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Optimal posting distance of limit orders: a stochastic
algorithm approach

SOPHIE LARUELLE * CHARLES-ALBERT LEHALLE | GILLES PAGES *

Abstract

This paper presents a stochastic recursive procedure under constraints to find the optimal
distance at which an agent must post his order to minimize his execution cost. We prove the
a.s. convergence of the algorithm under assumptions on the cost function and give some practical
criteria on model parameters to ensure that the conditions to use the algorithm are fulfilled (using
notably principle of opposite monotony). We illustrate our results with numerical experiments on
simulated data but also by using a financial market dataset.

Keywords Stochastic approximation, order book, limit order, market impact, statistical learning,
high-frequency optimal liquidation, compound Poisson process, co-monotony principle.

2010 AMS classification: 62L20, secondary: 62P05, 60G55, 65C05.

1 Introduction

In the recent years, with the growth of electronic trading, most of the transactions in the markets
occur in Limit Order Books. During the matching of electronic orders, traders send orders of two kinds
to the market: passive (i.e. limit or patient orders) which will not give birth to a trade but will stay in
the order book (sell orders at a higher price than the higher bid price or buy orders at a higher price
than the lower ask price are passive orders) and aggressive orders (i.e. market or impatient orders)
which will generate a trade (sell orders at a lower price than the higher remaining buy price or buy
orders at a higher price than the lowest remaining price). When a trader has to buy or sell a large
number of shares, he cannot just send this large order at once (the price moves during the execution
procedure); he has first to schedule his trading rate to make balance between the market risk and the
market impact cost of being too aggressive ! (too many orders exhaust the order book and makes
the price move). Several theoretical frameworks have been proposed for optimal scheduling of large
orders (see [3], [6], [19], [2]). Once this optimal trading rate is known, the trader has to send smaller
orders in the electronic book by alternating limit (i.e. patient) orders and market (i.e. urgent) orders.
The optimal mix of limit and market orders for a trader has not been studied in the quantitative
literature even if it has been studied from a global economic efficiency viewpoint (see for instance [8]
and not from the viewpoint of one trader trying to optimize its own interactions with other market
participants). Omne of the difficulties from the trader prospective is that transactions obtained by
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inserting a limit order in an electronic book is a functional of its distance to the mid-price, giving
birth to a large number of possible tactics in terms of re! assessment of the price of such orders.

In this paper, we study the optimal distance to submit limit orders in an electronic order book,
without needing a model of the limit order book dynamics (see [1] or [10] for such models of limit
order books).

Optimal submission strategies have been studied in the microstructure literature using utility
framework and optimal control (see [4], [9], [5], [11] and [12]). The authors consider an agent who
plays the role of a dealer, i.e. he provides liquidity on the exchange by quoting bid and ask prices at
which he is willing to buy and sell a specific quantity of assets. Strategies for bid and ask orders are
derived by maximizing his utility function.

Our approach is different: we consider an agent who wants to buy (or sell) on a short period [0, T
a quantity Qr of traded assets and we look for the optimal distance where he must post his order to
minimize the execution cost.

We are typically at a smaller time scale than in optimal liquidation frameworks (or any market
making framework coming from a backward stochastic control process) and order posting strategies
derived from the viewpoint presented here can be “plugged” into any larger scale strategy.

If a stochastic algorithm approach has been already proposed by the authors for optimal spacial
split of an order across different Dark Pools, here the purpose is not to control fractions of the size
of an order, but to adjust successive posting prices to converge to an optimal price. Qualitatively,
this framework can be used as soon as a trader wants to trade a given quantity ()7 over a given time
interval [0,7]. The trader can post his order very close to the “fair price” (that can be seen as the
fundamental price, the mid price of the available trading venues or any other reference price). In this
case he will be exposed to the risk to trade too fast at a “bad price”, or he can post it far away from
the fair price, and in this case he will be exposed to never obtain a transaction for the quantity Qr,
but only a part of it (say the positive part of Q7 — Np, where Ny is the quantity that the trading flow
allowed to trade). He will then have to consume ! aggressively liquidity with the remaining quantity,
disturbing the market and paying not only the current market price Sy, but also market impact (i.e.
St ®(Qr — Nr)).

The approach presented here follows the mechanism of a “learning trader”. He will try to guess
the optimal posting distance to the fair price achieving the balance between being too demanding
in price and too impatient, by trials and errors. The optimal recursive procedure derived from our
framework gives the best price adjustment to apply to an order given the observed past on the market.
We provide proofs of the convergence of the procedure and of its optimality.

To this end we model the execution process of orders by a Poisson process (Nt(é))OStST whose
intensity A7 (6,.5) depends on the fair price (S;),~, and the distance of order submission §. The
execution cost results from the sum of the price of the executed quantity and a penalization function
depending on the remaining quantity to be executed at the end of the period [0,7]. This penalty
models the over-cost induced by crossing the spread and the market impact of this execution. The
aim is to find the optimal distance ¢* € [0, Opax], where dpax is the depth of the limit order book, which
minimize the execution cost. This leads to an optimization problem under constraints which we solve
by using a recursive stochastic procedure with projection (This particular class of algorithm is studied
in [16] and [17]). We prove the a.s. convergence of the constrained alg! orithm under additional
assumptions on the execution cost function. From a practical point of view, it is not easy to check
the conditions on the cost function. So we give sufficient criteria on model parameters to ensure the
viability of the algorithm which relies on a principle of opposite and co-monotony for diffusion process.
Our approach consists to start from the co-monotony principle for n-tuples of independent variables
established for functions where marginals are co-monotonic component by component. We first apply
this result to the Euler scheme of the diffusion, under appropriate conditions on the drift and the



diffusion coefficient. As a second step, we use a weak functional convergence theorem to transfer the
principle to co(or anti-)-monotonic functionals of the diffusion (for a given functional F' on C([0,T],R),
monotonic should be understood hence as

(Vi€ [0,T], oft) < B(t) = F(a) < F(B).

We conclude this paper by some numerical experiments with simulated and real data. We consider
the Poisson intensity presented in [4] and use a Brownian motion to model the fair price dynamics.
We plot the cost function and its derivative and show the convergence of the algorithm to its target
o*.

The paper is organized as follows: In Section 2, we first propose a model for the execution process of
posted orders, then we define a penalized cost function (including the market impact at the terminal
execution date). Then we devise the stochastic recursive procedure under constraint to solve the
resulting optimization problem in terms of optimal posting distance on the limit order book. We
state the main convergence result and provide operating criteria that ensure this convergence, based
on a monotony principle for one dimensional diffusions. Section 3 establishes the representations
as expectations of the cost function and its derivatives which allow to define the mean function of
the algorithm. Section B presents the principle of opposite monotony which is used in Section 4 to
derive the convergence criteria (which ensure that the optimization is well-posed). Finally Section 5
illustrates with numerica! 1 experiments the convergence result of the recursive procedure towards its
target.

Notations. e (), = max {z,0} denotes the positive part of z, || = max{ke N : k < z}.
e C([0,7],A) := {f:]0,T] — A continuous} and D([0,7],A) := {f :[0,T] — A cadlag} where A =
RY, R, ete.

2 Design of the execution procedure and main results

2.1 Modeling and design of the algorithm

We consider on a short period T, say a dozen of seconds, a Poisson process modeling the execution of
posted passive buy orders on the market
T

(N oo with intensity Ap(6,S) == /0 A(S; — (So — 6))dt (2.1)
where 0 < § < Omax With dmax € (0, So) denotes the depth of the order book and (S;),~ is a stochastic
process modeling the dynamics of the “fair price” of a security stock (from an economic point of view).
In practice one may consider that S; represents the best opposite price. We assume that the function A
is defined on the whole real line as a finite non-increasing convex function. Its specification will rely on
parametric or non parametric statistical estimation based on former transactions (see Figure 1 below
and Section 5). At time t = 0, buy orders are posted in the limit order book at price Sy — 4. Between ¢
and t+ At, the probability for such an order to be executed is A\(S;—(So—0)) At where S;—(Sp—9) is the
distance to the current fair price of our posted order at time ¢. The further the order is at time ¢, the
lower is ! the probability for this order to be executed since \ is decreasing on [—Sp, +00). Empirical
tests strongly confirm this kind of relationship with a convex function A (even close to an exponential
shape, see Figure 1). Over the period [0, 7], we aim at executing a portfolio of size Q7 € N invested in

the asset S. The execution cost for a distance ¢ is E [(So —9) <QT A NQ@)] . We add to this execution
cost a penalization depending on the remaining quantity to execute, namely at the end of the period
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Figure 1: Empirical probabilities of execution (blue stars) and its fit with an exponential law (red
dotted line) with respect to the distance to the “fair price”.

T, we want to have Qr assets in the portfolio, so we buy the remaining quantity (QT —N}é)) at price
+

St. Then we introduce a market impact penalization function ® : R — R, nondecreasing and convex,
with ®(0) = 0 to model the additional cost of the execution of the remaining quantity (including the
market impact). Then the resulting cost of execution on a period [0,T] reads

C(6) =E [(so ) <QT A N}‘”) + kS <I><(QT - N}‘”)J] (2.2)

where k > 0 is free tuning parameter. When ® = id, we just consider that we buy the remaining
quantity at the end price S7, but introducing a market impact penalization function ®(z) = (14n(z))z,
where 1 > 0, n Z 0, models the market impact induced by the execution of (QT — NQ@) L at the end
of the period whereas we neglect the market impact of the execution process over [0,7]. Our aim is
then to minimize this cost, namely to solve the following optimization problem

Oéggtﬁlax C(9). (2.3)

Our strategy to solve numerically (2.3) using a large enough dataset is to take advantage of the rep-

resentation of C' and its first two derivatives as expectations to devise a recursive stochastic algorithm,

namely a stochastic gradient procedure, to find the minimum of the (penalized) cost function. To be

more precise we will show that under natural assumptions on the quantity Q7 to be executed and

on the parameter k, the function C' is twice differentiable, strictly convex on [0, dmax] with C'(0) < 0.
Consequently,

argming o5, 1C(6) = {6"}, 6" € (0, dmax]

and
0" = 0max iff C is non-increasing on [0, dmax]-

Criteria involving x and based on both the risky asset S and the trading process especially the
execution intensity A, are established further on in Proposition 4.1 and Proposition 4.2. We specify
representations as expectations of the function C and its derivatives C’ and C”. In particular we will
show that there exists a Borel functional

H: [0,5max] X D([OyT]vR) — R
such that
V5€ [0.0m). C'(6) = E[H(5.(S)eor))|.

4



The functional H has an explicit form given in Proposition 3.2, Equations (3.15) or (3.17)), involving
integrals over [0, 7] of the intensity A(S; — Sp + J) of the Poisson process (Nt(é)),g[oﬂ. In particular,
any quantity H (5, (St)ﬁe[oﬂ) can be simulated, up to a natural time discretization, either from a
true dataset (of past executed orders) or from the stepwise constant Euler scheme (with step %)
of a formerly calibrated diffusion process modeling (St),(or)- This will lead us to replace in our
implementations the continuous time process (St)«jo,r) over [0,7], by a finite dimensional R+
valued random vector (S )o<i<m (Where tg = 0 and ¢, = T') with the implicit assumption that
St = Sti on [ti,ti+1), 1= 0, ey M.

Based on this representation (3.15) of C’, we can formally devise a recursive stochastic gradient
descent a.s. converging toward 6*. However to make it consistent, we need to introduce constrain
so that it lives in [0, dmax|. In the classical literature on Stochastic Approximation Theory (see [16]
and [17]) this amounts to consider a variant with projection on the “order book depth interval” [0, max],
namely

5n+1 = Proj[O,émax] <6n - ’Yn-i—lH (5717 (St(in—i_l))ogigm)) , n>0, do € [Oy(smaXL (2'4)

where Projy 5. 1 denotes the projection on the (nonempty closed convex) [0, dmax]; (Yn)n>1 is a positive
step sequence satisfying at least the minimal decreasing step assumption

Z%L =+o0 and 7, —0. (2.5)

n>1
The input sequence {(ggl))o ciemr 2 0} showing up in the above procedure is the innovation process
and needs to be specified. In a first (naive) approach one may imagine that it is a sequence of i.i.d.
copies (St(ln)) o<i<m Of the true underlying dynamics of (St,)o<i<m or at least of its Euler scheme.
Of course this not at all realistic in the perspective of performing this procedure on real data. An
alternative is to assume that, at least within a laps of a few minutes, the dynamics of the asset S
is stationary and, say, a-mizing. In such a framework, on can consider backward shifted samples of
(St)o<t<r: if At > 0 denotes a fixed time shift parameter such that ¢; —t,_; = At, we set

Vte [0, T], glgln) = gti—nAt = Stifn

so that the sequence S = (ggl))ogigm shares some averaging properties in the sense of [18]. Here S
may represent either a stepwise constant Euler scheme when thinking of simulated data or a historical
high frequency data base of best opposite prices of the asset S.

2.2 Main convergence results

The following theorems give a.s. convergence result for the stochastic procedure (2.4): the first one
for i.i.d. sequences and the second one for “averaging” sequences (see [18]).

2.2.1 1l.i.d. simulated data from a formerly calibrated model

Theorem 2.1. Assume that C is strictly convezr with C'(0) < 0, ((Sﬁf’)ogigm)ml is an R™ M _yalued

sequence of i.i.d. copies of the stepwise constant Euler scheme of (St)o<i<r with step % and (2.5) is
satisfied. Furthermore, assume that the step sequence satisfies the standard

Z’yn =400 and Z’y,% < +o0. (2.6)

n>1 n>1



Then the recursive procedure defined by (2.4) converges a.s. towards its target 6* = argminge (o 5

) max}
6n 255 5%,

This theorem is a straightforward application of the classical a.s. convergence for constrained
stochastic algorithms (see Appendix A).

2.2.2 Direct implementation on a dataset sharing averaging properties

In this case, we assume that the sequence (S (n ))0<,<m shares an averaging properties with respect to
a distribution v on (R™*!, Bor(R™*1)) as developed in [18].

Definition 2.1. Let g€ N. A [0, L|?-valued sequence (&,)n>1 is v-averaging if
_255k :>1/ as n — 0o.
Then (£,)n>1 satisfies

Dy (&) = sup

Z]l[[Oxﬂ &) —v([0,z])] — 0 asn — oo,
2€[0,L)a

where D} (§) is called the discrepancy at the origin or star discrepancy.

In this setting, we will require the existence of a pathwise Lyapunov function, which means in
this one dimensional setting that H(-, (yt, )o<i<m) is monotonic with a monotony independent of
(yt: Jo<i<m € RTTL.

Theorem 2.2. Let \(z) = Ae# A >0, k> 0. Assume that C is strictly convex with C'(0) < 0
and C'(0max) > 0, (S("))n>1 is a [0, L]?-valued v-averaging sequence and (vyn)n>1 S a positive non-
increasing sequence satisfying

S aw =00, aDiEm —> 0, and Y nDy()max (1, |Ayuil) < +oo.  (27)
n>1 nree n>1

Furthermore, assume that

- 5max . .
Kk < 1+ kliﬁ%’” ) if ®=#£id
Qr > 2TA(—S;)  and > (2.8)
1+ k(SO - 5max) . s
S ST @@Qr) —e@r 1y ¢ P

Then the recursive procedure defined by (2.4) converges a.s. towards its target 6* = argming o,

Smax] C(6)

5 2255 6%,

Proof. We will apply Theorem 2.1 in a QMC framework similar to Section 3 c.f. [18]. First we set
the integrability parameter p to p = 1. Note that 6* € (0,dpax) since C'(0) < 0 and C'(dpax) > 0
so we can extend C’ as a convex function on the whole real line. Moreover, by using the proof of
Proposition 4.1, we prove that if Qr > 2T'A\(—Sy) and (2.8) is satisfied, then H is nondecreasing in §

C(0):



so H satisfies the strict pathwise Lyapunov assumption with L(6) = % |6 — 6*[%. Tt remains to check
the averaging rate assumption for H(6*,-). As it is a nondecreasing function on [0, L]?, then it has
finite variation and by using the Koksma-Hlawka Inequality, we get

‘l > H(G &) - H(6% wv(du)| < (H(6%, L) — H(6%,0)) Dy (8),
Lyt [0,L]¢

so that H(d*,-) is v-averaging at rate €, = D} (§). Finally, Theorem 2.1 from [18] yields

by 25 5% O

2.3 Ceriteria for the convexity and monotony at the origin

Checking that the assumptions on the function C' (i.e. C' convex with C’(0) < 0) in Theorem 2.1
are satisfied on [0, dmax] i a nontrivial task: in fact, as emphasized further on in Figures 2 and 7
in Section 5, the function C' in (2.2) is never convex on the whole nonnegative real line, so we need
reasonably simple criteria involving the market impact function ®, Q7 and the parameter x and others
quantities related to the asset dynamics which ensure that the required conditions are fulfilled by the
function C. These criteria should take the form of upper bounds on the free parameter k.

Their original form, typically those derived by simply writing C’(0) < 0 and C”(0) > 0, are not
really operating since they involve ratios of expectations of functionals combining both the dynamics
of the asset S and the execution parameters in a highly nonlinear way. A large part of this paper is
be devoted to establish simpler criteria (although slightly more conservative) based on a monotony
principle for one-dimensional diffusions introduced in further details in Appendix B. Since the state-
ment of this criteria do not require any knowledge on this monotony principle, we present them in the
theorem 2.3 below.

We still need an additional assumption, this time on the function A. Roughly speaking we need
that the functional A depends on the distance parameter ¢ essentially exponentially in the following

sense: 9 9
. S Ar(6,5) — = Ar(9,9)

0<k:= infess | -2~~~ < Ky = supess | -2 < 4o, 2.9

b ae[o,sm]< A7(6.9) ) = &[o%maxl< Ar(6.9) 29
O A1 (5,5 _ 9 A1 (6,5

0 < ky := infess —‘?Ti(’) < kg := supess —?Ti(’) < Fo0. (2.10)
56[075““"(} %AT(57 S) 56[075max] %AT(57 S)

Note that the above assumption implies

o]
. 55 A7(0,5)
:= inf R ) >
ko 1ness< A7 (0.9) > >k, >0

Although this assumption is stated on the functional A (and subsequently depends on S), this is
mainly an assumption on the intensity function A. In particular, both above assumptions are satisfied
by intensity functions of the form

Me(z) =e* zeR, ke (0,400).
For Ay, one checks that k; = k1 = ky = ko = k.
Theorem 2.3. Assume that the asset dynamics (S¢)i>0 of the asset S is a (0, 00)-Brownian diffusion

dS; = b(t, St)dt + O'(t, St)th, So > 0,



admissible for this open interval in the sense of Definition 2.3 below (the geometric Brownian motion
is admissible, see Appendiz B). Assume that the function X is essentially exponential in the sense
of (2.9) and (2.10) above. Then the following criteria hold true.

(a) MONOTONY AT THE ORIGIN: The derivative C'(0) < 0 as soon as

So 1
E[S7] (®(Qr) — ®(Qr — 1)) | %ok [57] (3(Qr) — 3(Qr — 1)’

Qr > 2TX(—Sy)) and k<

P(NF=Qr—1 . :
(b) CONVEXITY. Let pg € <O, 1— W quTA(—So)>' If ® £ id, assume that ® satisfies

Vee [LQr — 1, ®() — (e — 1) < po(®(x + 1) — B(a)).

< 2k,
= k1koE[ST] /(Qr)

—2
If QT2(2\/(1+%)>T)\(—SO) and K

then C"(8) > 0, € [0, dmax], so that C is convex on [0, dmax]-

Remark. These conditions on the model parameters are conservative. Indeed, “sharper” criteria can
be given whose bounds involve ratios of expectation which can be evaluated only by Monte Carlo
simulations:

C'(0) <0< 0< Kk < by,

E [-QrP© (N* > Qr) + (SoZAr(0,5) — Ar(0,5)) PO (N# < Qp — 1)]

where by = E [ST%AT(Oa $)p(0) (M)]
. . A(S)
and C' is convex on [0, 0pax] <= 0 < Kk < genén W
o? ) 5
where AB) = E [((so = 0) 555 A7(3,5) = 255A7 (0, 5)> PO (N* < Qr —1)
2
— (S0 —9) <%AT(57 5)) PO (N = Qr — 1)] ,
2 2

B(6) =E [ST <%AT<5, ) (u) - <%AT<5, s>) ) (u))] and D = {J€ [0, dmax] | B(8) > 0}

2.4 Introduction to monotony principle for diffusions

Let I be a non-empty open interval of R. Consider the real-valued diffusion process
dX; = b(t,Xt)dt—FO'(t,Xt)th, Xog=x9€e I, tc [O,T] (211)

Definition 2.2. The Lamperti transform of the diffusion process (2.11) is the function L : [0, T]x I —
R defined for every (t,x)€ [0,T] x I by

L(t, 2) :/ % (2.12)

where x1 is an arbitrary fived value lying in I. Let t € [0,T]. The inverse of L(t,-) will be denoted
L7(t,-).



Definition 2.3. The diffusion process (2.11) is admissible if
(i) o€ CH((0,T) x I,1),
(ii) Y(t,z)€ [0, T] x I, |b(t,z)| < C(1+|z|) and 0 < o(t,z) < C(1 + |x|),
d d

(iii) Ve € I, [_ o gnr —o(sz) = Jiztooynt 3 fg) = +09,

(iv) for every starting value xo € I, (2.11) has a unique weak solution which lives in I up to t = +oo
(see Proposition B.3 for criteria),

(v) the function [ defined by

b : 1 OJo 100 _
B(t,y) = <; —/x1 ma(taﬁ)dﬁ - 5@) (t, L' (t,y)),

is continuous on [0,T] x R, nondecreasing in y for every t€ [0,T] and satisfies

dK >0 such that |B(t,y)] < K(1+|y|), t€[0,T], ye R.

Definition 2.4. Let F': D([0,T],R) — R be a functional.

(1) The functional F is nondecreasing (resp. non-increasing) on D([0,T],R) if

Vai,az€ D([0,T],R), (Vte [0,T], ai(t) < as(t)) = F(a1) < F(az) (resp. F(a1) > F(az)).
(i7) The functional F is continuous at o€ C([0,T],R) if

Yan € D([0,T],R), an — ac C([0,T],R), F(an) — F(a).

where U denotes the uniform convergence of functions on [0,T]. The functional F is C-
continuous if it is continous at every a€ C([0,T],R).

(#i1) The functional F has polynomial growth if there exists a positive real number r > 0 such that

Yae D([0,T],R), |F(a)| gK(HHaW ) (2.13)

sup

Remark. Any C-continuous functional in the above sense is in particular Pz-a.s. continuous for every
process Z with continuous paths.
Theorem 2.4. Assume that the diffusion process (2.11) is admissible. Let F,G : D([0,T,R) — R be

two functionals C-continuous with polynomial growth and opposite monotony. Then

Cov (F ((Xt),gm) ye! <(Xt),E[O7T})> <o.



3 Representations as expectations of C' and its derivatives

First we briefly recall for convenience few basic facts on Poisson distributed variables that will be
needed to compute the cost function C' and its derivatives C' and C” (proofs are left to the reader).

Proposition 3.1. (Classical formulas). Let (N*),~0 be a family of Poisson distributed random vari-
ables with parameter p > 0.

(1) For every function f: N — Ry such that log f(n) = O(n),

d NH
LBy =2+ 1) - 0] - [f(N”) (7 - 1)} |

In particular, for any k€ N, £P (N* < k) = —P(N* = k).
For any ke N*,

(i7) E[k A NM = kP (N* > k) + uP (N* <k —1) and JLE[k ANF] =P (N* <k — 1),
(i) E[(k—N#), ] = kP (N* < k) — puP (N* <k —1),

(iv) kP (N* =k) = uP (N* =k —1).

To compute the cost function (or its gradient), it is convenient to proceed a pre-conditioning with
respect to ]:; = 0(S,0<t<T). We come down to compute the above quantity when N ©) ig
replaced by N#, a standard Poisson random variable with parameter pu. Therefore we have

c®) = E

-(50 —6) (QT A Nf(p5)> + kST P <<QT - Ng(p5)>+>]

_ E|(S-oE [(QT A N}‘”) |}"ﬂ + kSTE [cp ((QT - N}‘”)+> |f§7”
_ E :(so —OE[Qr ANM | _n,s.) + #STE [@ (Qr — N*),)] WZAT(&S)}

= E[C(5A0(5,9), (Sosrer) | (3.14)

where for every x€ C([0,T],R;) and every pe R,
C (8, ;) = (w0 — 8) (QrP (N* > Q1) + pP (N* < Qr — 1)) + karE [® (Qr — N*),)].
We introduce some notations for reading convenience: we set
PO (N* > Qr) =P (N* > Qr) lu=Ar(s,s) and E [f(1)] = E[f ()] lu=A7(5,8) -
Now we are in position to compute the first and second derivatives of the cost function C.

Proposition 3.2. (a) If ® #id, then C'(0) =E[H(9,S)] with

H(5,5) = —QrP® (N* > Qr)+ (%AM S)(So — 6) — Az (6, S)) PO (N* < Qp — 1)

—RST%AT«S, )o@ (1) (3.15)
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where ¢ (1) = E@ [(® (Qr — N*) — @ (Qr — N* — 1)) Linucgp—1y] and

0?2 0 2
c"(6) = EK(so—a)wmw—2%AT<5,S>) B0 (N < Qr 1) — Sr-o A (5, S)6® (1)

2 2
(50— ) (%ATW)) BO) (N = Qp — 1) + xSy (%AT(&S)> w“)(m] (3.16)

where YO () = EO [& ((Qr — N* - 2),) — 28 ((Qr — N* — 1)) + @ ((Qr — N*),)].
(b) If ® = id, then C'(5) = E[H(5, S)] with
H5,S) = —QrP® (V" > Q) + ((so 5 RS DA (6.5) ~ Ar(s s>> PO (NF < Qr — 1) (3.17)

2

and C"() = E K(so — 6 — KkST) 0 Ar(8,8) — QQAT(a, 5)) PO (NF < Qp —1)

962 95
P 2
—(So — 8 — KST) <%AT(5, 5)> PO (N = Qp — 1)] (3.18)
Proof. Interchanging derivation and expectation in the representation (3.14) implies
0 ~ 0 ~ 0
C'(6) =E [%0 (6.A7(5,9), (Stocrer) + anC (8, A7(5,9), (Shpcrer ) 55A7 (. S)] .

(a) We come down to compute the partial derivatives of C (6, i1, z).

OC (s..x) = ~E[(Qr A N")] = ~QrB (N > Qr) — B (N < Qr — 1),
aC 0 %,
o (6, p,x) = —(20 — 5)@13 [(Qr — NM), ]+ HxT@E (@ ((@r — N"),)].
We have %E [(QT — N“)+] = —QP(N'=Qr)—-P(N*<Qr—1)+uP(N*=Qr—1)

= —P(N*<Q@Qr—1) thanks to (iv) in Proposition 3.1

and [ ((Qr-N9,)] = E[®((@Qr N~ 1),) ~ (@~ N),)]

op
= E[(@(Qr—N'=1) =@ (Qr — N*)) Linucqr-13] = —o(1)
owing to (v) in Proposition 3.1. Therefore

% (6,11, ) = (0 — ) P (N* < Qr — 1) — Karo(n).

Consequently

C'6) = B |-Qre® (v > Qr) + (5Ar(6.5)(50 — 0) — Ar(6,5) ) PO (V¥ < Qr 1)

0
RS2 (60.5)6 (1)
~ 0

= E [C’ <(5, Ar(6,5), %AT(& S), (St)0<t<T>] , (3.19)
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where 0 (1) := @(p) lu=Ar(s,5) and for every x€ C([0,T],R4) and every p,v e Ry,

C (0, p,v,x) = —QrP (N" > Qr) + (v(zo — 8) — p) P (N* < Qr — 1) — karvp(p).
Interchanging derivation and expectation in the representation (3.19) implies

o's) = E[(%C (5 A2(5.5), Sy (6,S>,<St>o<t<T>

0 ~ 0 0
#5-C (8. A2(0.8), JeA6.9). (S0eeer ) 5026,

2
+ aﬁc <5 Ar(5,9), (%A (5,9), (St)0§t§T> ;521& (o, S)]

We deal now with the partial derivatives of C (6, v, ).

%?(5u,ya;) = —vP(N*<Qr-1),
aC
o O, p,vyz) = —P(NF<Qpr—1)—(xg—0)vP(N* =Qr — 1) + saxpvip(p),
aC
5(57/~L7V7$) = ($0_5)P(NMSQT_1)_K’$TQD(/J)
Consequently
) = B[S0 -8 ar(6.8) - 22 np(6,9) ) PO (V0 < 1 SaAds ©)
(6) = (S0~ 0) 553 T(,)_%T(7) ( _QT—)—HT&;Q 7(8, )™ (1)

2
~(50-0) (A (0.9)) PO = Qr - 1)+ w5y (5Ar6.9)) W(u)] .

(b) If ® =1id so that 8%1[*3 (@ ((Qr — N*"),)] = =P (N* < Qp — 1). Therefore

G5 Gez) = —QrP (N> Q)= (V" < Qr = 1) and 5 (5. 2) = (e0—3-rar)P (V" < Qr 1),
Consequently
C'6) = E[-QrP" (3 > Qr) + (89— 6~ nS1) 55Ar(5.5) ~ A2(6,5) | PO (V* < Qr — )

- E [C <5 Ar(8,8), 8651\ (6, 5), (st)0<t<T>] : (3.20)

where for every x € C([0,T],Ry) and every pu,ve Ry,
5((5,u,1/,m) =—QrP(N* > Qr)+ ((xg = — kxp)v — p) P(N* < Qr —1).
Interchanging derivation and expectation in the the representation (3.20) implies

00 = B[ 50 (5A2(6.5), FAr6.5). (Socecr

0 » 0 0
+2.0 (5.00(6,5), SpAT6.5). (Shuzezr ) 2pAr(6.5)

0 ~ 0 02
+ ayC <5 A7 (3,S), 5=Ar (s, S)v(St)0§t§T> a5 A7 (0, S)]
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We come down to compute the partial derivatives of C <5, Ar(4,S), %AT(& S), (St)ogth)-

aC aC
% (57/%7/73:) = _VP(NM < QT - 1)7 E (57/%7/73:) = (:EO —0— I{ZET)P(NM < QT - 1)7
aC . ) .
i (6 pyvyz) = —P(N" <Qr—1)— (w0 — 0 — HxT)%AT(éa SP(NF=Qr—1).
Consequently
0? 0
C"0) = B |((S0 -0~ rSr) gz hr(0.5) — 2 (5,8) | PO (N < Qo - 1)
o 2
— (So — & — KkST) <%AT(5, 5)> PO (N* = Qr — 1)] : O

4 Convexity and monotony criteria for the cost function C

To ensure that the optimization problem is well-posed, namely that the cost function C' has a minimum
on [0, dmax), we need some additional assumptions: the cost function C' must be convex with C’(0) < 0.
This leads to define bounds for the parameter x and this section is devoted to give sufficient condition
on k to ensure that this two properties are satisfied. The computations of the bounds given below rely
on the co- (and opposite) monotony principle introduced in the previous Section 2.4 and Appendix B.

4.1 Ciriteria for local and global monotony

The above proposition gives bounds for the parameter x which ensure that the cost function has
a minimum. The aim of this subsection is to obtain sufficient bounds, easy to compute, namely
depending only of the model parameters.

Proposition 4.1. (a) Monotony at the origin. C’(0) < 0 as soon as Qp > 2TX(—Sp), ko =

9
infess <—%0(705’3q)> >0 and

So 1
57 (3(Qr) — 2(Qr — 1)) | koE 571 (2(Qr) — 9(Qr — 1))

In particular, when ® =id, the condition reduces to

<
">E

K< 50 + !
T E[Sr]  koE[ST]
(b) Global monotony (exponential intensity). Assume that s* := || sup Si||re < +oo. If A(z) =
te[0,7
Ae " A >0, k>0, Qr > 2TA\(—Sy) and
1 k - 5max . . 1 k - 6max . :
k< i (i‘os* ) if ®#£id, k< + k(S ) if ® =id, (4.21)

ks*(®(Qr) — 2(Qr — 1))
then H (-, (yi)o<i<m) s nondecreasing on [0, dmax] for every (yi)o<i<m € [0, st

To prove this result, we need to establish the monotony of several functions of x4 which appear in
the expression of C”.
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: : : : Q+1
Lemma 4.1. (i) The function p+— pP (N* < Q) is nondecreasing on [0, {TH

(i7) The function p— O(Q, ) :=E[®(Q — N*) — ®(Q — N* — 1) | N* < @Q — 1] is non-increasing.

Proof of Lemma 4.1. (i) We have di (uP (N < Q)) = (N“ < Q) — pP (N* = Q). Consequently
i

d " uk u@
7 HP(N" < Q) 20 iff Z 2
k
But k +— % is nondecreasing on {O 1,...,|¢)} and non-increasing on {|x],...}.
Q Q Q
Hence Z ,u' kEL:J Q' =(Q LMJ) Q' , so that kz ’::— % as soon as @ > 2|u| + 1.
I =0

(73) The function ® is nondecreasing, non-negative and convex with ®(0) = 0. If we look at the
representation of u +— N* by

NH(w) = max{ne N |ﬁUZ(w) > 6_”},
i=1

where U; are i.i.d. uniformly distributed random variables on the probability space (€2,.4,P), then
pu — NH is clearly nondecreasing, so p — @ — N* is non-increasing and p — @(u) = ®(Q — N*) —
®(Q — N* —1) too (because of the convexity of ). O

Remark. If p e (0,1), then p — pP(N* < Q) is always nondecreasing. If p € [1,2), then the
function p —— plP (N* = 0) = pe™* is not always nondecreasing clearly, but only on [0, 1].

T
Proof of Proposition 4.1. (a) In our problem the intensity parameter p :/ A(Sy — So + 0)dt is

0
continuous, non-increasing to zero when § tends to 400 and bounded by assumption (A(—Sp) < +00).
Hence pe [0, A\(—So)T.
(i) From (3.19), we have for § =0,

0

c (o A7 (0.S). 52

—<A7(0,5), (St)0<t<T>

(S05547(0.5) = A7(0.5)) PO (V% < @ ~ 1) = w51 52000, 5)6 1)

_ (géAT(o S) (So — KS7O(Qr, Ar(0, ) — AT(0,5)> BO) (¥ < Op — 1),

9
because —Q7P (N* > Q) l=Ar(0,8) < 0 and small if Q7 is large. Set kg = infess <_%0(05,39)> >0
a.s. by assumption, i.e. %AT(O,S) < —koAr(0,S5) a.s.. Then

€ (0.42(0.5), JAr(0.5). (Shcecr )

< (L4 ko(So — £SrOQr, Ar(0,9)))) (P (N* < Qr — 1)) jun, 05) -

Now, by Lemma, 4.1, w— O(Qr, 1) is non-increasing.

Consequently O(Qr, 1) <O(Q7,0) = 2(Q)—2(Q—1) = »(0).
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Therefore € (o, Az (0, 8), %AT(O, s), (st)ogtg)
< —(1+ko (So — £ST (2(Qr) — 2(Qr — 1)) (WP (N* < Q1 — 1)) |ymrr0.9) -

By Lemma 4.1, if Qp > 2TA(—Sp), then p — puP (N#* < @Q — 1) is nondecreasing. Moreover, the

functional
F:D(0,7,R) — R

T
@ AT(O,a):/O Malt) — So + 0)dt

is non-increasing and
a(T) — (=1 = ko(So — k(T (2(Qr) — ®(Q7 —1))) is nondecreasing.

Therefore, by opposite monotony principle for diffusion (see Theorem B.2)
E |(=1 - ko(So — k81 (®(Qr) = ®(Qr — 1)) (WP (N* < Qr = 1)) |,_rr0.5)|
<E[~1— ko(So — £S7 (®(Qr) — ®(Qr — 1)) E [(MP (N*<Qr—1)) |u:AT<o,s>] )
and we obtain
C'(0) < B [~1 - ko(So — £S1 (B(Qr) — ©(Qr — D) E [(WB (N* < Qr = 1)) \mpy05)) -
A E |(uP (N* < Qr — 1)) jy=pp(0,5)| = 0, then C7(0) < 0 as soon as

E[-1 = ko(So — £S7 ((Qr) — 2(Qr — 1))] <0,
So n 1
[ST] (2(Qr) — 2(Qr — 1)) koE [S7] (2(Q1) — 2(Q7 — 1))
(b) From (3.19), the form of A and (a), we get that for every d € [0, dmax), S = (Si)1<i<m € R™HL

H(5,8) = =QrP (N* > Q1) + £(5,5) (1P (N* < Qr — 1)) |np(s.5)

where f(0,5) = =1—k(So— 0 —rSrO(Qr —1,A7(4,5))) if  #id and f(4,5) = —1—k(So— 6 — kST)
if ® = id. Since § — —QrP® (N* > Q) is nondecreasing, § — (uP (N* < Qp — 1) |u=ar(s,5) 1
non-increasing and non-positive owing to Lemma 4.1 (i) and 0 — f(9,.5) is nondecreasing owing to
Lemma 4.1 (ii), § — H(§,S) is nondecreasing if f(5,S) > 0, § € [0, dmax], S € R™FL which leads to
(4.21). O

1.e. K <
E

4.2 Sufficient condition for the convexity condition

Proposition 4.2. (i) If & # id, assume that there ezists pg € <0,1 — %‘ TA(=S )) such
= p=TA(=So
that
voe [1LQr—1, ) - o —1) < po(®(x +1) - B(x).
-2

KL\ =
If Qr = (2 v (1 + E1E2))T)\( S0) and "= E1E2E [ST] (I),(QTy

then C"(8) >0, § € [0, dmax], so that C is convex on [0, dmax]-

(1i) When ® = id, the condition reads
2%k,
/{ é = = - __ -
k1koE [ST]
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To prove the above Proposition, we need the following results
Lemma 4.2. If t < Q — 1, then p — W is nondecreasing.

Proof of Lemma 4.2.

dP(N*=Q—-1  P(N'=Q-2)-P(N*=Q-1) PNt=Q-1)
WP(NP<Q-1) PNV ZQ—1) TP <Q 1)
PVE=Q—1) (P(V <@ —1) (L2 —1) +P(NF =Q - 1))

B P(Nt<Q—1)>2
> 0 if p<Q-1. O

- : F(N“=Qr—1)
Lemma 4.3. Assume that ® # id. If there exists pg € (O, 1- WQ;—U ‘“:T/\(_SO)) such that

Vee [1,Qr —1], @(z) —P(z—1) < po(P(z+1) — O(z)),

then p+— ) 18 MON-INCreasing.

o(p)
P(Ne<Qr—1
Remark. If & =id, then u+— L)_ = 1, therefore we do not need the previous lemmas.

P(NE<Qr—1)

Proof of Lemma 4.3. We have

d p(r) _ PN =Qr=Do(p) b(p) <0
duP(Nr < Qr —1) P(NH<Qr—12 PNt<Qr—1)~
iff — (WP (N* <Qr — 1)+P(N* =Qr — 1) p(n) <0

if P(N*<Qr—1DE[®((Qr—N‘—1),)—2((Qr—N"-2).)] <P(N*<Qr—2) ().
But

®(Qr—Nt-1),) — @((Qr—N"—-2),)
< pg (®((Qr—N")y) =@ ((Qr — N* = 1),)) Tynucqr—2)
= po(®((Qr—N"),)—®(Qr—N"—1),) — (®(1) — (0)) Lynu=g,—1})
< pe(2((Qr—N"),) —@((Qr—N"—-1),))

since (@(1) = @(0)) Lynu—q,-1} =0 a.s.

Consequently

P(N*<Qr—1E[®(Qr—N"—1),) —®((Qr— N*—2),)] —P(N" < Qr — 2) ¢(n)
< (pQP(N* < Qr —1) —P(N* < Qr —2)) ()

= <PQ_< —igzzg;:i;»?(l\”‘SQT—l)w(u)SO if po<1-

P(N* = Qr — 1)

PN <Qr—1) C

Proof of Proposition 4.2. By using the notation (2.9)-(2.10), we obtain the following minoration
for the second derivative of the cost function

C"(6) = E|2kyAr(s, PO (N < Qr — 1)

2
kl
ki by
—kSrAT (5, S) (Fikad® () ~ KA (6, S)u® () |

(S0 = )i ko Ar (6, 8) (PO (N* < Qp = 1) = - Ag(5, S)PO) (N = Qr — 1) )
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-2
kl
2

By adapting the result of Lemma 4.1, we obtain that, if Q7 > <1 + Rk

)T/\(—So), then
kr

Bl < Qr—1) - -

pP (NF = Qp — 1)> “FAT((;,S)} -

and by convexity of the penalty function ®, we have (%) (1) > 0 a.s.. Then we obtain the following
upper bound for k,

2k,E [(MIP’ (N* < Qr—1)) W:AT(é,S)]
k1koE [STA7(8,5)0® ()]

By Lemma 4.3, u % is non-increasing and by Lemma 4.1 p — uP (N* < Qpr —1) is
nondecreasing for Qp > 2 |u] — 1. Furthermore o — Ap(0, ) is non-increasing. By applying the

principle of opposite monotony (see Theorem B.2), we then have, for Qr > 2T A(—S)), that

E[SrAr(s, 8)¢® (1)] <E[(4P (N < Qr = 1)) juorriss) E[(P o (’;(‘gT - 1)) m:AT(&S)].

Therefore k< — Z(E)l
FRE (7 (s

) lu=AT(3,5) }

As, by Lemma 4.3, y — % is non-increasing, then

(1) p(p) /
B 20 =) perros = B 2 05 = 1) oo = 2(@4) —2(@ - 11 < #(@),

2k,
k< —=—— .
T k1koE [ST] 9(Q)

i.e.

Remark. As § € [0, dmax], then (Sp — 0) € [So — dmax, So] and

-2
(So — 0)ky ko AT (5, S) (W) (NF < Qp—1) — %AT(& SPO) (N# = Qp — 1))
19
-2
A5, 8P (N = Qr - 1))

> (S0 = Sk s A7 (0, 9) (BO (V" < Qr = 1) =
2182

2
k
(SO 5max)&1&2 |::u (P (N = QT 1) E1E2 ’UP (N QT 1) >:| | p=A1(6,S)

Unfortunately we cannot use the opposite monotony principle for diffusion to improve the bound
-2

because, for @ > (2 v (1 + kf—}fz))T)\(—So), the function p — pP (N#* < Q7 — 1) is nondecreasing

and p+— 1— % is non-increasing, and we need to obtain a lower bound for this expression

but we get an upper bound.

5 Numerical experiments

In this section, we present numerical results with simulated data. We first present the chosen model
for the price dynamic and the penalization function. Within the numerical examples, we are modeling
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the optimal behaviour of a “learning trader” reassessing the price of his passive order every 5 units
of time (can be seconds or minutes) in the order books to adapt to the characteristics of the market
(fair price moves S; and order flow dynamics N;). During each n' slice of 5 seconds, he posts his
order of size @5 in the book at a distance § of the best opposite price (§ lower than the best ask for
a buy order), and waits 5 seconds. If the order is not completely filled after these 5 seconds (say at
time T'), the trader cancel the remaining quantity (@5 — N5)4 and buys it using a market order at
price St plus a market impact; he will buy at kSp (1 + 7((Q5 — N5)+)). Then he can reproduce the
experiment choosing another value for the distance to the best opposite 6.

The reassessment procedure used here is the one of formula (2.4) using the expectation represen-
tation of C’ given by property 3.2 as the proper form for H.

Then we plot the cost function and its derivative for the chosen penalization function and for
the identity. We conclude by the results of the recursive procedure for each case of ® on one hand
simulated data and on the other hand real data obtained by replaying the market.

5.1 Simulated data

T
We assume that dS; = cdW;, Sp=s9 and Ar(6,5) = A/ e F(Si=50+0) gy
0

where (W;)¢>0 is a standard Brownian motion and o, A,k > 0 (this means that \(z) = Ae™*®). We

0
denote by (S;)i>0 the Euler scheme with step % of (S¢)t>0 defined by

_ _ T _
Skt1 1= Sk + 04 EZk-i-l, So =80, Zr+1~N(0,1), k>0,

and we approximate Ar(d,S) by Ar(8,9) = A% Yo e~k(Sk=50+9)  The market impact penalization
function is ®(z) = (1 + n(x))z with n(z) = A’e¥®. Now we present the cost function and its
derivative for the following parameters:

e parameters of the asset dynamics: sy = 100 and ¢ = 0.01,

e parameters of the intensity of the execution process: A =5 and k=1,

e parameters of the execution: T'=5 and @ = 10,

e parameters of the penalization function: x = 1, A’ = 0.1 and k¥’ = 0.05.
We use N = 20 for the Euler scheme and M = 10000 simulations Monte Carlo.

Setting 1 (n # 0)

Setting 2 (n = 0)
Now we present the results of our stochastic recursive procedure for the two cases with

1

n 00 and v, 100m
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Cost function Derivative
1000.8 ‘ : ; 20 ‘ ‘ ‘ ‘ : ‘ ‘ ‘ ‘
1000.75
1000.7 151 1
1000.65
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[ 3

Figure 2: n 20: T=5, A=5, k=1, s =100, c =0.01, Q = 10, k = 6, A’
and M = 10000.

0.1

=1, k' =0.01, N =20

Cost function Derivative

1000.8 . . . 16 . . T T
1000.75 141

1000.7 12
1000.65 101

1000.6 8f
1000.55 6

1000.5 4t
1000.45 2+

1000.4 0
1000.35 -2t 1

1000.3 L L L L -4 L L L L

0 001 002 003 004 0.06 007 008 009 0.1 0 0.02 0.04 0.06 0.08

0.05
3

Figure 3: n=0: T=5, A=5 k=1, s9
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Setting 1 (n # 0)

Stochastic Approximation

M AN S

Fair and posting prices

0.035

100.08

T T T
Fair price
Posting price
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100.04
0.025 b
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time (s) time (s)

Figure 4: n 20: T=5, A=5k=1,5=100,0 =0.01, Q =10, k =6, A’ =1, ¥ = 0.01, N = 20
and n = 100

Setting 2 (n = 0)

Stochastic Approximation

Fair and posting prices

0.05

100.08

T
Fair price

- 4 Posting price
0.045 100061 g price | |

0.04
100.04
0.035

0.03 v ] 100.02

0.025 1 100

0.02 99.98

0.015
99.96
0.01

99.94

0.005

0 I I I I I I I I I 99.92 I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 200 400 600 800 1000 1200 1400 1600 1800 2000

time (s) time (s)

Figure 5: n=0: T=5, A=5,k=1, s =100, c =0.01, Q = 10, Kk =12, N = 20 and n = 100.

5.2 Market data

The auto adaptiveness nature of this recurrence procedure allows to use it on real data, even if they
are not exactly following the models.

In the numerical example of this section, the trader reassess his order using the previously exposed
recurrence procedure not on simulated data following exactly the models, but on real data on which
the parameters of the models have been fit.

As market data, we use the bid prices of Accor SA (ACCP.PA) of 11/11/2010 for the fair price
process (St)eo,7]- We divide the day into periods of 15 trades which will denote steps of the stochastic
procedure. Let Mgyces be the number of these periods. For every m € Mcyces, We have a sequence of
bid prices (57" )1<i<15 and we approximate the jump intensity of the Poisson process Arm (6, .S), where

15
Vm € Meyeles, Arm(8,9) = Aze—k(si’z—stﬁa)(ti —ti_1).
=2

The empirical mean of the intensity function
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Mcycles
Agm (6, S)

n=1

1

AG.9) = 77 :
cycles

is plotted on Figure 6.

Intensity
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3

Figure 6: Fit of the exponential model on real data (Accor SA (ACCP.PA) 11/11/2010): A = 1/50,
k =50 and Mcycles = 220.

The penalization function is of the following form
®(x) = (1+n(z))z with n(z) = A’

Now we present the cost function and its derivative for the following parameters: A = 1/50, k = 50,
Q =100, A’ = 0.001 and k' = 0.0005.

Setting1 (n # 0)

Cost function Derivative

e —

3098.25

3098.245

3098.24

3098.235

3098.23

3098.225

3098.22 -

3098.215

3098.21 . . . . . . . .
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

3 [

Figure 7: 7 2 0: A =1/50, k = 50, Q = 100, x = 1, A’ = 0.001, k' = 0.0005 and Meycjs = 220.
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Setting2 (n =0)

Cost function Derivative
3098.11 . . : :

3098.1

3098.09 |-

3098.08 -

3098.07 1

3098.06

3098.05 ‘ : ‘ ‘ -5 ‘ : ‘ ‘
0 0.02 0.04 0.06 0.08 01 0 0.02 0.04 0.06 0.08 01

[ 5

Figure 8: n=0: A=1/50, k =50, @ =100, x = 1.001 and Mcycles = 220.

Now we present the results of the stochastic recursive procedure for two cases. To smoothen the
behaviour of the stochastic algorithm, we use the averaging principle of Ruppert and Poliak (see [7]).
In short, this principle is two-folded:

— Phase 1: Implement the original zero search procedure with v, = %, % <p<l, v >0,

— Phase 2: Compute the arithmetic mean at each step n of all the past values of the procedure,
namely

_ 1 <&

o, = O, n > 1.

n n+1 Z k> =
k=0

It has been shown by several authors that this procedure under appropriate assumptions is ruled by

a C'LT having a minimal asymptotic variance (among recursive procedures).

Setting 1 (n #0)

Stochastic Approximation Fair and Posting Prices
T T T

T 31.15 T T T

0.025 T

[~ ) —— Fair price
- Posting price
3111
0.02 1 ‘ I
31.05 ‘ I
i i i
31 1 R Al I\
0.015 1 |l | b T
30.95 T‘ J ‘ ‘ ‘I
\
001 il 309 ! |l\m’. ! RN
085l L| ‘H' l "Il | | ffw
0.005 1 ' | ! * | il |LH |
30.8} )
00 O.‘S i 1‘.5 2‘ 2‘.5 30'750 0‘.5 i l‘.5 ‘2 2‘.5
time (s) x10° time (s) x10*

Figure 9: n #0: A =1/50, k =50, Q@ = 100, k = 1, A’ = 0.001, ¥’ = 0.0005 and Mcycies = 220. Crude

algorithm with ~,, = ﬁ.
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Stochastic Approximation Fair and Posting Prices
T T

0.025 31.15 T T T

a1l Posting price
0.02 R |
31.05 1 .{
| i
0.015 b LA K U H I i
|
1
30.95 ‘ ‘ 1 / Wikl
I} H !
0.01 1 w05l " |‘1‘. | o
i g WiTR
30.85 | 'I ) H
0.005 b | H ‘1 | k! L
30.8f "
0 . . . . . 3075 . . . . .
0 0.5 1 15 2 2.5 0 0.5 1 15 2 25
time (s) x10° time (s) x10°

Figure 10: 5 # 0: A = 1/50, k = 50, Q@ = 100, k = 1, A’ = 0.001, k' = 0.0005 and Mcycies = 220.

Averaging algorithm (Ruppert and Poliak) with ~,, = W.
Setting 2 (n = 0)
Stochastic Approximation Fair and Posting Prices
0.03 T i 31.15 . T ;
Fair .price.
' |
31.05 ‘ N ‘I_. |
0.02 4 | I
31 | I‘H "'\l‘“'
0.015 B 30.95 ‘ \ f‘ N ‘ \”
309 ’ ﬁ M ! | I
(. il 1L AN g
088/ Ty gl 7 |
0.005 4
30.8F "
% o.‘s i 115 é 2‘.5 075, 0‘.5 i 1.‘5 é 215
time (s) x10° time (s) x 10°
: — 1
Figure 11: n=0: A =1/50, k = 50, Q = 100, x = 1.001, ~,, = mon and Meycles = 220.
Stochastic Approximation Fair and Posting Prices
0.03 T i 31.15 . T ; ;
Fair price
31.05 T ']_I |
0.02 4 [ ! I
” ‘ | LA J F\U i f
0.015| B 30.95 l ‘ N H'
| ﬁ i n\l i
| | 30,9 ™ | 1
] R T W
oes [T T
0.005 4
30.8[ "
% 015 i 1.‘5 é 2.‘5 075, 0‘.5 i 1.‘5 é 215
time (s) x10* time (s) x 10°

Figure 12: n # 0: A =1/50, k = 50, @ = 100, x = 1.001 and Mcycies = 220. Averaging algorithm
(Ruppert and Poliak) with 7, = m.
We see on Figures 10 (for n # 0) and 12 (for n = 0) that the recursive procedures converge toward

their respective targets, namely the minimum of the execution cost functions presented in Figures 7
(for n #0) and 8 (for n = 0).
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Appendix

A Convergence theorem for constrained algorithms

The aim is to determine an element of the set {§ € © : h(0) = E[H(0,Y)] = 0} (zeros of h in ©)
where © C R is a closed convex set, h: R® — R% and H : R? x R? — R%. For 6y € ©, we consider the
R%valued sequence (0r)n>0 defined by

9n+1 = PI"Oj@ (en - ’7n+1H(9n7 Yn—l—l)) s (A22)

where (Y},)n>1 is an i.i.d. sequence with the same law as Y, (y,)n>1 is a positive sequence of real
numbers and Projg denotes the Euclidean projection on ©. The recursive procedure (A.22) can be
rewritten as follows

en-‘rl = 971 - ’Yn-i—lh(en) - ’Yn-i—lAMn—i-l + Yn+1Pn+1, (A23)

where AMy, 11 = H(0,,Y,+1) — h(0,) is a martingale increment and

. 0,
PI'OJ@ (971 - ’YTH-lH(eTH Yn-‘,—l)) - + H(9n7 Yn+1).

Pn+1 =
Tn+1 Tn+1

Theorem A.1. (see [16] and [17]) Let (0n)n>0 be the sequence defined by (A.23). Assume that there
exists a unique 0* € © such that h(6*) = 0 and that the mean function satisfies on © the following
mean-reverting property, namely

VO£ 0O, (h(0)]0—0%) > 0. (A.24)

Assume that the gain parameter sequence (Yp)n>1 satisfies

Z’yn =400 and Z’yﬁ < +00. (A.25)
n>1 n>1
If the function H satisfies
3K>0m@thw6@,E“H@Yﬁ]gKu+m%, (A.26)
then
0, = 6%
n——+00

Remark. If © is bounded (A.26) reads supgg E “H(@, Y)|2} < 400, which is always satisfied if O is
compact and 6 — E [|H(9, Y)|2] is continuous.

B Monotony principle for a class of one-dimensional diffusions

In this section, we present the principle of co- and opposite monotony, first for random vectors taking
values in a nonempty interval I, then for one-dimensional diffusions lying in 1.
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B.1 Case of random variables and random vectors
First we recall a classical result for random variables.

Proposition B.1. Let f,g : I C R — R be two monotonic functions with opposite monotony. Let
X : (Q,AP) = I be a real valued random variable such that f(X),g(X)€ L*(P). Then

Cov(f(X),9(X)) <0.

Proof. Let X, Y be two independent random variables defined on the same probability space with
the same distribution Px. Then

(f(X) = F(Y)(9(X) —g(Y)) <0
hence its expectation. Consequently
E[f(X)g(X)] —E[f(X)g(Y)] = E[f(Y)g(X)] + E[f(Y)g(Y)] <0

so using that Y @ X and Y, X are independent

2E[f(X)g(X)] <E[f(X)E[g(Y)] +E[f(Y)]E[g(X)] = 2E [f(X)] E[9(X)]
that is Cov(f(X), g(X)) <0. O

Proposition B.2. Let F,G : R — R be two monotonic functions with opposite monotony in each of
their variables, i.e. for everyie€ {1,...,d}, z; — F(x1,..., @i, ...,xy) and x; — G(x1, ..., Tiy ..., Tp)
are monotonic with an opposite monotony which may depend on i (but does not depend on (1, ..., x;—1,

TiglyeyTp)E ]Rd_l). Let X1,...,Xq be independent real valued random variables defined on a prob-
ability space (2, A,P) such that F(X1,...,Xq),G(X1,...,X4)€ L*(P). Then

Cov (F(X1,...,X4),G(X1,...,Xq)) <0.

Proof. The proof of the above proposition is made by induction on d. The case d = 1 is given by
Proposition B.1. We give here the proof for d = 2 for notational convenience, but the general case of
dimension d follows straightforwardly. By opposite monotonic assumption on F' and G, we have for

every o€ R, X 4 X, with X], X; independent, that
(F(X1,22) — F(X],22)) (G(X1,22) — G(X],22)) <0,
which implies that (see Proposition B.1)
Cov (F(X1,22)G(X7,22)) <O0.

If X7 and X5 are independent, using Fubini Theorem and what precedes, we have
E[F(X1, X2)G(X1, Xa)] = / P, (da2)E [F(X1, 22)G(X1, 22)]
R
< [ P(dn)E (0] G0 22)].
R

By setting ¢(x2) = E [F (X1, z2)] and ¢ (x2) = E[G(X7,x2)] and using the monotonic assumptions on
F and G, we have

/RPXQ(dfﬂz)E [F(X1,22)] E[G(X1,22)] = Ep(X2)9(X2)] < E[p(X2)] E[¥(X2)],

i.e. Cov (F(Xl,Xg)G(Xl,Xg)) S 0. O
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B.2 Case of (one-dimensional) diffusions

This framework corresponds to the infinite dimensional case and we can not apply straightforwardly
the result of Proposition B.1: indeed, if we define the following order relation on the process of
D([0,T],R), namely

Vaq,as € D([O,T],R), o] < g = (Vte [O,T], al(t) < Oég(t)),

this order relation is partial and not total which makes the formal proof of Proposition B.1 collapse.
To establish a principle of opposite monotony on diffusions, we proceed in two steps: first, we use the
Lamperti transform to “force” the diffusion coefficient to be equal to 1 and we establish the opposite
monotony principle for this kind of diffusions. Then, by the inverse Lamperti transform, we go back
to the original process.

In this section, we first present the framework in which we place. Then we recall some weak
convergence results for diffusion with diffusion coefficient equal to 1. Afterwards we present the
Lamperti transform and we conclude by the general result on opposite monotony principle.

Let I be a nonempty open interval of R. One considers a real-valued Brownian diffusion process
dX; =b(t, Xy)dt + o(t, Xy)dWy, Xo==ax0€ I, t€][0,T], (B.27)

where b, o0 : [0,T] x I — R are Borel functions with at most linear growth such that the above
Equation (B.27) admits at least one (weak) solution over [0,7"] and W is a Brownian motion defined
on a probability space (€2,.4,P). We assume that the diffusion X a.s. does not explode and lives in
the interval I. This implies assumptions on the function b and o especially in the neighbourhood (in
I) of the endpoints of I that we will not detail here. At a finite endpoint of I, these assumptions are
strongly connected with the Feller classification for which we refer to [15] with o(t,-) > 0 for every
t€ [0,7]. We will simply make some classical linear growth assumption on b and o (which prevent
explosion at a finite time) that will be used for different purpose in what follows.

To “remove” the diffusion coefficient of the diffusion X, we will introduce the so-called Lamperti
transform which requires additional assumptions on the drift b and the diffusion coefficient o, namely
assumptions (7)-(i7i) in Definition 2.3.

Remark. Condition (#ii) clearly does not depend on x € I. Furthermore, if I = R, (i) follows from

.. . 1 1 1
(4i) since 0D 2 O

Before passing to a short background on the Lamperti transform which will lead to study a new
diffusion deduced from (B.27) whose diffusion coefficient is equal to 1, we need to recall (and adapt)
some background on solution and discretization of SDFE.

B.2.1 Background on diffusions with ¢ =1 (weak solution, discretization).

The following proposition gives condition on the drift for the existence and the uniqueness of a weak
solution of a SDE with ¢ = 1 (see [14] Proposition 3.6, Chap. 5, p. 303 and Corollary 3.11, Chap. 5,
p. 305).

Proposition B.3. Consider the stochastic differential equation
dY; = B(t, Yy)dt +dW,, te€[0,T], (B.28)

where T is a fived positive number, W is a one-dimensional Brownian motion and B :[0,7] x R — R
is a Borel-measurable function satisfying

Bty < KA +yl), te[0,T], yeR, K>O0.
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For any probability measure v on (R, B(R)), equation (B.28) has a weak solution with initial distribu-
tion v.
If, furthermore, the drift term b satisfies one of the following conditions

(1) B is bounded on [0,T] x R,
(13) B is continuous, locally Lipschitz in y € R uniformly in t€ [0,T],

then this weak solution is unique (in fact (it) is a uniqueness assumption for the existing strong
solution).

Now we introduce the stepwise constant (Brownian) Euler scheme Y = (Yw with step %

T)nggn
of the process Y = (Y};)1>0 defined by (B.28). It is defined by

_ _ _ T T _
}/lf}cLJrl :Ytg—i-ﬁ(tz,yt;g)g‘i‘ EUk—‘rla YYO:YYO:yOv ]{7:0,...,71—1, (B29)

where t}! = ET 'k =0,...,n, and (Ug)o<k<n denotes a sequence of i.i.d. N(0,1)-distributed random

Uk:\/g<WtZ—Wt;;1>, k=1,...,n.

variables given by

The following theorem gives a weak convergence result for the stepwise constant Euler scheme (B.29).
Its proof is a straightforward consequence of the functional limit theorems for semi-martingales (see
Theorem 3.39, Chap. IX, p. 551 in [13]).

Theorem B.1. Let §:]0,T] x R — R be a continuous function satisfying
3K >0, Bty <K(@A+]yl), te[0,T], yeR.

Assume that the weak solution of equation (B.28) is unique. Then, the stepwise constant Euler scheme
of (B.28) with step % satisfies

v Ay for the Skorokhod topology as n — oo.

In particular, for every Py-a.s. continuous functional F : D([0,T],R) — R with polynomial growth,
we have
EF(Y") — EF(Y).

n—oo

B.2.2 Background on the Lamperti transform

We will introduce a new diffusion Y; := L(t, X;) which will satisfy a new SDE whose diffusion coefficient
will be constant equal to 1. This function L defined on [0,7] x I is known in the literature as the
Lamperti transform. It is defined for every (¢,z) € [0,T] x I by

L(t,x) ::/: % (B.30)

where 7 is an arbitrary fixed value lying in I. The Lamperti transform clearly depends on the choice
of 1 in I but not its properties of interest. First, under Definition 2.3 (i)-(ii), L€ C%?([0,T] x I) with

OL T 1 Qo OL 1 0L 1 o
(t7$):_

a g o % g =5y >0 and g =gy a0 )

27



Let t € [0,T], L(t,-) is an increasing C?-diffeomorphism from I onto R = L(t,I) (the last claim
follows from Definition 2.3 (i4)). Its inverse will be denoted L™1(t,-).
Notice that, (¢,4) — L™1(t,y) is continuous on [0, 7] x I since both sets

{(t,y)e [0, 7] x I : L7Y(t,y) §c} ={(t,y)€ [0,T) xR : L(t,c) >y}

and
{(t,y)€ [0,T] x I : L7 (t,y) > c} ={(t,y)€ [0,T] xR : L(t,c) <y}

are both closed for every c€ R. Therefore, if Definition 2.3 (7)-(4i7) holds, the function 5 : [0, T]xI — R
defined by

) = (2~ [ g ar e~ 55 ) (L7 ) (B3

g

is a Borel function, continuous as soon as b is.
Now, we set Ve [0,T], Y;:= L(t, Xy).
[t6 formula straightforwardly yields
dY; = B(t, Yy)dt + dW;, Yy = L(0,z9) =: yp€ R. (B.32)
Remarks. e In the homogeneous case, which is the most important case for our applications,
dX; = b(Xy)dt + o(Xp)dWy, Xo=x0€R, te]0,T], (B.33)

we have

then by setting Y; := L(X}), we obtain
b /
dY, = B(Y)dt + dWt, Yo = L(zo) = yo with §:= (— - %) oLl
o

Note that 5 is bounded as soon as g — %/ is.

e If the partial derivative b/, exists on [0, T x I, one easily checks that, using (L_l)fy(t, y) =o(t, L7 (t,y)),
for every (t,y)€ [0,T] x I,

/ /
bo,, + o}

g

B (ty) = (bl - e B )] (B.34)

As a consequence, one derives that [ satisfies the linear growth assumption as soon as the function

/ / 7
. bOx +O_t _ O-O-:EZ

b/
v o

is bounded on [0,77] x I (B.35)

Definition B.1. The functional Lamperti transform, denoted A, is a functional from C([0,T],1I) to
C([0,T],R) defined by
VO&GC([O,T],I), A(Oé) :L(,Oé())

Proposition B.4. If the diffusion coefficient o satisfies Definition 2.3 (i)-(iii), the functional Lam-
perti transform is an homeomorphism from C([0,T],I) onto C([0,T],R).
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Proof. Let a€ C([0,T],I). Since o is bounded away from 0 on the compact set [0,T] x «([0,T7]),
standard arguments based on Lebesgue domination theorem, imply that A(«)€ C([0,T],R).
Conversely, as L(t,): I — R is an homeomorphism for every t€ [0,7], A admits an inverse defined by

vEe C([0,T],R), ATHE) = (tw> LTH(tE(1))) € C([0, T], T).
Let Ug denote the topology of the convergence on compact sets of I on C([0,T7], ).

> Uk -Continuity of A: If oy, Uk, Qoo the set K = [0,T] x |,y ([0, 7)) is a compact set included
in I. Hence o is bounded away from 0 on K so that

1
Vite [07T]7 ‘L(t7an(t)) - L(t7a00(t))’ < ‘an(t) - aoo(t)’
infgo
.€. — < — .
t.e [A(an) A(am)”sup > ianU”an 040<>”sup

> Uk -Continuity of A~1: by using Definition 2.3 (i), we have for a fixed t€ [0, T,

Vao,2' €I, |L(7§,x)—L(t,:1:’)|>l g :l@(x)_q)(;ﬂ”’
- C Az’ 1+’§‘ c

where ®(2) = sign(z)log(1 + |z|). Thus,
Yy, €R,  |®(L7 Nt y) — (L7 (ty)| < Cly—v].
Let (£,)n>1 be a sequence of functions of D([0,7],R) such that &, n_)—[f:oo €€ C([0,T],R). Then, for
every t€ [0,T] and n > 1,
[ (L7t (1) — ®(LTH(2,0))] < Clén()] < C (la(t) — &Il + [I€]) + [@(x0)] < €

since L71(¢,0) = zp. Consequently, for every t € [0,T] and every n > 1, L7(t,&,(t) € K' =
&~ H([~C",C")). Theset K’ is compact (because the function ® is continuous and proper (limy ;o [®(2)] =
+00)). Asinfgs @ > 0, we deduce that there exists g > 0 such that

Vo,ye I, |®(x) — (y)| > nolz — yl,

i.e.
Vte [0,T], Yu,ve L(t,I), ‘L_l(t,u) - L_l(t,v)| <C"lu—v|, C">0.

Hence, one concludes that
IA™(€n) = A7 (€0) lsup < C[I€n —Eoo)llsup- u

B.2.3 Opposite monotony principle for diffusion

Theorem B.2. Assume that the real-valued diffusion process (B.27) is admissible (see Defintion 2.53).
Let F,G : D([0,T],R) — R be two C-continuous functionals, satisfying (2.13), with opposite monotony.
Then

Cov (F((X0eor) G((X)egory) ) <0
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Remark. In the homogeneous case (see (B.33)), as L is increasing,

. . . / . .
5 is nondecreasing iff g — % is nondecreasing.

If b,0’ € D(I), this condition is equivalent to

b\’ o
Z) >
(2) =3

Before passing to the proof, we state few lemmas: one is a key step to transfer opposite monotony
from the Euler scheme to the diffusion process, the other aims at transferring uniqueness property for
weak solutions.

Lemma B.1. For every a€ D([0,T],R), set

n—1
o = "ot g, )+ Mgy, n>1, (B.36)
k=0
with t7} = %, k=0,...,n. Then o™ Yy o asn — oo,
If F: D([0,T],R) — R is C-continuous and nondecreasing (resp. non-increasing), then the unique
function F, : R"*' — R satisfying F(a(™) = Fo(a(ty), k =0,...,n) is continuous and nondecreas-

ing (resp. mon-increasing) in each of its variables. Furthermore, if F satisfies a polynomial growth
assumption of the form
Vae D([0,T,R), [|F()| < C(+ [lallsy)

sup

then, for everyn > 1,
F,(xo,...,x < 14+ max |z|"
| n( 05 ) n)| > O( 0<k<n| k| )

with the same real constant C > 0.

Lemma B.2. Let (S,d), (T,9) be two Polish spaces and let ® : S — T be a continuous injective
function. Let u and i’ be two probability measures on (S, Bor(S)). If po® ' = p/ o ®~ 1, then p = 1.

Proof of Lemma B.2. For every Borel set A of S, u(A) = sup{u(K), K C A, K compact}. Let
A€ Bor(S) such that u(A) # p/(A). Then there exists a compact set K of A such that u(K) # 1/ (K).
But ®(K) is a compact set of S because ® is continuous, so ®~1 (®(K)) is a Borel set of S which
contains K. As ® is injective, ®~! (®(K)) = K. Therefore p (2 (®(K))) # p/ (271 (®(K))). We
deduce that pro®1 %4 1/ o ®1. O

Proof of Theorem B.2. First we consider the Lamperti transform (Y;);>0 (see (B.30)) of the
diffusion X solution to (B.28) with X¢ = z¢ € I. Using the homeomorphism property of A and calling
upon the above Lemma B.2 with A~! and A, we see that existence and uniqueness assumptions on
Equation (B.28) can be transferred to (B.32) since A is a one-to-one mapping between the solutions
of these two SDE’s.

Then we introduce the stepwise constant (Brownian) Euler scheme Y™ = (Yk_:r) 0<E<n

(defined by (B.29)) of Y = (Yi)¢>0. It is clear by induction on k that there exists for every
€ {1,...,n} a function Oy, : R¥*! — R such that

with step

T
k

}_/;f}’; = Gk(y07 AWt’fa vy AWtZ)

30



where for (yo, 21, ..., 2;) € RFFL,

T
Or(Yo, 21, - -+, 2k) = Or—1(Y0, 21, - - - s 2k—1) + B(tr_1, Or—1(y0, 21, - - - azk—l))g + 2.

Thus for every i€ {1,...,k}, z; = Ok(yo,21,---,2i,-..,2) is nondecreasing because  is nondecreas-
ing. We deduce that if F}, : R**! — R is nondecreasing in each variables, then, for every i€ {1,...,k},
zi = Fy (Y0,01(yo,21)s - -, On(Y0, 21, - - -, 2n)) 1s nondecreasing.

By the same reasoning, we deduce that for G, : R"*! — R, non-increasing in each variables, we have
for every i€ {1,...,k},

zi — Gpn (Y0,01(y0,21), - -+, On(Y0, 21, - - -, 2n)) 1S non-increasing.

Let F, and G,, be the functions defined on R"*! associated to F' and G respectively by Lemma B.1.
As ( has linear growth, Y and its Euler scheme have polynomial moments at any order p > 0. Then
we can apply Proposition B.2 to deduce that

. [Fn <<Y’f>ogk§n> o «Ylf)ogkg”ﬂ

E [Fn <<Y";—T>ogkgn>] E [Gn ((Y%T)O%n)] _E[F (Y] E[G ()]

Note that if F' and G are C-continuous with polynomial growth, then F'G too. We derive from
Theorem B.1 that

E[FG(Y")]

IN

E[FG(Y")] — EFGY), E[F(Y")] — EF(Y), E[G(Y")] — EG(Y),

n—oo n—oo n—o0

therefore

Cov (F(Y),G(Y)) <0.

To conclude the proof, we need to go back to the process X by using the inverse Lamperti transform.
Indeed, for every t€ [0,T], X; = L™1(t,Y};), where Y satisfies (B.32). Let F : D([0,T],R) — R. Set

Vae C([0,T],R), F(a):=F ((L_l(t, at))E[QT]) .

Assume first that F and G are bounded. The functional F' is C-continuous owing to Proposition B.4,
nondecreasing (resp. non-increasing) since L~ (t,.) is for every t € [0, T] and is bounded. Consequently,

Cov (F(X),G(X)) = Cov (ﬁ(Y), é(Y)) <0.

To conclude one may approximate in a robust way with respect to the constraints on the functionals,
F and G by a canonical truncation procedure, say

Fyy = max ((—M),min (F,M)), MeN.

If F and G have polynomial growth, it is clear that Cov (Fy(X), G (X)) — Cov (F(X),G(X)) as
M — oo. (]

Examples of admissible diffusions. e The Bachelier model: This simply means that X; = ut+ocW,
o > 0, clearly fulfills the assumptions of Theorem B.2.
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e The Black-Scholes model: The diffusion process X is a geometric Brownian motion, solution to
the SDE
dXy = rXedt + 90X dWy, Xg=z9 > 0,
where r € R and 9 > 0 are real numbers. The geometric Brownian motion lives in the open interval
I =(0,+00) and B(y) = % — 3 is constant. One checks that L(z) = L log (%) where z; € (0, +00) is
fixed.

o The Hull-White model: It is an elementary improvement of the Black-Scholes model where
¥ :[0,T] — (0,400) is a deterministic positive function i.e. the diffusion process X is a geometric
Brownian motion solution the SDE

dX; = rXdt + 79(t)Xtth, Xog=x9 > 0.
Then, elementary stochastic calculus shows that

rt— %fot 192(s)ds+B-65

rt—3 [F92(s)ds+[] 9(s)dWs _ Toe f

Xt = z0€ 92 (s)ds

where (B,,),>0 is a standard Brownian motion (the second equality follows form the Dambins-Dubins-
Schwarz theorem).

_ : © 92
Consequently X; = gp(t, Bf(;s 792(s)ds) where the functional & — (t > go(t,&(/o 9 (8)d8))> defined
on D([0,Ty],R), Ty = fOT V2(t)dt, is C-continuous on C([0,Ty],R). Hence for any C-continuous R-
functional on D([0,T],R), the R-valued functional F defined by F(¢§) = F(cp (t,g(/' 792(3)ds>>) is
0
C-continuous on D([0, Ty],R). Then, on can transfer the opposite monotony property form B to X.

e Local volatility model (elliptic case): More generally, it applies still with I = (0,+00) to some
usual extensions like the models with local volatility

dX; = rXudt + 19(Xt)Xtth, Xog=x9 >0,

where ¥ : R — (g, +00), ¥g > 0, is a bounded, non-increasing, twice differentiable function satisfying

x — x¥(x) is concave, |9 (z)| < 1Jcrx and [ (z)| < H%g, z€ (0,400).

Note that the family of functions defined for every x € (0,400) by

a
Do.m0.a.0(€) = Vo + G >0 ac (0,1)
satisfy the above assumptions.

In this case I = (0, +00) and, z1 € I being fixed, one has for every x € I,

L@ =] &g

which clearly defines an increasing homeomorphism from I onto R since 9is bounded. Then § = 5 oL™!
with

—_

~ T

5(@:%—5

where I(g ;o) denotes the identity function in (0, +00).As a consequence

(T(0,400) x 9)'(@)

1
~(I(0,400) X ¥)" is nondecreasing on (0, +00).

B is nondecreasing on R iff % — 3
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Now 1 non-increasing implies that § is nondecreasing and (g ) x ¥ being concave, (I(g o0) % )" < 0.
Finally , under the above assumptions, 3 is nondecreasing.
Furthermore, one easily derives from the explicit form (B.34) and the condition (B.35) that 8 has
linear growth as soon as the function
¥ 209" (z)

x = re—(z) + 5

3 + 299 (x) is bounded on (0, 00)

which easily follows from the assumptions made on .

Extension to other classes of diffusions and models. This general approach does not embody
all situations: thus the true CEV model does not fulfill the above assumptions. The CEV model is a
diffusion process X following the SDE

dX; = rXudt + 0Xf{th, Xg = x,

where ¥ > 0 and 0 < o < 1 are real numbers.
So this CEV model, for which I = (0, +00), does not fulfill Definition 2.3 (i7i). As a consequence
L(t,I) # R is an open interval (depending on the choice of x1. To be precise, if 21 € (0, 400) is fixed,

1

Mo =50

(z'7* —217%), € (0,400)

so that, if we set
-«

Ty, = L(I) = (- h

L defines an homeomorphism from I = (0, 4o00) onto Jy,. Finally the function 3 defined by

+00),

T

Bly) = 5 (01 = a)y +217%)

w1
2 (01 —a)y+a;7*)

yE Jgy

is nondecreasing with linear growth at +oc. Now, tracing the lines of the above proof, in particular
establishing weak existence and uniqueness of the solution of the EDS (B.28) in that setting, leads to
the same positive conclusion concerning the covariance inequalities for co-monotonic or anti-monotonic
functionals.
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