
HAL Id: hal-00650607
https://hal.science/hal-00650607

Submitted on 11 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XA2C: a framework for manipulating XML data
Gilbert Tekli, Richard Chbeir, Jacques Fayolle

To cite this version:
Gilbert Tekli, Richard Chbeir, Jacques Fayolle. XA2C: a framework for manipulating XML
data. International Journal of Web Information Systems (IJWIS), 2011, 7 (3), pp.240-269.
�10.1108/17440081111165884�. �hal-00650607�

https://hal.science/hal-00650607
https://hal.archives-ouvertes.fr

XA2C-A FRAMEWORK FOR MANIPULATING XML DATA

GILBERT TEKLI

Telecom St Etienne, University Jean Monnet, 25 rue Dr Remy Annino, 42000, St Etienne, France

gilbert.tekli@univ-et-etienne.fr

RICHARD CHBEIR

Laboratoire LE2I (UMR - CNRS), Bourgogne University, 21000 Dijon, France

richard.chbeir@u-bourgogne.fr

JACQUES FAYOLLE

Telecom St Etienne, University Jean Monnet, 25 rue Dr Remy Annino, 42000, St Etienne, France
Jacques.fayolle@univ-et-etienne.fr

Purpose - XML has spread beyond the computer science fields and reached other areas such
as, e-commerce, identification, information storage, instant messaging and others. Data
communicated over these domains is now mainly based on XML. Thus, allowing non-expert
programmers to manipulate and control their XML data is essential.
Methodology/approach - In the literature, this issue has been dealt with from 2 perspectives: (i)
XML alteration/adaptation techniques requiring a certain level of expertise to be implemented
and are not unified yet, and (ii) Mashups, which are not formally defined yet and are not
specific to XML data, and XML-oriented visual languages are based on structural
transformations and data extraction mainly and do not allow XML textual data manipulations.
In this paper, we discuss existing approaches and present our XA2C framework intended for
both non-expert and expert programmers and providing them with means to write/draw their
XML data manipulation operations.
Findings - The framework is defined based on the dataflow paradigm (visual diagram
compositions) while taking advantage of both Mashups and XML-oriented visual languages by
defining a well founded modular architecture and an XML-oriented visual functional
composition language based on colored petri nets allowing functional compositions. The
framework takes advantage of existing XML alteration/adaptation techniques by defining them
as XML-oriented manipulation functions. A prototype called XA2C is developed and
presented here for testing and validating our approach.
Value - This paper presents a detailed description of an XML-oriented manipulation
framework implementing the XCDL language.

Keywords: Visual languages, Colored Petri Nets, Composition, XML data manipulation,
Concurrency.

Paper type: Research paper.

Introduction

The widespread of XML today has invaded the world of computers and is present

now in most of its fields (i.e., internet, networks, information systems, software and

operating systems). Furthermore XML has reached beyond the computer domain and

is being used to communicate crucial data in different areas such as e-commerce, data

communication, identification, information storage, instant messaging and others.

Therefore, due to the extensive use of textual information transmitted in form of

XML structured data, it is becoming essential to allow all kind of users to manipulate

corresponding XML data based on specific user requirements. As an example,

consider a journalist who works in a news company covering global events. The

journalist wishes to acquire all information being transmitted by different media

sources (television channels, radio channels, journals …) in the form of RSS feeds,

filter out their content, based on the topic (s)he is interested in, and then compare the

resulted feeds. Based on the comparison results, a report covering relevant facts of the

event needs to be generated.

Fig.1: XML data manipulation scenario

In this first simple scenario, as shown in Figure 1, several separate techniques are

needed to generate the manipulation operation required by the user such as XML

filtering, string similarity comparison and automated XML generation. In a second

scenario, consider a cardiologist who shares medical records of his patients with some

of his colleagues and wishes to omit personal information concerning his patients

(i.e., name, social security number, address, etc.). In this case, data omission is the

manipulation required which can be done via data encryption, removal, substitution

or others depending on the operations provided by the system and the requirements of

the user (cardiologist in this case).

Based on these scenarios: (i) we need a framework for writing XML-oriented

manipulation operations. It should contain all of the XML-oriented manipulation

techniques. To the best of our knowledge, such a framework does not exist so far, and

(ii) we need the framework to be used by both non-expert and expert programmers.

In order to address these 2 issues, 3 main approaches have emerged in the literature,

XML Alteration/Adaptation techniques, Mashups and XML-oriented visual

languages.

On one hand, while various Alteration/Adaptation techniques have emerged such as

XML filtering (Altinel and Franklin, 2000), Adaptation (Pellan and Concolato, 2008)

and Information Extraction (Chang and Lui, 2001), however we observed that these

techniques share common functions but are defined each separately. They attempted

to address specific requirements scoping different objectives. Whereas XML filtering

is applicable to all XML data types and aims at filtering the data without any

alteration to the content, XML adaptation alters the data to adapt it to certain

requirements but does not necessarily address all types of XML data. So far, each of

these techniques remains separate from the other and no unified frameworks have

been reached, not to mention that they require a high level of expertise for their

implementation.

On the other hand, Both Mashups (Lorenzo et al., 2009) and XML visual languages

(Braga et al., 2005) try to provide expert and non-expert users with the ability to

write/draw data manipulations by means of visual elements. While there has been no

common definition for Mashups, existing Mashup tools mainly aim at composing

manipulation operators (e.g., RSS filters) for different types of web data (e.g., html,

web site content…), but are not specific to XML. Since Mashups have not been

formally defined, no languages have emerged yet providing visual functional

compositions. On the other hand, XML oriented visual languages are already

formalized and mainly based on existing XML transformation (e.g., XSLT) or

querying languages (e.g., XQuery). They provide visual means for non expert

programmers to write manipulation operations specific for XML data. Nonetheless,

the expressiveness of existing XML-oriented visual languages is limited to their

inability to visually express all the operations existing in the languages (e.g.,

aggregation functions) which they are based upon. Also the expressiveness is limited

to the operations of these languages themselves. Their main goal is data extraction

and structure transformation. Aside from their expressiveness limitations, on one

hand, these languages normally require the user to have some knowledge in different

areas such as data querying which renders the task more difficult. On the other hand,

they are not considered as visual functional composition languages.

Our research mainly aims at defining an XML-oriented framework allowing non-

expert and expert users to write/draw and enforce XML manipulation operations

based on functional composition. The functions can express but are not limited to

alteration/adaptation techniques and are provided in forms of client libraries (e.g.,

DLL files) or online services (e.g., web-services). The framework is based on a visual

functional composition language (Golin and Reiss, 1990), called XCDL (XML-

Oriented Composition Definition Language). The language is based on the Dataflow

paradigm and its syntax and semantics are defined based on Colored Petri Nets (CP-

Nets) (Murata, 1989, Jensen, 1994) which allow it to express complex compositions

with true concurrency (serial and parallel executions). In this paper, we introduce our

XML alteration/adaptation control framework (Tekli et al., 2010a). We briefly

present our composition language, XCDL (Tekli et al., 2010b), used to generate

functional compositions in terms of CP-Nets. Since the compositions can contain

serial and concurrent mapped functions, we provide an algorithm that we develop

based on CP-Nets’ properties for discovering and generating processing sequences

simultaneously for serial and concurrent compositions. To validate our approach, we

develop a prototype for the XA2C framework and use it to test our processing

sequence generation algorithm with different scenarios.

The rest of this paper is organized as follows. The first section presents the related

work. Section 2 discusses the XA2C framework with the XCDL language and the

process sequence generator algorithm. Section 3 presents the prototype and evaluates

the algorithm. And finally, we conclude and state some future works.

Related Work

XML manipulation approaches have been argued since XML has emerged. They

were initially discussed in technical terms from the point view of experts in the field.

Most recently, these approaches have evolved to reach the needs of non-expert

programmers due to the widespread of XML nowadays. 3 main approaches have

emerged, addressing the XML manipulation issue from different angles (i.e.,

expressiveness, human interactions, expertise etc.), XML alteration/adaptation,

Mashups, and XML visual languages.

XML Alteration/Adaptation

The alteration/adaptation field of control resides in modifying and adapting the XML

data to satisfy the needs of a user(s). In this case, researchers have been developing

different solutions with separate scopes such as encryption and digital signatures,

filtering, adaptation and information extraction.

XML encryption and digital signatures were mainly introduced to secure XML

data communications and make sure that the data integrity remains intact between end

users. They are used to obfuscate XML data and authenticate XML users.

XML encryption and signature were standardized by the W3C (World Wide Web

Consortium). Other formalizations were established allowing both encryption and

signature in the same language such as in (Hwang and Chang, 2004). Encryption and

signature are applicable on 2 levels: document and element-wise. XML encryption

and signature constitute a small part of XML control as viewed in our research. It can

be categorized in either the security field of control or the modification/adaptation

field of control depending on its use. This technique still lacks the ability to allow a

granular encryption or signature of the element content data.

XML filtering has been and still is one of the main fields that researchers have been

developing in order to apply some control and adaptation of XML data to user

specifications. XML filtering can be described as, given a set of twig patterns,

retrieve the data corresponding to these patterns in an input XML document or data.

XML filtering results in a granular selection of XML data. Its granularity degree

depends on the filter applied. Several filtering techniques have been developed based

on either XPath expressions or a subset of XQuery. Some of these main techniques

are XFilter (Altinel and Franklin, 2000), YFilter (Diao et al., 2003), QFilter (Luo et

al., 2004), PFilter (Byun et al., 2007) and AFilter (Candan et al., 2006). These

techniques have been evolving using mainly deterministic finite automata (DFA) and

non-deterministic finite automata (NFA) for either structural matching or value

based-predicates. The supported range of value based predicates has evolved from

equality operators to non equality operators, Boolean operators (AND/OR) and

finally the special matching operator “%” processed similarly as the LIKE operator in

SQL. Basically XML filters use XQueries or XPath expressions and transform them

into DFAs and NFAs, thus defining the twig patterns specified by users in order to

find specific XML data. XML filtering is a selection technique and does not involve

XML data modification and therefore does not satisfy our objectives.

Several researches have been conducted concerning XML content adaptation,

mostly on XML document describing multimedia content such as XHTML, SMIL

(Lemlouma and Layaïda, 2003), SVG (Pellan and Concolato, 2008). There were

some researches conducted on adapting XML documents and transforming them to

other XML documents to satisfy a certain objective based on the XSLT standard

(W3C, 1999). Due to the complexity found in XSLT this approach was categorized

by users as complicated and limited to the actions allowed by the XSLT language.

Yet the main goal of XML adaptation has been so far to adapt multimedia content

such as images, audio and video sequences to be viewed on appropriate terminals

(e.g., portable multimedia devices, mobile phones and HD displays). The adaptations

are made mostly in terms of resolutions, aspect ratios and size in correspondence to

the terminals displaying the data and their specifications. The adaptation mechanism

in multimedia content adaptation is normally based on the properties of the document

containing the data which has a well known structure and is well defined to contain

multimedia data such as in SMIL or SVG (Pellan and Concolato, 2008, Lemlouma

and Layaïda, 2003). XML adaptation remains somewhat complex and focalized on

multimedia based documents.

Data extraction and modification is one of our main goals for controlling XML data.

Several solutions exist for data extraction or IE (information extraction) based on

the usage of wrappers. These solutions are mainly aiming at IE from web pages

instead of XML files and storing the extracted info into a database or XML files.

Some of them are IEPAD (Chang and Lui, 2001), Nodose (Adelberg, 1998) and

ROADRUNNER (Crescenzi et al., 2002). These approaches mainly rely on visual

information which are either defined by the browser or the user. No standardized

approach exists yet. They are viewed as applications or tools which learn from

examples given by the user in order to generate IE rules. Most of these approaches

view web pages as trees which are consider faster in data extraction. Nonetheless,

these approaches are inadequate or insufficient in our research due to their lack of

formalism, do not directly aim at XML data but web pages instead and are limited to

the tools used for data transformation which are user-based and not following any

unified existing models or standards.

Tab.I: Scope and Data types of existing alteration/adaptation control techniques

Techniques Scope XML data type

Obfuscation Document and element-

wise obfuscation

All XML data

types

Filtering Granular selection of XML

data

All XML data

types

Adaptation XML-based multimedia

data modifications to render

it conform to an alien

system (e.g., PDAs).

Mainly multimedia

XML data

IE Data Extraction based on

rules and storage in a DB,

XML files or others

Mainly Web Pages

To summarize, instead of working separately on each of the precedent

alteration/adaptation approaches and having to manually adapt them together, as

shown in Table I, there is a need for a framework with a unified language allowing

simultaneously the expression of structural and content filtering, adaptation, granular

encryption similarity comparisons and others, regardless to the type of XML data.

Mashups

Mashup is a new application development approach that allows users to aggregate

multiple services, each serving its own purpose, to create a service that serves a new

purpose. Mashups are built on the idea of reusing and combining existing services.

They are mainly designed for data circulating on the web. Their objective is to target

non-expert users; therefore a graphical interface is generally offered to the user to

express most operations. Mashup applications (Lorenzo et al., 2009) can include

Mashups using maps (i.e., Google maps and Yahoo map3), multimedia content (i.e.,

YouTube and Flicker videos), e-commerce services (i.e., amazon.com and ebay.com)

and news feeds (i.e., RSS and ATOM). The latter is the focus of most emerging

Mashup tools nowadays.

To the best of our knowledge, no tool yet provides information regarding the analysis

of the performances. All the tools are supposed to target non-expert users, but a

programming knowledge is usually required depending on each tool.

Several tools have emerged such as Damia (Simmen et al., 2008), Yahoo Pipes

(Lorenzo et al., 2009), Popfly (Loton, 2008), Apatar (Lorenzo et al., 2009) and

MashMaker (Ennals and Garofalakis, 2007). Damia and Yahoo Pipes are mainly

designed to manipulate Data Feeds such as RSS feeds. Popfly is used to visualize data

associated to social networks such as Flicker and Facebook. Popfly is a framework

for creating web pages containing dynamic and rich visualizations of structured data

retrieved from the web through REST web services. Apatar helps users join and

aggregate data such as MySQL, Oracle and others with the web through REST web

services. MashMaker is used for editing, querying and manipulating data from web

pages. Its goal is to suggest to the user some enhancements, if available, for the

visited web pages.

To summarize, existing Mashup tools are (i) mainly designed to handle online Web

data which is restrictive in several scenarios since by doing this, user’s data, generally

available on desktops cannot be accessed and used, (ii) not specifically designed for

XML data manipulation and therefore do not provide XML specific operations for

querying, updating and modifying all types of XML data and, (iii) going towards

functional compositions (i.e., Damia and Yahoo Pipes) which allows them to increase

their expressiveness in comparison with the tools following the query by example

paradigm (Lorenzo et al., 2009). The latter have limited operations and are considered

more complex for non expert users due to the fact that some knowledge is required in

querying data.

Visual Languages for XML

Since the emerging of the XML standard and its widespread beyond the computer

domain, researchers have been trying to provide visual languages allowing the

manipulation of XML data. These visual languages are mainly extensions of existing

approaches such as XML query languages and transformation languages. Their main

contribution is to allow non expert users to extract sensitive data from XML

document and restructure the output document.

Several languages have been developed over the years such as Xing (Erwig, 2000),

XML-GL (Ceri et al., 2000), XQBE (Braga et al., 2005) and VXT (Pietriga et al.,

2001). On one hand, Xing and XML-GL were developed before XQuery was

standardized and took the SQL querying approach by following the 3 main

components of a regular query, selecting, filtering and restructuring the data. XQBE

was developed after XQuery and is based on it. Its expressiveness is greater than

previous approaches whereas it allows the creation of complex queries containing

aggregation functions, ordering results and negation expressions. Nonetheless, its

expressiveness is limited to data extraction and query reconstruction in XQuery and

does not include textual data manipulation operations such as value modification,

insertion and deletion. VXT was based on XSLT (W3C, 1999) which is mainly used

for XML data restructuring and not textual data manipulation.

From a visual perspective, all of these approaches followed the same pattern, dividing

their workspace into 2 main sections, left and right. The left section constitutes the

source file with the extraction rules. As for the right section, it defines the structure of

the output file. The sections are mapped together as shown in Figure 2.

Tab.II: Properties of Mashups and XML oriented languages

Properties Mashups XML Visual Languages

XML specific No Yes

Manipulate

online data
Yes Yes

Manipulate

desktop data
No Yes

Expressiveness High Low

Based on Formal

languages
No Yes

Functional

Composition
Yes No

Composition-

based functions
No No

Extending

functions

Dependent on

the tool
Limited

Fig.2: Examples of existing visual languages for XML

To summarize, existing visual languages successfully bridged the gap between the

complexities of XML data querying and non expert users but were limited only to

data extraction, filtering and restructuring. So mainly they provided non expert

programmers with the ability to create XML structural transformations along with

data extraction and filtering but did not deal with the XML value manipulations.

Table II summarizes the different criteria of the Mashups and XML oriented visual

languages.

Preliminaries and Definitions

In this paper, we present the XA2C framework based on Colored Petri Nets (CP-

Nets) and 2 of their main properties: (i) the incidence matrix and (ii) transition firing

rule. As stated in (Jensen, 1994, Murata, 1989), a Petri Net is foremostly a

mathematical description, but it is also a visual or graphical representation of a

system. Petri nets allow the definition of the state and behavior of a language

simultaneously, in contrast with most specification languages. They provide an

explicit description of both the states and the actions. Petri nets were mainly designed

as a graphical and mathematical tool for describing and studying information

processing systems, with concurrent, asynchronous, distributed, parallel, non

deterministic and stochastic behaviors. They consist of a number of places and

transitions with tokens distributed over places. Arcs are used to connect transitions

and places. When every input place of a transition contains a token, the transition is

enabled and may fire. The result of firing a transition is that a token from every input

place is consumed and a token is placed into every output place.

CP-nets have been developed, from being a promising theoretical model, to being a

full-fledged language for the design, specification, simulation, validation and

implementation of large software systems.

In a CP-Net:

 The states are represented by means of places (drawn as ellipses)

 The actions are represented by means of transitions (drawn as rectangles)

 An incoming arc indicates that the transition may remove tokens from the

corresponding place while an outgoing arc indicates that the transition may

add tokens

 The exact number of tokens and their data values are determined by arc

expressions (positioned next to the arcs)

 The data types are referred to as color sets

 A transition has an expression guard (with variables) attached to it defining

its operation.

A CP-Net is formally defined as follows:

Definition 1-Colored Petri Net or CP-net: it is an 8-tuple represented as:

CP-Net = (, P, T, A, C, G, E, I) where:

 is a finite set of non-empty types also called color sets

 P is a finite set of places

 T is a finite set of transitions

 A is a finite set of arcs such that:

o P T = P A = T A = Ø

 C is a color function. It is defined from P into 

 G is a guard function. It is defined from T into expressions such that:

o t T: [Type(G(t)) ]

 E is an arc expression function. It is defined from A into expressions such that:

o a A: [Type(E(a)) = C(p) Type(Var(E(a))) ]
where p is the input place of a

 I is an initialization function. It is defined from P into closed expressions such that:

o p P: [Type(I(p)) = C(p)]

The types of a variable v and an expression expr are denoted Type(v) and Type(expr)

respectively. Var(expr) designates the variables of an expression expr. An example of

a CP-Net is depicted in Figure 3. This CP-Net has 3 places: two of them have a type

Int×String, and one has a type Int. The transition takes one token of the pair

type and one of the integer type, and produces one token of the pair type.

Fig.3: An example of a CP-Net

In this paper we are particularly interested in 2 main properties of CP-Nets, the

Incidence Matrix and the Transition Firing Rule.

Definition 2-Incidence matrix A: it is defined for a CP-Nets N with m transitions and n

places as:

𝑨 = 𝒂𝒊𝒋 an nm matrix of integers where:

 𝑎𝑖𝑗 = 𝑎𝑖𝑗
+ − 𝑎𝑖𝑗

− where

o 𝑎𝑖𝑗
+ = 𝑤(𝑖, 𝑗) is the weight of the arc from transition i to its output place j

o 𝑎𝑖𝑗
− = 𝑤(𝑖, 𝑗) is the weight of the arc to transition i from its input place j

𝑎𝑖𝑗
+ , 𝑎𝑖𝑗

− 𝑎𝑛𝑑 𝑎𝑖𝑗 represent the number of tokens removed, added, and changed in place j when

transition i fires once.

Table III shows the Incidence Matrix of the CP-Net in Figure 3 which identifies p1

and p2 as input places of transition t and p3 its output place.

Tab.III: Incidence Matrix of CP-Net in Figure 3

A=

 t

p1
-1

p2
-1

p3
1

Definition 3-Firing Rule: it is the conditions for a transition to fire and is defined as:

t is enabled if M(p) ≥ w(p,t) for all input p to t where:

 A transition “t” is enabled if each input place “p” of “t” is marked with at least “w(p,t)”,
where “w(p,t)” is the weight of the arc from “p” to “t”

 An enabled transition t may or may not fire (depending on whether event takes place or not)

 A firing of an enabled transition t removes w(p,t) token from each input place p to t and adds
w(t,p) tokens to each output place p of t

Next we present our approach by defining the architecture of the XA2C Framework,

giving a brief introduction to our visual composition language, the XCDL language,

and then discussing our algorithm for deriving the concurrent execution sequences of

the resulting composition.

Our Approach

As mentioned previously, the purpose of our research is to provide non-expert and

expert programmers with means to compose XML oriented manipulation operations,

thus altering and adapting XML based data to their needs. The approach needs to be

both generic to all XML data (text-centric and data-centric) and needs to be well

founded, in order to allow it to be portable and reusable in different domains (i.e.,

Mashups, XML adaptation/alteration platforms, XML transformation and extraction,

textual data manipulations, etc.).

Fig.4: XA2C approach

As stated in the introduction, there has been no existing formal and generic

approaches answering such matters, nonetheless, several approaches have emerged

undertaking different aspects of our research such as, (i) Mashups, which are neither

formalized nor XML specific, are being oriented towards functional compositions and

scope non expert programmers, (ii) XML visual languages, while they are formalized

and XML specific, they provide only XML data extraction and structural

transformations but no XML data manipulations, mainly text-centric based, and (iii)

XML alteration/adaptation techniques are dispersed from one another resolving each

to a different objective (e.g., filtering, data extraction, etc.) and require expertise in

their appliances.

As shown in Figure 4, our approach is based on a combined spirit of both

Mashups and XML visual languages. On one hand, it has a similar architecture to

Mashups that renders the framework flexible thanks to its modular aspect and is

based on functional compositions which are considered simpler to use than query

by example techniques. On the other hand, it defines formally a visual

composition language and separates the inputs and outputs to source and

destination structures, thus making the framework XML-oriented. Similar to

XML-oriented visual languages, the approach targets both expert and non-expert

programmers.

The visual composition language defined in the XA2C can be adapted to any

composition based Mashup tool or visual functional composition tool.

Nevertheless, our language is XML-oriented and generic to all types of XML data

(documents and fragments, grammar-based and user-based). In addition, it is

based on CP-Nets allowing us to provide information regarding performance

analysis and error handling which is not the case in current Mashups. To render

our approach flexible, the XA2C framework is defined as a modular architecture

as shown in Figure 5.

Fig.5: Architecture of the XA2C Framework

Our framework is composed of 3 main modules:

 The XCDL Platform allows the definition of the XCDL language providing non-

expert and expert programmers with the means to define their manipulation

operations. The language mainly allows users to define their functions from

offline or online libraries and create manipulation operations by composing these

functions using mapping operators. The XCDL is defined as a visual functional

composition language based on the graphical representations and algebraic

grammar of CP-nets. Thus, rendering the language extensible and generic

(adaptable to different data types), and allowing the expression of true

concurrency along with serial compositions. As a user defines a new function or

modifies a composition (adding, removing, replacing functions), the syntax is

transmitted to the data model module to be continuously validated.

 The Data Model contains the internal data models of the XA2C which are based

on the same grammar used to define the syntax of the XCDL language (naturally

based on CP-Nets). We define 2 internal data models: (i) “SD-function (System-

Defined function) Data Model” for validating the components of the language, in

this case to validate the defined functions in our system, and (ii) “Composition

Data Model” used to validate the compositions. The validation process is event-

based, any modification to the language components or to a composition such as

additions, removals or editions trigger the validation process.

 The Runtime Environment defines the execution environment of the resulting

compositions of the XCDL language. This module contains 3 main components:

(i) the “Process Sequence Generator” used to validate the behavioral aspect of the

composition (e.g., makes sure there are no open loops, no loose ends, etc.) and

generates 2 processing sequences, a concurrent and a serial one to be transmitted

respectively to the Concurrent and Serial Processing components for execution.

(ii) “Serial Processing” allowing a sequential execution of the “Serial Sequence”

provided by the data model. It is more suitable for single processor equipped

machines as it will not take advantage of a multi-processing unit.

(iii) “Concurrent Processing” allowing the execution in a concurrent manner of

the “Concurrent Sequence” generated from the data model. It is imperative to

note that this type of processing is most suitable for machines well-equipped for

multi-processing tasks (e.g., dual processors machines). Due to the lack of space,

the Serial and Concurrent Processing components are not detailed in this paper,

but will be discussed in future studies.

In the next section, we briefly discuss each of the 3 modules.

XCDL Platform

The XCDL is a visual functional composition language based on SD-functions

(System-Defined functions) and is XML-oriented. The language is rendered generic,

extensible and user friendly by respecting the following properties: (i) simplicity, (ii)

expressiveness, (iii) flexibility, (iv) scalability, and (v) adaptability. These properties

are satisfied by defining the language as a visual one and basing its syntax on a

grammar defined in CP-Nets (cf. Definition 4) and therefore retains their properties

such as Petri Net firing rule and Incidence matrix.

Definition 4-XCGN (standing for XML oriented Composition Grammar Net): it represents

the grammar of the XCDL which is compliant to CP-Nets. It is defined as:

XCGN = (, P, T, A, C, G, E, I) where:

 is a set of data types available in the XCDL

o The XCDL defines 6 main data types, Char, String, Integer, Double, Boolean,

XML-Node} where Char, String, Integer, Double and Boolean designate the standard

types of the same name. XML-Node defines a super-type designating an XML

component (cf. definition 5)

 P is a finite set of places defining the input and output states of the functions used in the XCDL

 T is a finite set of transitions representing the behavior of the XCDL functions and operators

 A  (P x T)  (T x P) is a set of directed arcs associating input places to transitions and vice
versa

o a A: a.p and a.t denote the place and transition linked to arc a

 C:Pis the function associating a color to each place

 G:TS is the function associating an SD function to a transition where:

o S is the set of SD-functions, which are operations performed by functions identified in

the development platform’s libraries (e.g., concat(string,string))

 E:AExpr is the function associating an expression expr Expr to an arc such that:

o a A: Type(E(a))=C(a.p)

 I:PValue is the function associating initial values from Value to the I/O places such that:

o p P, v Value : [Type(I(p))=C(p) Type(v) 

Definition 5-XML-Node: it is a super type designating an XML Component. It has 3 main

sub-types as:

XML-Node  {XML-Node:Element, XML-Node:Attribute and XML-Node:Text} where:

 XML-Node:Element defines the type XML Element

 XML-Node:Attribute defines the type XML Attribute

 XML-Node:Text define the type XML Element/Attribute Value

We denote by SD-functions, functions which will be identified in the language

environment. These SD-functions can be provided by offline libraries (e.g., DLL/JAR

files) or online libraries (e.g., Web service).

XCDL is divided into 2 main parts:

 The Inputs/Outputs (I/O)

 The SD-functions and the composition which constitute the XCDL Core.

Fig.6: XML document to XCD-tree example

The I/O are defined as XML Content Description trees (Tekli et al., 2010c) (XCD-

trees) which are ordered labeled trees summarizing the structure of XML documents

or XML fragments, or representing a DTD or an XML schema, in forms of tree views

as shown in Figure 6.

SD-functions are defined each as a CP-Net with the inputs and outputs defined as

places and represented graphically as circles filled with a single color each defining

their types (e.g., String, Integer, etc.). It is important to note that a function can have

one or multiple inputs but only one output. The operation of the function itself is

represented in a transition which transforms the inputs to the output. Graphically, it is

represented as a rectangle with an image embedded inside it describing the operation.

Input and output places are linked to the transition via arcs represented by direct lines.

Several sample functions are shown in Figure 7.

Fig.7: Sample functions defined in XCDL

The composition is also based on CP-Nets. It is defined by a sequential mapping

between the output and an input of instances of SD-functions. The functions are

dragged and dropped, and then linked together with a Sequence Operator “” which

is represented by a dashed line between the output of a function and an input of

another, having the same color as shown in Figure 8.

As a result, on one hand, a composition might be a serial one meaning that all the

functions are linked sequentially and to each function one and only one function can

be mapped as illustrated in Figure 8.a. In this case, the sequential operator is enough.

However, the composition might contain concurrency, as in, several functions can be

mapped to a single one as depicted in Figure 8.b. In this case, we introduce an

abstract operator, the Concurrency Operator “//”, in order to indicate the functions

are concurrent.

As shown in Figure 8, we define 2 main types of compositions, a Serial Composition

“𝑺𝑪 = 𝑺𝑫𝑭ii
𝒏
𝒊=𝟎 ” (cf. Definition 6) and a Concurrent Composition “𝑪𝑪 =

 (𝑺𝑫𝑭ii𝑺𝑫𝑭n+1)𝒏
𝒊=𝟎 //” (cf. Definition 7).

Figure 8: Serial and Concurrent Compositions

In the XCDL Core, we separate the composition to a Serial Composition mapping

sequentially several instances of SD-functions and a Concurrent Composition,

mapping several instances of SD-functions sequentially to a single instance of SD-

function. Figure 8.a and 8.b illustrate respectively a Serial Composition and a

Concurrent Composition.

Definition 6-SC: it is a Serial Composition, 𝑆𝐶 = 𝑆𝐷𝐹ii
𝑛
𝑖=0 , linking sequentially n

instances of SD-functions using n-1 instances of Sequence operators and is compliant to a CP-
Net. It is defined as:

𝑺𝑪 = 𝑺𝑫𝑭ii = (, P, T, A, C, G, E, I) 𝒏
𝒊=𝟎 where:

 SDFi is a SD-function where:

i,j  [0,n], SDFi ≠ SDFj for i ≠ j

 i is a Sequence operator where:

o i. SDFi.
o i.PIn = SDFi.POut and i.POut  SDFi+1.PIn
o n = (Ø, Ø, Ø, Ø, C, G, E, I) in an empty CP-Net

 𝛴 = 𝑆𝐷𝐹i. 𝛴𝑛
𝑖=0

 𝑃 = 𝑃𝐼𝑛 ∪ 𝑃𝑂𝑢𝑡 𝑤ℎ𝑒𝑟𝑒 𝑃𝐼𝑛 = 𝑆𝐷𝐹𝑖 . 𝑃𝐼𝑛
𝑛
𝑖=0 𝑎𝑛𝑑 𝑃𝑂𝑢𝑡 = 𝑆𝐷𝐹𝑖 . 𝑃𝑂𝑢𝑡

𝑛
𝑖=0

 𝑇 = (𝑆𝐷𝐹𝑖 . 𝑇 ∪ 𝑖 . 𝑇 𝑛
𝑖=0)

 𝐴 = (𝑆𝐷𝐹𝑖 . 𝐴 ∪ 𝑖 . 𝐴 𝑛
𝑖=0)

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where

∀𝑡 ∈ 𝑇, 𝐺 𝑡 =
𝑆𝐷𝐹𝑖 . 𝐺(𝑡), 𝑡 ∈ 𝑆𝐷𝐹𝑖 . 𝑇 𝑛

𝑖=0

𝑖 . 𝐺 𝑡 , 𝑡 ∈ 𝑖 . 𝑇 𝑛
𝑖=0

 E:AExpr is the function associating an expression expr to an arc a where E = SD-function.E

 I:PInValue is the function associating initial values to the Input places, I = SD-function.I

Definition 7-CC: it is a Concurrent Composition, 𝐶𝐶 = (𝑆𝐷𝐹ii𝑆𝐷𝐹n+1)𝑛
𝑖=0 //, linking n

instances of SD-functions using n instances of Sequence operators concurrently to an instance
of SD-function and is compliant to a CP-Net. It is defined as:

𝑪𝑪 = (𝑺𝑫𝑭ii 𝑺𝑫𝑭n+1)//= (, P, T, A, C, G, E, I) 𝒏
𝒊=𝟎 where:

 SDFi and SDFn+1 is a SD-function where:

o i  [0,n+1] and j  [0,n+1], SDFi ≠ SDFj for i ≠ j

 i is a Sequence operator where:

o i. SDFi.
o i.PIn = SDFi.POut and i.POut  SDFn+1.PIn

 𝛴 = 𝑆𝐷𝐹i. 𝛴𝑛+1
𝑖=0

 𝑃 = 𝑃𝐼𝑛 ∪ 𝑃𝑂𝑢𝑡 𝑤ℎ𝑒𝑟𝑒 𝑃𝐼𝑛 = 𝑆𝐷𝐹𝑖 . 𝑃𝐼𝑛
𝑛+1
𝑖=0 𝑎𝑛𝑑 𝑃𝑂𝑢𝑡 = 𝑆𝐷𝐹𝑖 . 𝑃𝑂𝑢𝑡

𝑛+1
𝑖=0

 𝑇 = (𝑆𝐷𝐹𝑖 . 𝑇 ∪ 𝑖 . 𝑇 𝑛
𝑖=0) 𝑆𝐷𝐹n+1. 𝑇

 𝐴 = (𝑆𝐷𝐹𝑖 . 𝐴 ∪ 𝑖 . 𝐴 𝑛
𝑖=0) 𝑆𝐷𝐹n+1. 𝐴

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where

∀𝑡 ∈ 𝑇, 𝐺 𝑡 =
𝑆𝐷𝐹𝑖 . 𝐺(𝑡), 𝑡 ∈ 𝑆𝐷𝐹𝑖 . 𝑇 𝑛+1

𝑖=0

𝑖 . 𝐺 𝑡 , 𝑡 ∈ 𝑖 . 𝑇 𝑛
𝑖=0

 E:AExpr is the function associating an expression expr to an arc a where E = SD-function.E

 I:PInValue is the function associating initial values to the Input places, I = SD-function.I

The syntax of the SD-functions, Sequence Operator, Concurrency operator, are all

based on the grammar defined by CP-Nets’ algebra as discussed in detail in (Tekli et

al., 2010b). Figure 9 shows an illustration of a combination of a serial and concurrent

composition.

Fig.9: Composition example in XCDL

In this example, we can see that SDF1 is concurrently mapped to SDF2 with a serial

composition of SDF3 and SDF4. In this case the composition is expressed as follows:

“C = (SDF1 // (SDF3  SDF4))  SDF2” and the resulting composition is a CP-Net

compliant to the XCGN and transmitted to the Data Model for validation.

Data Model

As stated earlier, this module is used to validate the syntax and behavior of the

composition expressed in the XCDL platform. The main purpose is to ensure that the

composition is compliant to our grammar. In Figure 5, we can see that this module

contains 2 main components: (i) SD-function Model and (ii) Composition Model.

They define the internal data model of the XA2C.

(a) SD-function schema

(b) Composition schema

Fig.10: Relational schemas compliant with XCGN

The SD-function Model shown in Figure 10.a is defined as a relational schema

representing SD-functions as CP-nets. This schema is used to validate SD-functions

before they are stored in the system.

As an example, consider the SD-function “Concat” shown in Figure 7. This function

is defined as follows:

Concat = (, P, T, A, C, G, E, I) where:

 = {String}

 P = PIn  POut = {In_Str_1, In_Str_2} {Out_Str}

 T = {Concat}

 A  (PIn x {t})({t} x POut)

 C:Pwhere C(In_Str_1)= C(In_Str_2)= C(Out_Str)=String

 G:{t} S where G(Concat)= String_functions.Concat and Type(G(Concat)) = C(Out_Str) = String
where String_functions is the DLL containing String manipulation functions.

 E:AExpr is the function associating an expression expr Expr to a :

o Expr={M(In_Str_1), M(In_Str_2), G(Concat)} is a set of expressions where:

∀𝑒𝑥𝑝𝑟 ∈ 𝐸𝑥𝑝𝑟: 𝑒𝑥𝑝𝑟 =
𝑀 𝑎. 𝑝 𝑖𝑓 𝑎. 𝑝 ≠ 𝑝Out

𝐺 𝑎. 𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 I:PInValue where I(In_str_1) = I(In_str_2) = “”

The “Concat” SD-function is validated through the SD-function model which will

allow it then to be stored as a CP-Net in a XML based file.

The Composition Model shown in Figure 10.b is also defined as a relational schema

which is used to validate the syntax of the composition before storing it as a CP-Net

in a XML based file and transmitting it to the Processing Sequence Generator in the

Runtime Environment module for execution sequence discovery and generation.

Runtime Environment

As stated in the previous section, the XCDL is based on the XCGN, a grammar based

on CP-Nets, and the resulting composition is a CP-Net. The Process Sequence

Generator is used to generate 2 execution sequences, serial and concurrent sequences

which specify the order in which the composed functions can be executed.

The Concurrent Sequence specifies different concurrency levels (CL) which must be

executed in an sequential manner from CL0 to CLn where n is the last CL. Each CL

contains 1 or several functions which can be executed in a concurrent manner

(parallel or serial).

The Serial Sequence defines the execution of the functions in a serial manner where

each of the functions in the composition will have a unique order in which it can be

executed ranging from 0 to m-1, m is the number of functions used in the

composition.

In order to generate both sequences, we provide an algorithm based on the Incidence

Matrix (Murata, 1989) of CP-Nets (cf. Definition 2).

Before we give the algorithm, we present the hypothesis defining the background on

which the algorithm is based upon.

Hypothesis:

Based on the XCDL syntax, defined in the XA2C platform, the resulting composition

is also defined as a CP-Net based on the XGCN and respects the following main

properties:

 Each place can contain one and only one token

 A token can be added either through an initial marking provided by the user or an

XCD-tree node or through a fired transition

 All arcs are weighted with the value 1

 A transition is enabled once each of its input places contains at least one token

 A fired transition clears its input places of all tokens and generates one and only

one token in each of its output places.

Based on these properties, we define our algorithm for simultaneously discovering

and generating a serial and concurrent function processing sequence. The processing

sequence is stored in a 2 dimensional matrix (called PP for Parallel Processing) where

each line represents the concurrent level of execution and each column represents a

transition (a SD-function).

Fig.11: CPN1, an Example of a CP-Net resulting from the XCDL

Consider the composition CPN1 in Figure 11, Table IV represents its PP matrix. The

PP matrix shows that we have 3 CLs which must be executed sequentially and orderly

from CL0 to CL2 (e.g., T1 and T4 are enabled once T0, T3 and T6 have fired). All

transitions in a CL can be executed simultaneously in parallel. As shown in Table IV,

each transition corresponding to a CL is assigned a number. This number represents

the sequence order in which a transition should fire in Serial Processing mode (e.g., in

Table IV T0, T3, T6, T1, T4, T2 and T5 will be executed sequentially in Serial

Processing mode).

Tab.IV: PP matrix of the CP-Net in Figure 11

CL/T
T0 T1 T2 T3 T4 T5 T6

CL0 0 1 2

CL1 3 4

CL2 5 6

We present next the skeleton of the algorithm followed by the algorithm generating

the PP matrix.

Algorithm skeleton:

The algorithm contains 2 loop steps:

 Step 1 (lines 1-18): For each place in A, check if the initial value is of type “XCD

node” or “user” (in other terms, checks if the place is a source place), if so, then

for each transition in A check if the corresponding place is an input to the

transition. If the place is found to be an input then clear its value from A and

check if the transition is enabled. If it is enabled and PP does not contain a value

in the corresponding transition column then add the value of m in PP(j,n) where j

is the index of the enabled transition and increment m by 1. If the transition is

enabled and PP already contains a value in the corresponding transition column,

then report an error in the composition and exit the algorithm.

 Step 2 (lines 19-42): While |PP| < T.num, for each transition in PP on CLn-1, clear

all its output places and if they are input places to other transitions, clear them as

well from A, then check if their corresponding transitions are enabled, if so then

check that they were not already added to PP and add them in the corresponding

transition line on the CLn, otherwise, return an error in the composition and exit

the algorithm.

The formal algorithm is presented here below.

Algorithm’s Pseudo-Code:

Inputs:

Integer A(,) // A is the Incidence matrix

String T(),P() // T is the Transitions matrix

// P is the Places matrix

Outputs:

Integer PP(,) // PP is the Parallel Processing matrix

Variables:

Var PP(,) as Integer(T.num,1)

Var m, n as Integer = 0

// m is the sequence number of the next transition

// n is the current level number of the parallel processing

Begin:

// step 1

1. for i = 0 to (P.num – 1)

2. if (P_type(i) = “in xcd”) | (P_type(i) = “user”) then

3. for j = 0 to (T.num - 1)

4. if A(i,j) = -1 then

5. A(i,j) = 0

6. if T_enabled(i,j) then

7. if not (PP.contains(get_t(out_p))) then

8. PP(j,n) = m

9. m = m+1

10. else

11. Error(“Composition Error”)

12. Exit

13. end if

14. end if

15. end if

16. end for

17. end if

18. end for

// step 2

19. while (m < T.num)
20. for i = 0 to (T.num - 1)

21. if PP(i,n) not Null then

22. t=T(i)

23. for each out_p in A.outputs(t)()

24. out_p = 0

25. for each in_p in A.inputs(get_t(out_p))()

26. if in_p = out_p then

27. in_p = 0

28. end for

29. if get_t(out_p).enabled then

30. if not (PP.contains(get_t(out_p))) then

31. PP(get_t(out_p),n) = m

32. else

33. Error(“Composition Error”)

34. Exit

35. end if

36. end if

37. end for

38. end if

39. end for

40. n = n + 1

41. end while
End

In case of a valid composition, the Process Sequence Generator must ensure that (i)

All transitions are present in PP and each transition is present once and only once, (ii)

After attending the i
th
 level, if all transitions in level i fire then all transitions in level

i+1 are enabled and (iii) All transitions in level i can be executed in parallel.

Therefore, to prove the correctness of our algorithm, we must prove the following 3

lemmas.

Lemma 1. If ∃ PP Then (ti ≠ tj , ∀i, j ∈ N, i, j < 𝑇. 𝑛𝑢𝑚 𝑎𝑛𝑑 𝑖 ≠ 𝑗)

Proof. Before populating the PP matrix, whether in loop step 1 or 2, the algorithm

checks each time at line 7 and 30 respectively if the added transition already exists, if

so then the execution is interrupted and PP is not generated and:

If ∀i, j ∈ N and i, j < 𝑇. 𝑛𝑢𝑚 𝑎𝑛𝑑 𝑖 ≠ 𝑗 , ∃(ti = tj) then (∄PP)

Therefore, based on the proof by contradiction we prove Lemma 1, PP can exist if a

transition exists once and only once in PP. □

Lemma 2. If ∃PP Then (∀t ∈ T, t ∈ PP)

Proof. Based on lemma 1, if a transition exists in PP, then it can only exist once and

based on the loop step 2 in our algorithm, the algorithms will generate PP and

terminate once T.num transitions are added to PP as shown on line 19, otherwise the

execution terminates with an error report without a generation of PP and:

If ∃PP Then ∀i, j ∈ N and i, j < 𝑇. 𝑛𝑢𝑚 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ti ≠ tj And PP = T. num

Therefore, by direct proof, we prove Lemma 2, PP can exist if all transitions in T

exist in PP. □

Lemma 3. ∀𝑖 ∈ 𝑁 𝑎𝑛𝑑 𝑖 ≤ 𝑛, ∀𝑡𝑖 ∈ 𝑇𝑖 , 𝑡𝑖 𝑒𝑛𝑎𝑏𝑙𝑒𝑑/∀𝑡𝑖−1 ∈ 𝑇𝑖−1, 𝑡𝑖−1 𝑓𝑖𝑟𝑒𝑑

Proof. We prove this Lemma by mathematical induction.

Basis step: for i=0, loop step 1 clears A from all input places with initial markings and

adds all transitions to PP having inputs with only initial markings (from XCD nodes

or users). Since all of the transitions in CL0 have only input places with initial

markings, therefore:

∀𝑡0 ∈ 𝑇0 , 𝑡0 𝑒𝑛𝑎𝑏𝑙𝑒𝑑

Inductive step: consider k<n, we assume that ∀𝑡𝑘 ∈ 𝑇𝑘 , 𝑡𝑘 𝑒𝑛𝑎𝑏𝑙𝑒𝑑/∀𝑡𝑘−1 ∈

𝑇𝑘−1, 𝑡𝑘−1 𝑓𝑖𝑟𝑒𝑑.

Since ∀𝑡𝑘 ∈ 𝑇𝑘 , 𝑡𝑘 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 therefore all tk in Tk are ready to fire. Based on loop step 2,

once all tk fires, all of their output places are cleared from A (line 24). Based on the

hypothesis, a place can either have one token from an initial marking or from a fired

transition, and since all transitions with initial markings have already fired in the basis

step and their places were cleared from A, therefore the places left in A can obtain a

token only from fired transitions. Once all tk fire, the input places of tk+1 which are the

output places of tk are cleared (line 27) and thus all tk+1 are enabled having no input

places left in A. Thus we conclude by induction that:

 ∀𝑡𝑘+1 ∈ 𝑇𝑘+1 , 𝑡𝑘+1 𝑒𝑛𝑎𝑏𝑙𝑒𝑑/∀𝑡𝑘 ∈ 𝑇𝑘 , 𝑡𝑘 𝑓𝑖𝑟𝑒𝑑□

Now that we have presented our algorithm for discovering and generating concurrent

processing sequences corresponding to the resulting composition, we give a detailed

illustration showing the results of each executed iteration.

Illustration

Consider the CP-Net shown in Figure 11. Table V represents its Incidence Matrix.

Tab.V: Incidence Matrix of CPN1

 P/T T0 T1 T2 T3 T4 T5 T6

* P0 -1

 P1 1 -1

 P2 1 -1

 P3 1 -1

* P4 1

* P5 -1

 P6 1 -1

 P7 1 -1

 P8 -1 1

* P9 1

* P10 -1

The first iteration terminates after executing the first loop step, where the transitions

attached to source places “*” (XCD-nodes or User places) which must be fired first

are generated from Table VI and inserted in CL0 as shown in Table VII.

Tab.VI: Incidence Matrix after iteration 1

 P/T T0 T1 T2 T3 T4 T5 T6

* P0

 P1 1 -1

 P2 1 -1

 P3 1 -1

* P4 1

* P5

 P6 1 -1

 P7 1 -1

 P8 -1 1

* P9 1

* P10

Tab.VII: PP matrix after iteration 1

CL/T T0 T1 T2 T3 T4 T5 T6

CL0 0 1 2

The second iteration is executed in the second loop step for a CLi=CL1. The execution

terminates after i gets incremented by 1.

Table IX shows the added transitions which must be executed in CL1.

Tab.VIII: Incidence Matrix after iteration 2

 P/T T0 T1 T2 T3 T4 T5 T6

* P0

 P1

 P2 1 -1

 P3 1 -1

* P4 1

* P5

 P6

 P7 1 -1

 P8

Tab.IX: PP matrix after iteration 2

CL/T T0 T1 T2 T3 T4 T5 T6

CL0 0 1 2

CL1 4 5

* P9 1

* P10

The third iteration is executed for i=2. The results are shown in Table X and XI.

Tab.X: Incidence Matrix after iteration 3

 P/T T0 T1 T2 T3 T4 T5 T6

* P0

 P1

 P2

 P3

* P4 1

* P5

 P6

 P7

 P8

* P9 1

* P10

Tab.XI: PP matrix after iteration 3

CL/T T0 T1 T2 T3 T4 T5 T6

CL0 0 1 2

CL1 3 4

CL2 5 6

Then, the algorithm checks that all the transitions are available once and only once in

the PP matrix and ends the execution. Therefore, we conclude that in this case, 3

iterations where required in order to generate the PP matrix. As it is shown in Table

XI, the PP matrix contains 3 CL which must be executed from CL0 to CL2

sequentially. All transitions available in the same CL can be executed in parallel. As

for a serial execution, we can see in the resulting PP matrix that a unique number is

associated to each transition which specifies its serial execution order.

Prototype and Experiments

In order to validate our framework and test the algorithm, we implement a prototype

called XA2C. It is based on the XCDL core grammar allowing us to compose/draw

XML oriented manipulation operations based on functions existing in the system

libraries (DLLs, Jars or Web Services). The prototype, illustrated in Figure 12, was

developed in Visual Basic Dot Net (VB.Net).

Fig.12: XCDL Platform

The architecture of the prototype is shown in Figure 5. The primary tests we run on

the prototype were divided into 3 categories: (i) performance, (ii) user satisfaction,

and (i) relevance. In this section, and due to the lack of space we will focus on

evaluating the performance and in particular, the process sequence generator

algorithm which was implemented in the third module, in the Process Sequence

Generator component.

We tested our algorithm for several compositions on an Intel Xeon 2.66GHz with

1Gbyte of Ram memory. We discuss here 4 different cases: serial (cf. Figure 13.a),

concurrent (cf. Figure 13.b) and 2 cases of combined and independent compositions:

serial and concurrent (cf. Figure 13.c and 13.d). The combined cases can contain

several serial composition with concurrent compositions such as, in case a and b, but

the combinations are independent and do not share any data, in other words they have

no mappings between each other.

In all 4 cases, the functions were dragged and dropped arbitrarily. The runtime

execution monitored by the tests regarding cases a, b, c and d are shown respectively

in the graphs a, b, c and d in Figure 14.

As we can see in all 4 graphs, the runtime execution growth remains constant to a

certain point then starts growing in almost a linear form. Therefore, we elaborate the

following 4 equations shown in Table XII.

(a) Serial Composition

(b) Concurrent Composition

(c) Combined Composition

(d) Combined Composition

Fig.13: Different Composition Scenarios

(a) Graph of Case a (b) Graph of Case b

(c) Graph of Case c
(d) Graph of Case d

Fig.14: Runtime Execution of the Algorithm

Tab.XII: Runtime Equations of cases a, b, c and d

Cases Runtime Growth Equation

Case a t = 200n – 7*(200)

Case b t = 50n – (200)

Case c t = 320n – (200)

Case d t = 300n – 6*(200)

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15

Serial Execution Time

n: nb of
fct

t: Time (ms)

0

200

400

600

800

1000

1200

1400

1600

0 4 8 12 16 20 24 28 32

Parallel Excecution Time

n: nb of fct

t: Time (ms)

0

500

1000

1500

2000

2500

3000

3500

4000

3
2

*0

3
2

*1

3
2

*2

3
2

*3

3
2

*4

3
2

*5

3
2

*6

3
2

*7

3
2

*8

3
2

*9

3
2

*1
0

3
2

*1
1

Combined Excecution Time

n: nb of fct

t: Time (ms)

0

200

400

600

800

1000

1200

0*5 1*5 2*5 3*5 4*5 5*5 6*5 7*5

Combined Excecution Time

n: nb of fct

t: Time (ms)

Based on all 4 equations, we elaborated that the algorithm has a constant execution

period, in the case of the Xeon processor it was 200ms. The execution runtime of

concurrent cases is half the execution runtime of serial cases. In combined and

independent compositions, we notice that the execution runtime of the algorithm is

dependent of the runtime of the maximum independent concurrent composition which

sets the minimum runtime of the overall execution.

Conclusion and Future Works

In this paper, we discussed the issues regarding XML manipulations by both expert

and non expert users. We were mainly interested in XML-oriented visual languages

and XML adaptation/alteration techniques. In terms of visual languages, we identified

2 main approaches, Mashups and XML oriented visual querying languages. On one

hand, Mashups are not XML specific and have no been formally defined yet, and on

the other hand, XML-oriented languages are limited to data extraction instead of

manipulation (insertion, deletion, modification, etc.), are mainly based on existing

languages and have limited expressiveness. As for the Alteration/Adaptation

techniques, they are intended for experts only, and the current techniques are separate

from each other and not necessarily generic to all XML data. To solve these issues,

we introduced the XA2C framework XML oriented visual manipulation based on

functional compositions where the adaptation/alteration techniques are used as

existing functions which can be initiated either from offline libraries (DLL or JAR

Files) or online libraries (Web Services). This paper gave a brief introduction to the

XCDL language which was defined based on CP-Nets and intended to be used for

visual functional compositions. The paper also presented the algorithm we developed

in order to discover and generate serial and concurrent processing sequences resulting

from the compositions created by the XCDL language. The algorithm was

implemented and tested in a prototype developed in VB.Net which allows users to

create composed operations for XML textual values mainly. The main track, in future

works, on one hand, relies on optimizing the algorithm to deal with independent

compositions in more efficient manner in terms of timing and error handling. On the

other hand, it relies on extending the XCDL language to grow beyond functional

compositions by adding conditional and loop operators along with user composed

functions which can be reused in different compositions.

References

ADELBERG, B. 1998. NoDoSE-a tool for semi-automatically extracting structured and

semistructured data from text documents. SIGMOD Rec., 27, 283-294.

ALTINEL, M. & FRANKLIN, M. J. 2000. Efficient Filtering of XML Documents for

Selective Dissemination of Information. Proceedings of the 26th International

Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc.

BRAGA, D., CAMPI, A. & CERI, S. 2005. XQBE (XQuery By Example): a visual interface

to the standard XML query language. ACM Trans. Database Syst., 30, 398-443.

BYUN, C., LEE, K. & PARK, S. 2007. A Keyword-Based Filtering Technique of Document-

Centric XML using NFA Representation. International Journal of Applied

Mathematics Computer Science, 136–143.

CANDAN, K. S., HSIUNG, W.-P., CHEN, S., TATEMURA, J. & AGRAWAL, D. 2006.

AFilter: adaptable XML filtering with prefix-caching suffix-clustering. Proceedings

of the 32nd international conference on Very large data bases. Seoul, Korea: VLDB

Endowment.

CERI, S., COMAI, S., DAMIANI, E., FRATERNALI, P. & TANCA, L. 2000. Complex

queries in XML-GL. Proceedings of the 2000 ACM symposium on Applied

computing - Volume 2. Como, Italy: ACM.

CHANG, C.-H. & LUI, S.-C. 2001. IEPAD: information extraction based on pattern

discovery. Proceedings of the 10th international conference on World Wide Web.

Hong Kong, Hong Kong: ACM.

CRESCENZI, V., MECCA, G. & MERIALDO, P. 2002. Automatic Web Information

Extraction in the ROADRUNNER System. Revised Papers from the HUMACS,

DASWIS, ECOMO, and DAMA on ER 2001 Workshops. Springer-Verlag.

DIAO, Y., ALTINEL, M., FRANKLIN, M. J., ZHANG, H. & FISCHER, P. 2003. Path

sharing and predicate evaluation for high-performance XML filtering. ACM Trans.

Database Syst., 28, 467-516.

ENNALS, R. J. & GAROFALAKIS, M. N. 2007. MashMaker: mashups for the masses.

Proceedings of the 2007 ACM SIGMOD international conference on Management of

data. Beijing, China: ACM.

ERWIG, M. 2000. A Visual Language for XML. Visual Languages, IEEE Symposium on, 0,

47.

GOLIN, E. J. & REISS, S. P. 1990. The specification of visual language syntax. J. Vis. Lang.

Comput., 1, 141-157.

HWANG, G.-H. & CHANG, T.-K. 2004. An operational model and language support for

securing XML documents. Computers & Security, 23, 498 - 529.

JENSEN, K. 1994. An Introduction to the Theoretical Aspects of Coloured Petri Nets. A

Decade of Concurrency, Reflections and Perspectives, REX School/Symposium.

Springer-Verlag.

LEMLOUMA, T. & LAYAÏDA, N. Year. SMIL Content Adaptation for Embedded Devices.

In: IN SMIL EUROPE 2003 CONFERENCE, 2003. 12--14.

LORENZO, G. D., HACID, H., PAIK, H.-Y. & BENATALLAH, B. 2009. Data integration in

mashups. SIGMOD Rec., 38, 59-66.

LOTON, T. 2008. Introduction to Microsoft Popfly, No Programming Required, Lotontech

Limited.

LUO, B., LEE, D., LEE, W.-C. & LIU, P. 2004. QFilter: fine-grained run-time XML access

control via NFA-based query rewriting. Proceedings of the thirteenth ACM

international conference on Information and knowledge management. Washington,

D.C., USA: ACM.

MURATA, T. 1989. Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE.

PELLAN, B. & CONCOLATO, C. 2008. Adaptation of scalable multimedia documents.

Proceeding of the eighth ACM symposium on Document engineering. Sao Paulo,

Brazil: ACM.

PIETRIGA, E., VION-DURY, J.-Y. & QUINT, V. 2001. VXT: a visual approach to XML

transformations. Proceedings of the 2001 ACM Symposium on Document

engineering. Atlanta, Georgia, USA: ACM.

SIMMEN, D. E., ALTINEL, M., MARKL, V., PADMANABHAN, S. & SINGH, A. 2008.

Damia: data mashups for intranet applications. Proceedings of the 2008 ACM

SIGMOD international conference on Management of data. Vancouver, Canada:

ACM.

TEKLI, G., CHBEIR, R. & FAYOLLE, J. 2010a. XA2C Framework for XML

Alteration/Adaptation. In: SHIN, S. Y., GANTENBEIN, R., KUO, T.-W. & HONG,

J. (eds.) Reliable and Autonomous Computational Science. Springer Basel.

TEKLI, G., CHBEIR, R. & FAYOLLE, J. Year. XCDL: an XML-Oriented Visual

Composition Definition Language. In: The 12th International Conference on

Information Integration and Web-based Applications & Services (iiWAS2010),

2010b.

TEKLI, G., FAYOLLE, J. & CHBEIR, R. 2010c. Towards an XML Adaptation/Alteration

Control Framework. Proceedings of the 2010 Fifth International Conference on

Internet and Web Applications and Services. IEEE Computer Society.

W3C 1999. Extensible Stylesheet Language Transformations -XSLT 1.0.

Short Biographies

Gilbert Tekli received his Masters of Engineering in Telecommunications and Computers

from the Antonine University-Lebanon in 2007. He is currently completing his Phd thesis in

Telecom St Etienne-France, co-directed by the LE2I laboratory in the Computer Science

Department, University of Bourguogne-France. His work and research interest fall mainly in

the areas of XML manipulation/control, dataflow, visual languages, formal languages, EDRM

and access control models.

Gilbert Tekli holds a teaching position in Telecom St Etienne where he mainly teaches

Security (e.g., EDRM and Information System Protection) and programming (e.g., Algorithm

and Java) courses.

Richard Chbeir received his PhD in Computer Science from the University of INSA-FRANCE

in 2001and then his Habilitation degree in 2010 from the University of Bourgogne where he is

currently an Associate Professor in the Computer Science Department in Dijon-France. His

research interests are in the areas of multimedia information retrieval, XML and RSS

Similarity, access control models, multimedia document annotation.

Richard Chbeir has published in international journals, books, and conferences, and has served

on the program committees of several international conferences He is currently the Chair of

the French Chapter ACM SIGAPP and the Vice-Chair of ACM SIGAPP. Richard Chbeir

teaches Databases and Multimedia Data Retrieval in the Computer Science Department of the

"IUT de Dijon" and "UFR Science et Technique" of Bourgogne University in Dijon-France.

Jacques Fayolle is co director of Télécom Saint-Etienne (http://www.telecom-st-etienne.fr),

engineering school in information technologies. He drives the local research activities on

interoperability in information systems and the adaptation to the context of applications. He

received his PhD in computer science in 1996 and the French habilitation for research

management in 2007. Jacques is the author or co author of more than 70 scientific publications

in international journal or symposium. His last publication (in co author with C. Gravier) deals

with the use of semantic tools for remote lab session and how improves the quality of learning

(IEEE Intelligent Systems).

http://www.telecom-st-etienne.fr/

