
HAL Id: hal-00650573
https://hal.science/hal-00650573

Submitted on 13 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XML document-grammar comparison: related problems
and applications

Joe Tekli, Richard Chbeir, Agma Traina, Caetano Traina

To cite this version:
Joe Tekli, Richard Chbeir, Agma Traina, Caetano Traina. XML document-grammar comparison:
related problems and applications. Central European Journal of Computer Science, 2011, 1, pp.117-
136. �hal-00650573�

https://hal.science/hal-00650573
https://hal.archives-ouvertes.fr

XML Document-Grammar Comparison: Related Problems and Applications

Joe Tekli 1*, Richard Chbeir
2, Agma J.M. Traina

1, and Caetano Traina Jr.
1

1
ICMC - Computer Science and Statistics Department, University of Sao Paulo (USP), 13566-590 - São Carlos, SP, Brazil

2
LE2I Laboratory UMR-CNRS, Department of Computer Science, University of Bourgogne, 21078 Dijon Cedex France

*

ABSTRACT

XML document comparison is becoming an ever more popular research issue due to the increasingly abundant use of XML. Likewise, a

growing interest fosters the development of XML grammar matching and comparison, due to the proliferation of heterogeneous XML data

sources, particularly on the Web. Nonetheless, the process of comparing XML documents with XML grammars, i.e., XML document and

grammar similarity evaluation, has not yet received the attention it deserves. In this paper, we provide an overview on existing research

related to XML document/grammar comparison, presenting the background and discussing the various techniques related to the problem.

We also discuss some prominent application domains, ranging over document classification and clustering, document transformation,

grammar evolution, selective dissemination of XML information, XML querying, as well as alert filtering in intrusion detection systems,

and Web Services matching and communications.

Keywords: XML; Semi-structured data; XML Grammar; DTD; XSD; Structural Similarity; Classification; Clustering; Structure Transformation; Selective

dissemination; Grammar evolution.

*
 The author is supported in part by the Research Support Foundation of the State of Sao Paulo, FAPESP Post-doctoral Fellowship n# 2010/00330-2.

1. Introduction

XML documents represent hierarchical data instances,

made of atomic and complex elements (i.e., containing sub-

elements) as well as atomic attributes, incorporating

structure and content in one entity (cf. Fig. 1). One of the

main characteristics that distinguish XML documents from

plain semi-structured data is the notion of XML grammar.

An XML grammar (i.e., DTD [15] or XSD [65]) is a set of

definitions and declarations for modeling XML documents,

defining the elements and attributes of the documents they

describe, as well as element/attribute structural positions

and the rules they adhere to in the documents [67] (cf. Fig.

2). XML grammars can be viewed as schemas in traditional

DBMS, necessary for the efficient indexing, storage, and

retrieval of corresponding document instances.

Due to the unprecedented abundant use of XML,

XML-based document comparison has become a central

issue, thoroughly investigated in the database and

information retrieval communities [17, 38, 86]. Likewise, a

growing interest is recently underlined in XML grammar

matching and comparison [30, 81, 87], with the

proliferation of heterogeneous XML data sources,

particularly on the Web. Nonetheless, the process of

comparing XML documents with XML grammars, i.e.,

XML document and grammar similarity evaluation, has not

yet received strong attention as it should, due to the

importance of dealing with semi-structured data.

Performing XML document/grammar comparison, i.e.,

evaluating the similarity between an XML document and

an XML grammar, is useful in various application domains,

such as the classification of XML documents against a set

of grammars declared in an XML database [12, 63], XML

document retrieval [12, 37] (a query being represented as

an XML grammar), as well as in the selective

dissemination of XML documents (user profiles being

expressed as grammars against which the incoming XML

document stream is matched) [12].

In this paper, we provide a concise and comprehensive

review on the methods related to XML document/grammar

comparison. The objective of this study is to briefly

describe, compare, and classify the different techniques and

methods related to the problem. We also illustrate some of

the potential application scenarios that can benefit from

XML document/grammar similarity evaluation. To our

knowledge, this is the first review study dedicated to the

XML document/grammar similarity domain. The remainder

of this paper is organized as follows. Section 2 presents the

main properties of XML documents and grammars. Section

3 reviews the background and state of the art in XML

document/grammar similarity evaluation and related

problems. Section 4 develops the main applications and

potential uses of XML document/grammar comparison,

before concluding in Section 6.

2. Background

This section provides an overview on the basic notions and

common properties related to XML documents and XML

grammars.

2.1. XML Document Representation Model

XML documents represent hierarchically structured

information and are generally modeled as Ordered Labeled

Trees (OLTs, cf. Fig. 1.b). In a traditional DOM

(Document Object Model) ordered labeled tree [93], nodes

 Submitted to Elsevier Science 2

represent XML elements, and are labeled with

corresponding element tag names, organized following

their order of appearance in the document. Each edge in the

XML tree represents the membership of the element

corresponding to the child node, under the element

corresponding to the parent node in the XML document.

Element attributes mark the nodes of their containing

elements. Some studies have considered OLTs with distinct

attribute nodes, labeled with corresponding attribute names

[63, 99]. Attribute nodes appear as children of their

encompassing element nodes, sorted by attribute name, and

appearing before all sub-element siblings [63].

In the comparison process, element/attribute values can

be disregarded (structure-only) or considered (structure-

and-content), following the requirements of the application

scenario at hand (cf. Fig. 1.b). In general, element/attribute

values are disregarded when evaluating the structural

properties of heterogeneous XML documents, i.e.,

documents originating from different data-sources and not

conforming to the same grammar, so as to perform XML

structural classification/clustering [27, 63] or structural

querying (i.e., querying the structure of documents,

disregarding content [12]). Nonetheless, values are usually

taken into account with methods dedicated to XML data

warehousing (change management and version control)

[20, 25], data integration (providing the user with a unified

view of the XML data) [39, 52], and XML structure-and-

content querying applications [76], where XML content

management is required. Here, XML documents tend to have

relatively similar structures, and probably conform to the

same grammar. With such methods, XML text sequences

can be decomposed into words, mapping each word to a

leaf node labeled with the respective word [76, 77].

<?XML>

<Journal>

 <Issue>

 <Paper Title= „XML‟>

 <Author> Joe Takagi </Author>

 <Length> 25 </Length>

 <Year> 2009 </Year>

 </Paper>

 </Issue>

</Journal>

a. XML Document. b. XML document tree (OLT).

Fig. 1. Sample XML document with corresponding OLT.

Notice that most existing approaches in the context of

XML document/grammar comparison disregard element/

attribute values (contents), and mainly focus on

heterogeneous document structure comparison (as we will

show in the following).

2.2. XML Grammars

An XML grammar (i.e., Document Type Definitions - DTD

[15], or XML Schema Definition – XSD [65]) is a structure

consisting of a set of XML elements, sub-elements and

attributes, linked via the containment relation. It identifies

element/attribute structural positions, data-types, and the

rules they adhere to in the XML document (cf. sample

XML grammars in Fig. 2). The structural properties of

XML grammar languages are essentially captured by

regular tree languages [59].

<!ELEMENT Journal (Issue*)>

<!ELEMENT Issue (Paper+)>

<!ELEMENT Paper ((Author+ | Publisher), Year, Length?)>

<!ATTLIST Paper Title CDATA>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Publisher (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

<!ELEMENT Length (#PCDATA)>

a. XML grammar in DTD syntax.

<?XML>

<schema>

<element name = „Journal‟>

 <element name = „Issue‟ MinOccurs = „0‟ MaxOccurs = „unbound‟>

 <element name= “Paper” MaxOcc = „unbound‟>

 <Attribute name= „Title‟ type= „String‟/>

 <sequence>

 <choice>

 <element name= “Author” MaxOccurs= „unbound‟/>

 <element name= „Publisher‟ type= „String‟/>

 </choice>

 <element name= „Year‟ type=‟gYear‟/>

 <element name= „Length‟ type=‟Integer‟ MinOccurs=‟0‟/>

 </sequence>

 </element>

 </element>

 </element>

</schema>

b. XML grammar in XSD syntax (allowing a more detailed

description of data-types and constraints).

Fig. 2. Sample XML grammars, in DTD and XSD syntaxes.

2.2.1. Origins in Formal Language Theory

In formal language theory [43], a grammar G mainly

consists of a set of rules to transform strings. Rules are

generally represented in the form: V → w, where V is a

single non-terminal symbol
1
, and w is a string of terminal

and/or non-terminal symbols (as well as the empty symbol).

The language L(G), defined based on grammar G, consists

of all the possible strings that can be generated following

the set of symbols and rules defined in G.

In this context, XML grammars can be viewed as

special regular tree grammars [22, 59, 61], where non-

terminal symbols underline composite element labels,

terminal symbols underline simple (leaf node) elements

labels or attribute labels, and such as the right hand side of

their production rules are made of regular expressions

instead of classic strings, i.e., A rA where rA is the rule

associated with element label A.

Consider for instance the sample XML grammar in

Fig. 2.a. The main productions rules describing the

structure of the grammar are as follows:

VJournal VIssue*

VIssue VPaper+

VPaper WPaper, (WAuthor | WPublisher), WYear, WLength?

1
 In formal language theory, terminal symbols are those to which we do

not separately associate production rules. In other words, terminal
symbols cannot be broken do wn to smaller units.

Length

Paper

2009 25

Title

Joe

Author

Takagi

Year

XML

Issue

Journal

XML

Structure-

only

XML Structure-and-Content

http://en.wikipedia.org/wiki/Nonterminal

 Submitted to Elsevier Science 3

Here, VJournal corresponds to the root element in the

grammar, such as VJournal, VIssue, and VPaper are non-terminal

symbols, representing composite elements, whereas the

remaining are terminal symbols, representing simple

elements/attributes.

Special production rules are introduced in XML

grammar languages to encode XML element data-types

(which do not exist in traditional tree languages [43]). This

can be done by adding new non-terminal symbols

associated to external predicates representing each basic

data-type, which allows verifying whether the text (in the

XML document) can be converted into a value of the

required type.

For instance, data-type rules for elements Author and

Length in Fig. 2.b can be represented as VAuthor : DString and

VLength : DInteger, where DString and DInteger underline XSD

String and Integer data-types respectively.

A detailed study highlighting the correlation between

XML grammar languages (namely DTD and XSD) and

regular tree languages is provided in [59].

2.2.2. Data-types

The DTD language [15], i.e., the basic XML grammar

language introduced in the XML specification, allows only

a handful of element data-types usually constrained to

textual contents (namely PCDATA, Any, and Composite).

Nonetheless, the XSD language [65], i.e., the main XML

grammar language used nowadays, is far more expressive

and supports 19 predefined content types (e.g., Boolean,

Integer, Decimal, Date,…, Composite) which could occur

in XML documents. XSD also allows the definition and

derivation (i.e., extension and/or restriction) of new data-

types based on built-in ones (e.g., deriving an Integer type

whose values are restricted in a given interval).

Consider for instance the sample XML grammar in

Fig. 2.b. It contains three composite elements: Journal,

Issue and Paper, and three simple ones: Author of type

String, Year of type gYear (a special date type), and Length

of type Integer, as well as attribute Title of type String.

2.2.3. Constraint Operators

These are operators employed to specify constraints on the

existence, repeatability and alternativeness of XML

elements/attributes. With DTD constraint operators, it is

possible to specify whether an element is optional („?‟),

whether it may occur several times („*‟ for 0 or more times,

and „+‟ for 1 or more times), or whether an attribute is

optional (“Implied”) or mandatory (“Required”). The XSD

language, however, introduces more expressive cardinality

operators: MinOccurs and MaxOccurs, specifying

respectively the minimum and maximum number of

occurrences an element/attribute can appear in the

corresponding XML documents. An element/attribute with

no constraints is mandatory and should appear once.

It is also possible to specify whether siblings are

alternative w.r.t.
1
 each other (using the Or operator,

represented as „|‟ in DTDs, and, choice in XSDs) such as

1 With respect to

when one and only one of the concerned elements should

appear in the document, or whether they are grouped in a

sequence (using the And operator, represented as „,‟ in

DTDs, and sequence in XSDs) such as when each element

is required to appear in the document.

Consider for instance the XML grammars in Fig. 2.a

and Fig. 2.b. Here, elements Issue, Paper and Author are

repeatable, whereas element Length is optional. In addition,

elements Author and Publisher are connected via the Or

operator, and underline an alternative of elements, whereas

their siblings represent sequences of elements.

2.2.4. XML Grammar Representation

While XML documents can be naturally represented as

labeled tree structures (cf. Section 2.1), XML grammar

representations are usually more intricate. That is due to the

various types of constraints associated to elements and

attributes, as well as composite element expressions. In

practice, XML grammars are abstracted as special tree

structures and/or graphs (when recursive definitions come

to play) [49, 83], usually simplifying grammar constraints

and/or disregarding element/attribute data-types [12, 85],

depending on the approach and application at hand.

For instance, Fig. 3 depicts two tree representation

variants describing the same sample XML grammar. The

tree representation in Fig. 3.a contains special nodes to

describe XML grammar constraint operators [12]. The tree

in Fig. 3.b follows the disjunctive normal form [76] to

represent alternative declarations (resulting from the Or

operator) as a set of conjunctive elements, integrating

cardinality constraints (?, +, …) within the corresponding

element nodes, aiming at preserving parent-child relations

[85]. Both tree representations are constrained to the DTD

language and do not consider XSD-based constraints which

are more complex and expressive (e.g., MinOccurs and

MaxOccurs). In addition, both approaches in [12, 85]

(similarly to most existing methods) focus on XML

structure, thus neglecting element values and data-types.

a. Tree representation based on the

approach in [12].
b. Tree representation following the

approach in [85].

Fig. 3. Tree representations describing the DTD grammar in

Fig. 2.a.

Publisher

Journal

Issue

Paper

Title

Author

OR

Basic DTD tree representation

*

+

AND

Length

Year

+

?

Journal

 Issue

 Paper

Title

*

 Author Length ? Year +

 +

Journal

 Issue

 Paper

Title

*

Publisher Length ? Year

 +

Disjunctive DTD tree representation, consisting

of a set of conjunctive trees, G={C1, C2}

C1

C2

 Submitted to Elsevier Science 4

3. State of the Art in XML Document/Grammar

Comparison and Related Problems

XML document/grammar comparison underlines a

relatively novel research area w.r.t. XML document

comparison [17, 38, 86] and XML grammar comparison

[30, 81, 87], which have attracted much research activity in

the past decade.

In this section, we provide a summarized review on the

most prominent issues and techniques related to XML

document and grammar comparison. Section 3.1 discusses

the seemingly related issue of approximate pattern

matching with Variable Length Don’t Cares (VLDC).

Section 3.2 covers XML document/grammar validation.

Section 3.3 discusses XML document transformation/

correction. Consequently, we go over existing XML

document/grammar similarity evaluation algorithms in

Section 3.4, and sum up with discussions in Section 3.5.

3.1. Approximate Pattern Matching with VLDC

An intuitive XML document/grammar comparison

approach could be that of approximate matching with the

presence of Variable Length Don’t Cares (VLDC). In

strings, a VLDC symbol (e.g., Ù) in a given pattern

substitutes zero or more symbols in the data string [3, 46].

Approximate VLDC string matching means that, after the

best possible substitutions, the pattern still does not match

the data string and thus a matching distance is computed.

For example, “comp Ù ng” matches “commuting” with

distance 1 (representing the cost of removing the “p” from

“comp Ùng” and having the “ Ù ” substituting for “mmuti”).

The string VLDC problem has been generalized for trees

[97], introducing VLDC substitutions for whole paths or

sub-trees. It has also been investigated in the context of

Web data extraction, using structural patterns with special

VLDC symbols (substituting single nodes, sets of siblings,

and/or sub-trees) to identify data-rich information in Web

document [68]. Nonetheless, despite being comparable,

VLDC symbols are fairly different from repeatability and

alternativeness operators in XML grammars (cf. Section

2.2.3). VLDC symbols can replace any string (w.r.t. string

matching) or sub-tree (w.r.t. tree matching) whereas the

XML grammar operators specify constraints on the

occurrence of a particular and well known node (and

consequently the sub-tree rooted at that node). For

example, the DTD operator “?” associated with a given

element dummy (dummy?) designates that the specific node

entitled dummy (and not any other node, as with VLDC

symbols) can appear 0 or 1 time.

3.2. XML Document/Grammar Validation

Another issue related to XML document/grammar

comparison is XML document validation, which has

recently gained attention as one of the aspects of XML data

management. The basic idea adopted in this family of

methods [9, 10, 14, 24, 45, 79] is to abstract DTDs/XSDs

as extended Context-Free Grammars (CFG).

While the structural properties of XML grammar

languages are essentially captured by regular tree

languages (cf. Section 2.2.1), a CFG is a regular grammar

expressing the fact that non-terminal symbols are rewritten

without regard to the context in which they occur. A CFG

for XML requires that the definition of a given element is

independent of its position (i.e., context) in the document,

the element being identified by its label.

For instance, the following sample DTD element

declarations cannot coexist in the same grammar:

<!ELEMENT Author (Name)> and <!ELEMENT

Author(FName, LName)>. Such declarations would

indicate that the content of element Author changes

following its location in the grammar, which is not allowed

in the DTD language, based on the CFG model
1
.

Consequently, verifying if an XML document S conforms

to XML grammar G requires to check whether the

document tree is comprised in the language defined by the

grammar, i.e., if S L(G).

T0: Start Journal

T1: Journal Issue

T2: Issue Issue +

T3: Issue Paper

T4: Paper Paper +

T5: Paper Title , (α |),

T6: α Author

T7: Author Author +

T8: Publisher

T9: Year,

T10: Length,

T11: End

T12: Length End

a. State transitions describing the structural validation of document
instances corresponding to the XML grammar in Fig. 3.a.

b. Simulating the XML grammar automaton.

Fig. 4. XML grammar automaton to perform document validation.

The standard procedure for testing membership in a

formal language simulates the automaton that accepts the

language on the input strings [43]. Thus, with DTDs/XSDs

described as CFGs, one has first to produce the

corresponding automaton for performing validation, and

consequently run the document trees against the automaton.

Standard procedures for producing automata and testing the

membership of data instances w.r.t. a given automaton have

been thoroughly studied in language theory [43, 62]. XML

validation approaches [9, 10, 14, 24, 40, 45, 79] extend the

latter techniques to deal with the special case of XML

1 Note that the more expressive XSD language allows context-dependent

declarations, due to the decoupling between element labels and data-

types (e.g., <element name= ‘Author’ type= ‘SimpleName’/> and
<element name= ‘Author’ type= ‘CompositeName’/> are allowed in the

same XSD grammar) [51]. Yet, in the context of XML validation, XSDs

are usually transformed into special DTDs, following the CFG model, so
as to simplify the validation task and gain in efficiency [5, 34].

S1 S3 S4 S2

S5

S7

T1 T3

T7

T5
T9

> > > >

<

T2
<

T4

<
S6

S0

T0
>

Start

state
Journal

Issue Paper
Title

Author

Year

Length

>

>

>

>

T6

T8 T9

T10

>
T11

End

state

S8

>

S9

T12

Publisher

 Submitted to Elsevier Science 5

CFGs and XML document trees. In general, the validation

is performed in O(|S|×log(|G|)) time, where |S| and |G|

designate respectively the cardinalities (i.e., size in number

of nodes) of the XML document and XML grammar at

hand [9, 10]. However, the validation process becomes

exponential in the size of the XML grammar, when the

latter encompasses recursive declarations [79].

A sample automaton simulating the structure of the

XML grammar in Fig. 2.a is shown in Fig. 4 (most

document validation methods have been developed for

DTDs, and thus usually disregard data-types which amount

to string values, i.e., PCDATA). One can realize that the

XML document in Fig. 1 follows the structural and the

cardinality constraints set by the automaton, and is hence

structurally valid w.r.t. the corresponding grammar.

Notice that methods for XML document validation

generate a Boolean result indicating whether the XML

document is valid or not w.r.t. the XML grammar.

Nonetheless, they do not produce a similarity value

(e.g., Sim(Doc, Gram) [0, 1]) quantifying the actual

resemblance between the document and grammar at hand.

3.3. XML Document Transformation and Correction

A few methods for document-to-grammar transformation

and/or correction have been recently proposed in the

literature [13, 21, 64, 84]. An approach for identifying the

edit script transforming a given XML document to another

document conforming a given DTD grammar is proposed

in [84]. An XML document is represented as an ordered

labeled tree S whereas a DTD is abstracted as a triplet

D=(Σ, d, l0) where Σ is the set of element labels, d a

mapping from Σ to a set of regular expressions over Σ, and

l0 the starting label (corresponding to the DTD root

element). The author makes use of three node operations,

insertion, deletion, and update. The method consists of

three main steps. The first step builds a special graph

structure G, based on the XML document tree S,

identifying all possible operations applicable to S. Graph

nodes represent XML elements, whereas edges represent

the different kinds of operations that could be applied on

the elements. The second step refines the graph by

removing all looping edges, i.e., edges representing

unnecessary operations (e.g., deleting and then inserting the

same node). The third step consists of the algorithm for

finding the minimum cost edit script transforming the XML

tree. The algorithm goes through graph G, and verifies

which paths have sequences of labels that satisfy the DTD

regular expressions. This is achieved via the use of NFAs

(Non-deterministic Finite Automatons), each of which is of

the form (P, Σ, ps, F, δ) where: P is a set of states, Σ the set

of labels, ps P is the start state, F P is a set of final

states, and δ: e × R p is a transition function where e ∈

Σ, R is a regular expression over P, and p ∈ P (a simple

example, in the context of document validation, is shown in

Fig. 4). Consequently, those sequences of minimum costs

are identified and form the minimum cost transformation

script. The authors show that their approach is of

polynomial complexity (O(|Σ|× |S
2
| × (|S|

4
 + R

2
)) where R

is the size of the largest regular expression in D) when the

cost of an operation on a node only depends on the label of

the node itself, and that it becomes NP-Complete otherwise.

In [60, 64], the authors address event-based document

transformation, as a way to prevent loading the entire XML

document into memory before starting tree manipulations.

The authors argue that a DOM-like parsing/transformation

strategy [93], which consists in fitting the whole XML

document structure in main memory prior to launching the

transformation process, could be a serious problem when

the size of the input document is very large or when the

size of the memory is relatively small. Hence, they address

event-based document transformation, as an alternative

way for identifying document transformations following

the SAX (event-based) parsing model [57], by translating a

finite automaton into an interactive transformer program

scattered into small action codes responding to parsing

events. The approach is developed for simplified and less-

expressive grammar structures, disregarding various XML

grammar constraints, and is thus of average linear time.

Yet, the authors confirm that their event-based transformer

has less expressive power than tree-based transformations.

Notice that the approaches in [60, 64, 84] are

developed in the context of XML data transformation, and

thus only target the transformation operations between the

XML document and the (simplified) DTD grammar. They

do not however address the issue of XML

document/grammar similarity.

A problem comparable to document-to-grammar

transformation is that of document-to-grammar correction.

In the context of XML document validation in [13, 21], the

authors tackle the complementary problem of XML

document-to-grammar correction. The considered scenario

is that of dynamic XML documents which are modified and

updated frequently (e.g., documents modified by different

users in an XML data warehouse [56], or those constantly

updated on the Web describing commercial information for

instance [31]), underlining the need to continuously test

their conformance w.r.t. the corresponding grammars.

While the classic strategy utilized in traditional database

change management systems consists in disregarding all

updates and modifications yielding data (e.g., XML

documents) that are not valid w.r.t. the database schemas

(e.g., XML grammars) [41], the authors in [13, 21]

prioritize updates and thus propose an approach to correct

the modified XML documents so that they become valid

w.r.t. the corresponding grammars. In short, the authors

propose to correct the sub-trees in the modified XML

document where validation fails. The main idea consists in

identifying the set of possible sub-tree corrections that yield

structures conforming to the grammar. An XML grammar

is simulated by a tree automaton (i.e., a NFA similar to the

one presented in the previous paragraph), which allows the

identification of the set of possible valid sub-trees w.r.t. the

modified sub-tree at hand (i.e., the tree language defined by

the grammar). Consequently, the authors exploit a classic

tree edit distance algorithm [80] to compute the distance

 Submitted to Elsevier Science 6

between the modified sub-tree and each of the possible

candidate sub-tree corrections, providing the user a choice

of different possible corrections, such as when their

distances from the original sub-tree are within a given

threshold. The overall complexity of the approach,

including NFA and edit distance computations, is shown to

be exponential in the size of document node fan-out (i.e.,

maximum number of children nodes – maximum node

degree – w.r.t. all nodes in the XML document tree). While

the method produces distance (similarity) values between

each of the original and the corrected sub-trees, the authors

do not discuss the issue of computing an overall similarity

score to evaluate the resemblance between the XML

document and grammar at hand.

3.4. XML Document/Grammar Similarity

Few approaches have been proposed to measure the

similarity between XML documents and grammars, i.e.,

produce a similarity score (Sim(Doc, Gram) [0, 1]) to

quantify the amount of resemblance between the document

and grammar at hand. To the best if our knowledge, the

only methods are provided in [12, 37, 85, 94].

3.4.1. Semi-Structured Data and Data-guide Comparison

In [37], the authors address the problem of determining

whether semi-structured data satisfy a given data-guide, in

the context of approximate querying. A basic assumption in

this work is that users specify a distortion transducer,

through which a data-guide is distorted via elementary

transformations. Here, the authors view distortions as a set

of transformation operations (i.e., label insertions, deletions

and substitutions), applied to the original data-guide, to

obtain a transformed data-guide. A data-guide is viewed as

a concise summary of the semi-structured database (defined

as a labeled edged graph), i.e., a schema that the data-base

should conform to. Hence, the user would define a

distortion transducer, through which the data-guide can be

distorted via elementary transformations and then

employed to test if the database conforms to the resulting

data-guide. The authors utilize the same technique to

compare semi-structured data to a given query, evaluating

the distorted query against the semi-structured database. A

transducer comes down to an NFA defined as (P, Σ, ΣO, f,

ps, F), with a finite set of states P, an input alphabet Σ, an

output alphabet ΣO, a starting state ps, a set of final states F,

and a transition-output function f: P Σ P ΣO. Hence,

regular transducers are extended by assigning non-negative

weights to the transitions, in order to compute an overall

data-guide (query) transformation cost. Consequently, data

approximately conforming to a given data-guide (the

approximate answers to a given query) come down to the

data actually conforming the corresponding distorted data-

guides (answers of the distorted queries) generated via the

associated transducer and are ranked following data-guide

(query) transformation costs. The approach is of O(|A| × N

× |P|
3
) where |A| is the number of states in the automaton

describing the data-guide (query), N is the number of

objects in the database (i.e., cardinality of the semi-

structured document), and |P| the number of states in the

distortion transducer.

Note that the approach in [37] is not developed for

XML documents and DTDs/XSDs, but for generic semi-

structured data and data-guides (i.e., there are no

constraints on the repeatability and alternativeness of

elements).

3.4.2. XML Document and Grammar Matching

To the best of our knowledge, the first approach to

specifically address the issue of XML document/grammar

similarity, particularly DTDs, is proposed by Bertino et al.

in [12]. Here, XML documents and DTDs are modeled as

labeled trees. DTD trees include additional nodes for

representing cardinality and alternativeness operators (i.e.,

„?‟, „*‟, „+, „And‟, „Or‟, cf. example in Fig. 3.a). The

proposed algorithm takes into account the level (i.e., depth)

in which the elements occur in the hierarchical structure of

the XML and DTD tree representations. Elements at higher

levels are considered more relevant, in the comparison

process, than those at lower levels. The algorithm also

considers element complexity (i.e., the cardinality of the

sub-tree rooted at the element) when computing similarity

values. While it does not explicitly identify a mapping

between the XML and DTD tree nodes being compared, the

proposed algorithm relies on the identification and

evaluation of i) elements appearing both in the document

and in the DTD, referred to as common elements, ii)

elements appearing in the document but not in the DTD,

referred to as plus elements, iii) and elements appearing in

the DTD but not in the document, referred to as minus

elements. Different weights can be assigned to each group

of elements so as to tune the similarity measure following

the user‟s needs.

The authors state that their approach is of exponential

complexity in the general case, and argue that it can

become polynomial (O(Γ
2
× (|S|+|D|)) where |S| is the

number of nodes – elements/attributes – in the XML

document tree S, |D| the number of nodes –

elements/attributes as well as ?, *, +, And, Or operators – in

the DTD tree D, and Γ the maximum XML document node

fan-out, i.e., maximum node degree) when the following

assumption holds: In the declaration of a DTD element, two

sub-elements with the same tag are forbidden (e.g.,

declaration <!ELEMENT root(b, b, c)> is forbidden since

node b appears twice). In addition, the approach does not

consider repeatable alternative expressions (e.g., (A | B)+),

or recursive declarations. The authors also confirm the

heuristic nature of their approach, stating that wrong

matches could occur in the general version of their

algorithm.

3.4.3. TED-based Document/Grammar Comparison

Other projects dealing with the XML document/grammar

comparison issue are presented in [85, 94]. These are based

on the concept of Tree Edit Distance (TED) as a more

effective solution to comparing XML tree structures. Tree

Edit Distance is a dynamic programming technique for

 Submitted to Elsevier Science 7

finding the cheapest sequence of edit operations

transforming one tree structure into another [96]. TED-

based algorithms have been widely exploited for comparing

semi-structured data, namely XML document trees [27, 63,

86], and have provided optimal results in comparison with

less accurate structural comparison methods [17].

Nonetheless, while XML documents can be naturally

represented as tree structures, recall that XML grammar

representations are usually more intricate due to the

presence of grammar constraints (cf. Section 2.2). In [94],

the author simplifies DTD definitions, eliminating all kinds

of cardinality and alternative constraint operators (cf.

Section 2.2.3), and introduces a TED-based formulation for

comparing an XML document tree to the simplified DTD

grammar. Yet, the author considers recursive DTD

declarations (which are disregarded in most existing

approaches). The proposed approach is of O(|S|×|G|×

log(|D|)) time, where |D| is the size of the grammar and |S|

is the size of the XML document tree.
In [85], the authors propose a new TED-based

algorithm considering some of the basic XML grammar

constraints. The authors introduce an XML grammar tree

representation model considering the basic constraints on

the existence, repeatability and alternativeness of

elements/attributes, while being comparable to XML

document trees. An XML grammar is represented here as a

set of conjunctive trees, corresponding to its disjunctive

normal form. A conjunctive grammar C is composed of

conjunctive element declarations, i.e., declarations defining

sequences of elements. Hence, the disjunctive normal form

[76] of an XML grammar G is the set of conjunctive

grammars, {C}G covering all alternative declarations in G,

(declarations resulting from the use of the Or operator). For

instance, the alternative declaration (Author|Publisher) in

the DTD grammar of Fig. 2.a is split into Author and

Publisher, each represented as a separate conjunctive

declaration where nodes only constitute sequences of

elements (cf. corresponding DTD tree representation in

Fig. 3). After transforming grammars into their disjunctive

normal form, the authors in [85] provide a novel tree edit

distance algorithm to evaluate the distance (similarity)

between the document and grammar trees and hand. The

proposed approach is polynomial in document (S) and

grammar (G) size, i.e., O(|S|×|G
2
|). Nonetheless, the

approach targets simplified DTD grammars (DTDs lacking

optional/repeatable expressions – e.g., (A | B)+, and

recursive declarations) and only considers the basic DTD

constraints (e.g., ?, +, and *) in the computation process.

3.5. Discussion

To conclude, few approaches have been proposed to

compare an XML document with an XML grammar. While

methods for XML document validation [9, 10, 14, 79], and

XML document transformation/correction [13, 21, 64, 84]

seem related to the problem of XML document/grammar

similarity, they do not produce a similarity value, but either

generate a Boolean result (indicating whether a document is

valid w.r.t. a given grammar), or produce a transformation

script (transforming a document into another document

valid w.r.t. the grammar). The authors in [37] address the

problem of comparing generic semi-structured data to a

given data-guide. However, they do not consider

constraints on the repeatability and alternativeness of

elements (since the latter do not exist in data-guides). To

our knowledge, the only methods to specifically target

XML document/grammar comparison, are provided in [12,

85, 94]. The proposed algorithms consider DTD constraints

with certain simplifications and/or restrictions. The

methods in [12, 85] do not consider XSD MinOccurs and

MaxOccurs operators, nor do they discuss the special cases

of repeatable alternative expressions and recursive

expressions. The approach in [94] considers recursive

declarations, yet disregards all kinds of XML grammar

repeatability and alternativeness constraints.

Table 1 summarizes the properties of XML document/

grammar comparison methods and related approaches.

Note that most solutions in the literature do not provide

empirical performance analyses. Hence, discussing and

contrasting corresponding performance levels requires a

dedicated experimental evaluation study which is out of the

scope of this paper (to be addressed in a future work).

Table 1. Characteristics of the main methods related to XML document/grammar comparison.

Approach
Performs
Document

Validation

Generates
Transformation

Script

Computes

similarity value

([0, 1])

Considers
grammar

Constraints

Considers
recursive

declarations

Dedicated to XML

Grammars
Complexity level

Segoufin et al. [79] (DTD) Exp(G)

Barbosa et al. [10] (DTD/XSD) O(S×log(G))

Balmin et al. [9] (DTD/XSD) O(S×log(G))

Bouchou et al. [13] Partial Partial (DTD/XSD) Exp(MaxDeg(S))

Suzuki [84] (DTD) NP-Complete

Bouchou et al. [14] (DTD/XSD) O(S×log(G))

Grahne & Thomo [37] (semi-struct data) O(|AG|×N×|T|3)

Bertino et al. [12] (restricted) (DTD) Exp(G)

Tekli el al. [85] (restricted) (DTD) O(|S|×|G|2)

Xin G. [94] (DTD) O(|S|×|G|×log(|G|))

4. Potential Applications of XML Document and

Grammar Comparison

The use of XML document/grammar similarity is central in

a wide spectrum of applications, ranging over: i) XML

document classification, ii) XML document transformation,

iii) selective dissemination of XML documents, iv) XML

grammar evolution, v) XML document clustering, vi) XML

structural querying, as well as more specialized application

scenarios including vii) alert filtering in intrusion detection

systems, and viii) Web Services matching and

communications.

4.1. XML Document Classification

XML document/grammar similarity evaluation enables the

classification of XML documents gathered from the web

against a set of grammars declared in an XML database

(data/type comparison layer). A scenario provided by

Bertino et al. [12] comprises a number of heterogeneous

XML databases that exchange documents with each other,

each database storing and indexing the local documents

according to a set of predefined DTD grammars.

Consequently, XML documents introduced in a given

database are matched, via an XML structural similarity

method, against the local DTDs. Note that matching, in

such an application, can be undertaken using an XML

document/grammar comparison method (like the ones

investigated in this study, cf. Section 3.4) or via an XML

document structure comparison method [17, 38, 86].

Following the latter strategy, the XML grammar will be

exploited as a generator of XML document structures. The

set of possible document structures valid for the grammar is

considered. Then, for each document structure, algorithms

for measuring the similarity between XML document

structures [17, 38, 86] can be applied. The match resulting

in the highest similarity value is considered as the best

match, the corresponding similarity value being considered

as the structural similarity degree between the document

and the XML grammar.

In such an application, a similarity threshold is

identified, designating the minimal degree of similarity

required to bind an XML document to a grammar. The

XML grammar for which the similarity degree is the

highest is selected, given that the similarity value is above

the specified threshold. Thus, the XML document at hand

is accepted as valid for that grammar. When the similarity

degree is below the threshold, for all grammars in the XML

database, the XML document is considered unclassified

and is stored in a repository of unclassified documents. As

a result, none of the access protection, indexing and

retrieval facilities specified at the XML grammar level can

be applied to such documents (similarly to schemas and

traditional DBMS) [12].

4.2. XML Document Transformation

When populating an XML database on the web, an issue

complementary to XML document classification is

document transformation. After having migrated a set of

documents collected from various data sources into an

XML database (defined by a set of grammars), the

collected documents may be similar to, but may not satisfy

any grammar in the database. Hence, storing and managing

the documents in the database require: i) identifying which

of the grammars is the most similar to the document at

hand (i.e., classification phase [12], where the similarity

measure itself is needed), and then ii) transforming the

documents into valid ones w.r.t. their most similar

grammars (i.e., document transformation, also known as

document revalidation or correction [13, 21, 50]). Here, the

advantage of using an XML document/grammar

comparison method based on the concept of edit distance

[96] becomes obvious. With such a method, a mapping

between the nodes in the compared structures is provided in

terms of the edit script, along with the similarity value

itself. The mapping thus describes the set of transformation

operations to be applied to the document, so that it becomes

valid w.r.t. the grammar under which it is classified.

4.3. Selective Dissemination of XML Documents

SDI (Selective Dissemination of Information) systems for

XML-based data become increasingly popular with the

growing use of XML on the web [5, 19, 29, 82]. An SDI

system basically manages user preferences to identify the

users to whom incoming web documents should be

broadcasted. Users can set their preferences when they first

connect to the system or the preferences can be

dynamically discovered by monitoring the documents that

the users frequently access. SDI systems allow the filtering

of XML document streams w.r.t. user preferences. A key

capability of an SDI system is the adaptability of user

profiles to varying user preferences [12], which is essential

in a dynamic environment such as the web.

XML classification and evolution techniques can be

employed to build an effective SDI system dedicated to

XML-based data. While most existing techniques to XML

SDI usually exploit XML querying paradigms (e.g.,

XQuery [18] and/or XPath patterns [11]) as filters for the

documents of interest, a user profile can be described with

a higher degree of expressiveness as an XML grammar

(DTD or XSD) [12]. Consequently, XML classification can

be utilized to filter documents based on their similarities

w.r.t. the considered grammars. The grammar, describing

the user profile, is initially specified by the user, or

automatically inferred from documents previously deemed

valuable by the user using document clustering [27, 63] and

structure extraction techniques [35]. The selective

dissemination of XML data can then be undertaken by

matching each XML document in the incoming data stream

against the grammars modeling the user profiles.

Documents are distributed to the users whose

document/grammar similarities are above a predefined

threshold.

4.4. XML Grammar Evolution

XML grammar evolution involves the modification of a

grammar describing a class of documents (a user profile),

 Submitted to Elsevier Science 9

in order to capture more accurately the structural

characteristics of corresponding XML documents. In other

words, it allows to reduce the divergence between the

structures of the documents being classified under the

grammar (accessed by the user), and the structure as

specified by the corresponding grammar (user profile).

However, the evolution phase is a costly process [12] since

it requires the use of data mining association rules [47] and

structure extraction techniques [35], so as to capture

frequent patterns of element structures in the document

instances to generate the updated grammars [26]. Hence, it

ought to be triggered when the grammar (profile) is not

anymore representative of its classified documents

(accessed documents) [12], which is where XML

document/grammar similarity comes to play. Here, the

user/administrator can i) specify an XML

document/grammar similarity threshold, that a minimum

number of documents in the XML document class must

respect, so as to prevent the evolution phase, ii) or specify

the maximum number of non-conforming documents a

class must encompass (i.e., documents with

SimXDoc_XGram<1 w.r.t. the grammar associated with the

class at hand). When the number of non-conforming

documents is higher than the threshold, the corresponding

class is deemed not representative of its instances, which

requires launching the evolution phase [12].

4.5. XML Document Clustering

Grouping similar XML documents together can improve

data storage indexing [78], and thus positively affect the

retrieval process. For instance, if two documents/elements

are similar, it is likely that they both either satisfy or not a

given query. Therefore, when grouped together, similar

documents/elements would be much easier to retrieve than

when scattered at different locations in the storage device

[51]. Clustering can also be critical in information

extraction. Current information extraction methods either

implicitly or explicitly depend on the structural features of

documents [17, 68]. Structural clustering allows to

automatically identify the sets of XML documents and/or

document patterns that are useful in information extraction

algorithms, in order to produce meaningful results [68].

In [95], the authors present a method for XML

document clustering based on document/grammar

similarity evaluation. The approach consists in extracting

grammars (DTDs) to represent predefined sets of XML

documents (i.e., the original clusters) [35]. Consequently,

an incoming XML document is compared to each of the

cluster representatives (i.e., DTDs) and is allocated to the

cluster with which it shares maximum document/grammar

similarity [94]. While the approach seems interesting, its

effectiveness and performance levels depend on two major

factors: i) the availability of a predefined set of relevant

clusters, which is not always obtainable, and ii) the

complexity of the grammar (DTD) generation phase [35],

which has been shown to be NP-Hard [33].

4.6. XML Structural Querying

Recent approaches to XML document retrieval exploit the

structure of documents to improve both accuracy and

efficiency. Such queries are referred to as structural queries

[12]. In such a context, XML grammars could be exploited

as structural queries representing structural constraints on

the queried documents. Using a comparison method

between XML documents and XML grammars, it is

possible to verify whether a document is an answer to a

query (XML grammar) following their degree of similarity.

If the structural similarity between the query (XML

grammar) and the XML document tree is above a given

threshold, the document is added to the set of answers for

the query. The query answer set is ranked following the

computed similarity degrees.

Note that additional constraints can be added on the

values (data contents) of XML elements/attributes in XML

grammars. These become the so-called content-and-

structure queries. Systems that enable content-and-

structure XML querying have been recently receiving a lot

of attention, especially through the INEX
1
 (INitiative for

the Evaluation of XML Retrieval) campaigns. The

proposed approaches tend to extend classical information

retrieval techniques [70, 72] by taking into account the

structural aspect of XML data (see [86] for a concise

review of information retrieval based XML similarity

methods).

4.7. Alert Filtering in Intrusion Detection Systems

With the significant increase in security threats and the

number of attacks on information systems over the past

decade, information security technologies such as

authentication, cryptography, and more recently intrusion

detection have been gaining more attention. An Intrusion

Detection Systems (or IDS) monitors an information

system for evidence of attacks. Once attacks have been

detected, the IDS raises alerts, which are then presented to

experts and/or a knowledge system that evaluate them and

initiate an adequate response. Nonetheless, evaluating

intrusion detection alerts remains a delicate and non-trivial

process. For instance, it has been observed in [8, 44] that

IDSs can trigger thousands of alerts per day, up to 99% of

which are deemed false alerts, which makes it difficult to

identify the hidden true positives.

Another recent breakthrough in IDSs is the emergence

of IDMEF (Instruction Detection Message Exchange

Format) [28] as an XML-based format for sharing

information of interest to intrusion detection and response

systems, namely encoding and exchanging alert messages.

This underlines a great opportunity to exploit XML-based

techniques in order to improve the effectiveness of IDS

systems. An original study to cluster IDMEF alters via an

XML-based document similarity algorithm, in order to

identify groups of relevant messages and process them

together, has been proposed in [54]. In addition to IDMEF

1
 http://inex.is.informatik.uni-duisburg.de/.

 Submitted to Elsevier Science 10

message (document) comparison, XML document/grammar

similarity evaluation techniques can be particularly useful

in filtering false alerts. A potential scenario consists in

matching and classifying XML-based (IDMEF) alert

messages against a set of grammars (predefined by security

experts or a knowledge system) describing the most

common categories of intrusions that the IDS system

usually faces. Alert messages with similarity scores above a

given threshold are accepted as true alerts w.r.t. the

intrusion category corresponding to the grammar at hand.

Otherwise, messages with lower similarities are deemed

false alters, and are disregarded by the system. This would

most likely reduce the amount of false alters processed by

the system, and consequently facilitate the identification

and evaluation of meaningful intrusion alerts.

4.8. Web Services Matching and SOAP Processing

Another interesting application area which requires XML

document/grammar similarity evaluation is the matching,

search, and composition of Web Services (WS). WS are

software systems designed to support interoperable

machine-to-machine interactions over a network (namely

the Internet) [23]. An individual web service generally

comes down to a self-contained, modular application that

can be described, published and invoked over the Internet,

and executed on the remote system where it is hosted [71].

WS rely on two standard XML schemata: WSDL (Web

Service Description Language) [23] allowing the definition

of XML grammar structures to support the machine-

readable description of a service‟s interface and the

operations it supports, and SOAP (Simple Object Access

Protocol) [92] for XML-based communications and

message exchange among WS end-points.

Hence, when searching for WS achieving specific

functions, XML-based service requests can be issued, to

which are consequently matched and ranked service WSDL

descriptions, thus identifying those services answering the

required computation needs. In this context, matching and

ranking WS descriptions against WSDLs requires effective

XML document/grammar comparison techniques. Likewise

for WS composition: grouping together a series of services

requires the processing and comparison of corresponding

WSDL descriptions, so as to execute a specific composite

task. In addition, XML-based similarity and differential

encoding can be exploited to enhance SOAP performance:

comparing new SOAP messages to predefined WSDL

grammars, processing only those parts of the messages

which differ from the corresponding WSDL. Identifying

the common parts of SOAP messages, and repeating the

processing for only those parts which are different from the

WSDL schema would avoid a large amount of unnecessary

overhead, and thus allow reducing processing cost in SOAP

parsing [89], serialization [2], de-serialization [1], and

communications [91]. For more details, a comprehensive

review on (XML) similarity-based SOAP performance

enhancement techniques can be found in [88].

5. Future Research Directions

Despite the recent efforts conducted around the XML

document/grammar similarity problem, yet various issues

and challenges remain unaddressed. We present some of

these issues in the remainder of this section. First, we

discuss the limitations of current approaches w.r.t. the

structural characteristics of XML data in Section 5.1.

Section 5.2 covers XML content-based similarity. In

Section 5.3, we address the combination of XML structure

and semantic similarity in improving the comparison

results. Then, Section 5.4 concludes with a brief discussion

concerning the trade-off between the effectiveness and

efficiency of XML document/grammar comparison.

5.1. XML Structure-based Similarity

On one hand, most existing approaches to XML

document/grammar similarity evaluation induce various

simplifications in the XML grammars in order to perform

the comparison task. Three major hard-to-match

declarations are usually disregarded, including: i)

repeatable sequence expressions (i.e., a sequence of

elements, connected via the And operator, and associated a

cardinality constraint, such as DTD declarations (A, B, C)+

and (A, B, C)*) [85], ii) repeatable alternative expressions

(i.e., an alternative of elements, connected via the Or

operator, and associated a cardinality constraint, such as

DTD declarations (A | B | C)+ and (A | B | C)*) [12, 85], and

iii) recursive expressions (which could induce infinite loops

of elements, and thus have been proven complicated to

handle in the comparison task [79, 94]).

On the other hand, most existing approaches are

constrained to the DTD grammar syntax, and do not

address the expressive XSD language. In particular, XSD

constraints MinOccurs and MaxOccurs, specifying

respectively the minimum and maximum number of times

an element/attribute can appear in the corresponding XML

document, and which are remarkably more expressive than

their ?, *, and + DTD counterparts, are currently

disregarded in most approaches, and would have to be

considered in order to obtain more effective and accurate

document/grammar comparison methods.

5.2. XML Content-based Similarity

Most existing methods to XML document/grammar

comparison focus solely on XML structure (i.e.,

hierarchical relations and ordering of elements/attributes,

identified by their labels), disregarding element values in

documents and element data-types in grammar

declarations. Nonetheless, as discussed in Section 4.6,

considering XML contents could prove to be extremely

useful, namely in XML content-and-structure querying

applications which have been recently gaining momentum

in both database and information retrieval research [6, 7].

In this context, a recent study in [34] focuses on

comparing XSD grammar elements based on their simple

data-types (e.g., String, Integer, Date…) and/or complex

 Submitted to Elsevier Science 11

data-types (i.e., types declared by a sequence and/or

alternative of elements). The author specifically focuses on

derived complex data-types and introduces the notion of

type hierarchy (i.e., a taxonomy linking types following

their XSD extension/restriction operator relations). While

developed for XML grammar matching (i.e., comparing the

elements of two XML grammars), such an approach could

be extended and/or adapted to XML document/grammar

comparison in order to compare XSD data-types with

corresponding XML document element/attribute values.

5.3. XML Semantic-based Similarity

Combining structural and semantic XML similarity is one

of the hot topics recently being investigated in the XML

document comparison [75, 86, 90] and XML grammar

comparison [30, 36, 81] literatures. Nonetheless, most

existing XML document/grammar similarity approaches

focus exclusively on the structure of documents and

grammars, ignoring the semantics involved (semantic

meaning of XML element/attribute labels – and values,

when the latter are considered – given a reference semantic

information source such as WordNet
1
 [58]). Evaluating the

semantic relatedness between documents and grammars

(mainly those published on the Web) can prove to be of key

importance to improving search results: finding documents

semantically related to a given grammar, and given a set of

documents, effectively ranking them according to their

semantic similarity.

<!ELEMENT Journal (Issue*)>

<!ELEMENT Issue (Paper+)>

<!ELEMENT Paper ((Author+ | Publisher), Year, Length?)>

<!ATTLIST Paper Title CDATA>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Publisher (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

<!ELEMENT Length (#PCDATA)>

 <Transactions>

 <Volume Nb = „…‟>

 <Article>

 <Author>…</Author>

 <Date>…</Date>

 </Article>

 </Volume>

</Transactions>

a. DTD grammar reported from Fig. 2.a. b. Sample document

Fig. 5. Semantically related XML document and grammar.

For instance, using existing structure comparison methods,

e.g., [12, 85, 94], the document and grammar in Fig. 5 are

deemed completely different, since all elements bear

syntactically different labels. However, one can obviously

recognize that they describe highly related information,

reflected by the semantic relatedness of their labels:

Journal-Transactions, Paper-Article, Issue-Volume, and

Year-Date. In other words, semantic similarity evaluation

supports the identification of entities that are conceptually

close, but not exactly identical, which is crucial in settings

such as heterogeneous XML repositories, particularly on

the Web where users have different backgrounds and no

precise definitions about the matter of discourse [55].

1
 WordNet is a domain independent online lexical reference system,

developed at Princeton University NJ USA, in an attempt to model the

lexical knowledge of a native English speaker. It organizes nouns, verbs,

adjectives and adverbs into synonym sets, each representing an underlying
lexical concept (http://www.cogsi.princeton.edu/cgibin/webwn).

In this context, a vast arsenal of methods to determine

the semantic similarity between concepts in a knowledge

base (semantic network) has been developed in the fields of

Information Retrieval and Natural Language Processing

[16, 74, 98]. These can be categorized as edge-based

approaches (evaluating the distance separating two

concepts in the reference semantic network, e.g., [48, 66])

and node-based approaches (estimating concept

information contents using corpus based statistics, e.g., [53,

69]). In short, while semantic similarity measures have

been thoroughly investigated in the literature [16, 74, 98],

nonetheless, efficiently integrating such techniques within

XML document/grammar comparison remains an open

issue yet to be investigated. To sum up, considering the

semantic factor in XML similarity computations would

clearly amend comparison results, and is central in most

application scenarios discussed in Section 4, namely in

XML querying, classification, clustering, and the selective

dissemination/filtering of semantically related XML data.

5.4. XML Comparison Efficiency

While the effectiveness (accuracy) of XML document/

grammar comparison is a major concern, nonetheless, the

efficiency (performance) of the proposed solutions remains

equally important, especially for Web-based applications.

In this context, most existing approaches simplify XML

grammar representations [85, 94] or utilize various

heuristics [12] in order to gain in processing speed. We also

stumbled on an original approach in [60, 64], developed for

document/grammar transformation, where the authors

exploit event-based XML processing as a way to prevent

loading the entire XML document into memory before

starting tree manipulations. While the method is extremely

efficient (of average linear complexity) [60, 64], it

simplifies XML grammars and provides less expressive

power in describing transformations, than its tree-based

counterpart. On the other hand, and in contrast to

simplifying grammars, the authors in [79] consider most

XML grammar (DTD) constraints in conducting

document/grammar validation, including recursive

declarations. Yet, the proposed solution is exponential in

the size of the XML grammar at hand.

Hence, a comprehensive empirical analysis addressing

the trade-off between: i) the effectiveness and ii) the

efficiency levels of XML document/grammar comparison

methods, (considering the amount of simplification in the

grammars being compared, as well as the different kinds of

techniques utilized to compute similarity) is required in

order to identify and better understand the ups and downs

of each approach, so as to develop more sophisticated

solutions. In addition, recent techniques related to

performance enhancement in XML document similarity

(such as Entropy [42] and Structural Pattern Indexes [73])

and XML grammar similarity (such as Prufer sequence

encoding [4] and B-Tree indexing [32]), could be

investigated (and possibly adapted or combined) to

improve the performance levels of XML

document/grammar comparison solutions.

 Submitted to Elsevier Science 12

6. Conclusion

In this paper, we provided an overview on existing research

related to XML document/grammar comparison. Existing

methods were roughly organized into three major groups,

targeting: i) document/grammar validation, ii) document/

grammar transformation and correction, and iii) document/

grammar similarity evaluation. On one hand, methods for

XML document validation produce a Boolean result

indicating whether a document is valid w.r.t. a given

grammar. On the other hand, methods for XML document

transformation/correction produce a modification script,

transforming a document into another document valid w.r.t.

a given grammar. Nonetheless, few approaches have been

designed to produce a similarity value, quantifying the

amount of resemblance between an XML document and a

grammar.

In brief, most existing approaches to XML

document/grammar similarity evaluation induce various

simplifications in the grammars (disregarding various XML

grammar cardinality and alternativeness constraints) so as

to perform the comparison task. In addition, most existing

approaches are constrained to the DTD grammar syntax,

and do not address the expressive XSD language.

Furthermore, most methods focus on XML structure (i.e.,

hierarchical relations and ordering of elements/attributes,

identified by their labels), disregarding element values in

documents, and element data-types in grammar

declarations. The semantic meanings of XML

element/attribute labels are also disregarded in most

approaches. To sum up, the XML document/grammar

similarity domain is still in its infancy, with a large

spectrum of problems to be addressed in the near future.

We also discussed some of the possible applications of

XML document/grammar comparison in various fields,

ranging over XML document classification, clustering,

selective dissemination, document transformation, grammar

evolution, XML querying, as well as more specialized

application scenarios including alert filtering in intrusion

detection systems, and Web Services matching and

communications.

We hope that our presentation of XML document/

grammar comparison and related problems in this paper

will contribute to strengthen further research on the subject.

ACKNOWLEDGEMENT

This work was supported in part by the Research Support

Foundation of the State of Sao Paulo, FAPESP Post-

doctoral Fellowship n# 2010/00330-2.

REFERENCES

[1] Abu-Ghazaleh N. and Lewis M.J., Differential Deserialization for
Optimized SOAP Performance. Proceedings of the ACM/IEEE

Conference on Supercomputing, 2005. pp. 21-31, Seattle.

[2] Abu-Ghazaleh N.; Lewis M.J. and Govindaraju M., Differential
Serialization for Optimized SOAP Performance. Proceedings of the

13th International Symposium on High Performance Distributed

Computing (HPDC'04), 2004. pp. 55-64.
[3] Akatsu T., Approximate String Matching with Don’t Care

Characters. Information Processing Letters, 1995. (55):235-239.

[4] Algergawy A.; Schallehn E. and G. Saake, Improving XML schema
matching using Prufer sequences. Data and Knowledge

Engineering, 2009. 68(8):724–747.

[5] Altinel M. and Franklin M. J., Efficient Filtering of XML
Documents for Selective Dissemination of Information. Procedings

of the 28th International Conference on Very Large Data Bases

(VLDB'00), 2000. pp. 53-64.
[6] Amer-Yahia S. and Shanmugasundaram J., XML Full-Text Search:

Challenges and Opportunities. Proceedings of the International

Conference on Very Large Data Bases, 2005. Tutorial Slides,
http://www.vldb2005.org/program/slides/fri/s1368-amer-yahia.ppt.

[7] Amer-Yahia S.; Case P.; Rolleke T.; Shanmugasundaram J. and

Weikum G., Report on the DB/IR Panel at SIGMOD 2005. Sigmod
Record, 2005. 34(4):71-74.

[8] Axelsson S., The Base-Rate Fallacy and the Difficulty of Intrusion

Detection. ACM Transactions on Information and System Security,
2000. 3(3):186–205.

[9] Balmin A.; Papakonstantinou Y.; and Vianu V., Incremental

validation of XML documents. ACM Transactions on Database
Systems, 2004. 29(4):710-751.

[10] Barbosa D.; Mendelzon A. O.; Libkin L.; Mignet L.; and Arenas

M., Efficient Incremental Validation of XML Documents.
Proceedings of the international Conference on Data Engineering

(ICDE), 2004. IEEE Computer Society, pp. 671-682.

[11] Berglund et al., XML Path Language (XPath) 2.0. W3C
Recommendation, January 2007. http://www.w3.org/TR/xpath20/.

[12] Bertino E.; Guerrini G.; and Mesiti, M., A Matching Algorithm for

Measuring the Structural Similarity between an XML Documents
and a DTD and its Applications. Elsevier Information Systems,

2004. (29):23-46.
[13] Bouchou B.; Cheriat A.; Halfeld Ferrari M. and Savary A., XML

Document Correction : Incremental Approach Activated by Schema

Validation. Proceedings of the International Database Engineering
and Applications Symposium (IDEAS), 2006. pp. 228-238

[14] Bouchou B.; Cheriat A.; Halfeld Ferrari M.; Laurent D.; Lima M.

A. and Musicante M., Efficient Constraint Validation for XML
Database. Informatica (http ://ai.ijs.si/informatica/), 2007. 31(3):

285-309.

[15] Bray T.; Paoli J.; Sperberg-McQueen C.; Mailer Y.; and Yergeau
F. Extensible Markup Language (XML) 1.0 - 5th Edition. W3C

Recommendation, 2008. http://www.w3.org/TR/REC-xml/

[16] Budanitsky A. and Hirst G., Evaluating WordNet-based Measures
of Lexical Semantic Relatedness. Computational Linguistics, 2006.

32(1): 13-47.

[17] Buttler D., A Short Survey of Document Structure Similarity
Algorithms. Proceedings of the International Conference on

Internet Computing (ICOMP), 2004. pp. 3-9.

[18] Chamberlin D.; Florescu D.; Robie J.; Simeon J. and Stefanescu M.
XQuery : A Query Language for XML. 2001, [cited May 2010].

http://www.w3.org/TR/2001/WD-xquery-20010215.

[19] Chan C.Y.; Felber P.; Garofalakis M. and Rastogi R., Efficient
Filtering of XML Documents with XPath Expressions. The VLDB

Journal, 2002. 11(4):354-379. .

[20] Chawathe S.; Rajaraman A.; Garcia-Molina H.; and Widom J.,
Change Detection in Hierarchically Structured Information.

Proceedings of the ACM International Conference on Management

of Data (SIGMOD), 1996. pp. 26-37. Montreal.
[21] Cheriat A.; Savary A.; Bouchou B. and Halfeld Ferrari M.,

Incremental String Correction : Towards Correction of XML

Documents. Proceedings of the Prague Stringology
Conference(PSC), 2005. pp. 201-215.

http://www.vldb2005.org/program/slides/fri/s1368-amer-yahia.ppt
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/2001/WD-xquery-20010215

 Submitted to Elsevier Science 13

[22] Chidlovskii B., Using Regular Tree Automata as XML Schemas.

Proceedings of the IEEE Advances in Digital Libraries (ADL'00),
2000. pp. 89-98.

[23] Chinnici R.; Moreau J.J.; Ryman A. and Weerawarana S. Web

Services Description Language (WSDL) Version 2.0 Part 1: Core
Language, W3C Recommendation 26 June 2007,

http://www.w3.org/TR/wsdl20/. [cited 25 August 2009].

[24] Chitic C. and Rosu D., On Validation of XML Streams using Finite
State Machines. Proceedings of the 7th International Workshop on

the Web and Databases (WebDB ‟04) 2004. pp. 85–90, New York,

NY, USA, ACM Press.
[25] Cobéna G.; Abiteboul S.; and Marian A., Detecting Changes in

XML Documents. Proceedings of the IEEE International
Conference on Data Engineering (ICDE), 2002. pp. 41-52.

[26] Da Luz R.; Halfeld Ferrari Alves M.; Musicante M. A., Regular

expression transformations to extend regular languages (with
application to a Datalog XML schema validator). Journal of

Algorithms, 2007. 62(3-4):148-167.

[27] Dalamagas T.; Cheng T.; Winkel K.; and Sellis T., A Methodology
for Clustering XML Documents by Structure. Information Systems,

2006. 31(3):187-228.

[28] Debar H.; Curry D. and Feinstein B., The Intrusion Detection
Message Exchange Format (IDMEF).

http://www.ietf.org/rfc/rfc4765.txt, 2005.

[29] Diao Y.; Fischer P.; Franklin M.J. and To R., YFilter: Efficient and
Scalable Filtering of XML Documents. Proceedings of the

International Conference on Data Engineering (ICDE'02), 2002.

[30] Do H. and Rahm E., Matching Large Schemas: Approaches and
Evaluation. Information Systems, 2007. 32(6): 857-885.

[31] Doan A.; Domingos P.; and Halevy A., Learning to Match the

Schemas of Data Sources: A Multistrategy Approach. Machine
Learning, 2003. 50(3):279-301.

[32] DuChateau F.; Bellahsene Z.; Hunt E.; Roantree M., a.R.M., An

Indexing Structure for Automatic Schema Matching. The 23rd
International Conference on Data Engineering (ICDE) -

Workshops, 2007. pp. 485-491.

[33] Fernau H., Extracting Minimum Length Document Type Definitions
Is NP-Hard. Grammatical Inference: Algorithms and Applications

(ICGI'04) 2004. pp. 277-278.

[34] Formica A., Similarity of XML-Schema Elements: A Structural and
Information content Approach. The Computer Journal, 2008.

51(2):240-254.

[35] Garofalakis M.; Gionis A.; Rastogi R.; Seshadri S.; and Shim K.,
Xtract: A system for extracting document type descriptors from

XML documents. Proceedings of the ACM International

Conference on Management of Data (SIGMOD), 2000. pp. 165-
176. Dallas, Texas, USA.

[36] Giunchiglia F.; Yatskevich M. and Shvaiko P., Semantic matching:

Algorithms and implementation Journal on Data Semantics (JoDS),
2007, 9:1-38.

[37] Grahne G. and Thomo A., Approximate Reasoning in Semi-

structured Databases. Proceedings of the International Workshop
on Knowledge Representation meets Databases (KRDB), 2001.

Vol. 45, Rome.

[38] Guerrini G.; Mesiti M. and Sanz I., An overview of similarity
measures for clustering XML documents. In A. Vakali and G.

Pallis, editors, Web Data Management Practices: Emerging

Techniques and Technologies. IDEA Group, 2006.

[39] Guha S.; Jagadish H.V.; Koudas N.; Srivastava D.; and Yu T.,

Approximate XML Joins. . Proceedings of ACM International

Conference on Managemenet of Data (SIGMOD), 2002, 287-298.
[40] H.;, M.M.a.H., Validation Algorithm for Attribute-Element

Constraints of RELAX NG. Extreme Markup Languages, 2003.

Montreal, Canada.
[41] Halfeld Ferrari Alves M., Aspects Dynamiques de XML et

Spécification des Interfaces de Services Web avec PEWS. Rapport
de HDR, Université François Rabelais de Tours, 2007.

[42] Helmer S., Measuring the Structural Similarity of Semistructured

Documents Using Entropy Proceedings of the International
Conference on Very Large Databases (VLDB), 2007, 1022-1032.

[43] Hopcroft J. E.; Motwani R. and Ullman J. D., Introduction to

Automata Theory, Languages, and Computation. 2001. Addison
Wesley, 2nd edition.

[44] Kayacik H.G. and Zincir-Heywood A.N., A Case Study of Three

Open Source Security Management Tools. Proceedings of 8th
IFIP/IEEE International Symposium on Integrated Network

Management, 2003. pp. 101–104.

[45] Kim S.K.; Lee M. and Lee K.C., Validation of XML Document
Updates Based on XML Schema in XML Databases. International

Conference on Database and Expert Systems Applications

(DEXA'03), , 2003. LNCS 2736, pp. 98–108.
[46] Landau G. M and Vishkin U., Fast Parallel and Serial

Approximate String Matching. Journal of Algorithms, 1989.

(10):157-169.
[47] Lee G.; Lee K. and Chen A., Efficient Graph-based Algorithms for

Discovering and Maintaining Association Rules in Large
Databases. Knowledge and Information Systems, 2001.

3(3):338-355.

[48] Lee J.; Kim M.; and Lee Y., Information Retrieval Based on
Conceptual Distance in IS-A Hierarchies. Journal of

Documentation, 1993. 49(2):188-207.

[49] Lee M.; Yang L.; Hsu W. and Yang X., XClust: Clustering XML
Schemas for Effective Integration. Proc. of the Inter. Conf. on

Information and Knowledge Management (CIKM), 2002, 292-299.

[50] Leonardi E.; Hoai T.T.; Bhowmick S.S. and Madria S., DTD-Diff:
A Change Detection Algorithm for DTDs. Proceedings of the

Database Systems for Advanced Applications conference

(DASFAA), 2006. pp. 384-402.
[51] Lian W.; Cheung D.; Mamoulis N.; and Yiu S., An Efficient and

Scalable Algorithm for Clustering XML Documents by Structure.

IEEE Transactions on Knowledge and Data Engineering, 2004.
16(1):82-96.

[52] Liang W.; and Yokota H., LAX: An Efficient Approximate XML

Join Based on Clustered Leaf Nodes for XML Data Integration.
Proceedings of the British National Conference on Databases

(BNCOD), 2005. pp. 82-97.

[53] Lin D., An Information-Theoretic Definition of Similarity.
Proceedings of the International Conference on Machine Learning

(ICML), 1998. pp. 296-304. Morgan Kaufmann Pub. Inc.

[54] Long J.; Shwartz D. and Stoecklin S., Distinguishing False from
True Alerts in Snort by Data Mining Patterns of Alerts.

Proceedings of SPIE'06, the International Society for Optical

Engineering, 2006.
[55] Maguitman A.; Menczer F.; Roinestad H.; and Vespignani A.,

Algorithmic Detection of Semantic Similarity. Proc. of the Inter.

Conf. on the World Wide Web (WWW), 2005. pp. 107-116.
[56] Marian A.; Abiteboul S. and Mignet L., Change-Centric

Management of Versions in an XML Warehouse. Proceedings of

the International Conference on Very Large Data Bases (VLDB),
2001. pp. 581-590.

[57] Megginson D. et al. The Simple API for XML

http://www.megginson.com/SAX/ [cited February 2010].
[58] Miller G., WordNet: An On-Line Lexical Database. International

Journal of Lexicography, 1990. 3(4).

[59] Murata M.; Lee D.; Mani M. and Kawaguchi K., Taxonomy of
XML Schema Languages Using Formal Language Theory. ACM

Transactions on Internet Technology (ACM TOIT), 2005.

5(4):660-704.
[60] Nakano K. and Nishimura S., Deriving Event-Based Document

Transformers from Tree-Based Specifications. In Mark van den

Brand and Didier Parigot, editors, Electronic Notes in Theoretical

Computer Science, 2001. Volume 44. Elsevier Science Publishers.

[61] Neumann A., Parsing and Querying XML Documents in SML. PhD

thesis, University of Trier, Trier, Germany, 2000.
[62] Neumann A. and Seidl H., Locating Matches of Tree Patterns in

Forests. In V. Arvind and R. Ramamujan, editors, Foundations of

Software Technology and Theoretical Computer Science, (18th
FST&TCS), volume 1530 of Lecture Notes in Computer Science,

1998. pp. 134–145, Heidelberg, 1998.
[63] Nierman A. and Jagadish H. V., Evaluating structural similarity in

XML documents. Proceedings of the ACM SIGMOD International

Workshop on the Web and Databases (WebDB), 2002. pp. 61-66.
[64] Nishimura S. and Nakano K., XML Stream Transformer

Generation through Program Composition and Dependency

Analysis. Science of Computer Programming Journal, 54(2-3):257-
-290, 2005.

http://www.w3.org/TR/wsdl20/
http://www.ietf.org/rfc/rfc4765.txt
http://www.megginson.com/SAX/

 Submitted to Elsevier Science 14

[65] Peterson D.; Gao S.; Malhotra A.; Sperberg-McQueen C.; and

Thompson H. W3C XML Schema Definition Language (XSD) 1.1
Part 2: Datatypes. http://www.w3.org/TR/xmlschema11-2/ [cited

January 2009].

[66] Rada R.; Mili H.; Bicknell E.; and Blettner M., Development and
Application of a Metric on Semantic Nets. IEEE Transactions on

Systems, Man, and Cybernetics, 1989. 19(1):17-30.

[67] Ray E.T., Introduction à XML, ed. O‟Reilly. 2001, Paris. p. 327.
[68] Reis D. C.; Golgher P. B.; Silva A. S. and Laender A. F., Automatic

Web News Extraction using Tree Edit Distance. Proceedings of the

13th International Conference on the World Wide Web (WWW
'04), 2004. pp. 502-511, ACM, New York, NY, USA.

[69] Resnik P., Using Information Content to Evaluate Semantic
Similarity in a Taxonomy. Proc. of the Inter. Joint Conf. on

Artificial Intelligence (IJCAI), 1995. Vol 1, pp. 448-453.

[70] Rijsbergen van C. J., Information Retrieval. 1979: Butterworths,
London.

[71] Sahai A. and Machiraju V., Enabling fo the Ubiquitous e-services

Vision on the Internet Hewlett-Packard Laboratories, HPL-2001-5,
2001.

[72] Salton G. and Mcgill M.J., Introduction to Modern Information

Retrieval,. 1983. McGraw-Hill, Tokio.
[73] Sanz I.; Mesiti M.; Guerrini G.; Berlanga La R.; and Berlanga

Lavori R., Approximate Subtree Identification in Heterogeneous

XML Documents Collections. XML Symposium, 2005, 192-206.
[74] Saruladha K.; Aghila G. and Raj S., A Survey of Semantic

Similarity Methods for Ontology Based Information Retrieval.

Proceedings of the International Conference on Machine Learning
and Computing (ICMLC'10). 2010. pp. 297 - 301

[75] Schenkel R.; Theobald A.; and Weikum G., Semantic Similarity

Search on Semistructured Data with the XXL Search Engine
Information Retrieval 2005. (8):521-545.

[76] Schlieder T., Similarity Search in XML Data Using Cost-based

Query Transformations. Proceedings of the ACM SIGMOD
International Workshop on the Web and Databases (WebDB),

2001. pp. 19-24.

[77] Schlieder T. and Meuss H., Querying and Ranking XML
Documents. Journal of the American Society for Information

Science, Special Topic XML/IR, 2002. 53(6):489-503.

[78] Schöning H., Tamoni – A DBMS Designed for XML. Proceedings
of the IEEE International Conference on Data Engineering (ICDE),

2001. pp. 149-154.

[79] Segoufin L. and Vianu V., Validating Streaming XML Documents.
Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems (PODS), 2002. pp. 53-64.

[80] Selkow S. M., The Tree-to-Tree Editing Problem. . Information
Processing Letters, 1977. 6(6):184–186.

[81] Shvaiko P. and Euzenat J., A Survey of Schema-Based Matching

Approaches. Journal of Data Semantics IV, 2005. pp. 146-171.
[82] Stanoi I.; Mihaila G. and Padmanabhan S., A framework for the

selective dissemination of XML documents based on inferred user

profiles. In Proceedings of the International Conference on Data
Engineering, 2003. pp. 531 – 542.

[83] Su H.; Padmanabhan S. and Lo M.L., Identification of Syntactically

Similar DTD Elements for Schema Matching. Proceedings of the
International Conference on Advances in Web-Age Information

Management (WAIM), 2001. pp. 145-159.

[84] Suzuki N., Finding an Optimum Edit Script between an XML

Document and a DTD. Proceedings of the ACM Symposium on

Applied Computing (ACM SAC), 2005. pp. 647-653.

[85] Tekli J.; Chbeir R. and Yétongnon K., Structural Similarity
Evaluation between XML Documents and DTDs. Proceedings of

the International Conference on Web Information Systems

Engineering (WISE), 2007. pp. 196-211.
[86] Tekli J.; Chbeir R. and Yétongnon K., An Overview of XML

Similarity: Background, Current Trends and Future Directions.
Elsevier Computer Science Review, 2009. 3(3):151-173.

[87] Tekli J.; Chbeir R. and Yétongnon K., XML Grammar Similarity:

Breakthroughs and Limitations. Second Edition of the
Encyclopedia of Multimedia Technology and Networking,

Information Science Reference, 2009. Hershey - New York, 2 (1):

140-148.

[88] Tekli J.; Damiani E.; Chbeir R. and Gianini G., SOAP Processing

Performance and Enhacement. To appear in IEEE Transactions on
Service Computing (IEEE TSC), 2011.

[89] Teraguchi M.; Makino S.; Ueno K. and Chung H.V., Optimized

Web Services Security Performance with Differential Parsing.
Proceedings of the 4th International Conference on Service-

Oriented Computing (ICSOC'06), 2006. pp. 277-288.

[90] Theobald A. and Weikum G., Adding Relevance to XML.
Proceedings of the 3rd International Workshop on the Web

Databases (WebDB), 2000. pp. 105-124. Dallas, USA.

[91] Werner C.; Buschmann C. and Fischer S., WSDL-Driven SOAP
Compression. International Journal of Web Services Research,

2005. Vol. 2, Issue 1, pp. 18-35.
[92] Word Wide Web Consortium. SOAP Version 1.2. W3C

Recommendation (Second Edition) 2007,

http://www.w3.org/TR/soap/ [cited February 2010].
[93] World Wide Web Consortium. The Document Object Model.

http://www.w3.org/DOM [cited 28 May 2009].

[94] Xing G., Fast Approximate Matching Between XML Documents
and Schemata. The Asia Pacific Web Conference (APWeb'06),

2006. pp. 425-436.

[95] Xing G.; Xia X. and Guo J., Clustering XML Documents Based on
Structural Similarity. International Conference of Database

Systems for Advanced Applications (DASFAA'07), 2007, 905-911.

[96] Zhang K. and Shasha D., Simple Fast Algorithms for the Editing
Distance between Trees and Related Problems. SIAM Journal of

Computing, 1989. 18(6):1245-1262.

[97] Zhang K.; Shasha D. and Wang J., Approximate Tree Matching in
the Presence of Variable Length Don’t Cares. Journal of

Algorithms, 1994. (16) 33-66.

[98] Zhang X.; Jing L.; Hu X.; Ng M. and Zhou X., A Comparative
Study of Ontology Based Term Similarity Measures on PubMed

Document Clustering. Proceedings of the International Conference

on Database Systems for Advanced Applications (DASFAA' 07),
2007. pp. 115-126.

[99] Zhang Z.; Li R.; Cao S.; and Zhu Y., Similarity Metric in XML

Documents. Knowledge Management and Experience Management
Workshop, 2003.

http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/soap/
http://www.w3.org/DOM

