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SUMMARY
We analyse 13 3-D numerical time-domain explicit schemes for modelling seismic wav
propagation and earthquake motion for their behaviour with a varliweave to S-wave
speed ratio \{(p/Vs). The second-order schemes include three nite-difference, three nite- S
element and one discontinuous-Galerkin schemes. The fourth-order schemes include th@e
nite-difference and two spectral-element schemes. All schemes are second-order in tlmé
We assume a uniform cubic grid/mesh and present all schemes in a uni ed form. We assunae
planeS-wave propagation in an unbounded homogeneous isotropic elastic medium. We de n@
relative local errors of the schemes in amplitude and the vector difference in one time step amd
normalize them for a unit time. We also de ne the equivalent spatial sampling ratio as a ra'ug;
at which the maximum relative error is equal to the reference maximum error. We present
results of the extensive numerical analysis.

We theoretically (i) show how a numerical scheme seedthadS waves if theVp/Vs
ratio increases, (ii) show the structure of the errors in amplitude and the vector difference g@
(iii) compare the schemes in terms of the truncation errors of the discrete approxmanon@
the second mixed and non-mixed spatial derivatives.

We nd that four of the tested schemes have errors in amplitude almost mdependent&n
the Vp/Vs ratio.

The homogeneity of the approximations to the second mixed and non-mixed spaﬂﬂ
derivatives in terms of the coef cients of the leading terms of their truncation errors as wi
as the absolute values of the coef cients are key factors for the behaviour of the schemes
increasingvp/Vs ratio.

The dependence of the errors in the vector difference onvii¥s ratio should be
accounted for by a proper (suf ciently dense) spatial sampling.
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Key words Numerical approximations and analysis; Computational seismology; Theoretica
seismology.

1 INTRODUCTION

When numerically modelling seismic wave propagation and earthquake ground motion in a local or regional scale, we often consider a nite
volume of the Earth. Typically, the volume has a shape of a cuboid (arectangular parallelepiped) with the top face representing a at free surface
and other faces representing transparent boundaries or planes of symmetry. In a more realistic case, the free Earth’s surface has a non-plan
topography. The medium inside is often considered a heterogeneous isotropic viscoelastic continuum. If we cover the computational domain
by a space—time grid of points or elements, then the overall accuracy of the numerical modelling for the given space—time discretization and
source—receiver con guration may depend on some or all of the following factors:
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(1) accuracy in

(i) a homogeneous mediumgs—P-wave toS-wave speed ratio)

(ii) a smoothly spatially varying medium (spatial variability of material parameters)
(2) accuracy at

(i) a material interface (geometry, continuity of displacement and traction)

(ii) afree surface (geometry, zero traction)
(3) accuracy of

(i) a grid boundary (transparency or symmetry)

(ii) simulation of source (location, mechanism, time function)

(i) incorporation of attenuation (frequency dependence, spatial variability)

Articles presenting numerical methods or schemes usually include and some of them focus rst of all on the stability and grid dispersion
in an unbounded homogeneous medium. This is fundamental and necessary. Not all articles suf ciently address the other factors determinirEg
the overall accuracy of the numerical modelling. Surprisingly enough, the least attention has been paid to the accuracy with respect to the
Vp/Vs ratio. 2

Atthe same time, in surface sediments, and mainly in sedimentary basins and valleys, Mg Vati® often as large as ve or more (e.g.
larger than 10 in the unconsolidated lake sediments in Ciudadékichl). Recent numerical-modelling exercises focused on the deep Alpine
sediment valley beneath Grenoble, France and the sedimentary Mygdonian Basin near Thessaloniki, Greece (e.et &haguba,b;
Moczoet al. 2010a), also con rm the necessity to account for lavigl/s ratios with suf cient accuracy.

Moczoet al. (2010b) investigated accuracy of four nite-difference (FD) and three nite-element (FE) schemes with respebbithe
ratio. Their investigation was restricted to the basic second-order 2-D schemes. They aimed to identify and select the very basic inhere
aspects of the schemes responsible for their behaviour with respect to the vegiMagratio, and to compare different schemes at the
most fundamental level. They indicated that consistency in approximating rst spatial derivatives and, consequently, the second mixed an

2k//:sdny wou) papeoy

JRuspe

non-mixed spatial derivatives appears to be the key factor for the behaviour of a scheme with respagt/istiagio. 2
Moczoet al. (2010b) introduced the problem of the accuracy with respect t&/#hés ratio in suf cient extent and detail. Therefore, g
we do not repeat here the extensive introduction and rather refer readers to the latter paper. 3
In this paper, we focus on investigating the accuracy of 3-D time-domain explicit numerical schemes of second-order in time and second=:

and fourth-order in space with respect to W¢Vs ratio in an unbounded homogeneous medium. We include schemes based on the FD, FE,
spectral-element (SE) and discontinuous-Galerkin (DG) methods.

We present all the investigated schemes in a uni ed form and de ne (full) local errors in one time integration step. Because different §
schemes use different time steps (according to appropriate stability conditions), we normalize the errors with respect to time. Consequentl§
we can directly compare numerically evaluated errors of different schemes. We perform extensive numerical analysis for wide ranges og
values of theVp/Vs ratio and spatial sampling ratio, and for the entire range of directions of propagation with respect to the spatial grid.
We analyse and interpret the numerical results in terms of the inherent structures of the numerical schemes. We eventually develop generfal

T/3PnE/

T9/

€l

conclusions on the accuracy of the numerical schemes with respect YeMMeratio and on the numerical ef ciency of the schemes in ‘;
practical applications. ?)
5
2 EQUATIONS OF MOTION FOR A HOMOGENEOUS MEDIUM ¢
7]
Consider a Cartesian coordinate systermmy( z) and an unbounded homogeneous perfectly elastic isotropic medium destote density, a
andu Lameé elastic moduli, = [( + 2u)/ ]¥2and = (W )¥? P-wave andS-wave speeds (i.&/ andVs). Let displacement components s
ui ;i {x,y, z} and stress-tensor componenis; i, j { X, Yy, z} be functions of the spatial coordinates and timBenote E
=}
.= {u, u}, i {xy, {t.x,y.2. (6 R
c
We will consider two strong forms of the equation of motion without the body force term. The displacement-stress (DS) formulation of the 3
equation of motion is S
N
Uxtt = xxx ¥ xyy T xzz
Uyt = yyyt yzzt yxx
uz,tt = 77z + ZX,X + zy,y (2)

xx = ( F2WUxx+ Uyy+ Uy,
yw=( +2WUyy+ Uzz+ Uyy
22= (+ 2WUzz+ Uyx+ Uyy
xy = M (Uxy + Uyx)
yz= H(Uyz+ Uzy)

2x = M (Ugx t Ux). (3
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The displacement (D) formulation is
Uxee = (+ 2U)Uxxx+ (Uyyx + Uzz + K (Uxyy + Uyxy + Uzxz + Uy z2)
Uy,tt = ( + 2“)uy,yy+ (uz,zy+ Ux,xy)+ ¥ (Uy,zz+ uZ,yZ+ Ux,yx + uy,XX)
Uzt = ( + 2W)Uzzz+  (Uxxz+ Uyyz) + B (Uzxx + Uxzx + Uyzy+ Uzyy). (4)

Eqgs (4) can be written as

Uxtt = 2(ux,xx + Uy yx + Uzzx) + 2 (Ux,yy S Uy,yx T Ux zz S Uz, 2x)
Uyt = 2(uy,yy + Ugzzyt+ Uxxy) + 2 (Uy,zzé Uz,zy + Uy xx S Uy, xy)
Uzt = 2(Ugzzt+ Uyxyz + Uy,yz) + 2 (Uzxx S Uxxz + Uzyy S Uy,y2)- (5)

The weak form of the equation of motion (e.g. Zienkiewicz & Taylor 1989; Hughes 2000; Mxi02007a) is

w( ui,g)d + wy «d S whid =0, (6)
N

where is a volume of a medium with boundary h; is a prescribed traction on part, of boundary and the equations have to be satis ed
for all possible choices of weight functioms

3 NUMERICAL SCHEMES

//:sdny wouy papeojumoq

Several numerical methods can be used to solve the strong-form and weak-form equations of motion. The analysis élyall@2b0b)
was restricted to the basic 2-D second-order FD and FE schemes. Here, we investigate 13 3-D time-domain numerical schemes of s%:ond
and fourth-order in space based on four important numerical methods—FD, FE, DG and SE methods. We use three uniform spatial grids in
the FD schemes—conventional, partly-staggered and staggered (Fig. 1a). The other schemes are constructed on the mesh of uniforngcubi
elements. The elements considered for the FE and SE schemes are illustrated in Figs 1(b) and (c), respectively. All schemes are expli@t anc
second-order accurate in time. The choice of the explicit schemes well re ects the fact that the explicit schemes are strongly dominantin récent
numerical modelling of seismic wave propagation and earthquake ground motion. The same is true about the second-order accuracy irgime.
The powerful and sophisticated ADER-DG method (Arbitrary high-order DERivative Discontinuous Galerkin, for details see Section 353)
makes a signi cant exception. We do not include possible ADER-DG of higher order because so far they have been developed for tetrahgdral
grids, and the higher order in time would have no comparison among the other schemes.

Given the variety of methods, grids, approximation orders and integrations in elements, we have to introduce easy-to-follow acron:
to be used throughout the paper.

An acronym of each investigated scheme starts with two letters indicating a method. FD stands for the nite-difference method. Similagly,
FE, DG or SE indicate the nite-element, discontinuous-Galerkin or spectral-element method, respectively.

The FD schemes differ from each other by the equation formulation, grid and order of approximation. D indicates the displacenfg‘nt
formulation, DS the displacement-stress formulation. CG indicates conventional grid, PSG partly-staggered grid, and SG staggered gﬁd. 2
or 4 indicates the second- or fourth-order approximation in space. The lower-case ‘a’ or ‘b’ indicates one of two variants of the fourth-o@er
approximation. The acronyms of the six considered schemes are FD D CG 2, FD DS PSG 2, FDDS SG 2, FDD CG 4a, FD D CG 4band
FD DS SG 4. ¢

All three of the FE schemes considered solve the weak-form of the equation of motion on the mesh of uniform cubic elements @nd
are second-order accurate in space. The schemes differ in the integration applied within an element. Consequently, the method ind
followed by the indicator of the integration. L8, G1 or G8 indicates Lobatto 8-point, Gauss 1-point or Gauss 8-point integration, respec
The acronyms of the three considered schemes are FE L8, FE G1 and FE G8.

In the case of the DG schemes, we explicitly indicate the polynomial degree of the basis functions, PO or P1, and the centred u

9T/EYLBT/P
E

T9/

to clearly distinguish the schemes from a large variety of possible DG schemes. The acronyms are DG PO CF and DG P1 CF. ‘g
The order of approximation is explicitly indicated for two SE schemes. Indicators cn and vn then distinguish the central node and veftex
node. The acronyms are SE 4 cn and SE 4 vn. S

The acronyms and essential characteristics of all 13 considered numerical schemes are given in Fig. 2.

3.1 The bnite-difference schemes

Reviews of the FD schemes on the conventional, partly-staggered and staggered grids, including original references, can be found, for
example, in extensive texts by Mocebal. (2007a,b).

311 FDDCG2,FDDCG 4a, FDD CG 4b

FD D CG 2, the second-order FD scheme solving the strong-form equation of motion for displacement on the conventional grid, is obtained if
derivatives in egs (5) are replaced using standard second-order centred FD formulae approximating second non-mixed and mixed derivatives

¢ 2011 The AuthorsGJI, 187, 1645-1667
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Figure 1. (a) Spatial grids for the FD schemes considered in this study. Left-hand panel: conventional grid-—all displacement components are located at eacﬁ
grid point (position). Centre panel: partly-staggered grid—all displacement components share the same grid points whereas all stress-tensor components sh@re
other grid points. Right-hand panel: staggered grid—each of the quantities has its own grid position except the normal stress-tensor comipgnams sha -
grid position. (b) The cubic element used for the FE schemes. The nodal points are represented by empty circles. The integration points used in the Gauss
8-point, Gauss 1-point and Lobatto 8-point integrations are represented by crosses. The integration points in the Gauss 8-point integragitice afe v
a centred cube with the edge equal td 2 3. The positions of the other integration points are obvious. (c) The cubic element used for the SE schemes. The
nodal points are also the integration points. The vertex and central nodes are explicitly indicated by empty circles. For the positions of titsnwdakjer
to Chaljubet al. (2007).

On the conventional grid, we can nd several fourth-order approximations to the second non-mixed and mixed spatial derivatives.
Therefore, we include two different approximations to the second non-mixed and mixed spatial derivatives and, thus, two different schemes.
Based on the indication found by Mocat al. (2010b), we constructed one scheme with the minimum possible equal coef cients of the
leading terms of the truncation errors for the mixed and non-mixed derivatives—FD D CG 4a. The other scheme, FD D CG 4b, has the
minimum possible spatial stencil and a relatively large difference between values of coef cients of the leading terms of the truncation errors.
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Figure 1. (Continued)

3.1.2 FDDS SG 2, FD DS SG 4

T9/SY9T/€/.8T/a10nue/1lB/woo dnoolwspede//:sdny wolj papeojumoq

FD DS SG 2 is obtained in the following way: The second time derivatives in eqs (2) are replaced using the standard second-order centre:g FD
formula approximating the second derivative. The rst spatial derivatives of the stress-tensor components in egs (2) are replaced using the
standard second-order centred FD formula approximating the rst derivative. Then, all discrete stress-tensor components on the right-ﬁand
side (r.h.s.) of the obtained schemes are replaced by their FD approximations. The approximations are obtained from egs (3), in which thg rst
derivatives are replaced using the standard second-order centred FD formula approximating the rst derivative. In the resulting nal schéme
only displacement components appear. This is important to note, given the fact that the scheme solves the DS formulation of the equat@n of
motion on the staggered grid. Note that this type of scheme is also called the parsimonious scheme.

FD DS SG 4 is obtained in the same way except that fourth-order FD approximations are used to replace the rst spatial derivati
the stress-tensor and displacement components.

[
c
>
D
N

3.1.3 FD DS PSG 2

For comparison with FD D CG 2 and FD DS SG 2, we also include the second-order scheme solving the DS formulation of the equd)i?on
of motion on the partly-staggered grid. The scheme is obtained in the same way as FD S SG 2 except that the FD approximations are more
complicated. The complication is due to the fact that the stress-tensor components are displaced from the displacement components by ¢
half-grid spacing in all three Cartesian directions (see Fig. 1). For example, in approximatixgehigative of the stress-tensor component

at a grid position of the displacement component, the required values of the stress-tensor components are obtained as arithmetic averages ¢
the values at four stress-tensor component grid positions in the correspgrzelynigl planes.

We do not include the velocity—stress (VS) staggered grid schemes. They differ from the FD DS SG schemes only in approximating
time derivatives. They approximate second spatial derivatives of the particle-velocity components (in the resulting nal schemes) in the same
way as the FD DS SG schemes approximate the second spatial derivatives of the displacement componergs aM{®2b0b) showed
that the difference between the behaviours of the corresponding 2-D schemes with respeésfdshatio due to different time derivatives
is negligible. Conclusions for the FD VS SG schemes related to the approximations to the spatial derivatives are the same as those for the FD
DS SG schemes.

¢ 2011 The AuthorsGJI, 187, 1645-1667
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3D numerical schemes
method Equanﬂ.n grid add. specif. order
formulation
FDD CG 2 displacement conventional
Z displacement- artly-
difference stress staggered
displacement-
FD DS 5G 2 : staggered
stress
FE L8 Lobatto
8-point integr.
finite-
FE Gl = displacement conventional _Gau_ss 2 )
element 1-point integr. g
>
T =3
FE G8 Gauss o
8-point integr. 3
o
polynomial 3
DG PO CF order zero, 3
discontinuous- : centred flux 2
. displacement conventional - S
Galerkin polynomial 2
DG Pl CF order one, 2
centred flux 2
1]
FD D CG 4a g
’ displacement conventional 2
DD CG 4b finite- S
difference S
displacement- 4 a
FD DS 5SG 4 staggered =
stress o
spectral- o
SE 4 cn, vn P displacement conventional GLL integr. e
element 5
N
w
Figure 2. Acronyms and essential characteristics of the investigated numerical schemes. Although the FE, DG and SE schemes are constructed on the unifo@tp
mesh of cubic elements, we use the term conventional grid also for these schemes because, effectively, all displacement components areHovaded at eac &
and stress-tensor components are not explicitly treated. ‘order’ in the rightmost column means the order of approximation in space. §
=
3.2 The Pbnite-element schemes §
(=3
<

Detailed expositions of the FE method can be found, for example, in books by Zienkiewicz & Taylor (1989), Ottosen & Petersson (1992)
Hughes (2000), Belytschiet al. (2000) and Reddy (2006). For the FE modelling of seismic wave propagation see, for examplegBaélak
(2003), Ma & Liu (2006), Moczet al. (2007a) and Galist al. (2008).

We consider a uniform mesh of cubic elements with eight nodes in vertices and with tri-linear basis functions. Given this, we can getZ)
different nal FE schemes by considering different volume integrations within an element. The standard full Gauss 8-point integration Ieadsg
to scheme FE G8. Because the mesh is uniform and medium is homogeneous, the integration is exact. The reduced 8-point Lobatto integrati@n
leads to scheme FE L8. Eventually, the application of the simplest possible reduced 1-point Gauss integration leads to scheme FE G1. All t@
three situations are illustrated in Fig. 1(b). N

In the case of the homogeneous medium, uniform FD grids with cubic cells, and mesh of cubic elements, the FE L8 scheme is exactly¥
the same as FD D CG 2, and FE G1 is exactly the same as FD DS PSG 2. Because these are important equalities, we highlight them (@r
reader’s convenience) in the explicit symbolic equations

FEL8= FDD CG2
FE G1= FD DS PSG 2. (7)

@)

- SUN

Tc0¢

3.3 The discontinuous-Galerkin scheme

The DG method (e.g. Hesthaven & Warburton 2008) is a discontinuous FE method. Contrary to the classical FE method, no continuity of
the basis functions is imposed between elements. Instead, the concept of a numerical ux, taken from the framework of the nite-volume
(FV) method (LeVeque 2002) is used for exchanging quantities (e.g. displacements) between elements. Therefore, the DG method supports
discontinuities in the seismic wave eld, and provides interesting features for dynamic rupture modelling or wave propagation modelling when
high contrasts of the medium properties have to be considered. The DG method has been applied to seismology rather recently (Dumbser &
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Kaser 2006; Kser & Dumbser 2006; Dumbset al. 2007; Kaseret al. 2007, 2008; de la Puengt al. 2007, 2008; De Basale al. 2008;

de la Puente 2008; Delcourét al. 2009). A wide range of the DG schemes can be obtained depending on the choice of the basis functions
(modal or nodal basis functions), the type of ux (upwind or centred ux) or the numerical scheme used for the time integration. Here, we
consider a nodal DG scheme with the centred ux (Etieanal. 2010) and we restrict to two of the simplest formulations. The rst scheme,

DG PO CF (PO indicating the zero polynomial of the basis functions, CF centred ux), assumes a uniform representation of wave elds inside
the elements (only one constant basis function is used). The second scheme, DG P1 CF, assumes a linear representation of the wave eld
inside the elements (via tri-linear basis functions and 8-point Gauss integration). For the homogeneous medium, uniform mesh of cubic
elements and the second-order time integration we have the following identities:

DG PO CF= FV PO CF= FEL8= FD D CG 2
DG P1 CF= FE GS8. (8

Note that in the case of the homogeneous medium, the numerical ux mimics the continuities of quantities and thus leads to direct
relation to the classical FE schemes. We may also explicitly emphasize the equivalence of DG PO CF and FV PO CF.

papeojumoq

3.4 The spectral-element schemes

The power of the SE method to numerically model seismic wave propagation is now well evident from many applications and publicatia:fhws
For details on the method, we refer to the original papers by Komatitsch & Vilotte (1998) and Komatitsch & Tromp (1999) as well as to the
comprehensive reviews by Komatitsehal. (2005) and Chaljulet al. (2007). g

The SE method is a special kind of the FE method that relies on the use of a high-order polynomial basis function. Although in the oﬁﬁer
investigated schemes, one and the same formula is applied to update a displacement-vector component at all grid positions, in the SE s@hem
it is necessary to distinguish different schemes for different nodes even in the cubic element. In this paper, we restrict to two represen%tive
nodes—the vertex node and the central node. Consequently, we distinguish two schemes—SE 4 cn for the central node and SE 4 vn @)r the
vertex node. The element with the central and vertex nodes is illustrated in Fig. 1(c). U

We may also mention the choice of the fourth order. The spectral element calculations in elastodynamics use polynomial orders betg/een
3 and 8. This range of values allows bene ting from the low level of numerical dispersion of the spectral methods (De Basabe & Sen 2@97;
Seriani & Oliveira 2008) while preventing the use of too severe CFL constraints (due to the quadratic stretching of the grid points near2the
element edges). The fourth order is, therefore, among the best choices in terms of accuracy and computational costs.

3.5 Unibed representation of the numerical schemes

All 13 numerical schemes can be represented in a uni ed form. De n&/gf¥s ratior :
r= . 9)

Throughout the text, andVp/Vs andVp, and andVs will be used interchangeably. Libtbe a grid spacing in each of the three Cartesian
directions andt be a time step. LeU™ = U™(I, K, L) be a discrete approximation o (1h, Kh, Lh,mt ) = u (X, Yk, ZL, tm);
{ X, y, z}. Each numerical scheme can be then written as (compare with egs (5))

umt = 2um S urst
+ (t )2 2 r2 Dxx U)En + Dyx U)r,‘n + sz Uzm
+ Dyy U>I<T1 S Dyx U)r/n + Dzz U>r<n S sz Uzm

- SUNO Ad €2/ T9/GV9T/E/L8T/D101,

1SI

urt = 2um S urst
+(t 7 2 12 D, UP + D, UP + Dy, U =
+ D, U" SD,, UM + D, UM SD,, U" %
umt = 2upr S urst :
+ (t )2 2 r2 Dzz Uzm + DXZ U;n + DyZ U)r/n
+ D, U" SD,, UM + D, U" SD,, U . (10)
The numerical schemes differ from each other by the difference opetatoeydD ; ,  { X, y, z} for approximating second non-mixed

and mixed spatial derivatives. Here, we explicitly presBg¢ and D, operators. The other operators can be easily obtained by the even
permutation of the Cartesian indices.

In the set of the considered 13 numerical schemes, we can recognize two types of non-mixed operators. The rst type can be expressed
as

1 -
Dux [ (I,K,L)]:ﬁ wiX IS ;KL + I+ ;,K,L . (11)
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Table 1. Grid positions for theDxy operators de ned by eq. (11).

Dscheme i
XX
i=0 i=1 =2 i=3 =4
D;I(D DCG2
DSEL8 0 1
DPXG PO CF
DfDDSSG2 0 1
Dfpbceca 0 1 2 3
D)::XD D CG 4b 0 1 2
D)::XD DS SG 4 0 1 2 3
DSE4cn 0 1217 2
v
DSE4vn 0 25 177 2 2+ 12 4 g
5
o
g
Table 2. Weight coef cients for theDyy operators de ned by eq. (11). o
576w 3
D)s(t):(heme J 3
j=0 =1 j=2 j=3 j=4 ;:’
Df)? DCG2 2
- o}
DfEL8 S576 576 S
D DG PO CF %
XX 5
DfPPSsG2  S576 576 o
DfPDCGa 3400 288 144 $32 o
~ . (@]
D/PPCG4  §720 768 548 S
DSPPSSC4 5730 783 $54 1 9:
DSE4cn $480 588 $108 S
57\ & = == =3
DSE4vn 82520 294(5+ 21) S384 29455 21) -36 o
2
Here represents a displacement component. According to eq. (11), operators of different schemes may differ from each other by the:

P9

number of the grid positions at which displacement components are used for the approximation and the weight coef cients of the considere

displacement component at those grid positions. The grid positions and weight coef cients are given in Tables 1 and 2, respectively. §
\,

The second type can be expressed as N

1 L+1 K+1 g

Dux [ (I, K, L) = "2 ?§L+2, kSK+2 D;I(DDCGZ (I, Kk 1). (12) ?)
I=LS1 k=KS1 zZ

py)

0]

The weight coef cients are given in Table 3.

Note that the grid spacinig represents the average spacing between the nodes in the SE schemes. We may emphasize that we considgf
the exact SEM schemes with no assumption of the regular grid spacing. The average gridlsjmgitrg@duced just to make it possible to )
directly compare the SE schemes with the other schemes in terms of the spatial sampling ratio. The average grid spacing thus only mea@s
how many grid points of the SEM element are used to sampl8 tevelength. §

Similarly, we can recognize two types of the mixed operators. The rst type can be expressed as N

1 N N . B (E'
Doy [ (I,K,L)]:ﬁ W,ij I+ ;,K,L+ S (I+ ;,K,LS ) i
n=1 j=1 =
- . - . (13) N
S (IS ,K,L+ )+ (IS ;,K,LS nl
The grid positions and weight coef cients are given in Tables 4 and 5, respectively.
The second type can be expressed as
1 K+1
Dix[ (I,K,L)]= = X kap DIPPCEZ (] K, L). (14)
k=KS1

The weight coef cients are given in Table 6.

3.6 Truncation errors of the discrete spatial operators

The truncation error, the difference between the discrete approximation to a derivative and the exact derivative, is an important characteristic
of accuracy of the discrete approximation. The lowest power of the argument increment (here, the gridlgpaeiagmines the order of
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Table 3. Weight coef cients for the
Dyx operators de ned by eq. (12).

Dit}:(heme XX
D.FD DS PSG 2 1 1 2 1
X — 2 4 2
DfFS 16
1 2 1
DFEGS 1 1 4 1
DDG P1CF 36 4 16 4
x 1 4 1

Table 4. Grid positions for theD,x operators de ned by eq. (13).

_ S

D;g:(heme hoon g
jyn=1 jn=2 jyn=3 j,n=4 3

o

DFDDCG?2 %
DFELS 1 g
DG POCF =4
DfDDSSG 2 12 '_g\_
DZFXD DCG 4 1 2 é\)
DD D CG 4b 1 2 o
DFD DS SG 4 12 3/2 g
D ZSXE 4cn 177 2 g
DSE4wn 28 121 2 2+ 1277 4 3
&

accuracy of the discrete approximation. The coef cients of terms in the truncation error are also important. Table (A1) of the Appendix giyze
the leading and rst higher terms of the truncation errors of all operators de ned by eqgs (11)—(14). We will discuss the truncation errors2in
the analysis and interpretation of the numerical results. e

4 LOCAL ERROR OF THE NUMERICAL SCHEMES

4.1 Concept of the local error

To evaluate accuracy of the numerical schemes, we de ne a local error of a numerical scheme. First, we can symbolically express all sc
in a uni ed form

U™ (1, K, L) = numericalschemgU ™!, U™}, (15)

mes

LS| - SUNDRU vEZLT/SPIT/E/L8T

or, equivalently,
U (I,K,L, t+ t )= numericalscheme{U (t S t ), U (t)}. (16)

Here, {x,y,zZ}andU(tS t )andU(t) represent displacement components at relevant grid positions arbugdl() at timest S t
andt, respectively. De ne a numerical solution in one time step as

(&
UN(I, K, L, t+ t )= numericalschemgUE (S t ), UE(t)}, 7 %
where the upper index N indicates the numerical solution and the upper index E indicates an exact value. Thus, if we know the exact valﬁe of
displacement at any time, we can de ne and calculate a relative local error in amplitude as -
rel _ Lt 2 ANS AF 1)
ampl — t AE .

Here, AN is the amplitude of the numerical solution (modulus of the displacement vector) in one time st@piartide exact amplitude—both
evaluated at tim¢ + t . Because different numerical schemes use different time dtepse have to normalize the error for a unit time.
Because the time derivative is approximated by the second-order FD formula, we have to normalize with the sfuaraeflivision of
the relative error by ( t)2, however, arti cially increases the value of the error. This can be compensated, for example, by multiplication by
some time step value taken as a reference. We specify this later.

In their analysis of the 2-D second-order FD and FE schemes, Metcab (2010b) also de ned the relative error in the direction of
the displacement vector (or error in polarization or angle). The 3-D problem involves three displacement-vector components and two angles.
This considerably complicates the quanti cation of the polarization error and direct comparison of their values with the values of the error
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Table 5. Weight coef cients for theD,x operators de ned by eq. (13).

Dscheme wZX
zX
DZFXD DCG2 .
DFELS :
DszG PO CF
DzFxD DS SG 2 1
D FDDCG 4 i 256 §32
= 576  §32 4
D FD D CG 4b i 240 S24
= 576 524 0
D FD DS SG 4 i 729 S27
= 576 327 1
DSEden 1 343 321 21
= 768 321 21 27
343(5+ 21) S112(7+ 21) 686 S$21(7+ 21)
DSE4wn 1 S112(7+ 21) 512 S112(7S 21) 96
“ 1152 686 $112(78 21)  343(55 21) 32178 20)
S21(7+ 21) 96 S21(7S 21) 18

Table 6. Weight coef cients for
the D,x operators de ned by

eq. (14).
D%:(heme zZX
D FD DS PSG 2
ZX
S 2 1]
DFEGI 4
SN TE RV
Dzx 6

in amplitude. Therefore, instead of de ning errors analogous to the error used by Moeta2010b), we de ne the error in the vector
difference as

trer ° 1 = 2 = 2 = 2 12
Rel _— re N E N E N E
it = " A UsSUy "+ USSUs "+ U S U, . (19)
This absolute value of the vector difference between the numerically calculated displacement vector and the exact displacement vector
comprises both errors in amplitude and polarization in one reasonable value. This value can be directly compared with the error in amplitude

AQ #£2/T9/S¥9T/€/.8T/31910e/1IB/Wwo2 dno o1wapeoe//:sdiy woil papeojumod

SHNO

S

4.2 Note on the local error and grid dispersion

TZ Uo J1asn O

It is clear that the local error in amplitude, as de ned by eq. (18), quanti es, how the exact amplitude changes in one time step due totE
inaccuracy of a numerical scheme.

In an analysis of stability the problem is different: one investigates condition for propagation of a harmonic plane wave by a numerical 3
scheme in a discrete grid in a stable manner. For example, Metcalo(2000) investigated condition for propagation of a plane harmonic =
wave with a constant amplitude by the fourth-order DS staggered grid FD scheme. They obtained the standard stability condition and the
grid-dispersion relation. The price for propagating the harmonic plane wave with the constant amplitude in a discrete grid is a grid velocity
that differs from the true velocity, and the difference depends on the size of the grid spacing.

ou

4.3 The exact solution-Ba harmonic plane S wave in an unbounded homogeneous medium

It is reasonable to consider a harmonic pl&wave propagating in an unbounded homogeneous elastic isotropic medium as the exact
solution in de nitions of the local errors. We will consider a harmonic pl&eave polarized in a vertical plane determined by zkexis
and wavenumber vectér The displacement components are

u(xyzt; ;, )= AEEEYE? {x,y,2}, (20)
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i

Figure 3. Cartesian coordinate system, angleand for de ning a direction of propagation, displacement vector and displacement components of the plan
Swave.

where

Et= exp[Si t]

EX = exp[ik«X] EY = exp ikyy EZ = explik,Z]
ke = k cos sin ky = k sin sin k, = k cos

Ay = A cos cos Ay = A sin cos A, =S A sin
k=/, 0 , 0 2, (21)

is the angular frequencl,= | k| is the wavenumber, is the angle between the positizeaxis and the wavenumber vecto(the direction
of propagation), is the angle between the positiveaxis and the vertical plane determined by thaxis and wavenumber vecthi(Fig. 3).
Note thati in the arguments of the exponential function denotes the imaginary unit throughout the entire text. Othemwillibe, used to
indicate a Cartesian component of the displacement vector or spatial coordinate.
It is known from the numerical experience that modelling ofRheave poses a minor problem compared to the modelling dbthave
if the modelling comprises both waves. Later, we explain why it is so.

4.4 Evaluation of the exact and numerical values of displacement in a grid

Leth and be the grid spacing and wavelength, respectively. The spatial sampling ratite ned as

LSI - SUND Aq €2/ T9/579T/€/.8T/819n1e/1B/wod dno olwspede//:sdny woly papeojuRoq

s=h . (22)
Then
k= =2 s h, (23)
ksh=2 scos sin, kh=2 ssin sin, kh=2 scos, (24)

=2s h (25)
Considering the stability condition for any of the numerical schemes in the form
t (h,, ) (26) .
and the stability ratiq %
p=t ., p 1 (27) S
the time step can be expressed as a
t=p (h, ). (28)

(Note that the stability parameter sometimes is de negpas t / h.)
Without loss of generality, consider for simplicity

xx=0, y=0, z=0, ty,=0. (29)
Then the errors are evaluated at

xx=0, yw=0, z=0, tw=1. (30)
The real exact displacement at this space—time grid position is [see eqgs (20) and (21)]

Re u (0,0,0, t) = Acos t (31)
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Table 7. Quantities entering the numerical schemes and formulas for the errors.

t t/h t
FDD CG 2 1 0 s
FEL8 2 ps 212 2\12 P Nz
DG PO CF (1+r9) @+ 1+
FD DS PSG 2
FE G1 1 p S
FE G8 2 psp r Py
DG P1CF
1 1 1 1 1 s
FD DS SG 2 2—§psF —épF —§pr
FD D CG 4a 1 p S
FpDcG4ab 2 OTPSEi o 0T+ r2ym 0-TP (s oy ~
FD DS SG 4 2% pst L S pS_
73 r 73T 7 3°r
1. 3 1 1. 3 p 1. 3 s
SE 4 cn, vn 20.55 ES 28 psF 0.55 ES 2% T 0.55 > 28 pr
and
E 2 2 2 12
AF= (Accos t)*+ Aycos t "+ (A,cos ) = Alcos t]. (32)
The exact values of (complex) displacements entering the r.h.s. of schemes (10) are evaluated as
U™t (I, K, L)
=u (0,00 t=St; ;,)
= A exp[+i ]
um™(, K, L)
=u (0,0,0,t=0; ;, )
= A
umi+ K+ ¢, L+ )
=u(th ,h x,h [, t=0; ;,)
= A exp[+iksh ] explrikyh «] exp[+ikh L]. (33)

The grid-index increments,;, ¢ and _ depend on a numerical scheme. Quantikigs k,h andk;h are given by eq. (24).

It is clear from schemes (10) and de nitions of the difference operators (11)—(14) that each scheme effectively includes the secon
power of quantity t / h. Quantites t, t /hand t enteringthe numerical schemes and formulae for the errors are summarized in
Table 7.

U™, Ut andu™!, evaluated atl( K, L), are obtained using schemes (10). Then

2

2 2 1/2

AY=  Re U™ “+ Re U™ "+ Re U™ (34)

T20z aunc Tz uo Jasn B1S| - SUND Ad ¥€2.T9/SY9T/E/28T/31914e/B/W09 dnodiwapede /sy Woly papeojumoq

In principle, we can take any of the time steps as the reference time stepappearing in formulae (18) and (19) for the errors. As a
reasonable choice we consider

te= t for FDDSSG4; p= 09, s= 1/6, r = 1.42. (35)

The argument for the choice is: as it will be clear from the numerical calculations, scheme FD DS SG 4 is least sensitive to increasing
Vp/Vs ratior, s = é is the most common choice for the spatial sampling ratio in the numerical modelling of earthquake motion in surface
sedimentary basins using the fourth-order staggered-grid FD schemd,.42 is taken in this article instead of the exact minimum value
r= 2.
Note that the time steps in Table 7 include facter It could be replaced b¥ but in both cases the time steps include explicitly the
Swave speed in addition to theVp/Vs ratior. Because, however, the errors (18) and (19) include rat{i'éf the explicit presence of
and is removed from the errors. Consequently, apart from the absolute quantities (angles determining the direction of propagation),
errors Sni'pl and R depend only on relative dimensionless quantities—the spatial samplingatability ratiop and theVp/Vs ratior .
c 2011 The AuthorsJI, 187, 1645-1667
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Figure 4. Relative local errors in amplitude for the plaBevaves propagating in all directions of tkeplane (angle = 0 , top panel) and in the vertical
plane of the body diagonal (angle= 45 , bottom panel). The errors are calculated for the stability nato 0.9, the spatial sampling rat&corresponding
to 12 and 6 grid spacings per wavelength in the second- and fourth-order schemes, respectively, and three valig¥ofdtier: 1.42, 5 and 10. In each
graph, the innermost circle (black thick solid) of the scale grid corresponds to the zero error.
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5 NUMERICAL RESULTS

5.1 Relative local errors in amplitude for plane S waves propagating in any direction in the xz-plane and vertical plane of
the body diagonal

Because the medium is isotropic, it is enough to look at the errors of the schemes for waves propagating in all directions in two planes-—for
example, thexzplane and the vertical plane determined by ztaxis and body diagonal.

Fig. 4 shows the relative local errors in amplitude, see de nition eq. (18), of all numerical schemes for th8 piaves as functions
of direction of propagation in thezplane (angle = 0 ; top panel) and in the vertical plane of the body diagonal (angte 45 ; bottom
panel), that is for all angles in both planes. The errors are calculated for the stability rati 0.9. The values of the spatial sampling
ratio s correspond to 12 and 6 grid spacings per wavelength in the second- and fourth-order schemes, respectively. These spatial samplings
are common in the numerical modelling of the earthquake ground motion in sedimentary basins (later, we investigate the error as a function
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of s). Recall that in the SE schemes, the grid spabtingpresents the average spacing between the nodes to directly compare the SE schemes
with the other schemes in terms of the spatial sampling ratio.

The errors were calculated for three values of WaéVs ratior: 1.42, 5 and 10. The speed ratio= 1.42 represents the minimum
possible value of th&s/Vs ratior (the exact value being 2),r = 5 is a common value in surface sediments, mainly under the water level,
andr = 10, though relatively large, certainly is not the maximum possible value in the unconsolidated surface water-saturated sediments.
Practically takent 5 often have to be accounted for in the numerical modelling of seismic motion in sedimentary basins and valleys.

The thin broken line separates the second- and fourth-order schemes. Within these two parts of the gure, the spatial arrangement of the
schemes roughly re ects sensitivity and thus inaccuracy of the schemes with respect to the Vafygratior . The least sensitive schemes
are placed on the left-hand side (l.h.s.).

The gure indicates that the staggered-grid schemes FD DS SG 2 and FD DS SG 4 are both least sensitive and most accurate in the
range of the consideréd-/Vs ratio values. Close to them is the partly-staggered-grid scheme FD DS RSEER2G1. The fourth-order
conventional-grid scheme FD D CG 4a comes out as a surprise given the well-known poor behaviour of the most classical conventional-grid
scheme FD D CG 2. An immediate notion from comparing FD D CG 4a with FD D CG 4b is that the sensitivity and accuracy with respect to ¥
theVp/Vs ratior is not dominantly linked to the order of the schemes. An important conclusion also comes from comparison of the three FE §
schemes. They differ from each other only by the integration within the element but their behaviours with respect to th&/vafyiagio
r differ considerably. The two SE schemes also appear sensitive to the incrég8ilggatior and surprisingly inaccurate f&f/Vs equal to
5and 10.

5.2 Relative local errors in the vector difference for plane S waves propagating in any direction in the xz-plane and vertical
plane of the body diagonal

JRuUspeoR//:Sdny Wolj papeo

The arrangement of Fig. 5 is the same as that of Fig. 4 but Fig. 5 shows the relative errors in the vector difference, see de nition eq. (19). Th
striking difference between Figs 4 and 5 is that for each scheme the error in the vector difference clearly depends'daréuéo r. This
difference is the most apparent with the four schemes, FD DS SG 4, FD DS SG 2, FD DSP$%E &1 and FD D CG 4a, which were
most accurate and least sensitive to the increasingerms of the relative error in amplitude. Still, however, the maximum errors of FD DS
SG 4 and FD DS SG 2 are smaller than the errors of the other schemes—as in the case of the relative errors in amplitude.

Recall that the relative local error in the vector difference comprises the errors in individual components and, thus, also the error in
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in Fig. 5 and errors in Fig. 4 is due to the polarization errors. Clearly, the polarization errors of each scheme depevig/'da o r .

5.3 Equivalent spatial sampling for the errors in amplitude and the vector difference

Because the errors shown in Figs 4 and 5 were calculated for the commonly used values of the spatial samgjnhentitave only
indicative meaning. To quantitatively compare the accuracy of the schemes with respect to Vafyingtior , we proceed as follows. We
choose a reference maximum error as the maximum relative error in amplitude of FD DS SG= i@rands = 1/6. This error is equal to
0.00112. For each individual numerical scheme, we then calculate an equivalent spatial sampkagyaisoa function of . The equivalent

spatial sampling ratis.quv is de ned as a ratio at which the maximum relative error of the scheme is equal to the reference maximum error.
The maximum relative error is determined as maximum of errors calculated for angl§®, 90] and [0, 90] with angle increment of

0.5 . We nd the equivalent spatial-sampling ratio based on the relative error in amplitude and the equivalent spatial-sampling ratio based o
the relative error in the vector difference.

Fig. 6(a) shows the 1{g.(r) curves based on the relative error in amplitude for all the investigated schemes (recad$ dhatid equal
to the number of the grid spacings per wavelength). The left-hand panel shows the curves for the stabitity r@t8) the right-hand panel
for p= 0.9. The solid lines are used for the fourth-order schemes, the dashed lines for the second-order schemes.

The curves for the two values of the stability ratio differ from each other only negligibly. Small differences can be seen only for the
lowest values of .

At rst sight, we realize that the curves are consistent with the indicative Fig. 4. FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS
PSG 2= FE G1 make one distinct group of schemes. The equivalent sampling ratios of these schemes only little depafid\rétior .

FD D CG 4b, SE 4 cn, SE 4 vn, FE GBDG P1 CF and FD D CG 2 FE L8= DG PO CF make the other distinct group of schemes
whose equivalent spatial sampling ratios considerably change with incréagwgratior. Among the schemes of the second group, we can
distinguish the subgroup of the FD D CG 4b, SE 4 cn and SE 4 vn schemes, distinctFBG&1 CF, and, nally, the worst FD D CG 2
= FE L8= DG PO CF.

Fig. 6(b) shows the 1ig.(r) curves based on the relative error in the vector difference. As indicated by Fig. Sth& Increase with
increasing for each scheme.

Fig. 6 clearly shows that, in terms of the equivalent spatial sampling, FD DS SG 4 is more accurate and more ef cient than the other
schemes for media with> 2.

Table 8 lists the 1/, values forp = 0.9 and three values of thé/Vs ratior—1.42, 5 and 10.
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Figure 5. The same as Fig. 4 but for the errors in the vector difference.

5.4 Essential summary of the numerical results
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The relative local error in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DSPBEE @1 is almost independent
on theVp/Vs ratior. However, the error in the vector difference increases with increaifigs ratio. This can be explained only by the
dependence of the polarization errors of all schemes oW#hé; ratio. The dependence of the error in the vector difference oViliés
ratio has to be accounted for by a proper spatial sampling.

FD D CG 2 =FE L8= DG PO CF is the most sensitive to increasifigVs ratio and forVp/Vs > 2 requires considerably denser spatial
sampling than any other scheme.

The maximum errors in the vector difference of schemes FD DS SG 2, FE B8 P1 CF and FD DS PSG= FE G1 increase with
the increasind/p/Vs ratio in the same way. Schemes FD DS PS& BE G1 and FE G& DG P1 CF require denser spatial sampling than
FD DS SG 2 to achieve the same accuracy.

The maximum errors in the vector difference of all fourth-order schemes increagg/¥ar> 3 in the same way. Schemes FD D CG
4a, FD D CG 4b, SE 4 cn and SE 4 vn require denser spatial sampling than FD DS SG 4 to achieve the same accuracy.

The fourth-order schemes are #@s/Vs > 3 less sensitive to increasiMg/Vs ratio than the second-order schemes.

¢ 2011 The AuthorsGJI, 187, 1645-1667
Geophysical Journal International2011 RAS



1660 P Moczoet al.

(a) equivalent spatial sampling based on the relative error in amplitude
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Figure 6. The 1/squir) curves. The equivalent spatial sampling ratigui is de ned as a ratio at which the maximum absolute value of the relative error of

the scheme is equal to the reference maximum error. The chosen reference maximum error, 0.00112, is equal to the maximum relative error in amplitude
FD DS SG 4 for thé/p/Vs ratior = 10 and spatial sampling ratéo= 1/6. The left-hand panel shows the curves for the stability ratre 0.3, the right-hand

panel forp = 0.9.

Table 8. The 1/squv values for the stability ratigp = 0.9 and reference maximum error equal to 0.00112.
Boldface indicates schemes for which thieelyiy based on the relative error in amplitude varies with\hévs
ratior only negligibly.

Vp/Vs FD DS FDD FD DS FD D SE FD DS SE FE G8= FDD
ratior SG4 CG4a SG2 CG 4b 4cn PSG 2= 4vn DG CG2=
FE G1 P1CF FEL8=
DG
PO CF
1/sequivbased on the relative error in amplitude

1.42 5.3 8.8 16.6 7.8 6.6 25.6 5.5 17.7 15.4
5 5.9 9.7 17.7 14.0 14.4 26.9 18.0 38.7 75.4
10 6.0 9.7 17.8 19.7 20.4 27.1 26.2 85.3 153.5

1/sequiv based on the relative error in the vector difference

1.42 5.3 8.8 16.6 7.8 6.6 25.6 5.5 20.4 154
5 8.1 13.1 33.3 14.0 14.4 47.5 18.0 45.6 76.3
10 115 18.7 67.3 19.8 20.5 97.5 26.2 97.0 162.1

6 ANALYSIS AND INTERPRETATION OF THE NUMERICAL RESULTS

6.1 How does the equation of motion see the S and P waves?

Recall the equation of motion (5) in the concise form

ui,tt = ZUHi + Z(Uiyl‘j é uj,ji ) (36)
TheSwave is solenoidal, that is, div= u; ; = 0. Consequently, in the case of tBevave, we have

« 1
Ujji = 0, Ui jj S Ujji = —2um. (37)
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TheP wave is irrotational, that is, ret= 0 or ;i ui; = 0, where j; is the Levi-Civita symbol. Consequently, in the case offheave it
is

1 N
Ujji = —3Uiee 5 Uiji S Uji = 0. (38)

6.2 How does a numerical scheme see the S and P waves?

A numerical scheme solving equation of motion (36) can be written in the form
DA{Ui,n} ZDA{Uj,ji}*‘ ZDA{Ui'“‘ SUj,ji }, (39)
whereD A means a discrete approximation. Eq. (39) is, in fact, a concise symbolic form of egs (10). A discrete approximation to any operator

in general can be expressed as a sum of the exact differential operator and a truncation error (for which we will useérdgnkaj. (39)
can be written as

U + TrE{ui,tt} Z(ijji + TTE{ijji})"' Z(Ui'jj S uj ji + TI’E{Ui'jj S uj ji }) (40)

sdny wouy papeojumoq

6.2.1 The case of the harmonic plane S wave

Considering the rst of eqs (37), equality,, = S 2u, and the fact that each second spatial derivative of a displacement-vector compone@
is proportional tS  2u$/ 2, eq. (40) can be rewritten as %
< S s S 28 3

1+ error!S § 2yS 2 0+eror,® =1+ ? 1+ eror, s — (41) o
5

and 8
- 3

ud  rZerror, S+ 1+ error, >Serror!S  uS, (42) &
Note that the double-index summation rule does not apply to indlexn eqs (41)—(57). g
(@]

The error terms o
2TrE uS, 2TrE uS. SuS, &

s_ J.ji S_ i i i N
error, 5= —— U error, °= . (43) )
' S 2up ' S 2u? 5

do not depend on. The error termerror! S does depend on @
[«2)

TrE ud 1 1 5

tS — it _ ]
eITOI’I - W - Clﬁ + (:er4 + ... (44) §
. o . L =3
Coefcientsg ; | = 1,2,...do not depend on. Note that the series in powers éfls due to the second-order approximation to the second ?)
time derivative. The squares of the time step,)¢, are expressed usinré. Z
0]

6.2.2 The case of the harmonic plane P wave 4

Considering the second of eqs (38), equaljfyI = S 2uP, and the fact that each second spatial derivative of a displacement-vect
component is proportional 6 2u®/ 2, eq. (40) can be rewritten as
24P s P

. S 2
1+ error!® S 2P 2 1+emor,” =L+ 2 0+eror,"

3 (45)

and

[
c
>
D
N
o
N
[y

uf

1 -
j 1+ error, P + = ermor, PSerrort? P, (46)

Analogously to the error terms in eqs (48)ror, P anderror, P do not depend on. The dependence efror! " onr is analogous to that of
error! Sin eq. (44
i q. (44).

6.2.3 Comparison

We see the important difference between eq. (42) forSheave and eq. (46) for the wave: In the case of thg wave, termr 2error; S
increases with increasing/Vs ratior, whereas in the case of tifewave, termrizerrori P decreases with increasing/Vs ratior. This is
why a large value of th&p/Vs ratior does not pose a problem for tRevave.

Because we restrict our investigation to Bevave, in the following section, we will omit the explicit indication of tBavave in the
displacement-vector components and error terms.
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6.3 Structure of the relative errors in amplitude and vector difference

Recall eq. (39)

DA{UM[} ZDA{UHi}"' 2D/A\{ULJ‘J' S uj,ji } (47)

The investigated numerical schemes differ from each other by the approximations on the r.h.s. They share the same approximation to the
second time derivative

. & 1
DA{U«} U™ S 20"+ um™t

(t )

After substitutingD A{u; «} in eq. (47) by approximation (48), we can get the scheme for the numerical displacement component at the time

levelm+ 1 in the form

Nuim+1 = 2u{“§u{“§1+ (t )2 ZDA{Uj‘ji}"' ZDA{Ui'“‘ éUj‘ji} . (49)

Recalling the concept of the local error, egs (15)—(19), we distinguish the numerical value, labelled N, on the I.h.s., from the exact values og

the displacement components on the r.h.s. (not labelled). Subtragtihgrom both sides of eq. (49), dividing the equation kty % and

using eg. (48), we get
1

(t)y

Each of the discrete approximations on the r.h.s. can be replaced by the sum of the exact operator and truncation error. Then

(48)

NUim+1 IS Uim+1 =3 DA{UiYn}"' ZDA{Uj'ji}"‘ 2DA{ Ui, jj IS Uj,ji } (50)

N 1 & 1 - & &
Uim+ Sui’“" =S Uy + ZUj'ji + Z(Ui'jj Sijji)

(t)
S TrE{Uin}+ 2TrE{u;;i}+ 2TrE{u ;; Su;;i} (51)
The sum of the rst three terms on the r.h.s. is equal to zero, see eq. (36), and thus
Nym™t § ymt T 7 =S TrE{uw}+ *TrE{u;;i}+ 2TrE{uj; Suj;} (52)
Considering egs (43) and (44), the case of the harmonic [Savee,
Nymt § gt (t1)2 = error!SSr2error,SSerror, °  2u;. (53)
Referring to de nition (19) of the error in the vector difference and eq. (32), we can consider an auxiliary error-component term
. B Nu:'n+1 é Uim+l 1
i, vdiff = AE (t y
= error!® S r2error, 8 S error; ° _ (54)

|Acos t|
Referring now to de nition (18) of the error in amplitude and eq. (32), we can rearrange eg. (54) and consider an auxiliary error-component;

term

Nu:TH-l 1

i, ampl = TW

T20Z dunC TZ U0 Jasn O1SI - SUND Aq ¥€2/T9/G9T/€/.8T/3191Me/1B/wo2 dnodlwapese//:sdny woly papeojumo

. . s 2y, umt 1
= error!SSr2error, S S error, + ' : (55)
|[Acos t| |Acos t|(t )?
Accounting for egs (20) and (21), we have
u™ = (t+ t )= explSi ] u(t). (56)
Consequently,
. _ Ngm™tooq
i, ampl — T W
. - exp[Si t 2u;
= error!SS r2error, 5 S error, °+ PL ] —. (57)
( 1?2 |[Acos |
The errors in the vector difference (19) and amplitude (18) can be then written as
~ ~ ~ 1/2
e = (1 rer)? 2 vt * y2,vdiff + 72 i / (58)
and
Rel = (t ) "2 4 =2 4 =2 254 (59)
ampl ref x, ampl y, ampl z, ampl .

Although the auxiliary error-component terms eqs (54) and (57) do not quantitatively represent the entire values of the relative errors in
amplitude and the vector difference, they indicate where the difference between the error in amplitude and error in the vector difference comes
from. The r.h.s of eqgs (54) and (57) differ by the fourth term in the parenthesis in eq. (57). The absolute value of this term is proportional to
r2, see Table 7. The fact that the errors in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG2are

almost independent anis likely related to the interaction of the second and fourth terms, as they are both proportichal to
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6.4 Truncation errors of the discrete approximations to the second non-mixed and mixed spatial derivatives

It is also reasonable to look at the truncation errors of the discrete approximations to the second non-mixed and mixed spatial derivatives.
The leading and rst higher terms of the truncation errors of the second- and fourth-order operators are listed in Table Al in Appendix. Here,
we compare coef cients of these terms.

Denote the truncation errors of the operators for the mixed and non-mixed derivativeE #B,,} and T r E{ Dy}, respectively. De ne
ratios for each scheme
coeff. of the leading term off r E {Dzx}
coeff. of the leading term off r E {Dxx}
coeff. of the k-th higher term off rE {Dzx}
coeff. of the k-th higher term off rE{Dxx} '

C .t andC, 1 are shown in Fig. 7. Fig. 7(a) includes the four schemes for which the errors in amplitude are almost independé&ft'dg the
ratior, Fig. 7(b) includes all other schemes. All the four schemes in Fig. 7(a)@ayve= 1. Itis easy to nd that schemes FD DS SG 4, FD
DS SG 2 and FD DS PSG= FE G1 have als€ 4t = 1. On the other hand, none of schemes in Fig. 7(b)hasor C,y1 equal to 1.

Let c2 andc? be coef cients of the leading term and rst higher term Bf E{Dyx} or TrE{D,,} of the second-order FD DS SG 2
operators. The upper index indicates the second-order, the lower index the power of the gridisgiamilgrly, letc; andcd be coef cients of
the leading term and rst higher term @fr E{Dyx} or Tr E{D,4} of the fourth-order FD DS SG 4 operators. Fig. 7 shows the corresponding
coef cients of other second-order operators as multipleszoind c2. Similarly, the gure also shows coef cients of other fourth-order
operators as multiples af andcg.

In general, for the schemes of the same order (that is either second or fourth) foCgivear C 1 the errors in amplitude and the
vector difference increase with increasing absolute values of coef cients of terms in the truncation errors. This can be well seen in the
of schemes FD DS SG 2 and FD DS PSG FE G1 and schemes SE 4 cn and SE 4 vn. In both comparisonS, ther C, ratios are
the same for the compared schemes but the coef cients of terms in the truncation errors are different.

It is interesting to compare FD DS SG 4 and FD D CG 4a. Although they have différgrt, the ratio of the coef cients of the leading
terms (7.1, see Fig. 7a) well quanti es the difference in their errors (see Fig. 6).

Cur =

k=1,2,3,... (60)

Cxnr =

ase

7 CONCLUSIONS

o1e/Il6/woo dnoolwapede//:sdiy woly papeojumoq

We considered an unbounded homogeneous isotropic elastic medium and uniform cubic grid, and analysed 13 3-D time-domain ex%licit
numerical schemes of the second-order in time for modelling seismic wave propagation and earthquake motion for their behaviour with a
varying P-wave toS-wave speed ratio @/Vs orr). =

The schemes of the second-order in space are:

FD D CG 2— nite-difference displacement conventional grid

FD DS PSG 2— nite-difference displacement-stress partly-staggered grid
FD DS SG 2— nite-difference displacement-stress staggered grid

FE L8— nite-element Lobatto 8-integration points

FE G1— nite-element Gauss 1-integration point

FE G8— nite-element Gauss 8-integration points

DG PO CF—discontinuous-Galerkin polynomial order zero centred- ux
DG P1 CF—discontinuous-Galerkin polynomial order one centred - ux

- SHUND AQ ¥£2LT9/579T

1SI

The schemes of the fourth-order in space are:

FD D CG 4a— nite-difference displacement conventional grid variant a
FD D CG 4b— nite-difference displacement conventional grid variant b
FD DS SG 4— nite-difference displacement-stress staggered grid

SE 4 cn—spectral-element central node

SE 4 vn—spectral-element vertex node.

[
c
>
D
N
o
N
[y

We wrote all schemes in the uni ed form. Some of the schemes are equivalent

FD D CG 2= FEL8= DG POCF
FD DS PSG 2= FEG1
FE G8= DG P1 CF.

We de ned the numerical solution as the displacement vector at time hevell obtained from the numerical scheme entered by the
exact values of displacement of the pl&8wave at time levelsn S 1 andm. We de ned the relative local error in amplitude and the relative
local error in the vector difference based on the difference between the numerical solution and the exact solution. Because different schemes
use different time steps, we normalized the errors for a unit time.

¢ 2011 The AuthorsGJI, 187, 1645-1667
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Figure 7. Comparison of coef cients of the leading and the rst higher terms of the truncation efnde§ Dy} and Tr E{Dx}. (a) schemes with the error
in amplitude almost independent on tg/Vs ratior . (b) schemes with the error in amplitude dependent oiVii¥s ratior .
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We also de ned the equivalent spatial sampling ratio as a ratio at which the maximum relative error of the scheme is equal to the
reference maximum error.

The numerical evaluations of the errors and equivalent spatial sampling ratios led to the following conclusions:

The relative local error in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS P3E %1 is almost
independent on th¥p/Vs ratio. The error in the vector difference increases with increagptys ratio. This can be explained only by the
dependence of the polarization errors of all schemes oWiA&; ratio.

FD D CG 2= FE L8= DG PO CF is the most sensitive to the increasifagVs ratio and forVp/Vs > 2 requires considerably denser
spatial sampling than any other scheme.

The maximum errors in the vector difference of the second-order schemes FD DS SG 2-++BG®1 CF and FD DS PSG= FE
G1 increase with the increasiMg/Vs ratio in the same way. Schemes FD DS PS6& RE G1 and FE G& DG P1 CF require denser spatial
sampling than FD DS SG 2 to achieve the same accuracy.

The maximum errors in the vector difference of all the fourth-order schemes increase with the incveagimgtio for Vp/Vs > 3in
the same way. Schemes FD D CG 4a, FD D CG 4b, SE 4 cn and SE 4 vn require denser spatial sampling than FD DS SG 4 to achle@ the
same accuracy.

The fourth-order schemes are #és/Vs > 3 less sensitive to the increasiNg/Vs ratio than the second-order schemes.

We theoretically showed how a numerical scheme seeP thave andS wave if theVp/Vs ratio increases. In this study, we show that
the increasind/p/Vs ratio does not pose a problem for a scheme to moddPtivave.

We also showed the structure of the errors in amplitude and the vector difference.

We compared the schemes in terms of the truncation errors of the discrete approximations to the second mixed and non-mixed spatial
derivatives. The most important nding is this: Schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS-PEE&Q@1 with the errors
in amplitude almost independent on tg'Vs ratio have the same coef cients of the leading terms of the truncation errors of apprommatlong
to the second mixed and non-mixed spatial derivatives. None of the other schemes have those coef cients equal.

Scheme FD DS SG 2 with the smallest errors among the second-order schemes and scheme FD DS SG 4 with the smallest errors §mon:
the fourth-order schemes have the same coef cients also at each higher term of the truncation errors of approximations to the second ncﬂixed
and non-mixed spatial derivatives. The absolute values of the coef cients are smaller than the absolute values of coef cients of the truncglon
errors of the other schemes.

The general theoretical conclusion based on the investigation of the 13 numerical schemes is that the homogeneity of the approxm&tmns
to the second mixed and non-mixed spatial derivatives in terms of the coef cients of the leading terms of their truncation errors as well a%the

1Y Woly papeojum

oe//:
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N6/

absolute values of the coef cients are key factors for the behaviour of the numerical schemes with indfgd&jmgtio. 5
The practical conclusion for the existing numerical schemes is that the dependence of the errors in the vector differengé\@n the 5
ratio should be accounted for by a proper (suf ciently dense) spatial sampling. We quanti ed the proper sampling with respect to the Ic‘éal
errors in amplitude and in the vector difference. <
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APPENDIX

Table Al. The leading and rst higher terms of the truncation errors of the non-mixed and mixed spatial operators de ned by eqgs (11)—(14). Part a:

second-order operators, part b: fourth-order operators.

Operator Truncation errox 20160
Part (a)
DfppCG2 €00) 12
DFE L8 1680 %9 h
XX + 56 (6,0,0) h4
D.DG PO CF
XX
DFDDCG 2 1 o3, 1 @oy 2
zx 6720 — W0+ — el h
DFELS 2 2
o pocr + 896 2 s, 10 @oz, 3 oy
Dax 16 16 16

3 1 3
11760 - (02, = (4004, 2 (220 R2
DXFXD DS PSG 2 7 7 7

D ¢t + 2996 L o (600, 15 420), 15 402, 15 (240 4 45 (2224 15 204) pa
107
2 3 2
11760 2 @03 4 3 a2y . 2 @Gony g2
DFD DS PSG2 = = =
DjE Gl + 2996 L g W08 4 39 (L23)4 15 (4D, 9o B34 39 B2, g (01
107
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Table A1. (Continued)

Operator Truncation errox 20160
1680 (400 2
+ 56 (6,0,0) h4

FD DS SG 2
DXX

1680 } (1,0,3) + } (3,0,1) h2
D FD DS SG 2 2 2
ZX

+ 56 3 (1,05) 4 10 (303) 4 3 oy n4
16 16 16

8400 2 o2, 1 (4,0,0)+§ @20 p2

DxeE c8 5 5
DJEPLCF + 1736 3&1 (600) 4 5 4204 5 (402, 5 240)4 19 @224 5 (204 4
1 1 1
10080 = (1,0,3) + = 1,2,1) + = (3,0,1) h2
DFEGS 3 3 3
DG P1CF + 2996 4% 3 W05 4 19 W23 45 WAL 4 19 BO3) 4 19 G214 3 (GO  pa

Part (b)
DFDDCG 4 S 1344 (6.00) K4
" $300 ©OOps
S1344 L @09, L oy
DfP e 2 2

- 1 1
$160 = (107 4 = (7.01) h6
2 2

§ 224 (600) p4

DFDDCG 4b

“ $20 (800 p6
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