but given the results of Section 2 of the present work, it should be possible
to extended their results to the orthogonal and symplectic cases.

5.3. Uniformity of the convergence towards the master field (statement). The proof of
Theorem 5.1, from which we have now exhausted the algebraic consequences, consists in blending
the notion of freeness with a combinatorial description of the set of paths in a graph. We are
now going to enter more deeply into the convergence that it expresses, in order to prove that
this convergence has a property of uniformity on sets of paths with bounded length. This is the
crucial result which will allow us to take the last step in the construction of the master field and
extend the state ΦAff to an algebra constructed from all rectifiable loops.

Not all Lipschitz continuous paths belong to P(G) for some graph G. Indeed, the complement
of the range of a path in a graph must have finitely many connected components and this is
not always the case for a path with finite length. On the other hand, any piecewise affine path
belongs to P(G) for some graph G. Moreover, the set of piecewise affine paths is large enough
to be dense in the set of all paths for the topology that we have introduced in Section 4.2.

It will however be convenient to consider a slightly more restricted class of loops. Let us call
elementary loop a loop which can be traced in a graph with affine edges, using at most once an
edge of each pair {e, e−1}. We denote by EL(R2) as the set of elementary loops. Elementary
loops are in particular piecewise affine, and reduced in any graph where they are traced.

Recall that we denote the Euclidean length of a loop l by ℓ(l). Our main result of uniformity
is the following.

Theorem 5.5. Let l be an elementary loop. Let G a graph such that l ∈ L(G). Then, for all K
and all N ≥ 1, one has the inequalities∣∣∣∣E[tr(HK

N,l)]− lim
N→∞

E[tr(HK

N,l)]

∣∣∣∣ =
∣∣∣ΦAff,K

N (l)− ΦAff(l)
∣∣∣ ≤ 1

N
ℓ(l)2eℓ(l)

2

and

Var(tr(HK

N,l)) ≤
1

N
ℓ(l)2eℓ(l)

2
,

where tr must be replaced by ℜtr if K = H. Moreover, when K = C, the inequalities hold with
the factor 1

N replaced by 1
N2 .

This result will be deduced from the main result of the first part of the present work, which
is Theorem 3.3. We know from Proposition 4.2 that a loop in a graph can be expressed as a
word in certain paths and loops in this graph, essentially one loop for each bounded face. To
each of these faces is associated an independent random element of U(N,K) and we are thus in a
situation where Theorem 3.3 provides us with an explicit estimate. However, we need to bound
the Amperean area of the word involved in terms of the loop which we consider. The main step
of the proof of Theorem 5.5 consists in proving that the length of the loop allows us to control
the Amperean area of the word.

5.4. Maximal Amperean area. In this paragraph, we prove a quantitative version of Propo-
sition 4.2 by establishing that a loop in a graph can be written as a word in the facial lassos
of this graph in such a way that the Amperean area of the word is controlled by the length of
the loop (see Proposition 5.8). To this end, we introduce a third quantity which we call the
maximal Amperean area of the loop, which allows us to relate the two quantities which we want
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to compare. We start by defining the maximal Amperean area of a loop and comparing it to its
length.

Let l be a loop traced in a graph G. Consider the edges of G traversed by l. Since the range
of l is connected, these edges and their inverses form a graph. Indeed, looking back in Section
4.1 at the definition of a graph, we see that the only condition which is not obviously satisfied
is the topological condition on the faces, which was then called assumption 4, but of which we
mentioned already that it is equivalent to the fact that the skeleton of the graph is connected. We
denote this graph by G(l). Let us make the additional assumption that l is an elementary loop.
Then each vertex of G(l) has even degree, that is, each vertex is adjacent to an even number of
pairs {e, e−1} of edges. In what follows, we will often identify the loop l with its range.

Recall that the winding number of l is the function nl : R
2 \ l → Z defined on the complement

of l and which to each point x ∈ R
2 associates the index of l with respect to x. It is integer-

valued, locally constant outside the range of l, and it has compact support. The Banchoff-Pohl
inequality (see [3]), which generalises the isoperimetric inequality in this context, reads∫

R2

nl(x)
2 dx ≤

1

4π
ℓ(l)2.

The left-hand side of this inequality is sometimes called the Amperean area of the loop l, and
we shall denote it by A(l). It can be understood as the energy of the magnetic field induced by
a unit current flowing along l.

Let us introduce another integer-valued function n̄l : R
2 \ l → N, this time with non-negative

values. In words, for all x ∈ R
2 \ l, n̄l(x) is the minimal number of crossings between a path

which joins x to infinity and the loop l. Formally, let us consider the dual graph of the graph
G(l). Recall that Ĝ(l) has a distinguished vertex v̂∞ which corresponds to the unbounded face

of R2 \ l. We define, for all x ∈ R
2 \ l, the dual vertex v̂(x) as the vertex of Ĝ(l) corresponding

to the face of G which contains x. Finally, we denote by d̂ the graph distance in Ĝ(l). We define
the function n̄l by setting

∀x ∈ R
2 \ l, n̄l(x) = d̂(v̂(x), v̂∞).

We call the function n̄l the maximal winding number of l. Note that it depends on l only through
G(l), and in particular not on the direction in which l traverses the edges of G(l). The maximal
Amperean area of l, denoted by Ā(l), is defined by replacing nl by n̄l is the definition of the
Amperean area:

(77) Ā(l) =

∫

R2

n̄l(x)
2 dx.

For our purposes, the first main property of the maximal Amperean area is the following.

Proposition 5.6. The maximal Amperean area of an elementary loop satisfies the Banchoff-Pohl
inequality. By this we mean that for all l ∈ EL(R2),

Ā(l) ≤
1

4π
ℓ(l)2.

This proposition follows at once from the following result, which explains the name of the
maximal Amperean area.

Lemma 5.7. Let l ∈ EL(R2) be an elementary loop.
1. The inequality |nl| ≤ n̄l holds on R

2 \ l. In particular, A(l) ≤ Ā(l).
2. There exists l̄ ∈ EL(R2) with the same range and length as l such that nl̄ = n̄l.

That this lemma implies Proposition 5.6 is straightforward. Indeed, if l is an elementary loop
and l̄ is given by the second assertion of this lemma, then Ā(l) = A(l̄) ≤ 1

4π ℓ(l̄)
2 = 1

4π ℓ(l)
2.



THE MASTER FIELD ON THE PLANE 53

Proof. 1. Consider an edge of G(l). Since the faces located on either side of this edge correspond

to neighbouring vertices in the dual graph Ĝ(l), the values of n̄l = d̂(·, v̂∞) on both sides of this
edge are equal or differ by 1. Let us start by proving that they cannot be equal.

Since the loop l is elementary, it traverses each edge exactly once. Hence, the value of the
winding number nl changes by 1 or −1 when one crosses an edge. The set of vertices of the
graph Ĝ(l) can be partitioned according to the parity of the value of nl and we shall speak of
even and odd vertices. This partition is a bipartition in the sense that any two neighbours have
different parities. The dual root v̂∞ is an even vertex. Hence, the parity of any vertex v̂ is that
of d̂(v̂, v̂∞). If two neighbours were to have the same distance to v̂∞, they would also have the
same parity and this is impossible. Hence, n̄l cannot take the same value on two faces which
share a bounding edge.

Let us use this observation to prove the first assertion. Consider x ∈ R
2 \ l. Choose a shortest

path from v̂∞ to v̂(x) in Ĝ(l). At each step of this path, nl varies by ±1, and n̄l increases by 1.
The conclusion follows immediately, as well as the second part of the first assertion.

2. We look for l̄ as a Eulerian circuit in G(l), that is, a cycle which traverses exactly once each
edge. Let us start by proving that the direction in which each edge should be traversed by l̄ is
determined by n̄l. Consider an edge of G(l). We have proved that the values of n̄l on both sides
of this edge differ by 1. If nl̄ is to be equal to n̄l, then l̄ must traverse this edge in such a way
that the largest value of n̄l is on its left-hand side. Thus, each edge of G(l) carries an orientation
which is the direction in which l̄ must traverse it in order to have the desired properties. We
claim that there are, at each vertex of G(l), as many incoming edges as there are outcoming ones.
Indeed, the values of n̄l around each vertex read in cyclic order form a sequence of integers which
jumps by 1 or −1 and comes back to its initial point. Thus, there must be an equal number of
rises and falls, which correspond respectively to incoming and outgoing edges.

We use now the classical fact that a directed graph in which each vertex has equal incoming
and outcoming degrees carries a Eulerian circuit, that is, a loop which traverses each edge exactly
once, and does so in the direction given by the orientation of the edge. We choose one of these
circuits and call it l̄. It is a loop with the same length as l. The functions nl̄ and n̄l are both
integer-valued, locally constant on the complement of l, equal to 0 at infinity, and both vary by
1 or −1 in the same way across each edge of G(l). Hence, they are equal. �

We now turn to the main result of this section, which is the following.

Proposition 5.8. Let l be an elementary loop. Let v0 be the base point of l. Let F1, . . . , Fq be
the bounded faces of G(l). Let t = (|F1|, . . . , |Fq|) be the vector of the areas of these faces.

It is possible to choose a spanning tree T of G(l) in such a way that, denoting by {λF : F ∈
F
b(l)} the lasso basis of RLv0(G(l)) determined by the choice of T, and by w the unique element

of the free group on q letters such that l = w(λF1 , . . . , λFq), one has the inequality

Āt(w) ≤
1

4π
ℓ(l)2.

The crucial step in the proof of this result is given by the next proposition. Recall from (47)
the definition of the Amperean area of w relative to t, denoted by Āt(w).

Proposition 5.9. With the notation of Proposition 5.8, it is possible to choose the spanning tree
T of G(l) in such a way that the inequality

Āt(w) ≤ Ā(l)

holds.
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Let us for one minute take this assertion for granted and see how it implies Proposition 5.8.

Proof of Proposition 5.8. By Proposition 5.9, one can choose the basis of RLv0(G(l)) in such a
way that Āt(w) ≤ Ā(l). On the other hand, by Proposition 5.6, Ā(l) ≤ 1

4π ℓ(l)
2. �

It remains to prove Proposition 5.9. Rather than choosing a spanning tree of G(l), we will

in fact choose a spanning tree T̂ of the dual graph Ĝ(l). Given such a spanning tree T̂, define,
for each dual vertex v̂, the integer d̂

T̂
(v̂, v̂∞) as the graph distance between v̂ and v̂∞ in T̂, also

called the height of v̂ in T̂. The inequality d̂(v̂, v̂∞) ≤ d̂
T̂
(v̂, v̂∞) holds for all v̂. We claim that

T̂ can be chosen in such a way that it is an equality. This is in fact a perfectly general property
of any finite graph.

Lemma 5.10. There exists a spanning tree T̂ such that, for all dual vertex v̂ of Ĝ(l), the equality

d̂(v̂, v̂∞) = d̂
T̂
(v̂, v̂∞) holds.

Proof. Construct T̂ by choosing, for each dual vertex different from v̂∞, one edge which joins this
vertex to a vertex which is strictly closer from v̂∞. The subgraph thus obtained is connected,
for each vertex is joined to the dual root. It has one vertex more than it has edges, it is thus a
tree. It is a spanning tree by construction. �

We can now finish the proof of Proposition 5.9.

Proof of Proposition 5.9. Let T̂ be a spanning tree of Ĝ(l) such that d̂ = d̂
T̂
. Such a spanning

tree exists by Lemma 5.10. Let v0 be the base point of l. Let {λF : F ∈ F
b(l)} be the basis of

RLv0(G(l)) determined by T̂, according to Proposition 4.2. Assume that the bounded faces of
G(l) are labelled {F1, . . . , Fq}. Let w be the element of Fq such that l = w(λF1 , . . . , λFq).

In order to bound the Amperean area of w, we need to understand as concretely as possible
how the loop l is decomposed as a word in the lassos λF1 , . . . , λFq . This decomposition can

be computed in two steps. For the first step, T = {e : ê /∈ T̂} be the spanning tree of G(l)

determined by T̂. Let us record the ordered list of edges which are traversed by l and which
do not belong to T. We find a finite list e1, . . . , en of edges, which contains neither repetitions
nor two edges which are each other’s inverse, because the loop l is elementary. The loop l is
equivalent, in the sense of Section 4.3, to the loop

(
[v0, e1]Te1[e1, v0]T

)
. . .
(
[v0, en]Ten[en, v0]T

)
.

Although in some particular cases this may happen to be true, this decomposition is not in general
the decomposition of l in product of facial lassos. Rather, each loop [v0, em]Tem[em, v0]T is a
product of some of the lassos λF1 , . . . , λFq , which fortunately can be described easily. Each lasso
appears at most once in the decomposition of [v0, em]Tem[em, v0]T, possibly with an exponent
−1, and the lassos which appear are exactly those which correspond to the faces of G(l) which
are separated in T̂ from the unbounded face by êm. These faces appear in an order which does
not really matter to us, but which is the order of discovery for a certain exploration of the subtree
of T̂ located above êm. This is explained in greater detail in [26, Sec. 2.4].

The essential fact is, again, that a lasso λF appears, with exponent 1 or −1, in the decompo-
sition of the loop [v0, em]Tem[em, v0]T if and only if the edge êm separates the faces F and F∞

in the tree T̂. Hence, in the decomposition of l, and taking possible cancellations into account,
a given lasso λF appears at most as many times as there are edges separating F from F∞ in
the tree T̂, that is, by definition, d̂

T̂
(F, F∞) times. By the choice of T̂ , this number is equal to
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d̂(F, F∞), that is, by definition, the value of n̄l on F . Hence, the Amperean area of w satisfies
Āt(w) ≤

∑q
i=1 |Fi|n̄l(Fi)

2 = Ā(l). �

5.5. Uniformity of the convergence towards the master field (proof). We can finally
prove the result of uniform convergence of the expected trace of the Yang-Mills field towards its
limit on sets of elementary loops of bounded length.

Proof of Theorem 5.5. Let l be an elementary loop. We use the notation of Proposition 5.8. The
law of the random variable HK

N,l does not depend on the graph in which it is computed. We can
thus choose the graph G(l) which the loop l itself forms. We choose a basis of RLv0(G(l)) in
which the conclusion of Proposition 5.8 holds.

On one hand, thanks to Proposition 4.3, we have∣∣∣E[tr(HK

N,l)]− ΦAff(l)
∣∣∣ = |τK,N

t (w)− τt(w)|.

It is understood, as usual, that in the quaternionic case, tr has to be replaced by ℜtr. On the
other hand, by Proposition 3.3,

∣∣τK,N

t (w)− τt(w)
∣∣ ≤ 1

N
Āt(w)e

Āt(w),

where 1
N can be replaced by 1

N2 if K = C.
The basis of RLv0(G(l)) has been chosen in such a way that Āt(w) ≤

1
4π ℓ(l)

2. Thus, we find
∣∣∣E[tr(HK

N,l)]− ΦAff(l)
∣∣∣ ≤ 1

4πN
ℓ(l)2e

1
4π

ℓ(l)2 ,

which is slightly better than the expected inequality.
Let us turn to the second inequality. We are going to apply Proposition 3.4 with a permutation

which is not a single cycle. Let r denote the length of the word w. Let us apply Proposition 3.4
to the word w2 and to the permutation σ = (1 . . . r)(r + 1 . . . 2r). With this notation, we have
pK,N

t (w2, σ) = E[tr(HN (l))2], or E[ℜtr(HN (l))2] if K = H. We also have pt(w2, σ) = τ(hl)
2. The

Amperean area of w2 satisfies Āt(w
2) = 4Āt(w). Hence,

∣∣∣E
[
tr(HK

N,l)
2
]
− ΦAff(l)2

∣∣∣ ≤ 4

N
Āt(w)e

4Āt(w) ≤
1

πN
ℓ(l)2eℓ(l)

2
.

Since |E[tr(HN,l)]| ≤ 1 and
∣∣ΦAff(l)

∣∣ ≤ 1, we deduce from this inequality that
∣∣∣E
[
tr(HK

N,l)
2
]
− E[tr(HK

N,l)]
2
∣∣∣ ≤

∣∣∣E
[
tr(HK

N,l)
2
]
− ΦAff(l)2

∣∣∣+ 2|E[tr(HK

N,l)]− ΦAff(l)|

≤
1

N
ℓ(l)2eℓ(l)

2

(
1

π
+

1

2π

)

≤
1

N
ℓ(l)2eℓ(l)

2
,

as desired. Here as in the first inequality, the factor 1
N can be replaced by 1

N2 when K = C. �

5.6. The distribution of the master field. The situation so far is the following. We have
three classes of loops, each containing the next : loops, piecewise affine loops and elementary
loops, so that EL(R2) ⊂ Aff(R2) ⊂ L(R2). A division algebra K ∈ {R,C,H} being fixed, we have
for all N ≥ 1 a function ΦK

N : L(R2) → C defined by

∀l ∈ L(R2), ΦK
N (l) = E[tr(HK

N,l)],

where, as always, tr must be replaced by ℜtr if K = H. Note that, by Proposition 3.5, these
functions are real-valued. By construction, they are bounded by 1.
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We proved that, on Aff(R2), the sequence (ΦK
N )N≥1 converges pointwise towards a function

ΦAff , which does not depend on K. This is the convergence expressed by Proposition 5.4. More-
over, we have proved that for each positive L ≥ 0, this convergence is uniform on the set of
elementary loops whose length is smaller than or equal to L. This is a consequence of Theorem
5.5. From this and a straightforward observation, we will deduce that the convergence holds and
is uniform on the whole space L(R2).

For all L ≥ 0, set LL(R
2) = {l ∈ L(R2) : ℓ(l) ≤ L} and ELL(R

2) = EL(R2) ∩ LL(R
2). We also

set LL−(R2) = {l ∈ L(R2) : ℓ(l) < L}. In the following lemma, we consider, as always, L(R2)
endowed with the topology of the convergence in 1-variation with fixed endpoints.

Lemma 5.11. 1. For all L ≥ 0, the closure of ELL(R
2) is LL(R

2).
2. For all L ≥ 0, the interior of LL(R

2) is LL−(R2).
3. The union of the sets LL−(R2) for L ≥ 0 is L(R2).

Proof. 1. The piecewise affine interpolations of a given loop parametrized at constant speed
converge with fixed endpoints, as the mesh of the interpolation tends to 0, to the loop itself.
These piecewise affine interpolations have moreover a shorter length than the original loop. By
contracting slightly the plane around the base point of the loop by an affine homothecy, one
makes sure that the approximations are strictly shorter than the original loop. Finally, any
piecewise affine loop can be turned into an elementary loop by an arbitrarily small modification
of its vertices, by making sure that they are all different.
2. For all L ≥ 0, the set of loops whose length is strictly smaller than L is open, for the length
is a continuous function on L(R2). Hence, the interior of LL(R

2) contains LL−(R2). To prove
the other inclusion, consider a loop of length greater than or equal to L. Any neighbourhood of
this loop contains its images by sufficiently small affine dilations around its basepoint, and these
images have length strictly larger than L. Hence, no loop of length L or more belongs to the
interior of LL(R2).
3. This assertion barely deserves a proof. �

The next result summarises the application to the Yang-Mills field of the results which we
obtained in the first part of this work.

Theorem 5.12. The function ΦAff : Aff(R2) → R can be extended in a unique way to a continu-
ous function Φ : L(R2) → R, which for all L ≥ 0 is the uniform limit of the sequence of functions
(ΦK

N )N≥1 on LL(R
2).

More precisely, for all loop l ∈ L(R2) and all N ≥ 1, the following inequalities hold:
∣∣∣E
[
tr(HK

N,l)
]
− Φ(l)

∣∣∣ ≤ 1

N
ℓ(l)2eℓ(l)

2

Var
(
tr(HK

N,l)
)
≤

1

N
ℓ(l)2eℓ(l)

2
,

where tr must be replaced by ℜtr if K = H and the factor 1
N can be replaced by 1

N2 if K = C.

In particular the following convergence in probability holds:

tr(HK

N,l)
P

−−−−→
N→∞

Φ(l),

and in the case where K = C, this convergence is fast in the sense that the series
∑

N≥1

P(|tr(HC

N,l)− Φ(l)| > ε)

converges for all ε > 0.
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Proof. For each L ≥ 0, it follows from Theorem 5.5 that the sequence (ΦK
N )N≥1 of continuous

functions on LL(R
2) converges uniformly to ΦAff on the subset ELL(R2) of LL(R2), which is dense

by Lemma 5.11. Hence, the sequence (ΦK
N )N≥1 converges uniformly on LL(R

2) to the unique
continuous extension of ΦAff . Since, by Lemma 5.11 again, the interiors of the subspaces LL(R

2)
with L ≥ 0 cover L(R2), the convergence holds pointwise on the whole space L(R2) and the
limiting function is continuous.

Let us turn to the second part of the theorem. Consider a loop l ∈ L(R2). Let (ln)n≥1 be
a sequence of elementary loops converging to l with fixed endpoints. By the second assertion
of Theorem 4.1, and for all N ≥ 1, the sequence (HK

N,ln
)n≥1 converges in probability to HK

N,l.
Hence, the same convergence holds for the traces and, since those are bounded, the convergence
holds in L2. Thus, we have

Var(tr(HK

N,l)) = lim
n→∞

Var(tr(HK

N,ln)).

By the second assertion of Theorem 5.5, we have thus the inequality

Var(tr(HK

N,l)) ≤ lim sup
n→∞

1

N
ℓ(ln)

2eℓ(ln)
2
=

1

N
ℓ(l)2eℓ(l)

2
,

with 1
N replaced by 1

N2 if K = C. The rest of the theorem follows immediately. �

As a consequence of this theorem, we have the following result of convergence in non-commu-
tative distribution, which extends Theorem 5.1 to the set of rectifiable loops based at the origin.

Theorem 5.13. For all K ∈ {R,C,H}, the collection (HK

N,l)l∈L0(R2) has a limit in non-commuta-
tive distribution as N tends to infinity, which does not depend on K. This limiting distribution is
that of the family (Xl)l∈L0(R2) in the algebra C〈Xl, X

−1
l : l ∈ L0(R

2)〉 endowed with the involution

X∗
l = X−1

l and with the linear form τ characterised by the equality

τ(Xε1
l1
. . . Xεn

ln
) = Φ(lεnn . . . lε11 )

for all l1, . . . , ln ∈ L0(R
2) and all ε1, . . . , εn ∈ {−1, 1}.

Proof. By the multiplicativity of the Yang-Mills field and Theorem 5.12,

lim
N→∞

E

[
tr((HK

N,l1)
ε1 . . . (HK

N,ln)
εn)
]
= lim

N→∞
E

[
tr(HK

N,lεnn ...l
ε1
1
)
]
= Φ(lεnn . . . lε11 ).

This is exactly the desired convergence. �

Our description of the limiting process does not incorporate the multiplicativity of the Yang-
Mills field. Along the lines of the discussion of Section 5.1, we will give a better alternative
description of the limiting process. The first and main problem which we encounter in trying
to do this is to define the continuous analogue of the group RLv0(G) of reduced loops traced in
a graph. This is a deep problem, and a fascinating one in its own right, which, fortunately for
us, has already been solved for rectifiable paths by B. Hambly and T. Lyons, in a way which we
briefly review in the next section.

5.7. The group of rectifiable loops. A beautiful result of B. Hambly and T. Lyons on rec-
tifiable paths [18] allows one, among other things, to make sense on L0(R

2) of an equivalence
relation analogous to the one which we used on the set of loops traced in a graph. The central
notion in their approach is that of tree-like loop, which is the continuous analogue of a loop
equivalent to the constant loop. In order to to define a tree-like loop, one needs to use a certain
notion of continuous tree of which we start by recalling the definition.
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A compact R-tree is an arcwise connected compact metric space in which any two distinct
points are joined by a unique subset homeomorphic to a segment, and such that the unique such
subset which joins two distinct points is not only homeomorphic, but isometric to a segment2.

The next theorem gives five equivalent properties of a Lipschitz continuous loop, which all
characterise tree-like loops. In this theorem, (E, ‖ · ‖) denotes a Banach space and we think of
the circle S1 as R/Z.

Theorem 5.14. Let l : S1 → E be a Lipschitz continuous loop. The following assertions are
equivalent.
1. There exists a compact R-tree T and two Lipschitz continuous mappings f : S1 → T and
g : T → E such that l = g ◦ f .
1’. There exists a compact R-tree T and two continuous mappings f : S1 → T and g : T → E
such that l = g ◦ f .
2. There exists a Lipschitz continuous function h : [0, 1] → R+ such that h(0) = h(1) = 0 and,
for all s, t ∈ [0, 1], the following inequality holds:

‖l(t)− l(s)‖ ≤ h(s) + h(t)− 2 inf{h(u) : u ∈ [s, t]}.

3. The loop l is homotopic to a constant loop within its own range, that is, the mapping l : S1 →
l(S1) is homotopic to a constant map.
3’. The loop l is homotopic to a constant loop within the union of the ranges of finitely many loops,
that is, there exist some loops l1, . . . , ln such that mapping l : S1 → l(S1) ∪ l1(S

1) ∪ . . . ∪ ln(S
1)

is homotopic to a constant map.

If any of these equivalent properties is satisfied, the loop l is said to be tree-like. A loop which
satisfies property 3 is also called a thin loop by some authors (see [11]).

Not all these characterisations appear in the work of Hambly and Lyons, in particular the
last ones, which are slightly remote from their point of view. We thus offer a proof of their
equivalence.

Proof. 1’ ⇒ 2. Set ρ = f(0), of which we think as the root of the tree. For all x, y ∈ T , let us
denote by Vg(x, y) the total variation of g along the unique segment which joins x to y, that is,
the total variation of the function g ◦ γx,y, where γx,y : [0, 1] → T is an injective continuous path
from x to y. We claim that the function h : [0, 1] → R+ defined by

h(t) = Vg(ρ, f(t))

satisfies the second property.
Let us prove that h is finite and Lipschitz continuous. Let K denote the Lipschitz norm of

l. For all x, y ∈ T , let us denote by x ∧ y the midpoint of ρ, x and y, that is, the unique point
located simultaneously on the three geodesics from ρ to x, from x to y and from y to ρ. Firstly,
we have, for all s, t ∈ [0, 1],

|h(t)− h(s)| = |Vg(f(s) ∧ f(t), f(t))− Vg(f(s) ∧ f(t), f(s))| ≤ Vg(f(t), f(s)) ≤ K|t− s|.

2It is not contained in the definition of an arcwise connected space, at least not the one which we use nowadays,
that any two distinct points of such a space are the endpoints of a subspace homeomorphic to a segment. We
merely insist that they be joined by a curve, which may have self-intersection. The fact that, in an arcwise
connected metric space, any two distinct points are indeed joined by an injective curve is a consequence of various
substantial theorems due to Hahn, Mazurkiewicz, Moore, Menger, Serpienski and which are summarised in the
treatise of Kuratowski [22], §45.
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Now, for all s, t ∈ [0, 1], l(s) is joined to l(t) by the image by g of the geodesic from f(s) to
f(t). Hence, if v ∈ [s, t] is such that f(v) = f(s) ∧ f(t), then

‖l(t)− l(s)‖ ≤ Vg(f(s), f(t)) = Vg(f(s), f(v)) + Vg(f(v), f(t))

= Vg(ρ, f(t))− Vg(ρ, f(v)) + Vg(ρ, f(s))− Vg(ρ, f(v))

= h(t) + h(s)− 2h(v)

≤ h(t) + h(s)− 2 inf{h(u) : u ∈ [s, t]}.

x

y

z

m

Figure 12. A compact R-tree on which three points x, y, z have been chosen,
and the geodesics which join them. The intersection of the three geodesics, de-
noted by m, is the midpoint of x, y and z.

2 ⇒ 1. It is a classical fact that the function d(s, t) = h(s) + h(t)− 2 inf{h(u) : u ∈ [s, t]} is a
pseudo-distance on [0, 1] and that the quotient by the relation which identifies s and t whenever
d(s, t) = 0 is a compact R-tree, which we denote by T . Moreover, the canonical projection
p : [0, 1] → T is Lipschitz continuous with a Lipschitz constant bounded by that of h. By
assumption, l descends to a 1-Lipschitz continuous function l̃ : T → E. With this notation,
l = l̃ ◦ p is the sought decomposition.

Since 1 tautologically implies 1’, this proves the equivalence of the first three assertions. Let
us turn to the proof of the equivalence of 1’ and 3. Our argument relies on a result due to Fort
[10].

1’ ⇒ 3. As a compact R-tree, T is contractible. Let η : [0, 1] × T → T be a homotopy from
the identity to the constant map equal to ρ = f(0). Then (s, t) 7→ g(η(s, f(t))) is a homotopy
between the loop l(S1) and the constant loop equal to l(0), within l(S1).

3 ⇒ 1’. This is the most difficult part. The crucial fact is that the range of l, being the
Lipschitz continuous image of an interval, has covering topological dimension equal to 1 (see
[19] for an account of the theory of this dimension). Hence, by a theorem of Fort [10], the
fact that l is homotopic to a constant loop within its own range implies that l factorises, not
through a R-tree, for that notion did not exist at the time where Fort wrote this paper, but
through a dendrite, which we may of course assume to be compact. A dendrite is a connected
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locally connected separable Hausdorff topological space which contains no closed simple curve.
Fortunately, compact dendrites are exactly the topological spaces which underlie compact R-
trees, in the sense that a compact R-tree is a compact dendrite and a compact dendrite can be
metrised as an R-tree. Thus, property 1’ holds. It can even be assumed that the mapping g is
light, which is to say, with the charm of a slightly old-fashioned terminology, that its fibres are
totally disconnected subsets of T .

The assertion 3 certainly implies 3’. We finish by proving that 3’ implies 1. This is the
same argument as the proof that 3 implies 1, with the following modification. The assumptions
of Fort’s theorem are in fact that the loop is homotopic to a constant loop within a space of
topological dimension 1. A classical theorem of addition (see [19]) asserts that a countable union
of subspaces of dimension 1 of a topological space is still of dimension 1. Hence, the union of the
ranges of finitely many loops has dimension 1. �

The result of B. Hambly and T. Lyons which matters most for our purposes, and which actually
is a corollary of their main result, is the following.

Theorem 5.15. The relation ∼ defined on L0(R
2) by declaring l1 ∼ l2 if and only if l1l

−1
2 is

tree-like is an equivalence relation. Moreover, each equivalence class contains a unique loop of
shortest length, which is characterised by the fact that no restriction of this loop is a tree-like
loop.

A loop which is the shortest in its equivalence class is said to be reduced.
In [18], this theorem is inferred from considerations on an algebraic object associated to a

path which the authors call its signature. It turns out that the fact that the relation ∼ is an
equivalence relation can be deduced in a slightly more elementary way from the definition 3’ of
a tree-like loop and, since this definition was not considered in [18], we take a moment to give
the argument. The point is of course that 3’ allows one to see ∼ as a relation of homotopy, of
which we know that it is an equivalence relation.

Proof of the fact that ∼ is an equivalence relation. That the relation ∼ is reflexive and symmet-
ric is straightforward. The problem is to prove that it is transitive. Let us assume that three
loops l1, l2 and l3 are such that l1 ∼ l2 and l2 ∼ l3. Then, in the union of the ranges of l1, l2
and l3, the loops l1 and l2 are homotopic, as well as l2 and l3. Hence, l1 and l3 are homotopic,
so that l1 ∼ l3. �

Remark 5.16. Note that the equivalence between the characterisations 1’ and 3 of tree-like loops
holds for all loops whose range has topological dimension 1. Since the topological dimension is
smaller than the Hausdorff dimension, this holds for loops whose range has Hausdorff dimension
strictly smaller than 2, in particular for loops with finite p-variation for p ∈ [1, 2). It even holds
for loops whose range has Hausdorff dimension 2, provided the measure of their range is zero
(see [19]). It follows in particular that ∼ is an equivalence relation on the set of loops with finite
p-variation for some p < 2.

With the help of this very natural equivalence relation, we may proceed in the same way
as in the discrete setting and consider the quotient of L0(R

2) equipped with the operation of
concatenation. Equivalently, we may consider the group RL0(R

2) of reduced loops with the
operation of concatenation and reduction. Note that, in contrast to the discrete case, this group
is not a free group. Indeed, it contains a subgroup isomorphic to the fundamental group of a
topological space called the Hawaiian earring [8], which is known not to be free. On the other
hand, by a classical theorem of Nielsen and Schreier, any subgroup of a free group is free.



THE MASTER FIELD ON THE PLANE 61

It would be very desirable at this point to possess a nice structure of topological group on
RL0(R

2). Unfortunately, we do not know how to define such a structure. We shall therefore
content ourselves with the bare algebraic structure.

5.8. The master field as a free process. The discussion of the previous section provides us
with a natural algebra on which the master field is defined, namely the algebra C[RL0(R

2)] of
the group of reduced rectifiable loops based at the origin.

Not only can we restrict the function Φ defined by Theorem 5.12 to the set of reduced loops,
but it is in fact compatible with the equivalence of paths.

Lemma 5.17. Let l1, l2 ∈ L0(R
2) be two loops based at the origin. Assume that l1 ∼ l2. Then

for all N ≥ 1, the equality HK

N,l1
= HK

N,l2
holds almost surely. In particular, for all K and all

N ≥ 1, ΦK
N (l1) = ΦK

N (l2), and Φ(l1) = Φ(l2).

Proof. The second assertion follows immediately from the first. By the multiplicativity of the
Yang-Mills field, the first assertion will be proved if we show that for all tree-like loop l, we have
HK

N,l is almost surely equal to the identity matrix for all N ≥ 1.
In a first step, let us consider a tree-like loop l traced in a graph G, based at some vertex

v0. We need to show that l is combinatorially equivalent to a constant loop. We know that
l is homotopic to a constant loop within its own range, hence within the skeleton of G. The
description of the group RLv0(G) as the free group over a set of facial lassos shows that this
group is isomorphic to the fundamental group of Sk(G). Hence, l is equal to 1 in this group,
which means that it is combinatorially equivalent to a constant loop. Then, the multiplicativity
of the Yang-Mills field entails that HK

N,l = IN almost surely for all N ≥ 1. The conclusion of
this paragraph applies in particular to any piecewise affine tree-like loop.

In a second step, let us consider a tree-like loop l, without any further assumption. We claim
that l is the limit of a sequence of piecewise affine tree-like loops. In order to prove this, let us
consider a factorisation l = g ◦ f through an R-tree T . For each n ≥ 1, consider a finite subset
of T whose 2−n-neighbourhood covers T and let Tn be the convex hull of this subset, which is
a finite sub-tree of T . Construct g̃n : Tn → R

2 as the unique mapping which coincides with
g on the vertices of Tn and is affine on each edge of Tn. Finally, let pn : T → Tn denote the
projection. Let us define, for all x ∈ T , gn(x) = g̃n(pn(x)). Then it is not difficult to check that
gn ◦ f is piecewise affine and converges to l as n tends to infinity. Hence, by continuity of the
Yang-Mills field for fixed N ≥ 1, we have HK

N,l = IN almost surely for all N ≥ 1. This concludes
the proof. �

According to this lemma, the functions ΦK
N and Φ descend to functions on the quotient

L0(R
2)/ ∼, or on RL0(R

2). We still denote these functions by ΦK
N and Φ. It follows from

Theorem 5.12 that, on the complex involutive unital algebra C[RL0(R
2)], the sequence of states

(ΦK,N )N≥1 converges pointwise to Φ, which is also a state.
We can thus define the master field as a free process.

Definition 5.18. Let C[RL0(R
2)] be the complex group algebra of the group of reduced rectifiable

loops on R
2 endowed with the operation of concatenation-reduction. Let Φ be the linear form on

this algebra characterised by the equality

(78) ∀l ∈ RL0(R
2), Φ(l) = lim

N→∞
EYMU(N)

[
tr(HC

N,l)
]
.

On the non-commutative space (C[RL0(R
2)],Φ), define the process {hl : l ∈ L0(R

2)} by letting,
for all l ∈ L0, the non-commutative random variable hl be the image of l by the composed mapping
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L0(R
2) → RL0(R

2) → C[RL0(R
2)]. In other words, hl is the unique reduced loop equivalent to l,

seen as an element of the group algebra of the group of reduced loops.
The process (hl)l∈L0(R2) is called the master field on the plane.

We can state the main theorem of the present work in its final form. We call lasso a loop of
the form sbs−1, where s is an arbitrary path and b is a simple loop based at the endpoint of s.

Theorem 5.19. Choose K ∈ {R,C,H}. For each N ≥ 1, consider the Yang-Mills field on the
plane R

2 with structure group U(N,K), associated to the Lebesgue measure on R
2 and the scalar

product on u(N,K) given by 7. This is a process (HK

N,l)l∈L0(R2) with values in U(N,K). Consider

this process as a non-commutative process with respect to the state E ⊗ tr if K ∈ {R,C} and
E⊗ℜtr if K = H.

0. As N tends to infinity, the Yang-Mills field converges in non-commutative distribution
towards the master field on the plane.

1. If l is a lasso enclosing an open subset of R2 of area t, then hl has the distribution of a free
multiplicative Brownian motion at time t.

2. If l1, . . . , ln are n lassos enclosing pairwise disjoint open subsets of R
2, then the non-

commutative random variables hl1 , . . . , hln are free.
3. The process {hl : l ∈ L0(R

2)} is continuous in the L2 topology. This means that if a
sequence of loops (ln)n≥0 converges to a loop l, then Φ((hln −hl)(hln −hl)

∗) tends to 0 as n tends
to infinity. More generally, in this case, for all integer q ≥ 1, all loops m2, . . . ,mq and all word
w ∈ Fq in q letters, the following convergence holds:

lim
n→∞

Φ(w(ln, l
−1
n ,m2, . . . ,mq)) = Φ(w(l, l−1,m2, . . . ,mq)).

4. The properties 1,2 and 3 characterise the distribution of the master field.
5. The function Φ : L0(R

2) → C determined by Φ(l) = Φ(hl) takes its values in the real segment
[−1, 1], is continuous with respect to the convergence of loops, and satisfies Φ(l−1) = Φ(l) for all
loop l.

Proof. 0. This is the content of Theorem 5.12.
1. If l is a lasso enclosing a domain of area t, then for all N ≥ 1, the distribution of HC

N,l is
that of Ut. The claim is thus a consequence of Theorem 2.1.

We prove 3 before proving 2.
3. Assume that (ln)n≥1 converges to l. For each N ≥ 1, HC

N,ln
converges in probability to

HC

N,l, so that

lim
n→∞

ΦC,N ((hln − hl)(hln − hl)
∗) = 2− 2 lim

n→∞
ℜΦC,N (hlnl−1)

= 2− 2 lim
n→∞

ℜE[tr(HC

N,ln(H
C

N,l)
−1)] = 0.

Since the convergence of ΦC,N towards Φ is uniform on the set {ln : n ≥ 1} ∪ {l}, for the length
function is bounded on this set, the convergence holds at the limit when N tends to infinity. The
last assertion follows from the same argument applied to w(HC

N,ln
, HC

N,l−1
n
l−1
n , HC

N,m2
, . . . , HC

N,mq
).

2. By deforming slightly the lassos l1 = s1b1s
−1
1 , . . . , lnsnbns

−1
n , we may assume that each

path s1, . . . , sn contains a subpath which it traverses exactly once, and that none of the other
paths crosses. In this case, the random variables HC

N,l1
, . . . , HC

N,ln
are independent. The claim is

thus a consequence of the theorem of Voiculescu [37] which asserts asymptotic freeness for large
independent random matrices invariant in distribution by unitary conjugation.

4. Since the group of loops traced in a graph admits a basis formed by lassos enclosing the
faces of the graph, which are pairwise disjoint, the properties 1 and 2 characterise the distribution
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of the master field on the set of loops traced in a graph, hence on the set of piecewise affine loops.
The property 3 guarantees that the distribution on L0(R

2) is given by the unique extension by
continuity of that on Aff0(R

2).
5. By theorem 3.5, the function Φ is real on Aff0(R

2). It is continuous on L(R2) by the third
assertion of the present theorem. It is thus real-valued on L0(R

2). The definition (78) shows that
it is bounded by 1. Since Φ(l−1) = Φ(l)∗, it is also equal to Φ(l). �

6. Computing with the master field

In this section, we address the following question : given a loop l on the plane, how can we
actually compute ΦK

N (l) and Φ(l) ?
We are going to provide several more or less explicit pieces of answer to this question. They

all rely on the fundamental principle that one should see Φ(l) and ΦK
N (l) as functions of the

areas of the faces delimited by l and that the information we are looking for can be obtained by
differentiating this function.

It is clear from this general description that this approach works only for loops which delimit
a finite number of faces. Accordingly, the level at which we attack the problem is that of the
discrete theory. The answer which we are seeking is combinatorial in nature.

The content of the present section is in part guided by the desire to understand and elaborate
on previous work of Makeenko and Migdal [28], Kazakov [20], and Kostov [21] on this question.

In a first step, we shall compute the derivative of the Yang-Mills measure on a graph with
respect to the areas of the faces. Our expressions will involve differential operators on the
configuration space which we will, in a second time, interpret in a combinatorial language. This
second step will be meaningful only for a special class of observables known as the Wilson
loops, which are both very natural, and general enough to generate the algebra of all invariant
observables.

6.1. Differential operators on the configuration space. To start with, we introduce some
differential operators on the configuration space of the discrete Yang-Mills theory. The compu-
tations which we are going to do in the first sections are valid for any structure group. We thus
choose a connected compact Lie group G, with Lie algebra g.

Let G = (V,E,F) be a graph. The configuration space CG = M(P(G), G) is in a canonical
way a smooth manifold through the identification CG ≃ GE+

, regardless of the orientation E
+

of G. We are going to define certain vector fields on this manifold. It is tempting to this end to
use the Lie group structure inherited from GE+

, but this structure depends on the orientation.
In a first time, it is more convenient to use the following description of the configuration space :

C
G = M(E, G) = {(h(e))e∈E : ∀e ∈ E, h(e−1) = h(e)−1},

thus defined as a submanifold of GE.
Let e ∈ E be an edge. Let X be an element of the Lie algebra g. We define the vector field

D
(e)
X on CG by setting, for all h ∈ CG,

(
D

(e)
X

)
(h) =

d

dt |t=0
(ht(f))f∈E ,

where, for all t ∈ R and all f ∈ E,

ht(f) =




h(f) if f /∈ {e, e−1},
h(e)etX if f = e,
e−tXh(e−1) if f = e−1.
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Let us generalise slightly this definition. Let c ∈ P(G) be a path which ends at the starting point

of e. We define the vector field D
(c,e)
X by setting, for all h ∈ CG,
(
D

(c,e)
X

)
(h) = (D

(e)
Ad(h(c))X)(h).

In vague but perhaps more intuitive terms, the field D
(e)
X corresponds to the adjunction of an

infinitesimal loop with holonomy X at the starting point of the edge e. This starting point
should however not be understood as the vertex e, since there may be edges other than e which
are issued from e, but the field D

(e)
X does not affect the configuration on these other edges. Let

us say that an infinitesimal loop with holonomy X is inserted at the very beginning of the edge
e (see Figure 13). Similarly, the field D

(c,e)
X varies the current configuration by inserting, at the

very beginning of e, a loop formed by following the path c−1, then going around an infinitesimal
loop with holonomy X and then coming back along c.

e e e

X

c

e

c
X

Figure 13. The action of the vector fields D
(e)
X (on the left) and D

(c,e)
X (on the right).

Note that for all e ∈ E, the mapping g → X (CG) into the Lie algebra of smooth vector fields

on CG which sends X to D
(e)
X is linear and a homomorphism of Lie algebras.

Let us assume that g is endowed with an invariant scalar product, which we denote by 〈·, ·〉. Let
f : CG → C be a smooth function. We define the gradient at e of f by choosing an orthonormal
basis (X1, . . . , Xd) of g and setting, for all h ∈ CG,

(
∇(e)f

)
(h) =

d∑

k=1

(
(D

(e)
Xk
f)(h)

)
Xk.

The gradient thus defined does not depend on the choice of the orthonormal basis of g, since it
is a linear function of the Casimir element of g (see Section 1.3). Similarly, we define

(
∇(c,e)f

)
(h) =

d∑

k=1

(
(D

(c,e)
Xk

f)(h)
)
Xk.

Both ∇(e)f and ∇(c,e)f are smooth g-valued functions on CG. They are related by
(
∇(c,e)f

)
(h) = Ad(h(c))−1

(
(∇(e)f)(h)

)
.

In particular, if f1 and f2 are smooth functions on CG and c is a path which joins the starting
point of the edge e2 to the starting point of the edge e1, then the equality

(79)
〈
∇(c,e1)f1,∇

(e2)f2

〉
=
〈
∇(e1)f1,∇

(c−1,e2)f2

〉

holds pointwise on CG.
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Let us now define second-order differential operators. Let e1, e2 be two edges of G. Let c ∈
P(G) be a path which joins the starting point of e2 to the starting point of e1. Let (X1, . . . , Xd)
be an orthonormal basis of g. We define

∆(e2)(c,e1) =

d∑

k=1

D
(e2)
Xk

D
(c,e1)
Xk

.

If e1 = e2 = e and c is the constant path at the starting point of e, we write

∆(e) = ∆(e2)(c,e1) =
d∑

k=1

(
D

(e)
Xk

)2
.

As before, none of these definitions depend on the choice of the orthonormal basis of g. Let us
however emphasise that the order of the derivatives in the definition of ∆(e2)(c,e1) matters, since
in general,

d∑

k=1

D
(e2)
Xk

D
(c,e1)
Xk

6=
d∑

k=1

D
(c,e1)
Xk

D
(e2)
Xk

,

unless e1 6= e2 and the path c does not traverse the edge e2.
We have defined the differential operators D

(c,e)
X , ∇(c,e) and ∆(e2)(c,e1) on the configuration

space CG seen as a submanifold of GE. It is however usually simpler, when computing on the
configuration space, to choose an orientation E

+ of G and to use the identification CG ≃ GE+
.

Let us write down the definition of our differential operators in this language. It is enough to
write the definition of D(e)

X , since all others are built from this one.
Let E+ be an orientation of G. For each e ∈ E

+ and allX ∈ g, let us denote byX(e) the element
(0, . . . , 0, X, 0, . . . , 0) of gE

+
whose only possibly non-zero component is that corresponding to

the edge e and is equal to X. Let f : GE+
→ C be a smooth observable. Let h ∈ G

E+
be a

configuration. Let e ∈ E be an edge, and X an element of g. If e belongs to E
+, we have

(
D

(e)
X f

)
(h) =

d

dt |t=0
f(hetX

(e)
),

and if e−1 belongs to E
+, then

(80)
(
D

(e)
X f

)
(h) =

d

dt |t=0
f(e−tX(e−1)

h).

Let us collect some properties of the differential operators which we have just defined which
we will need in the proof of Proposition 6.2. We denote, as usual, by ∆ the Laplace operator on
G, and by (Qt)t>0 the associated heat kernel.

Lemma 6.1. 1. Let f1, f2 : G
E+

→ R be two smooth functions. Let e be an edge of G. We have,
for all X ∈ g, ∫

GE+
f1(h)(D

(e)
X f2)(h) dh = −

∫

GE+
(D

(e)
X f1(h))f2(h) dh.

In particular, ∫

GE+
f1(h)(∆

(e)f2)(h) dh =

∫

GE+
(∆(e)f1)(h)f2(h) dh.

2. Let e be an edge of G. Let c ∈ P(G) be a path in G from the finishing point of e to its
starting point, such that c does not traverse e nor e−1. Let l be the loop ec. Let q : G → R be a
smooth function invariant by conjugation.
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The two functions h 7→ (∆q)(h(l)) and ∆(e) (h 7→ q(h(l))) are equal and the two functions

h 7→ (∆q)(h(l−1)) and ∆(e)
(
h 7→ q(h(l−1))

)
are also equal.

In particular, if e is an edge which bounds a face F , whether positively or negatively, then for
all t > 0,

(∆Q|F |)(h(∂F )) = ∆(e)
(
h 7→ Q|F |(h(∂F ))

)
.

3. Let F be a face of G. Let e and e′ be two edges which bound F , respectively negatively and
positively. Let c be the portion of the boundary of F which joins the starting point of e′ to the
starting point of e, turning clockwise around F (see Figure 14 below). Let X be an element of g.
Then

D
(e)
X

(
h 7→ Q|F |(h(∂F ))

)
= −D

(c−1,e′)
X

(
h 7→ Q|F |(h(∂F ))

)
.

More generally, if d is a path which starts from the starting point of e, then

D
(d−1,e)
X

(
Q|F |(h(∂F ))

)
= −D

(d−1c−1,e′)
X

(
Q|F |(h(∂F ))

)
.

Fe e′

c

c′

d

Figure 14. The paths involved in the third assertion of Lemma 6.1.

Proof. 1. The operator D
(e)
X satisfies the Leibniz rule. Hence, the first set of assertions is a

consequence of the fact that for all smooth function f : GE+
→ R, one has

∫

GE+
(D

(e)
X f)(h) dh = 0.

This equality in turn follows from the fact that the Haar measure on GE+
is invariant by the

flow of D(e)
X , which is a flow of translations, on the right if e ∈ E

+ and on the left if e−1 ∈ E
+.

2. Since q is invariant by conjugation, so is ∆q. We thus have

(∆q)(h(l)) = (∆q)(h(ce)) = (∆q)(h(e)h(c)) = (∆q)(h(c)h(e))

=
d∑

k=1

d2

dt2 |t=0
q
(
h(c)h(e)etXk

)
= ∆(e)(q(h(ce))).

Similarly,

(∆q)(h(l−1)) = (∆q)(h(e)−1h(c)−1) =
d∑

k=1

d2

dt2 |t=0
q
(
etXkh(e)−1h(c)−1

)

=
d∑

k=1

d2

dt2 |t=0
q
(
e−tXkh(e)−1h(c)−1

)
= ∆(e)(q(h(l−1))).
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3. The first assertion is a particular case of the second, by taking d to be the constant path at
the starting point of e. Let us write ∂F = e−1c−1e′c′, with c′ the appropriate path (see Figure
14 above). We have

D
(d−1,e)
X

(
Q|F |(h(∂F ))

)
=

d

dt |t=0
Q|F |

(
h(c′)h(e′)h(c)−1e−tAd(h(d)−1)Xh(e)−1

)

=
d

dt |t=0
Q|F |

(
h(c′)h(e′)e−tAd(h(c)−1h(d)−1)Xh(c)−1h(e)−1

)

= D
(e′)
−Ad(h(d−1c−1))X

(
Q|F |(h(∂F ))

)

= −D
(d−1c−1,e′)
X

(
Q|F |(h(∂F ))

)
,

as expected. �

Let us emphasise that the operator D
(c,e)
X does not satisfy in general a formula of integration

by parts analogous to the one satisfied by D
(e)
X . We shall make further comments on this point

in Section 6.6.

6.2. Variation of the area in the abstract. The main result of this section provides us
with an expression of the derivative d

d|F1|
E
YM

G [f ] in terms of the differential operators which we
introduced in the previous section, and without any assumption on the observable f .

Before we state the result, let us give a more formal description of what we mean by the
derivative d

d|F1|
E
YM

G [f ]. Let G = (V,E,F) be a graph. Let F
b = {F1, . . . , Fq} be the set of

bounded faces. For all t = (t1, . . . , tq) ∈ (R∗
+)

q, we define the Yang-Mills measure with areas t
on the configuration space CG

G by the following formula, analogous to (74):

(81) YMG
t (dh) =

q∏

i=1

Qti(h(∂Fi)) dh.

Then we define, for all i ∈ {1, . . . , q},

d

d|Fi|
E
YM

G [f ] =
∂

∂ti |t=(|F1|,...,|Fq |)
E
YM

G
t
[f ].

Proposition 6.2. Let G = (V,E,F) be a graph. Let n ≥ 1 be an integer. Let F1, . . . , Fn+1 be
a sequence of faces of G. Assume that each face of this sequence is different from the next, and
only the last face Fn+1 may be the unbounded face of G. Assume also that for all r ∈ {1, . . . , n},
the faces Fr and Fr+1 share a common edge, which we denote by er, with the convention that er
bounds Fr positively. For each r ∈ {2, . . . , n}, denote by c−1

r the portion of the boundary of Fr

which joins the starting point of er−1 to the starting point of er. Finally, let f : GE+
→ R be a

smooth function. Then, if n ≥ 2, we have the following formula :

(
d

d|F1|
−

d

d|F2|

)
E
YM

G [f ] = E
YM

G

[
1

2
∆(e1)f +

n∑

i=2

∆(ei)(ci...c2,e1)f

]

+ E
YM

G

[〈
∇(en)

(
h 7→ logQ|Fn+1|(h(∂Fn+1))

)
,∇(cn...c2,e1)f

〉]
(82)

in which the last term of the right-hand side must be replaced by 0 in the case where Fn+1 = F∞.
If n = 1 and F2 is not the unbounded face, then the same formula holds after dropping the sum
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over i in the first expectation and replacing ∇(cn...c2,e1) by ∇(e1). Finally, if n = 1 and F2 is the
unbounded face of G, the formula simply reads

(83)
d

d|F1|
E
YM

G [f ] = E
YM

G

[
1

2
∆(e1)f

]
.

F1 F2 F3 F4
e1 e2 e3 e4

c2 c3 c4

Figure 15. The paths involved in the differentiation with respect to the area of
the face F1.

Proof. The proof is but a straightforward computation. Let us go through it step by step.
The first step is of course to use the heat equation satisfied by the heat kernel (Qt)t>0, together

with the second assertion of Lemma 6.1. We find

d

d|F1|
E
YM

G [f ] =
d

d|F1|

∫

GE+
f(h)

∏

F∈Fb

Q|F |(h(∂F )) dh

=
1

2

∫

GE+
f(h)(∆Q|F1|)(h(∂F1))

∏

F∈Fb\{F1}

Q|F |(h(∂F )) dh

=
1

2

∫

GE+
f(h)∆(e1)

(
Q|F1|(h(∂F1))

) ∏

F∈Fb\{F1}

Q|F |(h(∂F )) dh.

Among all edges bounding F1 positively, we have chosen the edge e1. Now, we use integration
by parts, or equivalently the fact that ∆(e1) is self-adjoint (see Lemma 6.1). If n = 1 and F2

is the unbounded face, then f(h) and Q|F1|(h(∂F1)) are the only edges in the integrand which
depend on the edge e and we find

d

d|F1|
E
YM

G [f ] =
1

2

∫

GE+
Q|F1|(h(∂F1))∆

(e1)


f(h)

∏

F∈Fb\{F1}

Q|F |(h(∂F ))


 dh

=
1

2

∫

GE+
(∆(e1)f)(h)Q|F1|(h(∂F1))

∏

F∈Fb\{F1}

Q|F |(h(∂F )) dh

= E
YM

G

[
1

2
∆(e1)f

]
,
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which proves the result in this case. If F2 is not the unbounded face, then Q|F2|(h(∂F2)) also
depends on the edge e, and no other term does. We find, applying the Leibniz rule,

d

d|F1|
E
YM

G [f ] =
1

2

∫

GE+
(∆(e1)f)(h)Q|F1|(h(∂F1))

∏

F∈Fb\{F1}

Q|F |(h(∂F )) dh

+
1

2

∫

GE+
f(h)∆(e1)

(
Q|F2|(h(∂F2))

) ∏

F∈Fb\{F2}

Q|F |(h(∂F )) dh

+

d∑

k=1

∫

GE+

(
D

(e1)
Xk

f
)
(h)D

(e1)
Xk

(
Q|F2|(h(∂F2))

) ∏

F∈Fb\{F2}

Q|F |(h(∂F )) dh.(84)

We have already recognised the first term of this sum as the first term of the right-hand side of
(82). In the second term we recognise, using backwards the second assertion of Lemma 6.1, the
derivative of the integral of f with respect to the area of F2. If n = 1, we thus find

(
d

d|F1|
−

d

d|F2|

)
E
YM

G [f ] = E
YM

G

[
1

2
∆(e1)f

]

+ E
YM

G

[〈
∇(e1)

(
h 7→ logQ|Fn+1|(h(∂Fn+1))

)
,∇(e1)f

〉]
,

proving the result in this case.
In order to treat the case where n > 1, we need to transform the last term of (84), and we do

so by using the third assertion of Lemma 6.1. We find

d

d|F1|
E
YM

G [f ] =
1

2
E
YM

G [∆(e1)f ] +
d

d|F2|
E
YM

G [f ]

−

d∑

k=1

∫

GE+

(
D

(e1)
Xk

f
)
(h)D

(c−1
2 ,e2)

Xk

(
Q|F2|(h(∂F2))

) ∏

F∈Fb\{F2}

Q|F |(h(∂F )) dh.(85)

We have of course chosen the edge e2 as bounding F2 positively. This allows us to move one step
forward along the sequence of faces which we are given. For this, we proceed to an integration
by parts with respect to the edge e2, which brings in the term Q|F3|(h(∂F3)). In order to prepare
for this, we use (79) :

d

d|F1|
E
YM

G [f ] =
1

2
E
YM

G [∆(e1)f ] +
d

d|F2|
E
YM

G [f ]

−
N2∑

k=1

∫

GE+

(
D

(c2,e1)
Xk

f
)
(h)D

(e2)
Xk

(
Q|F2|(h(∂F2))

) ∏

F∈Fb\{F2}

Q|F |(h(∂F )) dh.(86)
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The integration by parts is now possible and yields

d

d|F1|
E
YM

G [f ] =
d

d|F2|
E
YM

G [f ] +
1

2
E
YM

G [∆(e1)f ]

+
d∑

k=1

∫

GE+

(
D

(e2)
Xk

D
(c2,e1)
Xk

f
)
(h)

∏

F∈F

Q|F |(h(∂F )) dh

+
d∑

k=1

∫

GE+

(
D

(c2,e1)
Xk

f
)
(h)D

(e2)
Xk

(
Q|F3|(h(∂F3))

) ∏

F∈Fb\{F3}

Q|F |(h(∂F )) dh

=
d

d|F2|
E
YM

G [f ] +
1

2
E
YM

G [∆(e1)f ] + E
YM

G [∆(e2)(e2,c1)f ]

−
d∑

k=1

∫

GE+

(
D

(e1)
Xk

f
)
(h)D

(c−1
3 c−1

2 ,e3)
Xk

(
Q|F3|(h(∂F3))

) ∏

F∈Fb\{F3}

Q|F |(h(∂F )) dh.

The last term is similar to the last term of the right-hand side of (85), just one step further in
the sequence of faces F1, . . . , Fn+1. We can continue this until we reach the end of this sequence:
if Fn+1 is not the unbounded face, a straightforward induction argument finishes the proof. If
on the other hand Fn+1 = F∞, we still need to observe, as we did in the case where n = 1,
that there are only two terms in the integrand which depend on the edge en, namely f(h) and
Q|Fn|(h(∂Fn)). Hence, in the last integration by parts, with respect to this edge en, only one
term is produced, which is the integral of ∆(en)(cn...c2,e1)f . This concludes the proof also in this
case. �

In the process of computing the derivative with respect to the area of F1 of the integral of f ,
the derivative with respect to the area of F2 of the same integral has unexpectedly appeared.
We can easily correct this as follows, thus generalising (83).

Corollary 6.3. Recall the notation of Proposition 6.2. Let us assume that the face Fn+1 is the
unbounded face of G. Then the following equality holds :

d

d|F1|
E
YM

G [f ] = E
YM

G


1
2

n∑

i=1

∆(ei)f +
∑

1≤i<j≤n

∆(ej)(cj ...ci+1,ei)f


 .(87)

Proof. Simply write

d

d|F1|
E
YM

G [f ] =
n−1∑

i=1

(
d

d|Fi|
−

d

d|Fi+1|

)
E
YM

G [f ] +
d

d|Fn|
E
YM

G [f ]

and apply Proposition 6.2 to each term. �

Let us emphasise that in Proposition 6.2 and its Corollary 6.3, the sequence of faces F1, . . . , Fn

may contain repetitions. We only assumed that each face is different from the next.

6.3. Derivatives of spin networks. The results of Section 6.2 are very general in the sense
that they hold for an arbitrary observable f . Our original motivation is to compute the functions
ΦK
N and Φ, and in order to achieve this, we are going to apply (87) to observables of the form

f : h 7→ tr(h(l)), which are called Wilson loops. The point is that when f is a Wilson loop, the
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right-hand side of (87) can be computed fairly explicitly, and turns out to be a polynomial of
Wilson loops. This is what we explain in the present section and in the next.

Although our short term interest is in Wilson loops, we start by discussing spin networks,
which are slightly more general and, in a sense, more intrinsic observables. We believe that this
discussion may be relevant to an interpretation of Proposition 6.2 as giving some insight into the
structure of the infinitesimal generator of the Yang-Mills measure, with the role of time played
by the area. This interpretation has yet to be given a consistent and substantial form.

Let us recall how spin networks are defined. Let G = (V,E,F) be a graph. For each vertex v,
we define the set Out(v) as the set of edges issued from v:

Out(v) = {e ∈ E : e = v}.

In order to define a spin network, we need first to choose a collection α = (αe)e∈E of represen-
tations of G, acting respectively on the real or complex linear spaces (Ve)e∈E, and such that for
all e ∈ E, we have Ve−1 = V ∗

e and αe−1 = α∨
e , the contragredient representation of αe. We also

need to choose a collection I = (Iv)v∈V of tensors such that for all v ∈ V, the tensor Iv belongs
to
⊗

e∈Out(v) Ve.

From the data of α and I, we build a function ψα,I : CG
G → C as follows. Let us choose

an orientation E
+ ⊂ E of G. Let h ∈ CG

G = M(P(G), G) be an element of the configuration
space. On one hand, the tensor

⊗
v∈V Iv belongs to

⊗
v∈V

⊗
e∈Out(v) Ve. On the other hand,

through the natural identification End(Ve) ≃ V ∗
e ⊗ Ve, the tensor

⊗
e∈E+ αe(h(e)) belongs to⊗

e∈E+ V ∗
e ⊗Ve ≃

⊗
e∈E V

∗
e ≃

⊗
v∈V

⊗
e∈Out(v) V

∗
e . We define, according to these identifications,

(88) ψα,I(h) =

〈 ⊗

e∈E+

αe(h(e)) ,
⊗

v∈V

Iv

〉
.

If the structure group is a compact matrix group, then spin networks are exactly the polynomial
functions on CG

G , that is, the functions which map a configuration h to a polynomial in the
entries of the matrices {h(e) : e ∈ E}. Using the classical theory of characters, in particular their
orthogonality properties, it can easily be shown that the spin networks ψα,I and ψα′,I′ are equal
only if α = α′ and I = I ′.

We will need a variant of the definition of a spin network in which not all the pairs V ∗
e ⊗ Ve

which appear in (88) are contracted. Instead, we contract all the pairs but one, which corresponds
to a certain edge e. In order to define this properly, let us denote, for each pair (v, e) ∈ V × E

such that e ∈ Out(v), by Tr(v,e) : V
∗
e ⊗ Ve → C the natural contraction. We thus have

ψα,I(h) =

(⊗

(v,e)

Tr(v,e)

)( ⊗

e∈E+

αe(h(e))⊗
⊗

v∈V

Iv

)
,

where the first tensor product is taken over all pairs (v, e) with e ∈ Out(v). Given an edge e ∈ E,
we now define

ψ
(e)
α,I : C

G → End(Ve)

by setting

ψ
(e)
α,I(h) =

( ⊗

(w,f) 6=(e,e)

Tr(w,f)

)( ⊗

e∈E+

αe(h(e))⊗
⊗

v∈V

Iv

)
.

Similarly, if e1 and e2 are two distinct edges, we define

ψ
(e2)(e1)
α,I : C

G → End(Ve2)⊗ End(Ve1)

by not contracting the pairs V ∗
e2 ⊗ Ve2 and V ∗

e1 ⊗ Ve1 .
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We shall also need the following notation. Recall that Cg denotes the Casimir element of
g, equal to

∑d
k=1Xk ⊗ Xk for any choice of an orthonormal basis {X1, . . . , Xd} of g. If α

is a representation of G on a vector space V , then we denote by α(Cg) the endomorphism∑d
k=1 α(Xk)

2 of V .
We can now compute the effect of some of our differential operators on spin networks. We

shall use the notation ιe : End(Ve) →
⊗

f∈Out(v) End(Vf ) and ιe1,e2 : End(Ve1) ⊗ End(Ve2) →⊗
e∈Out(v) End(Ve) for the natural operators analogous to ιi,j defined by (18).

Proposition 6.4. Let G = (V,E,F) be a graph. Let ψα,I : CG → C be a spin network. Let
e, e1, e2 ∈ E be three edges issued from the same vertex v. Assume that e1 6= e2. Choose X ∈ g.
The following equalities hold. Firstly,

D
(e)
X ψα,I = TrVe

(
ψ
(e)
α,I ◦ αe(X)

)
= ψα,I′ ,

where I ′w = Iw for all w 6= v, and I ′v = ιe(αe(X))(Iv). Secondly,

∆
(e)
X ψα,I = TrVe

(
ψ
(e)
α,I ◦ αe(Cg)

)
= ψα,I′′ ,

where I ′′w = Iw for all w 6= v, and I ′′v = ιe(αe(Cg))(Iv). Finally,

(89) ∆(e2)(e1)ψα,I = TrVe2⊗Ve1

(
ψ
(e2)(e1)
α,I ◦ (αe2 ⊗ αe1)(Cg)

)
= ψα,I′′′ ,

where I ′′′w = Iw for all w 6= v and I ′′′v = ιe1,e2((αe1 ⊗ αe2)(Cg))(Iv).

These assertions are illustrated by Figure 16 below.

Iv

e1 e2

Iv

e1 e2

Iv

e1 e2

Iv

e1 e2

Iv

e1 e2

X CgCg

ψα,I ψ
(e1)
α,I D

(e1)
X ψα,I ∆(e2)(e1)ψα,I∆(e1)ψα,I

Figure 16. The first picture shows a spin network around the vertex v. The
representations associated with the edges are not indicated explicitly. In the
second picture, the two dots indicate that ψ(e1)

α,I takes its values in V ∗
e1 ⊗ Ve1 . In

the rightmost picture, the Casimir operator Cg acts through the representation
αe1 ⊗ αe2 .

Proof. Let us assume that G is oriented in such a way that e ∈ E
+. From the definition of ψ(e)

α,I

we have, for all g ∈ G and all h ∈ CG ≃ GE+
,

TrVe

(
ψ
(e)
α,I ◦ αe(g)

)
= ψα,I(h

′),
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where h′ ∈ GE+
has all components equal to those of h, except for h′(e) which is given by

h′(e) = h(e)g. Differentiating with respect to g yields the first equality. Differentiating a second
time yields the second.

For all X,Y ∈ g, one has

D
(e2)
Y D

(e1)
X ψα,I = TrVe2⊗Ve1

(
ψ
(e2)(e1)
α,I ◦ (αe2(Y )⊗ αe1(X))

)
,

from which we deduce the third assertion. �

Note that a spin network built from representations of G on real vector spaces is a real-valued
observable. This case will be useful to treat the orthogonal and symplectic cases.

Let us generalise our formulas to the case of D
(c,e)
X ψα,I and ∆(e2)(c,e1)ψα,I . This requires a

construction which is slightly unpleasant to describe verbally, but much more easily explained
by a picture: see Figure 17 below.

Let ψα,I : CG → C be a spin network. Let e1, e2 ∈ E be two edges, and c ∈ P(G) be
such that c joins the starting point of e2 to the starting point of e1. Choose X ∈ g. For each
edge e ∈ E, let n+e and n−e be respectively the number of times c traverses e and e−1, and
set α′

e = αe ⊗ (α∨
e1 ⊗ αe1)

⊗n+
e ⊗ (αe1 ⊗ α∨

e1)
⊗n−

e . We are adding twice as many new factors as
the number of times c traverses e or e−1, because we are, in a sense, inserting both c and c−1

to the spin network. For each vertex v ∈ V which is not e1 nor e2, let nv be the number of
times c visits v, and set I ′v = Iv ⊗ (idV ∗

e1
⊗ idVe1

)⊗nv , seen as an element of
⊗

e∈Out(v) Ve in

such a way as to connect, for each visit of c and c−1, the incoming edge with the outcoming
one. Then, set v1 = e1 and I ′v1 = Iv1 ⊗ (idV ∗

e1
⊗ idVe1

)⊗(nv1−1) ⊗ idVe1
. In this tensor, the

component of Iv1 in Ve1 is now seen as a part of the component associated to the last edge of c,
the nv1 − 1 factors idV ∗

e1
⊗ idVe1

connect the incoming and outcoming strands of c at each visit
except the last, and the last factor idVe1

connects the last edge of c to e1. Finally, set v2 = e2

and I ′v2 = Iv2 ⊗ (idV ∗
e1
⊗ idVe1

)⊗(nv2−1)⊗αe1(X), in which the interpretation of Iv2 is unchanged,
the middle factor connects the strands of c at each visit but the first, and αe1(X) belongs to the
V ∗
e1 ⊗ Ve1 part of the first edge of c.
Let us also define α′′ = α′, and I ′′v = I ′v for all v 6= v2. For v = v2, we set I ′′v2 = ce2(Iv2 ⊗

(idV ∗
e1

⊗ idVe1
)⊗(nv2−1) ⊗ αe1 ⊗ (αe2)(Cg)), where ce2 is the contraction of the Ve2 factor of Iv2

and the V ∗
e2 factor of (αe2)(Cg)).

We leave the details of the proof of the following proposition to the reader.

Proposition 6.5. Let G = (V,E,F) be a graph. Let ψα,I : CG
G → C be a spin network. Let

e1, e2 ∈ E be two edges, and c ∈ P(G) be such that c joins the starting point of e2 to the starting
point of e1. Choose X ∈ g. The following equalities hold:

D
(c,e)
X ψα,I = TrVe

(
ψ
(e)
α,I ◦ αe(Ad(h(c))X)

)
= ψα′,I′ ,

∆(e2)(c,e1)ψα,I = TrVe2⊗Ve1

(
ψ
(e2)(e1)
α,I ◦ (αe2 ⊗ αe1)([idg ⊗Ad(h(c))]Cg)

)
= ψα′′,I′′ .(90)

6.4. Derivatives of Wilson loops. Wilson loops are a particular case of spin networks, so that
we already know, in principle, how our differential operators act on them. However, we shall
interpret (89) and (90) very concretely when the group G is one of the groups U(N,K) which we
studied in the first part of this work.

Let us start by giving a formal definition of Wilson loops. Let G be a graph, l ∈ L(G) a loop,
χ : G → C a conjugation-invariant function. The Wilson loop associated to this data is the
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X

e1

e2

c

c

Iv1

Iv2

Iv

e1

e2

c

c

Iv1

Iv2

Iv

e1

e2

c

c

Iv1

Iv2

Iv

Cg

ψα,I D
(c,e1)
X ψα,I ∆(e2)(c,e1)ψα,I

Figure 17. As in Figure 16, we do not indicate the representations explicitly.
In this example, the path c is constituted by two edges and crosses a vertex v
between v1 and v2.

invariant observable Wχ,l : CG
G → C defined by

Wχ,l(h) = χ(h(l)).

When G is a matrix group, the function χ is often taken to be the normalised trace, or the real
part of the normalised trace in the case of a quaternionic group. More precisely, if K ∈ {R,C,H}

then we define WK,N
l : CG

U(N,K) → C by setting

WK,N
l (h) = tr(h(l)) if K ∈ {R,C}, and WH,N

l (h) = ℜtr(h(l)).

In contrast with spin networks, which form an algebra of observables, Wilson loops do not, for
polynomials of Wilson loops are not Wilson loops in general. Let us introduce a convenient
notation in order to deal with products of Wilson loops.

Let us call skein a finite collection S = {l1, . . . , lr} of elementary loops (see Section 5.3) such
that there exists a graph G whose skeleton is the union of the ranges of l1, . . . , lr and such that in
each pair {e, e−1} of edges, exactly one edge is traversed exactly once by exactly one of the loops
l1, . . . , lr. If we insist that each vertex of G has degree at least 4, then G is completely determined
by S and we denote it by G(S). In particular, if S = {l} consists in a single elementary loop, then
G(S) = G(l) as defined in Section 5.4. To a skein S = {l1, . . . , lr} we associate the observable
WK

N,S =WK

N,l1
. . .WK

N,lr
, or more generally Wχ,S =Wχ,l1 . . .Wχ,lr , which we call a Wilson skein.

Let S = {l1, . . . , lr} be a skein and set G = G(S). Each edge of G is naturally oriented by
the unique loop of S which traverses it. Let us denote by E

+ = {e1, . . . , en} the corresponding
orientation. The skein S determines a permutation of E+, which to each edge e associates the
edge traversed immediately after e by the unique loop of S which traverses e. We denote this
permutation by λS . The cycles of λS are naturally in bijection with the elements of S. In
particular, ℓ(λS) = r. Through the labelling of E+ which we have chosen, we identify it with the
set {1, . . . , n}, and λS with an element of Sn.

Recall the notation of Sections 2.5 and 2.7, in particular the definitions of the morphisms ρK
(see (43)).
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Lemma 6.6. With the notation above, the Wilson skein WK
N,S can be written as follows:

(91)

∀h ∈ C
G,WK

N,S(h) =

{
N−rTr⊗n(ρK(λS) ◦ h(e1)⊗ . . .⊗ h(en)) if K = R or C,
(−2N)−r(−2ℜTr)⊗n(ρH(λS) ◦ h(e1)⊗ . . .⊗ h(en)) if K = H.

Proof. According to the formula (39), we have, in the real and complex cases,

N−rTr⊗n(ρK(λS) ◦ h(e1)⊗ . . .⊗ h(en)) =
∏

(i1...is)4λS

tr(h(eis) . . . h(ei1)).

Observe that, since λS is a permutation, the signs ε1, . . . , εn are all equal to 1. Now, each cycle
(i1 . . . is) of λS corresponds to a loop ei1 . . . eis of S and the multiplicativity of h (recall (72))
reads h(eis) . . . h(ei1) = h(ei1 . . . eis). Thus, the right-hand side of the equality above is exactly
WK

N,S(h).
In the quaternionic case, we apply Lemma 2.6 and use the same argument. �

Let us define two operations on skeins, analogous to the operations Si,j and Fi,j which we
defined on the Brauer algebra in Section 3.4. Let S = {l1, . . . , lr} be a skein. Let e1 and e2
be two edges of G(S) such that e1 = e2. Let us assume that e1 and e2 belong to E

+. We can
assume that e1 is traversed by the loop l1. Let us first assume that e2 is also traversed by l1.
We can write l1 = ae1be2c, where a, b, c are paths in G. Let us define l′1 = e1b, l′′1 = e2ca and
l̃1 = e1b(e2ca)

−1. These are elementary loops in G(S). We define

S(e1)(e2)S = {l′1, l
′′
1 , l2, . . . , lr} and F (e1)(e2)S = {l̃1, l2, . . . , lr}.

In the case where e2 is not traversed by l1, we may assume that it is traversed by l2. Let us
write the loops as l1 = ae1b and l2 = ce2d, where a, b, c, d are paths. We define l′ = e1bae2dc
and l̃ = e1ba(e2dc)

−1, and set

S(e1)(e2)S = {l′, l3, . . . , lr} and F (e1)(e2)S = {l̃, l3, . . . , lr}.

Note that, in both cases, the graph which underlies S(e1)(e2)S and F (e1)(e2)S is the same graph
which underlies S.

e1 e2

S S(e1)(e2)S F (e1)(e2)S

Figure 18. The operations S(e1)(e2) and F (e1)(e2) can be understood as acting
locally at the common origin of e1 and e2. From this point of view, the fact that
e1 and e2 are on the same loop or not does not matter. The only difference is,
in the case of the operation F (e1)(e2), the direction in which the lower strand is
traversed. In fact, in this case, the orientation of the loop l̃ itself is arbitrary. We
chose to let it traverse e1 positively, but the other choice would not make any
difference, since this operation is used only in the real and quaternionic cases,
where a Wilson loop is not altered by changing the loop into its inverse.

The following proposition shows that the vector space of smooth complex-valued functions on
CG

U(N,K) spanned by Wilson skeins is stable under the action of the operators ∆(e1) and ∆(e2)(e1).
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Proposition 6.7. Let S be a skein. Set G = G(S). Let E+ be the orientation of G induced by
S. Let e1, e2 be two distinct edges of G issued from the same vertex v. The following properties
hold.

1. ∆(e1)WK
N,S = cu(N,K)W

K
N,S .

2. ∆(e2)(e1)WK
N,S = ∆(e1)(e2)WK

N,S .

3. If e1 /∈ E
+, then λS(e

−1
1 ) ∈ Out(v) ∩ E

+ and ∆(e2)(e1)WK
N,S = −∆(e2)(λS(e

−1
1 ))WK

N,S .

4. Let us assume that e1 and e2 belong to E
+. If e1 and e2 are traversed by the same loop of

S, then

∆(e2)(e1)WK
N,S =





−WN,S(e1)(e2)S + 1
NWN,F (e1)(e2)S if K = R,

−WN,S(e1)(e2)S if K = C,

−WN,S(e1)(e2)S − 1
2NWN,F (e1)(e2)S if K = H.

If, on the contrary, e1 and e2 are traversed by distinct loops of S, then

N2∆(e2)(e1)WK
N,S =





−WN,S(e1)(e2)S +WN,F (e1)(e2)S if K = R,

−WN,S(e1)(e2)S if K = C,

−1
4WN,S(e1)(e2)S + 1

4WN,F (e1)(e2)S if K = H.

The superscripts R,C,H attached to the Wilson skeins are implicit in the right-hand sides of the
last two equations.

Proof. 1. The easiest way to derive this relation is to start from (91) and to use the definition
of cu(N,K) given by (13). In the orthogonal case for example, we have, for all h ∈ CG

U(N,R),

∆(e1)WR
N,S(h) = N−r

N(N−1)
2∑

k=1

d2

dt2 |t=0
Tr⊗n(ρR(λS) ◦ h(e1)e

tXk ⊗ . . .⊗ h(en))

= N−rTr⊗n(ρR(λS) ◦ cu(N,R)h(e1)⊗ . . .⊗ h(en))

= cu(N,R)W
R
N,S(h).

2. For all X,Y ∈ g, the operators D(e1)
X and D

(e2)
Y commute. The equality follows immediately.

3. Let us assume that e1 /∈ E
+. Let us consider h ∈ CG

U(N,K). Then WK
N,S(h), according to its

initial definition, is a product of traces, one of which involves h(e−1
1 ) and h(λS(e

−1
1 )). Thus, for

all X ∈ g and thanks to (80), we can compute

D
(e1)
X WK

N,S(h) = . . .
d

dt |t=0
Tr(h(λS(e

−1
1 ))e−tXh(e−1

1 ) . . .) . . .

= D
(λS(e

−1
1 ))

−X WK
N,S(h).

This implies the desired equality.
4. The enumeration of E+ which we have chosen there does not play any particular role, and

we may assume that it is compatible with our choice of the edges e1 and e2. Using the definition
of the operator ∆(e2)(e1), we find, in close analogy with (54),

∆(e2)(e1)WK
N,S = N−rTr⊗n(ι1,2(Cu(N,K)) ◦ ρK(λS) ◦ h(e1)⊗ . . .⊗ h(er))

if K = R or C, and

∆(e2)(e1)WH
N,S = (−2N)−r(−2ℜTr)⊗n(ι1,2(Cu(N,H)) ◦ ρH(λS) ◦ h(e1)⊗ . . .⊗ h(er))

if K = H. Note that the operator D
(e1)
X multiplies h(e1) on the right by X, so that ρ(λS) is

multiplied on the left.
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Thanks to the expressions (11), (12), (34) and (42) of the Casimir operators, we know that

Nι1,2(Cu(N,K)) =





−(ρ((1 2))− ρ(〈1 2〉)) (K = R),
−ρ((1 2)) (K = C),
1
2(ρH((1 2))− ρH(〈1 2〉)) (K = H).

Since the mappings ρK are homomorphisms of algebra, we can perform the computation easily.
If K = C, then

ι1,2(Cu(N,C))ρC(λS) = −
1

N
ρC((e1 e2)λS).

A simple verification shows that (e1 e2)λS = λS(e1)(e2)S . Thus, ∆(e2)(e1)WC
N,S is a multiple of

WC

N,S(e1)(e2)S
, with a coefficient which depends on the number of loops in the skein S(e1)(e2)S and

which is easily checked to give the expected equalities.
If K = R, then

ι1,2(Cu(N,R))ρR(λS) = −
1

N
ρR((e1 e2)λS) +

1

N
ρR(〈e1 e2〉λS).

Using (39), we find that for all h ∈ CG, N−rTr⊗n(ρR(〈e1 e2〉λS) ◦ h(e1) ⊗ . . . ⊗ h(en)) is equal
either toWR

N,F (e1)(e2)S
(h), if e1 and e2 are traversed by the same loop of S, or to 1

NW
R

N,F (e1)(e2)S
(h)

if they are not.
Finally, if K = H, then

ι1,2(Cu(N,R))ρH(λS) = −
1

−2N
ρH((e1 e2)λS) +

1

−2N
ρH(〈e1 e2〉λS).

Lemma 2.6 allows us to conclude the proof as in the orthogonal case. �

It is necessary for our purposes to study the action of the more general operators ∆(e2)(c,e1) on
Wilson loops. Unfortunately, the linear space generated by the set of Wilson skeins on a given
graph is not stable under the action of these operators. We thus need to extend the definition
of a skein.

Let G be a graph. Let T ⊂ E be a subtree of G, that is, a subset of E which is stable under
the map e 7→ e−1 and such that any two vertices which are endpoints of edges of T are joined
by a unique reduced path in T . We say that a collection of loops G = {l1, . . . , lr} ⊂ L(G) is
a garland with respect to G and T if in each pair {e, e−1} of edges contained in E \ T , exactly
one edge is traversed exactly once by exactly one of the loops l1, . . . , lr. The edges of T , on the
other hand, can be traversed many times. A garland determines uniquely the underlying graph,
but not necessarily the underlying subtree. Given a garland G on (G, T ), we define naturally the
Wilson garland WK

N,G : CG

U(N,K) → C by WK
N,G =WK

N,l1
. . .WK

N,lr
.

Let us extend the definition of the permutation λS to the case of garlands. Let G = {l1, . . . , lr}
be a garland on (G, T ). Each edge of G which is not in T is given an orientation by the unique
loop of G which traverses it. This determines a partial orientation (E \ T )+ of G. The order in
which the loops of G traverse the edges of (E \ T )+ determines a permutation λG of (E \ T )+

and we claim that this permutation suffices to determine the Wilson garland associated to G.
Indeed, recall that for all vertices v and w adjacent to an edge of T , we denote by [v, w]T the
unique reduced path in T which joins v to w. Now if (e1 . . . en) is the cycle of λG corresponding
to the loop l1, then the loop l1 is equivalent to the loop

lred1 = e1[e1, e2]T e2 . . . en−1[en−1, en]T en[en, e1]T ,
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which is reduced (see Section 4.3) and completely determined by G, T and λG . The set of loops
Gred = {lred1 , . . . , lredr } on G is a garland with respect to T which is completely determined by λG
and satisfies WK

N,Gred =WK
N,G .

Let us extend the operations S and F which we defined above to garlands. Let G = {l1, . . . , lr}
be a garland on (G, T ). Let e1 and e2 be two edges of G such that e1 and e2 are adjacent to T .
Let c be a path in T which joins e2 to e1. Let us assume that e1 and e2 belong to (E \ T )+, and
that e1 is traversed by the loop l1. Let us first treat the case where e2 is also traversed by l1.
We can write l1 = ae1be2d, where a, b, d are paths in G. Let us define l′1 = e1bc, l′′1 = e2dac

−1

and l̃1 = e1bc(e2da)
−1c. We define

S(e1)(c,e2)G = {l′1, l
′′
1 , l2, . . . , lr} and F (e1)(c,e2)G = {l̃1, l2, . . . , lr}.

In the case where e2 is not traversed by l1, we may assume that it is traversed by l2. Let us write
the loops as l1 = ae1b and l2 = de2f , where a, b, d, f are paths. We define l′ = e1bac

−1e2fdc and
l̃ = e1bac

−1(e2fd)
−1c, and set

S(e1)(c,e2)G = {l′, l3, . . . , lr} and F (e1)(c,e2)G = {l̃, l3, . . . , lr}.

One checks easily in both cases that S(e1)(c,e2)G and F (e1)(c,e2)G are still garlands on (G, T ).
We can formulate a result analogous to Proposition 6.7. This one shows that the linear space

of smooth complex-valued functions on CG

U(N,K) spanned by Wilson garlands with respect to T

is stable under the action of the operators ∆(e2)(c,e1), where e1 and e2 are edges of E \ T issued
from a vertex adjacent to T and c is a path in T .

Proposition 6.8. Let G be a graph and T a subtree of G. Let G be a garland on (G, T ). Let
(E \ T )+ be the partial orientation of G induced by G. Let e1, e2 be two distinct edges of E \ T
issued from two vertices adjacent to T . Let c be a path in T from the starting point of e1 to the
stating point of e2. The following properties hold.

1. If e1 /∈ (E \ T )+, then λG(e
−1
1 ) ∈ (E \ T )+ and is issued from a vertex adjacent to T .

Moreover, ∆(e2)(c,e1)WK
N,G = −∆(e2)(c′,λG(e

−1
1 ))WK

N,G, where c′ = c[e1, λG(e
−1
1 )]T .

2. If e2 /∈ (E \ T )+, then λG(e
−1
2 ) ∈ (E \ T )+ and is issued from a vertex adjacent to T .

Moreover, ∆(e2)(c,e1)WK
N,G = −∆(λG(e

−1
2 ))(c′′,e1)WK

N,G, where c′′ = [λG(e
−1
2 ), e2]T c.

3. Let us assume that e1 and e2 belong to (E \ T )+. The fourth assertion of Proposition 6.7

holds after substituting everywhere WK
N,S by WK

N,G, ∆(e2)(e1) by ∆(e2)(c,e1), S(e2)(e1) by S(e2)(c,e1)

and F (e2)(e1) by F (e2)(c,e1).

The most natural proof of this proposition involves the gauge invariance of the Wilson loops,
which we have not yet discussed. Let us give a brief and general account of this property.

Let G = (V,E,F) be a graph. Let G be a compact connected Lie group. The gauge group
is by definition the group GV equipped with pointwise multiplication. It acts on M(P(G), G)
according to the following rule : given j = (j(v))v∈V ∈ GV and a multiplicative function h, we
have for all path c

(j · h)(c) = j(c)−1h(c)j(c).

One checks easily that this is a right action in the sense that if j and k belong to the gauge
group and h is a multiplicative function, then (jk) · h = k · (j · h).

The gauge group acts naturally on the space of smooth functions on the configuration space
GE+

: if f is such a smooth function, j a gauge transformation and h a multiplicative function,
then we have, by definition,

(j · f)(h) = f(j−1 · h),



THE MASTER FIELD ON THE PLANE 79

so that again, if k is another gauge transformation, (jk) · f = k · (j · f). We say that a function
on the configuration space GE+

is invariant if it is invariant under the action of the gauge group.
It is straightforward to check that Wilson loops, hence Wilson skeins and Wilson garlands,

are invariant functions on CG
G . Not all the differential operators which we have defined preserve

the subspace of smooth invariant functions. The following lemma clarifies this point.

Lemma 6.9. Let f : CG
G → C be a smooth function. Let e1 and e2 be two edges of G. Let c be

a path joining the starting point of e2 to the starting point of e1.
1. For all j ∈ GV and all X ∈ g, the following equality holds:

(92) j ·
(
D

(c,e1)
X (j−1 · f)

)
= D

(c,e1)
Ad(j(c)−1)X

f.

2. The operator ∆(e2)(c,e1) is invariant. In other words, for all j ∈ GV , the following equality
holds:

j ·
(
∆(e2)(c,e1)(j−1 · f)

)
= ∆(e2)(c,e1)f.

The proof of this lemma is a straightforward application of the definitions and we leave it to
the reader.

We need another piece of information. Let T be a subtree of G. Let v0 be a vertex of T . For
all configuration h ∈ CG

G , let us consider the element jh,T of the gauge group defined by

jh,T (v) =

{
h([v0, v]T ) if v ∈ T
1 otherwise.

Then jh,T · h is identically equal to 1 on the edges of T .
We have now gathered the tools to prove Proposition 6.8.

Proof of Proposition 6.8. The equalities which we need to prove are pointwise equalities of func-
tions on CG

U(N,K). By Lemma 6.9, all the functions which we consider are invariant. Let h be

an element of the configuration space CG

U(N,K). Two invariant functions agree at h if and only if
they agree at jh,T · h.

Now, if we write (E \ T )+ = {e1, . . . , en}, then Lemma 6.6 holds if WK
N,S is replaced by WK

N,G ,
λS by λG and h by jh,T · h. Let us use this to prove the first assertion. The proof of the second
assertion is very similar.

Let us assume that e1 /∈ (E \ T )+. As in the proof of the third assertion of Proposition 6.7,
we have

D
(c,e1)
X WK

N,G(jh,T · h) = . . .
d

dt |t=0
Tr((jh,T · h)(λG(e

−1
1 ))e−tAd((jh,T ·h)(c))X(jh,T · h)(e−1

1 ) . . .) . . .

= D
(λG(e

−1
1 ))

−Ad((jh,T ·h)(c′))XW
K
N,G(jh,T · h)

= −D
(c′,λG(e

−1
1 ))

X WK
N,G(jh,T · h),

the point being that (jh,T · h)(c) = (jh,T · h)(c′) = 1.
The proof of the third assertion is a mild adaptation of the proof of the fourth assertion of

Proposition 6.7, of which we leave the detail to the reader. Note that Figure 17 is relevant to
the situation which is being analysed here. �

Let us conclude this section by a formula of integration by parts related to gauge invariance
and which completes the remark which we made just before stating Proposition 6.2. This is also
a general statement in the sense that it does not depend on the structure group with which we
are working.
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Proposition 6.10. Let f : CG
G → C be a smooth invariant function. Let e be an edge of G. Let

c be a path finishing at the starting point of e. Let X be an element of g. The following equality
holds: ∫

GE+

(
D

(c,e)
X f

)
(h) dh = 0.

Proof. In a word, we are going to average the equality (92) over the gauge group, which is a
compact Lie group.

The invariance of f and (92) imply that for all j ∈ GV, we have
∫

GE+

(
D

(c,e)
X f

)
(h) dh =

∫

GE+

(
D

(c,e)
Ad(j(c)−1)X

f
)
(j−1 · h) dh.

Since the Haar measure on GE+
is invariant under the action of GV, we can replace j−1 · h by h

in the right-hand side and, averaging over j, we find
∫

GE+

(
D

(c,e)
X f

)
(h) dh =

∫

GE+×GV

(
D

(c,e)
Ad(j(c)−1)X

f
)
(h) djdh,

which by linearity of the map X 7→ D
(c,e)
X , is equal to
∫

GE+

(
D

(c,e)
Z f

)
(h) dh,

where we have set Z =
∫
GV Ad(j(c)−1)X dj. We compute Z =

∫
GAd(x)X dx, which belongs to

the centre of the Lie algebra g. Hence, for all h ∈ GE+
, D(c,e)

Z f(h) = D
(e)
Ad(h(c))Zf(h) = D

(e)
Z f(h),

and we finally find ∫

GE+

(
D

(c,e)
X f

)
(h) dh =

∫

GE+

(
D

(e)
Z f

)
(h) dh,

which is equal to zero by the first assertion of Lemma 6.1. �

6.5. Expectation of products of Wilson loops. In this section, we prove that the results
which we obtained so far allow us, at least in principle, to compute the expectation of any Wilson
skein, for any K ∈ {R,C,H} and any integer N .

The strategy is the following. Let us consider a Wilson skein S = {l1, . . . , lr}. In order to
compute the expectation E

YM
G [WK

N,S ], we would like to use Corollary 6.3 to differentiate this
expectation with respect to the areas of the faces of the graph G which underlies S. Unfortu-
nately, (87) involves differential operators which do not preserve the space of functions on CG

U(N,K)

spanned by Wilson skeins on G. On the other hand, Wilson skeins are particular cases of Wilson
garlands, and we now by Proposition 6.8 that the space of functions on CG

U(N,K) linearly spanned
by Wilson garlands is stable by the differential operators which appear in (87), provided the
paths which are denoted as c2, . . . , cr belong to the tree with respect to which we consider the
garlands. Moreover, it turns out that if we choose a spanning tree T of G, we can apply (87) in
such a way that the paths c which appear in the operators ∆(e2)(c,e1) stay confined in T . Since
there is a finite number of garlands with respect to a pair (G, T ), we are thus able to write down
a finite-dimensional differential equation, the solution of which has one particular component
which is the expected value of the Wilson skein in which we were originally interested.

Given a graph G and a subtree T of G, let us denote by G(G, T ) the set of garlands on G

with respect to T . It is a finite set. The following proposition is a rigorous formulation of the
discussion of the previous paragraph.
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Proposition 6.11. Choose K ∈ {R,C,H} and an integer N ≥ 1. Let G be a graph. Let T be a
spanning tree of G. For each face F of G, there exists a G(G, T )×G(G, T ) matrix, which depends

on K, N,G, T, F , and which we simply denote by MK,N
F , such that

(
d

d|F |
−MK,N

F

)(
E
YM

G

[
WK,N

G

]
: G ∈ G(G, T )

)
= 0.

Proof. Recall from Section 4.3 (see in particular Figure 9) the way in which the spanning tree T ,
once we have chosen a neighbour of the dual root, determines a labelling of the set F of faces by
words of integers. We use this structure on F to determine a specific sequence of faces to which
we shall apply Corollary 6.3.

If k1 . . . kp is a word of integers corresponding to a face of G, we denote by c(k1 . . . kp) the
number of children of k1 . . . kp, that is, the largest integer l such that k1 . . . kpl corresponds to a
face of G. If l ∈ {0, . . . , c(k1 . . . kp)}, we define

s(k1 . . . kp, l) =

{
(k1 . . . kp−1, kp) if l = c(k1 . . . kp),
(k1 . . . kp(l + 1), 0) if l < c(k1 . . . kp).

Starting from (∅, 0) and iterating s until one reaches (∅, c(∅)), whose image by s is not defined,
corresponds to the exploration of the dual tree by a person who keeps it on her left-hand side.

∅

12

21

211

2112 2111

2111121112

k1 . . . kp

k1 . . . kp−1

. . . . . .

k1 . . . kp1k1 . . . kp2

l=0

l=1l=2

l=c(k0...kp)

k1 . . . kpc(k1 . . . kp)

Figure 19. The left-hand side explains the meaning of the integer l, namely
the location of the explorer around the vertex which is currently visited. The
right-hand side shows the trajectory of the left-handed exploration of the dual
tree of the example depicted in Figure 9.

Let us consider a bounded face F and its label k1 . . . kp. Let us construct a sequence of faces
by starting from (k1 . . . kp, c(k1 . . . kp)), iterating s until we reach the unbounded face for the first
time, and forgetting the values of l in each term of the sequence obtained. We find a sequence
F = F1, F2, . . . , Fn, Fn+1 = F∞. For example, if we use the graph depicted in Figure 9 and start
from the face 21111, we find the sequence (21111, 2111, 21112, 2111, 211, 2112, 211, 21, 2,∅).

Each face of the sequence (F1, . . . , Fn+1) is adjacent to the next, for they correspond to
adjacent vertices in the dual spanning tree. For each r ∈ {1, . . . , n}, let er be the unique edge of
G such that (Fr, er, Fr+1) is a dual edge.
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The fact that we chose the sequence of faces by left-handed exploration of the tree T implies
that the paths c2, . . . , cr defined in the statement of Proposition 6.2 are paths in T .

We now apply Corollary 6.3 to the sequence F1, . . . , Fn+1, the edges e1, . . . , er, once for each
observable of the form WK

N,G , where G spans G(G, T ). By Proposition 6.8, each derivative with
respect to the area of F is expressed as a linear combination of Wilson garlands belonging to
G(G, T ). �

Recall from (81) the definition of the Yang-Mills measure YMt. When the components of t
tend to 0, for all lasso λ on G (see Proposition 4.2), the distribution of h(λ) under YMt converges
weakly to the Dirac mass at the identity matrix IN . Hence, all the components of the vector(
E
YM

G
t

[
WK,N

G

]
: G ∈ G(G, T )

)
tend to 1. Let us denote by ✶ the vector of size G(G, T ) with all

its components equal to 1. In analogy with (61), we have

(93)
(
E
YM

G
t

[
WK,N

G

]
: G ∈ G(G, T )

)
=

(
q∏

k=1

e
tkM

K,N
Fk

)
✶.

This is a formula of the sort we were aiming at: it provides us with a graphical procedure
to compute the expectation of products of Wilson loops. It is however rather impractical. The
number of garlands on a given pair (G, T ) is large: if all the vertices of G have degree 4, which
is the generic case, there are 2v+1(v + 1)! garlands, where v is the number of vertices of G.
Moreover, solving the differential system (93) needs not be particularly simple.

It follows immediately from the expressions given in Proposition 6.7 that the matrices MK,N
F

have a limit as N tends to infinity, and that this limit does not depend on K. We denote this
limit simply by MF . Since Wilson garlands are bounded by 1 by construction, we can let N tend
to infinity in the equality (93), and find an algorithm to compute the master field. We shall see
in the forthcoming sections that this algorithm can be significantly improved.

6.6. Extended gauge invariance and local graphical operations. The formulas (82) and
(87) share the unpleasant feature that, in order to express the derivative of the expectation of
an observable with respect to the area of a single face, they involve derivatives of the observable
with respect to edges which may be very far from this face, indeed all the edges located on a
path from this face to the unbounded face. We suffered from this problem in our study of the
expectations of products of Wilson loops, and this led us to the introduction of Wilson garlands.

As far as concrete computations in the N < ∞ case are concerned, we shall not be able to
go much further than (93). However, with the limiting case N → ∞ in view, that is, for the
master field itself, we shall elaborate on several works of Makeenko and Migdal [28], Kazakov
[20], Kazakov and Kostov [21], and describe a much more appealing way of computing.

The main discovery of Makeenko and Migdal is that a certain linear combination of the
derivatives of the expectation of a Wilson loop with respect to the area of the faces which
surround a given vertex involves only local terms, in the sense that the differential operators
which involve edges located far away cancel out. The original statement of the Makeenko-Migdal
relation was essentially pictorial, and its proof was based on an ill-defined path integral with
respect to the continuous Yang-Mills measure over the space of gauge fields. In this section,
we propose a general framework in which cancellations of this sort happen. This turns out to
be related with properties of invariance of the observable under consideration with respect to
the action of a group larger than the gauge group. The results of this section are valid for an
arbitrary gauge group.
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Before we introduce the notion of invariance which will be useful, let us recall that the usual
gauge symmetry of the theory is that of the configuration space of the discrete Yang-Mills theory
being acted on by the gauge group, which we described after the statement of Proposition 6.8.

Let G = (V,E,F) be a graph. The gauge group is the group GV acting on M(P(G), G)
according to the following rule : given j = (j(v))v∈V ∈ GV and a multiplicative function h, we
have for all path c

(j · h)(c) = j(c)−1h(c)j(c).

Let us give an infinitesimal version of the gauge invariance of a function. For each vertex v,
recall that we defined the set Out(v) as the set of edges issued from v: Out(v) = {e ∈ E : e = v}.

Lemma 6.12. Let f : GE+
→ R be a smooth invariant function. For all vertex v and all X ∈ g,

we have ∑

e∈Out(v)

D
(e)
X f = 0.

Proof. Let v ∈ V be a vertex. We may assume that all edges adjacent to v are oriented in
such a way that v is their starting point, so that Out(v) ⊂ E

+. Choose X ∈ g and consider
the one-parameter subgroup of gauge transformations jt(v) = etX and jt(w) = 1 for all vertex
w 6= v. Differentiating the equality jt · f = f with respect to t and evaluating at t = 0 yields the
desired equality. �

We want to consider invariant functions which are invariant by more transformations than
just the gauge transformations. We shall give natural examples of such functions in a moment.

Definition 6.13. Let f : GE+
→ R be a smooth invariant function. Let v ∈ V be a vertex. Let

I be a subset of Out(v). We say that f is I-invariant at v if for all X ∈ g we have the equality
∑

e∈I

D
(e)
X f = 0.

We have seen that any invariant function is Out(v)-invariant at each vertex v. It follows for
instance that a smooth invariant function which is I-invariant at v is also (Out(v) \ I)-invariant.

The simplest examples of functions which are I-invariant at some vertex v for some proper
subset I of Out(v) are provided by Wilson loops. For instance, let l be a loop in G which visits
exactly once the vertex v. Assume that l arrives at v through the edge e−1

1 and leaves v through
the edge e3 (see the left-hand side of Figure 20). Then the Wilson loop Wχ,l is invariant and
{e1, e3}-invariant at v.

v e1

e2

e3

e4

l1

v e1

e2

e3

e4

l2

Figure 20. The Wilson loops associated to the loops l1 and l2 are both {e1, e3}-
invariant, and also {e2, e4}-invariant, at v.
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This example is however in a sense trivial, for the Wilson loop we chose does not depend at all
on e2 nor e4. The next simplest example is also the fundamental one with the Makeenko-Migdal
equations in mind. It is that of a loop which visits exactly twice the vertex v, once arriving
through e−1

1 and leaving through e3, and once arriving through e−1
2 and leaving through e4 (see

the right-hand side of Figure 20).
The next result shows that an observable which enjoys a property of local invariance as we

have defined it also satisfies a local differential relation with respect to the areas of the faces of
the graph.

Proposition 6.14. Let f : GE+
→ R be a smooth invariant function. Let v ∈ V be a vertex. Let

I be a proper non-empty subset of Out(v). Enumerate the edges of Out(v) in cyclic clockwise order
around v as {e1, . . . , ep} in such a way that I contains e1 but not ep. Set r = max{i : ei ∈ I}.
For each i ∈ {1, . . . , p}, let Fi denote the face adjacent to v which is bounded positively by ei.

Assume that f is I-invariant at v. The following equality holds:

(94)
∑

i∈I

(
d

d|Fi|
−

d

d|Fi+1|

)
E
YM

G [f ] =
∑

1≤i<j≤r
i∈I,j /∈I

E
YM

G

[
∆(ei)(ej)f

]
.

Since the problem is cyclically invariant around v and I is a proper subset of Out(v), the
assumption that I contains e1 and not ep does not restrict the generality. The case where I is
empty or equal to Out(v) has little interest and the result is anyway trivially true in this case.

e1

e3e4

F1

F2

F3

F4

e2

F5

F6

e5

e6 +
−

+−

Figure 21. In this example, we take I = {e1, e3, e4}. The relation is then
(

d

d|F1|
−

d

d|F2|
+

d

d|F3|
−

d

d|F5|

)
E
YM

G

N
[f ] = E

YM
G

N

[
∆(e1)(e2)f

]
.

Proof. The proof consists in applying Proposition 6.2 as many times as there are edges in I. For
this, we need to choose an appropriate path in the dual graph from F1 to the unbounded face. We
do this by considering the sequence F1, . . . , Fr+1 (observe that r < p), which we complete by an
arbitrary sequence F̃r+2, . . . , F̃n+1, where F̃n+1 is the unbounded face. For each i ∈ I, we apply
Proposition 6.2 with the sequence Fi, . . . , Fr+1, F̃r+2, . . . , F̃n+1. Since the edges ei, . . . , er are all
issued from v, the paths ci+1, . . . , cr are constant, and the paths cr+1, . . . , cn do not depend on
i. For each i, we find

(
d

d|Fi|
−

d

d|Fi+1|

)
E
YM

G [f ] =
1

2
E
YM

G [∆(ei)f ] +
n∑

j=i+1

E
YM

G [∆(ej)(cj ...ci+1,ei)f ].
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Summing the right-hand side over i ∈ I and splitting according to the values of j gives

(95) E
YM

G


1
2

∑

i∈I

∆(ei)f +
∑

i∈I,i<j≤r

∆(ej)(ei)f


+

d∑

k=1

∑

i∈I

n∑

j=r+1

E
YM

G

[
1

2
D

(ej)
Xk

D
(cj ...ci+1,ei)
Xk

f

]
.

The last term of (95) can be rewritten as

d∑

k=1

n∑

j=r+1

E
YM

G

[
1

2
D

(ej)
Xk

∑

i∈I

D
(cj ...ci+1,ei)
Xk

f

]
,

and for all h ∈ GE+
, all k ∈ {1, . . . , d} and all j ∈ {r + 1, . . . , n}, we have

(∑

i∈I

D
(cj ...ci+1,ei)
Xk

f

)
(h) =

∑

i∈I

(
D

(ei)
Ad(h(cj ...ci+1))Xk

f
)
(h) = 0,

thanks to the I-invariance of f .
Another consequence of the I-invariance of f is

0 =
d∑

k=1

(∑

i∈I

D
(ei)
Xk

)2

f =
∑

i∈I

∆(ei)f + 2
∑

i,j∈I
i<j

∆(ei)(ej)f.

It follows that the first term of (95) is equal to

E
YM

G



∑

i<j≤r
i∈I,j /∈I

∆(ej)(ei)f


 ,

as expected. �

We mentioned before stating Proposition 6.14 that the main situation where we intended to
apply it is at a point of self-intersection of a Wilson loop, or at the intersection point of two
Wilson loops. First of all, let us state and prove the extended gauge-invariance properties of
Wilson loops, indeed of Wilson skeins.

Lemma 6.15. Let S = {l1, . . . , lr} be a skein. Set G = G(S). For each i ∈ {1, . . . , r}, let
li = ei,1 . . . ei,ni

be the decomposition of li as a product of edges, and set ei,ni+1 = ei,1. Let
χ : G → C be a central function. For each i ∈ {1, . . . , r} and each j ∈ {1, . . . , ni}, the Wilson
skein Wχ,S =Wχ,l1 . . .Wχ,lr is {e−1

i,j , ei,j+1}-invariant at ei,j.

Proof. Without loss of generality, we may assume that i = 1. For all h ∈ CG, we have
Wχ,l1(h) = χ(h(e1,n1) . . . h(e1,1)). Since l1 is an elementary loop, the edges e1,1, . . . , e1,n1 are
pairwise distinct, even up to inversion. Thus, for each j ∈ {1, . . . , n1}, and all X ∈ g, we have

((
D

(e−1
1,i )

X +D
(e1,i+1)
X

)
Wχ,l1

)
(h) =

d

dt |t=0
χ(h(e1,n1) . . . e

−tXh(e1,i) . . . h(e1,1))

+
d

dt |t=0
χ(h(e1,n1) . . . h(e1,i+1)e

tX . . . h(e1,1))

= 0.
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On the other hand, the product Wχ,l2 . . .Wχ,lr does not depend on h(e1,i) nor h(e1,i+1), so that
for all X ∈ g,

D
(e−1

1,i )

X (Wχ,l2 . . .Wχ,lr) = D
(e1,i+1)
X (Wχ,l2 . . .Wχ,lr) = 0.

An application of the Leibniz rule completes the proof. �

Combining the extended invariance properties of Wilson skeins (Lemma 6.15), the local dif-
ferential relation which this entails for their expectation (Proposition 6.14) and the result of the
action on Wilson skeins of the differential operators which appear in (94) (Proposition 6.7), we
find the following result.

Proposition 6.16 (The Makeenko-Migdal equations for Wilson loop expectations). Let S =
{l1, . . . , lr} be a skein. Set G = G(S). Let E+ be the orientation of G induced by S. Let v be a
vertex of G of degree 4. Let e1 and e2 be the two edges of E+ which start at v. Assume that e1
precedes immediately e2 in the clockwise cyclic order of the edges outgoing at v. Let F1, F2, F3, F4

be the faces adjacent to v, listed in clockwise order and starting by the face located between e1
and e2. The faces F1, F2, F3, F4 need not be pairwise distinct. Then

(96)

(
d

d|F1|
−

d

d|F2|
+

d

d|F3|
−

d

d|F4|

)
E
YM

G

[
WK

N,S

]
= E

YM
G

[
−∆(e2)(e1)WK

N,S

]
,

where ∆(e2)(e1)WN
N,S is given by Proposition 6.7. If a face is the unbounded face, then the corre-

sponding derivative must be removed from the left-hand side of (96).
In particular, if K = C and if e1 and e2 are traversed by the same loop,

(97)

(
d

d|F1|
−

d

d|F2|
+

d

d|F3|
−

d

d|F4|

)
E
YM

G

[
WC

N,S

]
= E

YM
G

[
WC

N,S(e2)(e1)S

]
.

+

+

−− =

Figure 22. This picture illustrates the original instance of the Makeenko-Migdal
equations, corresponding to (97).

Proof. Let e3 and e4 denote the other two outgoing edges at v, in such a way that e1, e2, e3, e4
are cyclically ordered in this way around v. The function WK

N,S is {e1, e3}-invariant at v. Hence,
Proposition 6.14 implies

(
d

d|F4|
−

d

d|F1|
+

d

d|F2|
−

d

d|F3|

)
E
YM

G

[
WK

N,S

]
= E

YM
G

[
∆(e1)(e2)WK

N,S

]
,

which is the expected equality. �

In the equality (97), we can let N tend to infinity. Recall that we denote by Φ : L(R2) → R

the master field. For each skein S = {l1, . . . , lr}, we set Φ(S) = Φ(l1) . . .Φ(ln), which is the limit
of E

YM
G [WK

N,S ] as N tends to infinity. We have the following result.
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Proposition 6.17 (The Makeenko-Migdal equation for the master field). With the notation of
Proposition 6.16, we have

(98)

(
d

d|F1|
−

d

d|F2|
+

d

d|F3|
−

d

d|F4|

)
Φ(S) = Φ(S(e2)(e1)S).

Proof. It suffices to write (97) in integral form and to use the the dominated convergence theorem
to take the limit where N tends to infinity. �

6.7. Underdetermination of local relations. The Makeenko-Migdal equations convey in an
extremely pleasant and practical way a lot of information on Wilson loop and Wilson skein
expectations. It is clear however that these equations alone do not suffice to determine the
Wilson skein expectations, if only because the derivation which appears in the left-hand side of
(96) leaves invariant the sum of the areas of the bounded faces of the graph. It only redistributes
it around the vertex at which the equations are applied. Another piece of information is provided
by the first assertion of Proposition 6.7, which allows us to determine how the expectation changes
when one increases the area of a face which is adjacent to the unbounded face.

In this section, we show that these two relations, namely the first assertion of Proposition 6.7
and the Makeenko-Migdal equation (96) do not suffice to solve the problem of computing the
Wilson loop expectations for finite N . However, as we shall explain in the next section, they do
suffice in the large N limit, thanks to the factorisation property of the master field.

Let us define a linear operator Ω : C∞(CG) → C∞((R∗
+)

Fb

,CF) by setting, for all smooth
observable f : CG → C,

(99) Ωf =

(
d

d|F |
E
YM

G
t
[f ] : t ∈ (R∗

+)
Fb

, F ∈ F

)
,

where it is understood the the derivative with respect to the unbounded face is 0. We call Ωf the
area-derivative of the expectation of f . We shall often see it as a vector of CF, keeping implicit
the dependence with respect to t.

Let S = {l1, . . . , lr} be a skein. Set G = G(S). For each i ∈ {1, . . . , r}, let li = ei,1 . . . ei,ni

be the decomposition of li as a product of edges, and set ei,ni+1 = ei,1. The set E
+ = {ei,j :

i ∈ {1, . . . , r}, j ∈ {1, . . . , ni}} is the orientation of G determined by S. For each i ∈ {1, . . . , r}
and each j ∈ {1, . . . , ni}, let F+

i,j and F−
i,j denote the faces of G which are respectively bounded

positively and negatively by ei,j . For each such (i, j), (94) allows us to compute (ΩWχ,S)F−

i,j
−

(ΩWχ,S)F+
i,j

+ (ΩWχ,S)F+
i,j+1

− (ΩWχ,S)F−

i,j+1
. Thus, letting n = n1 + . . .+ nr be the number of

unoriented edges of G, (94) enables us to compute the image of ΩWχ,S by the linear mapping

µS : RF −→ R
E+

u = (uF : F ∈ F) 7−→
(
(uF+

i,j+1
− uF−

i,j+1
)− (uF+

i,j
− uF−

i,j
)
)

i=1...r
j=1,...,ni

.

We must determine whether this mapping is injective or not. It is clearly not, for the vector
all of whose components are equal to 1, which we denote by ✶

F, lies in its kernel. Perhaps less
obviously, the winding number of each loop li, which we denote by nli , and seen in the most
natural way as an element of RF, also belongs to the kernel of µS .

We will also analyse the image of µS . For this, let us introduce the following notation. For
each edge ei,j ∈ E

+, let δei,j denote the vector of RE+
whose components are all equal to 0 except

the ei,j component, which is equal to 1. For each i ∈ {1, . . . , r}, let us write δli =
∑ni

j=1 δei,j . For

each vertex v of G, let us define ⋆v =
∑

ei,j=v δei,j . Finally, let ✶E
+

be the vector of RE+
whose
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components are all equal to 1. Note that
∑r

i=1 δli =
∑

v∈V ⋆v = ✶
E+

. Let us endow R
E+

with
the scalar product for which (δei,j )i,j is an orthonormal basis.

Lemma 6.18. Assume that none of the loops l1, . . . , lr is constant.
1. The kernel of µS is spanned by the linearly independent vectors ✶, nl1 , . . . , nlr .

2. The intersection of the subspaces of RE+
spanned respectively by δl1 , . . . , δlr and {⋆v : v ∈ V}

is equal to the line spanned by ✶E
+
.

3. The image of µS is the subspace orthogonal to the sum of the subspaces of R
E+

spanned
respectively by δl1 , . . . , δlr and {⋆v : v ∈ V}.

Proof. In this proof, we think of R
F as the vector space of functions on R

2 which are locally
constant on the complement of the skeleton of G.

1. Let u be an element of the kernel of µS . Set α = uF∞
, so that u − α✶F vanishes on the

unbounded face F∞. The equality µS(u − α✶F) = 0 means that the jump of u across any two
consecutive edges of li are equal, so that u varies by a certain fixed quantity βi when one crosses
an edge of li.

The function u − α✶F −
∑r

i=1 βinli vanishes on the unbounded face of G, and does not vary
when one crosses one of the edges of G. It is thus identically equal to zero.

The fact that ✶, nl1 , . . . , nlr are linearly independent follows from the fact that given a function
of the form α✶ +

∑r
i=1 βinli , α can be recovered from its value on the unbounded face, and

β1, . . . , βr from its jumps across the edges of l1, . . . , lr.
2. Consider an equality w =

∑r
i=1 αiδli =

∑
v∈V βv⋆v in R

E+
. The first expression of w shows

that it has the same value on any two edges of a same loop of S. The second expression shows
that it has the same value on the edges of any two loops which visit a common vertex. Since G

is connected, w has the same value on each edge, that is, w is a multiple of ✶E
+
.

3. It is a simple verification to check that the range of µS is orthogonal to each δli , i ∈
{1, . . . , r} and to each ⋆v, v ∈ V. On the other hand, by the first assertion, the range of µS
has dimension |F| − r − 1. We conclude the proof by observing, thanks to Euler’s relation, that
|F| − r − 1 = |E+| − (|V|+ r − 1). �

This result shows that in general, given a skein consisting of r loops, the Makeenko-Migdal
equations (96) need to be completed by r + 1 independent relations in order to allow one to
determine ΩWK

N,S .
It turns out that two such relations are always available. The first is given by the fact that

the component of ΩWK
N,S corresponding to the unbounded face is 0. The second is given by the

first assertion of Proposition 6.7 applied to a face adjacent to the unbounded face. In general, no
other obivous relations seem to be available. In particular, there may be only one face adjacent
to the unbounded face (see Figure 23 below).

In the case of a single loop however, these relations suffice to determine ΩWK
N,S and, together

with the factorisation property of the master field, this observation will allow us to design an
algorithm to compute it. Let us state and prove the observation.

Corollary 6.19. Let l be a non-constant elementary loop. Let G = G(l) be the underlying graph.
Let F be a face of G which shares an edge with the unbounded face. Then the mapping

µ̃{l} : R
F −→ R

E+
× R

2

u 7−→
(
µ{l}(u), uF∞

, uF
)

is injective.
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F1

F2

F4

F3 l1
l2

Figure 23. In this example, the area derivatives available through the
Makeenko-Migdal equations are 2∂|F1| − ∂|F2| and ∂|F1| − ∂|F2| + ∂|F3| − ∂|F4|.
Moreover, the derivative ∂|F1| is given by Proposition 6.7. This does however not
suffice to determine the area-derivative of the expectation of this Wilson skein.

Proof. Assume that µ̃{l}(u) = 0. Then µ{l}(u) = 0 and, by Lemma 6.18, u is a linear combination
of ✶ and nl. Since uF∞

= uF = 0, u must be equal to 0. �

6.8. A recursive algorithm to compute the master field. Recall that if S = {l1, . . . , lr} is
a skein, we denote by Φ(S) the product Φ(l1) . . .Φ(lr). We are going to prove that the value of
the master field on a skein can be computed recursively from the values of the master field on
skeins with less self-intersections.

Let us define what we mean by the number of true self-intersections of a skein. For this, we
shall use the cyclic order induced by the orientation of R2 on the edges issued from each vertex
of a graph. In a cyclically ordered set {x1 < . . . < xn < x1}, we shall say that two pairs {x, y}
and {z, t} are crossing if x < z < y < t or x < t < y < z.

Let S be a skein. Set G = G(S). For each vertex v of G, let us count how many pairs
{{e1, e2}, {e3, e4}} of edges of Out(v) there exist which are crossing in the cyclic order of Out(v),
and such that all of these edges are traversed by the same loop of S, with e1 and e2 on one hand,
and e3 and e4 on the other hand, traversed consecutively. We define the number of crossings of
S as the sum over the vertices of G of these numbers of crossing pairs. We denote it by cn(S).

In the case where all vertices of G have degree 4, which is the generic situation, cn(S) is simply
the number of vertices of G which are visited twice by the same loop, and at which this loop has
a stable crossing with itself. By a stable crossing, we mean a crossing which cannot be removed
by slightly deforming the loop.

Lemma 6.20. Let S be a skein. Set G = G(S). Let e1, e2, e3, e4 be four edges issued from the
same vertex of G and which are traversed by the same loop of S. Assume that e1 and e2 on one
hand, and e3 and e4 on the other hand, are traversed consecutively by this loop.

1. The equality
(
∆(e1)(e3) +∆(e1)(e4)

)
WK,N

S = 0 holds.

2. If the pairs {e1, e2} and {e3, e4} cross, then cn
(
S(e1)(e3)S

)
< cn(S).

Proof. 1. The edges e3 and e4 are traversed consecutively by one of the loops of S and, since
e3 and e4 are outgoing at the same vertex, one of them is traversed positively and the other
negatively. Hence, for all X ∈ u(N,K), we have D

(e3)
X WK,N

S = −D
(e4)
X WK,N

S . The first assertion
follows immediately.

2. Let us assume that e1 < e3 < e2 < e4 < e1 in the cyclic order. The first thing to observe
is that the two pairs {e1, e2} and {e3, e4}, which are crossing in S, are not crossing anymore in
S(e1)(e3)S.

Moreover, let us consider a third pair {e5, e6} of consecutive edges of the same loop which
traverses e1, e2, e3, e4. There are, up to obvious symmetries, three ways in which these two edges
can fit into the cyclic order e1 < e3 < e2 < e4 < e1. One checks in each case that the number of
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crossings involving {e5, e6} in Se1,e3S is at most equal to the same number in S. (see Figure 24
below). �

S

S(e1)(e3)S

Figure 24. The strand corresponding to the pair of edges {e5, e6} is heavier.

The algorithm, in its principle, is described by the following proposition.

Proposition 6.21. Let l be an elementary loop. Consider Φ(l) as a function of the areas of
the faces of the graph G(l). Each component of the area-derivative of Φ(l) can be expressed as a
linear combination of Φ(l) and a quadratic polynomial in the values of the master field on a set
of elementary loops on G which all have a crossing number strictly smaller than that of l.

Proof. Let l be an elementary loop. By Corollary 6.19, we know that the area derivative of Φ(l)
is a linear combination of the derivatives which (94) allows us to compute, and the derivative
with respect to the area of a face adjacent to the unbounded face. We know that if F is such a
face, then d

d|F |Φ(l) = −1
2Φ(l).

Lemma 6.20 allows us to bound the number of crossings of the skeins which appear on the
right-hand side of (94). Indeed, we apply this equation with I a pair of consecutive edges of the
loop l. By the first assertion of Lemma 6.20, only those index j contribute to the sum such that
ei and ej belong to strands of l which form a crossing. For those, Proposition 6.7 indicates that
we are applying the operator S(ei)(ej) to the skein {l}, thus producing a skein which contains
two loops, for which the second assertion of Lemma 6.20 assures us that the crossing number is
strictly smaller than that of l.

In particular, any loop which forms such a skein has a crossing number strictly smaller than
that of l. �

This proposition leads to a recursive algorithm, provided we have a finiteness result. Indeed,
on a graph G, there are a finite number of skeins. In fact, there are, up to homeomorphism,
only a finite number of skeins in generic position whose crossing number is smaller than a certain
value.

We can now describe a set of rules which allows one to recursively compute the values of the
master field on an arbitrary elementary loop. Consider a skein S = {l1, . . . , lr}.

1. If cn(S) = 0, then each loop li of S bounds a disk of area ti and

Φ(S) = e−
t1+...+tr

2 .

2. If cn(S) > 0, then the area derivative of Φ(S) is a linear combination of Φ(S ′) with
cn(S ′) < cn(S).

3. When all faces have area equal to 0, we have Φ(S) = 1.
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Using these rules, it is fairly easy to set up a table of the values of Φ on the elementary loops
which have few self-intersections. Incidentally, the enumeration of these loops, up to isotopy, is
a difficult problem (see [2]).

6.9. The Kazakov basis. In [20], V. Kazakov gave without proof a beautiful description of the
way in which one can invert the mapping µ̃{l} which we introduced in Corollary 6.19. We devote
this last section to a proof of his main statements.

Let l be an elementary loop which is generic in the sense that each vertex of the graph G = G(l)
has degree 4 and is a crossing in the sense of the previous section, except for the vertex l(0) which
is of degree 2. The problem which Kazakov studied was to determine as explicitly as possible
how to recover the derivative of E[WC

N,l] with respect to the area of each face of G from the data
of the alternated sum of these derivatives with respect to the faces located around each vertex,
and the derivative with respect to the area of a face adjacent to the unbounded face.

In this context, Kazakov identified a relevant and non-trivial basis of the module Z
Fb

, of which
we shall think as the space of locally constant integer-valued functions on the complement of the
range of l which vanish at infinity.

Let us write F
b = {F1, . . . , Fq}. To start with, the module Z

Fb

admits the trivial basis indexed
by F

b, which we simply denote by {F1, . . . , Fq}. In order to define the second basis, let us make
the assumption that the vertex l(0) is located on the boundary of the unbounded face. The
orientation of l determines an orientation E

+ of G, and it determines an order on V, which is
the order of first visit starting from l(0), which we call v0. Thus, V = {v0 = l(0), v1, . . . , vq−1}.
Indeed, it follows from Euler’s relation that the number of vertices of G is the same as the number
of faces.

For each i ∈ {1, . . . , q − 1}, let li denote the subloop of l which is delimited by the two visits
at the vertex vi. Set also l0 = l. For each i ∈ {0, . . . , q− 1}, the winding number nli (see Section
5.4) belongs to Z

Fb

.
The main statement of Kazakov is a consequence of the fact that {nl0 , . . . , nlq−1} is a basis

of Z
Fb

. We propose to understand this fact in terms of a certain positive quadratic form on
the module Z

Fb

. Consider the space Z
E+

of formal linear combinations of edges of E+ and, in
this space, the subspace formed by linear combinations such that at each vertex, the sum of the
coefficients of the incoming edges equals the sum of the coefficients of the outgoing edges. This
subspace is the space of algebraic cycles of G, which we denote by H1(G;Z). It is well known
that the mapping Z

Fb

→ H1(G;Z) which sends Fi to the cycle ∂Fi is an isomorphism.
We start by defining a bilinear form on Z

E+
. For this, consider a vertex v 6= v0. Let e1, e2, e3, e4

the elements of E+ such that l traverses e1, e2, e3, e4 in this order, e1 and e3 are incoming at v
and e2 and e4 are outgoing at v. Observe that it is possible that e2 = e3, but the five other pairs
of edges are distinct. If e2 6= e3, we set 〈ei, ei〉v = 0 for each i ∈ {1, 2, 3, 4} and define

〈e1, e2〉v = 〈e3, e4〉v = 0, 〈e1, e3〉v = 〈e2, e4〉v = −
1

2
and 〈e1, e4〉v = 〈e2, e3〉v =

1

2
.

If e2 = e3, we set 〈e2, e3〉v = 1 and keep the other values unchanged.
At the origin v0, we let e1 be the incoming edge and e2 be the outgoing edge. If e1 = e2, we

set 〈e1, e2〉v0 = 1, otherwise we set 〈e1, e1〉v0 = 〈e2, e2〉v0 = 0 and 〈e1, e2〉v0 = 1
2 .

We now define a bilinear form on Z
E+

by setting

〈·, ·〉 =

q−1∑

i=0

〈·, ·〉vi .
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By restriction, this defines a bilinear form on H1(G;Z) ≃ Z
Fb

.

Proposition 6.22. For all i, j ∈ {0, . . . , q − 1}, the equality

〈nli , nlj 〉 = δi,j

holds.

Proof. Let us describe the bilinear form on H1(G;Z) in words. Since each element of H1(G;Z)
can be written, although non uniquely, as a linear combination of loops in G, it suffices to
understand the bilinear form evaluated on two loops. Let m1 and m2 be two loops on G. The
number 〈m1,m2〉 is the sum of local contributions, one for each pair formed by a visit of m1 at a
vertex of G and a visit of m2 at the same vertex. At each vertex of G, two strands of l cross each
other and we say that a loop which visits this vertex turns during this visit if it arrives along one
strand and leaves it along the other. The number 〈m1,m2〉 is the sum of the following numers:

• +1 for each pair of visits of m1 and m2 in the same direction at the vertex v0,
• −1 for each pair of visits of m1 and m2 in opposite directions at the vertex v0,
• +1 for each pair of visits of m1 and m2 at a vertex distinct from v0, such that both m1 and

m2 turn during this visit, and such that m1 and m2 arrive along the same strand of l, regardless
of the orientation,

• −1 for each pair of visits of m1 and m2 at a vertex distinct from v0, such that both m1 and
m2 turn during this visit, and such that m1 and m2 arrive along distinct strands of l, regardless
of the orientation.

It suffices now to observe that the loop l0 turns nowhere and that for all i ∈ {1, . . . , q − 1},
the loop li turns exactly once at vi and does not visit v0. �

By elementary linear algebra, we obtain the following corollary.

Corollary 6.23. The bilinear form 〈·, ·〉 is symmetric, positive and Z-valued on Z
Fb

and the

family {nl0 , . . . , nlq−1} is an orthonormal basis of ZFb

.

It is graphically easy to express the vectors nli in the canonical basis of ZFb

. Thanks to this
corollary, it is easy to express the vectors ∂Fi in the basis {nl0 , . . . , nlq−1}.

Corollary 6.24. Let F be a bounded face of G. Let v be a vertex located on the boundary of F .
Let e1 and e2 be the outgoing edges at v which bound F , such that e1, F, e2 are located in this
counterclockwise order around v. If e1 6= e2, set ε(F, v) = 1 if l traverses e1 before e2, regardless
of the direction in which it traverses them, and ε(F, v) = −1 otherwise. If e1 = e2, set ε(F, v) = 1
if l traverses e1 and ε(F, v) = −1 if l traverses e−1

1 .

For all bounded face F , the following equality holds in Z
Fb

≃ H1(G;Z):

(100) ∂F =
∑

vi∼F

ε(F, vi)nli ,

where the sum is taken over the vertices adjacent to F .

Proof. It suffices to check that for all i ∈ {0, . . . , q − 1}, one has 〈∂F, nli〉 = ε(F, vi). This is a
verification which we leave to the reader. �

It follows from (93) that the expectation of a Wilson loop, seen as a function of the areas of
the faces of the underlying graph, is a linear combination of functions of the form (t1, . . . , tq) 7→
tmi e

αtj , where m is a non-negative integer and α a real. It is in particular a smooth function on
R
Fb

.
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Kazakov proposes to use on R
Fb

, rather than the usual coordinates, the coordinates a =
(a0, . . . , aq−1) given by

∀i ∈ {0, . . . , q − 1}, ai =

∫

R2

nli(x) dx,

that is, ai is the algebraic area enclosed by the loop li. Kazakov’s main claims are that these are
indeed coordinates on R

Fb

and that the alternated sum of derivatives with respect to the areas
of faces around the vertex vi, which appears in the Makeenko-Migdal equations, is the derivative
with respect to ai. If we denote by t = (t1, . . . , tq) the canonical coordinates on R

Fb

, we have,
thanks to (100),

∀j ∈ {1, . . . , q}, tj =
∑

vi∼Fj

ε(Fj , vi)ai,

and we know that the matrix which appears here is invertible. Moreover, if u : RFb

→ C is a
smooth function, we find

(101) ∀i ∈ {0, . . . , q − 1},
∂u

∂ai
(t1, . . . , tq) =

∑

Fj∼vi

ε(Fj , vi)
∂u

∂tj
(t1, . . . , tq).

The main consequence of this is the following. For all i ∈ {1, . . . , q− 1}, let l̃i denote the loop
obtained from l by erasing the subloop li.

Proposition 6.25. For all i ∈ {0, . . . , q − 1}, the following equality holds:

∂

∂ai
Φ(l) =

{
−1

2Φ(l) if i = 0,

Φ(li)Φ(l̃i) if i > 0.

Proof. It suffices to check that the right-hand side of (101) is exactly the left-hand side of
(98). �

We recover here, in a much more explicit form, the possibility of computing the master field
by a recursive algorithm. In fact, Kazakov proposes, for loops of a special kind which he calls
planar, a fairly complicated but explicit formula for Φ(l). Planar loops can be characterised
recursively in a way which is reminiscent of the definition of non-crossing partitions. With the
notation of this section, a generic elementary loop l is planar if it is a simple loop or if there
exists i ∈ {1, . . . q − 1} such that li is a simple loop and l̃i is planar. However, we were not yet
able to analyse deeply enough Kazakov’s formula to improve it or let it fit into the present work.

Appendix : Asymptotic freeness results

We found it difficult to collect all the arguments needed to prove the results of asymptotic
freeness that we use in this work. Most of these arguments are of course present in the work
of Collins and Śniady, but we felt that perhaps the symplectic case deserved a more detailed
treatment. We give here a brief account of the proofs in the three cases, with the references
needed to fill the gaps that we leave.

A.1. Unitary case. Let us start by the unitary case. Let N and n be positive integers. Recall
from the proof of Theorem 2.1 the definition of the representation ρC : C[Sn] → End((CN )⊗n),
which we then still called ρ. Consider the endomorphism P acting on the vector space End((CN )⊗n)
according to

∀A ∈ End((CN )⊗n) , P (A) =

∫

U(N)
U⊗n ◦A ◦ (U−1)⊗n dU.
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The invariance by translation of the Haar measure implies that P is a projection on a subspace
of End((CN )⊗n) which is contained in the commutant of the action of U(N) on (CN )⊗n. The
main assertion of Schur-Weyl duality in this context is that the range of P is thus contained in
the range of ρC (for the three instances of the Schur-Weyl duality which we shall use, see [12]).

Collins and Śniady gave in [7] an expression of P (A) which makes this inclusion manifest.
The element

∑
σ∈Sn

N ℓ(σ)σ, which is equal to Nn(id + O(N−1)), is invertible in C[Sn] for N
large enough, indeed for N ≥ n. Its inverse is called the Weingarten function, and it is denoted
by Wg. If we denote by X1, . . . , Xn the Jucys-Murphy elements of Sn, and by hk the classical
complete symmetric functions, then we have the equalities

(102) Wg =

n∏

i=1

(N +Xi)
−1 = N−n

∑

k≥0

(−1)k

Nk
hk(X1, . . . , Xn).

Consider now the endomorphism Q of End((CN )⊗n) defined by

∀A ∈ End((CN )⊗n) , Q(A) = ρC(Wg)
∑

σ∈Sn

Tr(A ◦ ρC(σ
−1))ρC(σ).

It satisfies Q(id) = id and Q(A ◦ ρC(σ)) = Q(A) ◦ ρC(σ) for all permutation σ, so that it is also
a projection. For all A ∈ End((CN )⊗n), the endomorphism Q(P (A)) is on one hand equal to
Q(A), because ρC(σ) and U⊗n commute for all σ ∈ Sn and all U ∈ U(N). On the other hand,
Q(P (A)) is equal to P (A), because the range of P is contained in the range of ρC. Altogether,
the representation ρC being understood on the right-hand side, we have for all A ∈ End((CN )⊗n)
the formula ∫

U(N)
U⊗n ◦A ◦ (U−1)⊗n dU = Wg

∑

σ∈Sn

Tr(A ◦ σ−1)σ.

From this equation it follows that for all A1, . . . , An and B1, . . . , Bn in MN (C), one has
∫

U(N)
tr(UA1U

−1B1 . . . UAnU
−1Bn) dU =

=
1

N

∫

U(N)
Tr(U⊗n ◦A1 ⊗ . . .⊗An ◦ (U−1)⊗n ◦B1 ⊗ . . .⊗Bn ◦ (n . . . 1)) dU

=
1

N

∑

σ,τ∈Sn

Wg(στ(n . . . 1))Tr(A1 ⊗ . . .⊗An ◦ σ−1)Tr(B1 ⊗ . . .⊗Bn ◦ τ−1).(103)

From the equation (102), it is possible to infer that for all σ ∈ Sn with cycle lengths
m1, . . . ,mr, one has

Wg(σ) =
(−1)|σ|

Nn+|σ|

r∏

i=1

Cmi−1 +O(N−n−|σ|−1),

where Cm = 1
m+1

(
2m
m

)
is the m-th Catalan number, which satisfies C0 = 1 and Cm+1 =∑m

k=0CkCm−k, and |σ| = n − ℓ(σ) is the distance between σ and the identity. Thus, the
highest power of N which appears in the generic term of the sum (103) above is

ℓ(σ) + ℓ(τ)− 1− n− |στ(n . . . 1)| = d(id, (1 . . . n))− d(id, σ)− d(σ, στ)− d(στ, (1 . . . n)).

This power is nonpositive, and it is zero if and only if id, σ, στ and (1 . . . n) are located in
this order on a geodesic. We shall use the notation σ1 4 σ2 to indicate that σ1 is located on a
geodesic from id to σ2. To the highest order, the sum is thus restricted to the sublattice of Sn

formed by the permutations σ such that id 4 σ 4 (1 . . . n). This lattice is isomorphic to the
lattice NCn of non-crossing partitions (see [5]). Moreover, for σ1, σ2 in this lattice, with σ1 4 σ2,
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the Möbius function µ(σ1, σ2) is equal to (−1)d(σ1,σ2)
∏r

i=1Cmi−1, where the product runs over
the cycles of σ2σ

−1
1 (see [35]).

Then, using the notation

pσ(A1, . . . , An) =
∏

c cycle of σ
c=(i1...ir)

tr(Ai1 . . . Air) and κσ(A1, . . . , An) =
∏

c cycle of σ
c=(i1...ir)

κr(Ai1 , . . . , Air),

where κr denotes the free cumulant of order r, we have
∫

U(N)
tr(UA1U

−1B1 . . . UAnU
−1Bn) dU =

=
∑

σ4(1...n)
τ4σ−1(1...n)

µ(τ, σ−1(1 . . . n))pσ(A1, . . . , An)pτ (B1, . . . , Bn) +O(N−1)

=
∑

σ4(1...n)

pσ(A1, . . . , An)κσ−1(1...n)(B1, . . . , Bn) +O(N−1)

=
∑

π∈NCn

τπ(A1, . . . , An)κπ∨(B1, . . . , Bn) +O(N−1),

where in the last line we used the classical notation τπ for the non-commutative moments and
π∨ for the Kreweras complement of a non-crossing partition π. The last equation which we have
obtained implies classically the asymptotic freeness of the families {UA1U

−1, . . . , UAnU
−1} and

{B1, . . . , Bn}.

A.2. Orthogonal case. In the orthogonal case, things are slightly different. We start neverthe-
less in the same way, by defining the endomorphism P of End((RN )⊗n) by

∀A ∈ End((RN )⊗n) , P (A) =

∫

SO(N)
R⊗n ◦A ◦ (R−1)⊗n dR.

Instead of ρC, we shall naturally use the homomorphism of algebras ρR : Bn,N → End((RN )⊗n)
(see (32)). The main assertion of Schur-Weyl duality in this case is that the range of P is
contained in the range of ρR.

The definition of Q is however slightly different. For all A ∈ End((RN )⊗n) we define an
element Q0(A) of Bn,N by setting

Q0(A) =
∑

π∈Bn

Tr(tA ◦ ρR(π))π.

We shall prove in a moment that for N large enough, the restriction of Q0 to the range of ρR is
injective, hence bijective. It is proved in [7] that this is true for N ≥ n. We denote by WgN its
inverse, so that

WgN = (Q0|ρR(Bn,N ))
−1.

We shall use the notation Wg(π) =
∑

π′∈Bn
WgN (π, π′)ρR(π

′).
Now for all endomorphism A, we have on one hand (WgN ◦ Q0)(P (A)) = (Wg ◦ Q0)(A),

because ρR(π) and R⊗n commute for all π ∈ Bn and all R ∈ SO(N). On the other hand, we
have (WgN ◦Q0)(P (A)) = P (A) because P (A) belongs to the range of ρR. Hence, the formula
in the orthogonal case is

∫

SO(N)
R⊗n ◦A ◦ (R−1)⊗n dU =

∑

π∈Bn

Tr(tA ◦ π)WgN (π).
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As in the unitary case, it follows from this equation that for all A1, . . . , An and B1, . . . , Bn in
MN (R), one has
∫

SO(N)
tr(RA1R

−1B1 . . . RAnR
−1Bn) dR =

=
1

N

∑

π,π′∈Bn

WgN (π, π′)Tr(tA1 ⊗ . . .⊗ tAn ◦ π)Tr(B1 ⊗ . . .⊗Bn ◦ (n . . . 1)π′).(104)

We need to determine the highest order in N of WgN (π, π′). The key point is that Bn is endowed
with a natural distance, which can be defined in several ways. Let us pause briefly to clarify this
point.

We have defined the elements of Bn combinatorially, as the partitions of {1, . . . , 2n} by pairs,
but there are other natural ways to define them. In particular, given an element π of Bn, there
is a unique element iπ of S2n whose cycles are the pairs of π, and the correspondence π 7→ iπ is
a bijection between Bn and the set I2n of fixed point free involutions of {1, . . . , 2n}, which is a
conjugacy class in S2n. The group S2n acts on Bn through its natural action on {1, . . . , 2n},
a permutation α transforming a partition π = {{i, j}, . . .} into α · π = {{α(i), α(j)}, . . .}. It
also acts by conjugation on I2n and the map i : Bn → I2n is equivariant, in the sense that
iα·π = αiπα

−1. In Bn, there is a distinguished element id, which is the unit of the algebra Bn,λ,
and which satisfies iid = (1n+1) . . . (n 2n). The stabiliser of id under the action of S2n on Bn is
the hyperoctahedral group Hn (see Section 2.7). The group Hn is also the centraliser of iid. The
choice of id ∈ Bn thus determines a bijection between Bn and the set S2n/Hn of left Hn-cosets
in S2n. We denote by π 7→ Cπ this correspondence.

Recall that we defined in Section 2.6 the number ℓ(π). Recall also the operations Sa,b and
Fa,b which we defined in Section 3.4. Finally, let us denote by tπ the pairing iid · π, obtained by
turning the box representing π upside down.

Lemma 6.26. Let π and π′ be two elements of Bn. The following numbers are equal.
1. The minimal length of a chain π = π0, π1, . . . , πr = π′ such that each element is obtained

from the preceding one by an operation Sa,b.
2. The smallest distance in S2n between the identity and an element α such that α · π = π′.
3. The smallest distance in S2n between an element of Cπ and an element of Cπ′ .
4. The number n− ℓ(tππ′).
5. The half of the distance in S2n between iπ and iπ′ .
We denote these five numbers by d(π, π′). The function d is a distance on Bn, which makes

it a metric space of diameter n − 1. The action of S2n on Bn induced by its natural action on
{1, . . . , 2n} and the actions of Sn by left and right multiplication on Bn ⊂ Bn,λ preserve the
distance d. The inclusion Sn ⊂ Bn is an isometry. Finally, any shortest path in Bn between
two elements of Sn stays in Sn.

Proof. Let us denote by d1, . . . , d5 the five numbers as they are defined in the statement.
The equality d1 = d2 follows from the identity Sa,b(π) = (a b) · π, which hold for all π ∈ Bn

and all a, b ∈ {1, . . . , 2n}.
Let us think of the set Cπ as the set {α ∈ S2n : α · iid = π}. From the equality

{α ∈ S2n : α · π = π′} = {σ2σ
−1
1 : σ1 ∈ Cπ, σ2 ∈ Cπ′}

of subsets of S2n, it follows that d2, which is the distance of id to the subset on the left-hand
side, is equal to d3, which is the distance of id to the subset on the left-hand side.

The number ℓ(tππ′) is the number of loops formed by the superposition of the diagrams of
π and π′. In this picture, each loop contains an even number of edges, and since there are 2n
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edges altogether, there are at most n loops. Moreover, there are n loops only if each loop has
length 2, and this happens only if π = π′. Now let us prove that d2 ≤ d4. If d4 = 0, this follows
from our last remark. If d4 > 0, then π 6= π′ and there is at least one loop of length at least 4.
There exists i, j, k, l ∈ {1, . . . , 2n} such that {i, j} and {k, l} belong to π and {j, k} belongs to
π′. Then ℓ(t(Sj,l(π)), π′) = ℓ(tππ′)−1. Iterating this argument, we find that we can go from π to
π′ in d4 applications of an operator Sa,b. Hence, d2 ≤ d4. On the other hand, it is even easier to
check that the application of an operator Sa,b cannot increase or decrease ℓ(tππ′) by more than
1. Following a minimal chain of applications of the operators Sa,b leading from π to π′, we find
d4 ≤ d2. Finally, d2 = d4.

The permutations iπ and iπ′ are involutions, so that their distance in S2n is equal to 2n minus
the number of cycles of their product iπiπ′ . The image of an integer i by this product is easily
computed on the diagram formed by the superposition of those of π and π′, by following first the
edge of π′ issued from i, thus arriving at an integer j, and then following the other edge issued
from j. The permutation iπiπ′ has thus exactly twice as many cycles as the superposition of the
diagrams of π and π′. Hence, d4 = d5. �

Note that, up to the multiplicative factor involved in the definition of Fa,b, the effect of an
operator Fa,b on a diagram can always be obtained by the action of an operator Sa,b. Thus,
in the definition of the first number above, we could have replaced S by F without altering its
definition.

The matrix in the basis Bn of the restriction of Q0 to the range of ρR is the Gram matrix of
Bn for the scalar product 〈π1, π2〉 = Tr(tπ1π2). Lemma 6.26 allows us to rewrite this matrix as
Nn(N−d(π,π′))π,π′∈Bn

. In particular, N−n times this matrix tends to the identity matrix, so that
it is invertible for N large enough. More to the point, this way of writing this matrix implies

(105) WgN (π, π′) = N−n
∑

r≥0

(−1)r
∑

π1,...,πr−1∈Bn

N−d(π,π1)−d(π1,π2)−...−d(πr−1,π′),

where the sum is taken over all the chains π, π1, . . . , πr−1, π
′ in which each term is different

from the next. The term of highest order is provided by chains for which the exponent of N is
−d(π, π′). The highest power of N which appears in the generic term of (104) is thus

ℓ(π) + ℓ((n . . . 1)π′)− n− 1− d(π, π′) = d(id, (1 . . . n))− d(id, π)− d(π, π′)− d(π′, (1 . . . n)),

using the invariance of d under left multiplication by (1 . . . n). This power is nonpositive and
equal to 0 only if π and π′ are located in this order on a same geodesic from id to (1 . . . n).
Lemma 6.26 asserts that a necessary condition for this is that π and π′ belong to Sn. We must
then have id 4 π 4 π′ 4 (1 . . . n). Moreover, in this case, we recognise in the expression of the
term of highest order of WgN (π, π′) given by (105) the value µ(π, π′) of the Möbius function of
the lattice NCn. We thus obtain

∫

SO(N)
tr(RA1R

−1B1 . . . RAnR
−1Bn) dR =

=
∑

σ4σ′4(1...n)

µ(σ, σ′)pσ(
tA1, . . . ,

tAn)p(n...1)σ′(B1, . . . , Bn) +O(N−1)

=
∑

σ′4(1...n)

κ(σ′)−1(A1, . . . , An)p(n...1)σ′(B1, . . . , Bn) +O(N−1)

=
∑

π∈NCn

τπ(A1, . . . , An)κπ∨(B1, . . . , Bn) +O(N−1),
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and conclude as in the unitary case to the asymptotic freeness of the families {RA1R
−1, . . . , RAnR

−1}
and {B1, . . . , Bn}.

A.3. Symplectic case. The symplectic case is very similar to the orthogonal case. Let us define
the endomorphism P of the real algebra MN (H)⊗n by setting

∀A ∈MN (H)⊗n , P (A) =

∫

Sp(N)
S⊗n ◦A ◦ (S−1)⊗n dS.

We shall now consider the homomorphism of algebras ρH : Bn,−2N →MN (H)⊗n (see (41)). The
Schur-Weyl duality asserts again in this case that the range of P is contained in the range of ρH.

For all A ∈MN (H)⊗n, we define an element Q0(A) of Bn,−2N by setting

Q0(A) =
∑

π∈Bn

(−2ℜTr)⊗n(A∗ ◦ ρH(π))π.

According to Lemma 2.6, the matrix in the basis Bn of the restriction of Q0 to Bn,−2N is
(−2N)n((−2N)−d(π,π′))π,π′∈Bn

. As N tends to infinity, (−2N)−n times this matrix tends to the
identity matrix, so that it is invertible for N large enough. We denote again by Wg−2N its
inverse and shall use the notation Wg−2N (π) =

∑
π′∈Bn

Wg−2N (π, π′)ρR(π
′).

Consider A ∈ MN (H)⊗n. On one hand, (Wg−2N ◦ Q0)(P (A)) = (Wg−2N ◦ Q0)(A), because
ρH(π) and S⊗n commute for all π ∈ Bn and all S ∈ Sp(N). On the other hand, we have
(Wg−2N ◦Q0)(P (A)) = P (A) because P (A) belongs to the range of ρH. Hence, the formula in
the orthogonal case is

∫

Sp(N)
S⊗n ◦A ◦ (S−1)⊗n dS =

∑

π∈Bn

(−2ℜTr)⊗n(A∗ ◦ π)Wg−2N (π).

We find, for all A1, . . . , An and B1, . . . , Bn in MN (H),
∫

Sp(N)
ℜtr(SA1S

−1B1 . . . SAnS
−1Bn) dS =

−
1

2N

∑

π,π′∈Bn

Wg−2N (π, π′)(−2ℜTr)⊗n(A∗
1 ⊗ . . .⊗A∗

n ◦ π)

(−2ℜTr)⊗n(B1 ⊗ . . .⊗Bn ◦ (n . . . 1)π′).(106)

The same computation as in the orthogonal case, with N replaced by −2N shows that the highest
order of N in Wg−2N (π, π′) is −d(π, π′). The dominant terms of (106) are thus of order 0 in
N , so that the constant −2 disappears, and the coefficients are, for the same reason as in the
orthogonal case, given by the Möbius function of NCn.

Let us modify the definition of pσ to suit the symplectic case, and set

pσ(A1, . . . , An) =
∏

c cycle of σ
c=(i1...ir)

ℜtr(Ai1 . . . Air).

In particular, pσ(A1, . . . , An) = pσ(A1, . . . , An), where A is the conjugate matrix defined by
(A)ij = (Aij)

∗. The cumulants are defined by the usual relation κσ =
∑

σ′4σ µ(σ
′, σ)pσ′

and are also unchanged if each matrix is replaced by the conjugate matrix. In particular,
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κσ(A
∗
1, . . . , A

∗
n) = κσ−1(A1, . . . , An). We thus find

∫

Sp(N)
tr(SA1S

−1B1 . . . SAnS
−1Bn) dS =

=
∑

σ4(1...n)

κσ(A
∗
1, . . . , A

∗
n)p(n...1)σ(B1, . . . , Bn) +O(N−1)

=
∑

σ4(1...n)

κσ−1(A1, . . . , An)p(n...1)σ(B1, . . . , Bn) +O(N−1)

and conclude as before to the asymptotic freeness of the families {SA1S
−1, . . . , SAnS

−1} and
{B1, . . . , Bn}.
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