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S U M M A R Y
We analyse 13 3-D numerical time-domain explicit schemes for modelling seismic wave
propagation and earthquake motion for their behaviour with a varyingP-wave toS-wave
speed ratio (VP/VS). The second-order schemes include three �nite-difference, three �nite-
element and one discontinuous-Galerkin schemes. The fourth-order schemes include three
�nite-difference and two spectral-element schemes. All schemes are second-order in time.
We assume a uniform cubic grid/mesh and present all schemes in a uni�ed form. We assume
planeS-wave propagation in an unbounded homogeneous isotropic elastic medium. We de�ne
relative local errors of the schemes in amplitude and the vector difference in one time step and
normalize them for a unit time. We also de�ne the equivalent spatial sampling ratio as a ratio
at which the maximum relative error is equal to the reference maximum error. We present
results of the extensive numerical analysis.

We theoretically (i) show how a numerical scheme sees theP andS waves if theVP/VS

ratio increases, (ii) show the structure of the errors in amplitude and the vector difference and
(iii) compare the schemes in terms of the truncation errors of the discrete approximations to
the second mixed and non-mixed spatial derivatives.

We �nd that four of the tested schemes have errors in amplitude almost independent on
theVP/VS ratio.

The homogeneity of the approximations to the second mixed and non-mixed spatial
derivatives in terms of the coef�cients of the leading terms of their truncation errors as well
as the absolute values of the coef�cients are key factors for the behaviour of the schemes with
increasingVP/VS ratio.

The dependence of the errors in the vector difference on theVP/VS ratio should be
accounted for by a proper (suf�ciently dense) spatial sampling.

Key words Numerical approximations and analysis; Computational seismology; Theoretical
seismology.

1 I N T RO D U C T I O N

When numerically modelling seismic wave propagation and earthquake ground motion in a local or regional scale, we often consider a �nite
volume of the Earth. Typically, the volume has a shape of a cuboid (a rectangular parallelepiped) with the top face representing a �at free surface
and other faces representing transparent boundaries or planes of symmetry. In a more realistic case, the free Earth’s surface has a non-planar
topography. The medium inside is often considered a heterogeneous isotropic viscoelastic continuum. If we cover the computational domain
by a space–time grid of points or elements, then the overall accuracy of the numerical modelling for the given space–time discretization and
source–receiver con�guration may depend on some or all of the following factors:
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1646 P. Moczoet al.

(1) accuracy in
(i) a homogeneous medium (VP/VS—P-wave toS-wave speed ratio)
(ii) a smoothly spatially varying medium (spatial variability of material parameters)

(2) accuracy at
(i) a material interface (geometry, continuity of displacement and traction)
(ii) a free surface (geometry, zero traction)

(3) accuracy of
(i) a grid boundary (transparency or symmetry)
(ii) simulation of source (location, mechanism, time function)
(iii) incorporation of attenuation (frequency dependence, spatial variability)

Articles presenting numerical methods or schemes usually include and some of them focus �rst of all on the stability and grid dispersion
in an unbounded homogeneous medium. This is fundamental and necessary. Not all articles suf�ciently address the other factors determining
the overall accuracy of the numerical modelling. Surprisingly enough, the least attention has been paid to the accuracy with respect to the
VP/VS ratio.

At the same time, in surface sediments, and mainly in sedimentary basins and valleys, the ratioVP/VS is often as large as �ve or more (e.g.
larger than 10 in the unconsolidated lake sediments in Ciudad de México). Recent numerical-modelling exercises focused on the deep Alpine
sediment valley beneath Grenoble, France and the sedimentary Mygdonian Basin near Thessaloniki, Greece (e.g. Chaljubet al. 2010a,b;
Moczoet al. 2010a), also con�rm the necessity to account for largeVP/VS ratios with suf�cient accuracy.

Moczoet al. (2010b) investigated accuracy of four �nite-difference (FD) and three �nite-element (FE) schemes with respect to theVP/VS

ratio. Their investigation was restricted to the basic second-order 2-D schemes. They aimed to identify and select the very basic inherent
aspects of the schemes responsible for their behaviour with respect to the varyingVP/VS ratio, and to compare different schemes at the
most fundamental level. They indicated that consistency in approximating �rst spatial derivatives and, consequently, the second mixed and
non-mixed spatial derivatives appears to be the key factor for the behaviour of a scheme with respect to theVP/VS ratio.

Moczoet al. (2010b) introduced the problem of the accuracy with respect to theVP/VS ratio in suf�cient extent and detail. Therefore,
we do not repeat here the extensive introduction and rather refer readers to the latter paper.

In this paper, we focus on investigating the accuracy of 3-D time-domain explicit numerical schemes of second-order in time and second-
and fourth-order in space with respect to theVP/VS ratio in an unbounded homogeneous medium. We include schemes based on the FD, FE,
spectral-element (SE) and discontinuous-Galerkin (DG) methods.

We present all the investigated schemes in a uni�ed form and de�ne (full) local errors in one time integration step. Because different
schemes use different time steps (according to appropriate stability conditions), we normalize the errors with respect to time. Consequently,
we can directly compare numerically evaluated errors of different schemes. We perform extensive numerical analysis for wide ranges of
values of theVP/VS ratio and spatial sampling ratio, and for the entire range of directions of propagation with respect to the spatial grid.
We analyse and interpret the numerical results in terms of the inherent structures of the numerical schemes. We eventually develop general
conclusions on the accuracy of the numerical schemes with respect to theVP/VS ratio and on the numerical ef�ciency of the schemes in
practical applications.

2 E Q UAT I O N S O F M O T I O N F O R A H O M O G E N E O U S M E D I U M

Consider a Cartesian coordinate system (x, y, z) and an unbounded homogeneous perfectly elastic isotropic medium. Let� denote density,�
andµ Lamé elastic moduli,� = [(� + 2µ)/� ]1/2 and� = (µ/� )1/2 P-wave andS-wave speeds (i.e.VP andVS). Let displacement components
u i ; i � { x, y, z} and stress-tensor components� i j ; i , j � { x, y, z} be functions of the spatial coordinates and timet. Denote

�, � =
	�
	 �

; � � { u i , � i j } , i , j � { x, y, z}, � � {t, x, y, z} . (1)

We will consider two strong forms of the equation of motion without the body force term. The displacement-stress (DS) formulation of the
equation of motion is

� ux,tt = � xx,x + � xy,y + � xz,z

� uy,tt = � yy,y + � yz,z + � yx,x

� uz,tt = � zz,z + � zx,x + � zy,y (2)

� xx = (� + 2µ)ux,x + �u y,y + �u z,z

� yy = (� + 2µ)uy,y + �u z,z + �u x,x

� zz = (� + 2µ)uz,z + �u x,x + �u y,y

� xy = µ (ux,y + uy,x)

� yz = µ (uy,z + uz,y)

� zx = µ (uz,x + ux,z). (3)
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Accuracy of the seismic numerical schemes1647

The displacement (D) formulation is

� ux,tt = (� + 2µ)ux,xx + � (uy,yx + uz,zx) + µ (ux,yy + uy,xy + uz,xz + ux,zz)

� uy,tt = (� + 2µ)uy,yy + � (uz,zy + ux,xy) + µ (uy,zz + uz,yz + ux,yx + uy,xx)

� uz,tt = (� + 2µ)uz,zz + � (ux,xz + uy,yz) + µ (uz,xx + ux,zx + uy,zy + uz,yy). (4)

Eqs (4) can be written as

ux,tt = � 2(ux,xx + uy,yx + uz,zx) + � 2 (ux,yy Š uy,yx + ux,zz Š uz,zx)

uy,tt = � 2(uy,yy + uz,zy + ux,xy) + � 2 (uy,zz Š uz,zy + uy,xx Š ux,xy)

uz,tt = � 2(uz,zz + ux,xz + uy,yz) + � 2 (uz,xx Š ux,xz + uz,yy Š uy,yz). (5)

The weak form of the equation of motion (e.g. Zienkiewicz & Taylor 1989; Hughes 2000; Moczoet al. 2007a) is
�



w (� u i ,tt ) d
 +

�



w,k � i k d
 Š

�

� N

w hi d� = 0, (6)

where
 is a volume of a medium with boundary� , h i is a prescribed traction on part� N of boundary� and the equations have to be satis�ed
for all possible choices of weight functionsw.

3 N U M E R I C A L S C H E M E S

Several numerical methods can be used to solve the strong-form and weak-form equations of motion. The analysis by Moczoet al. (2010b)
was restricted to the basic 2-D second-order FD and FE schemes. Here, we investigate 13 3-D time-domain numerical schemes of second-
and fourth-order in space based on four important numerical methods—FD, FE, DG and SE methods. We use three uniform spatial grids in
the FD schemes—conventional, partly-staggered and staggered (Fig. 1a). The other schemes are constructed on the mesh of uniform cubic
elements. The elements considered for the FE and SE schemes are illustrated in Figs 1(b) and (c), respectively. All schemes are explicit and
second-order accurate in time. The choice of the explicit schemes well re�ects the fact that the explicit schemes are strongly dominant in recent
numerical modelling of seismic wave propagation and earthquake ground motion. The same is true about the second-order accuracy in time.
The powerful and sophisticated ADER-DG method (Arbitrary high-order DERivative Discontinuous Galerkin, for details see Section 3.3)
makes a signi�cant exception. We do not include possible ADER-DG of higher order because so far they have been developed for tetrahedral
grids, and the higher order in time would have no comparison among the other schemes.

Given the variety of methods, grids, approximation orders and integrations in elements, we have to introduce easy-to-follow acronyms
to be used throughout the paper.

An acronym of each investigated scheme starts with two letters indicating a method. FD stands for the �nite-difference method. Similarly,
FE, DG or SE indicate the �nite-element, discontinuous-Galerkin or spectral-element method, respectively.

The FD schemes differ from each other by the equation formulation, grid and order of approximation. D indicates the displacement
formulation, DS the displacement-stress formulation. CG indicates conventional grid, PSG partly-staggered grid, and SG staggered grid. 2
or 4 indicates the second- or fourth-order approximation in space. The lower-case ‘a’ or ‘b’ indicates one of two variants of the fourth-order
approximation. The acronyms of the six considered schemes are FD D CG 2, FD DS PSG 2, FD DS SG 2, FD D CG 4a, FD D CG 4b and
FD DS SG 4.

All three of the FE schemes considered solve the weak-form of the equation of motion on the mesh of uniform cubic elements and
are second-order accurate in space. The schemes differ in the integration applied within an element. Consequently, the method indicator is
followed by the indicator of the integration. L8, G1 or G8 indicates Lobatto 8-point, Gauss 1-point or Gauss 8-point integration, respectively.
The acronyms of the three considered schemes are FE L8, FE G1 and FE G8.

In the case of the DG schemes, we explicitly indicate the polynomial degree of the basis functions, P0 or P1, and the centred �ux, CF,
to clearly distinguish the schemes from a large variety of possible DG schemes. The acronyms are DG P0 CF and DG P1 CF.

The order of approximation is explicitly indicated for two SE schemes. Indicators cn and vn then distinguish the central node and vertex
node. The acronyms are SE 4 cn and SE 4 vn.

The acronyms and essential characteristics of all 13 considered numerical schemes are given in Fig. 2.

3.1 The Þnite-difference schemes

Reviews of the FD schemes on the conventional, partly-staggered and staggered grids, including original references, can be found, for
example, in extensive texts by Moczoet al. (2007a,b).

3.1.1 FD D CG 2, FD D CG 4a, FD D CG 4b

FD D CG 2, the second-order FD scheme solving the strong-form equation of motion for displacement on the conventional grid, is obtained if
derivatives in eqs (5) are replaced using standard second-order centred FD formulae approximating second non-mixed and mixed derivatives.
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1648 P. Moczoet al.

Figure 1. (a) Spatial grids for the FD schemes considered in this study. Left-hand panel: conventional grid-–all displacement components are located at each
grid point (position). Centre panel: partly-staggered grid—all displacement components share the same grid points whereas all stress-tensor components share
other grid points. Right-hand panel: staggered grid—each of the quantities has its own grid position except the normal stress-tensor components sharing one
grid position. (b) The cubic element used for the FE schemes. The nodal points are represented by empty circles. The integration points used in the Gauss
8-point, Gauss 1-point and Lobatto 8-point integrations are represented by crosses. The integration points in the Gauss 8-point integration de�ne vertices of
a centred cube with the edge equal to 2h/

�
3. The positions of the other integration points are obvious. (c) The cubic element used for the SE schemes. The

nodal points are also the integration points. The vertex and central nodes are explicitly indicated by empty circles. For the positions of the nodal points we refer
to Chaljubet al. (2007).

On the conventional grid, we can �nd several fourth-order approximations to the second non-mixed and mixed spatial derivatives.
Therefore, we include two different approximations to the second non-mixed and mixed spatial derivatives and, thus, two different schemes.
Based on the indication found by Moczoet al. (2010b), we constructed one scheme with the minimum possible equal coef�cients of the
leading terms of the truncation errors for the mixed and non-mixed derivatives—FD D CG 4a. The other scheme, FD D CG 4b, has the
minimum possible spatial stencil and a relatively large difference between values of coef�cients of the leading terms of the truncation errors.
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Accuracy of the seismic numerical schemes1649

Figure 1. (Continued.)

3.1.2 FD DS SG 2, FD DS SG 4

FD DS SG 2 is obtained in the following way: The second time derivatives in eqs (2) are replaced using the standard second-order centred FD
formula approximating the second derivative. The �rst spatial derivatives of the stress-tensor components in eqs (2) are replaced using the
standard second-order centred FD formula approximating the �rst derivative. Then, all discrete stress-tensor components on the right-hand
side (r.h.s.) of the obtained schemes are replaced by their FD approximations. The approximations are obtained from eqs (3), in which the �rst
derivatives are replaced using the standard second-order centred FD formula approximating the �rst derivative. In the resulting �nal scheme
only displacement components appear. This is important to note, given the fact that the scheme solves the DS formulation of the equation of
motion on the staggered grid. Note that this type of scheme is also called the parsimonious scheme.

FD DS SG 4 is obtained in the same way except that fourth-order FD approximations are used to replace the �rst spatial derivatives of
the stress-tensor and displacement components.

3.1.3 FD DS PSG 2

For comparison with FD D CG 2 and FD DS SG 2, we also include the second-order scheme solving the DS formulation of the equation
of motion on the partly-staggered grid. The scheme is obtained in the same way as FD S SG 2 except that the FD approximations are more
complicated. The complication is due to the fact that the stress-tensor components are displaced from the displacement components by a
half-grid spacing in all three Cartesian directions (see Fig. 1). For example, in approximating thex-derivative of the stress-tensor component
at a grid position of the displacement component, the required values of the stress-tensor components are obtained as arithmetic averages of
the values at four stress-tensor component grid positions in the correspondingyz-grid planes.

We do not include the velocity–stress (VS) staggered grid schemes. They differ from the FD DS SG schemes only in approximating
time derivatives. They approximate second spatial derivatives of the particle-velocity components (in the resulting �nal schemes) in the same
way as the FD DS SG schemes approximate the second spatial derivatives of the displacement components. Moczoet al. (2010b) showed
that the difference between the behaviours of the corresponding 2-D schemes with respect to theVP/VS ratio due to different time derivatives
is negligible. Conclusions for the FD VS SG schemes related to the approximations to the spatial derivatives are the same as those for the FD
DS SG schemes.
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1650 P. Moczoet al.

Figure 2. Acronyms and essential characteristics of the investigated numerical schemes. Although the FE, DG and SE schemes are constructed on the uniform
mesh of cubic elements, we use the term conventional grid also for these schemes because, effectively, all displacement components are located at each node,
and stress-tensor components are not explicitly treated. ‘order’ in the rightmost column means the order of approximation in space.

3.2 The Þnite-element schemes

Detailed expositions of the FE method can be found, for example, in books by Zienkiewicz & Taylor (1989), Ottosen & Petersson (1992),
Hughes (2000), Belytschkoet al. (2000) and Reddy (2006). For the FE modelling of seismic wave propagation see, for example, Bielaket al.
(2003), Ma & Liu (2006), Moczoet al. (2007a) and Galiset al. (2008).

We consider a uniform mesh of cubic elements with eight nodes in vertices and with tri-linear basis functions. Given this, we can get
different �nal FE schemes by considering different volume integrations within an element. The standard full Gauss 8-point integration leads
to scheme FE G8. Because the mesh is uniform and medium is homogeneous, the integration is exact. The reduced 8-point Lobatto integration
leads to scheme FE L8. Eventually, the application of the simplest possible reduced 1-point Gauss integration leads to scheme FE G1. All the
three situations are illustrated in Fig. 1(b).

In the case of the homogeneous medium, uniform FD grids with cubic cells, and mesh of cubic elements, the FE L8 scheme is exactly
the same as FD D CG 2, and FE G1 is exactly the same as FD DS PSG 2. Because these are important equalities, we highlight them (for
reader’s convenience) in the explicit symbolic equations

FE L8 = FD D CG 2

FE G1= FD DS PSG 2. (7)

3.3 The discontinuous-Galerkin scheme

The DG method (e.g. Hesthaven & Warburton 2008) is a discontinuous FE method. Contrary to the classical FE method, no continuity of
the basis functions is imposed between elements. Instead, the concept of a numerical �ux, taken from the framework of the �nite-volume
(FV) method (LeVeque 2002) is used for exchanging quantities (e.g. displacements) between elements. Therefore, the DG method supports
discontinuities in the seismic wave�eld, and provides interesting features for dynamic rupture modelling or wave propagation modelling when
high contrasts of the medium properties have to be considered. The DG method has been applied to seismology rather recently (Dumbser &
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Accuracy of the seismic numerical schemes1651

Käser 2006; K̈aser & Dumbser 2006; Dumbseret al. 2007; K̈aseret al. 2007, 2008; de la Puenteet al. 2007, 2008; De Basabeet al. 2008;
de la Puente 2008; Delcourteet al. 2009). A wide range of the DG schemes can be obtained depending on the choice of the basis functions
(modal or nodal basis functions), the type of �ux (upwind or centred �ux) or the numerical scheme used for the time integration. Here, we
consider a nodal DG scheme with the centred �ux (Etienneet al. 2010) and we restrict to two of the simplest formulations. The �rst scheme,
DG P0 CF (P0 indicating the zero polynomial of the basis functions, CF centred �ux), assumes a uniform representation of wave�elds inside
the elements (only one constant basis function is used). The second scheme, DG P1 CF, assumes a linear representation of the wave�elds
inside the elements (via tri-linear basis functions and 8-point Gauss integration). For the homogeneous medium, uniform mesh of cubic
elements and the second-order time integration we have the following identities:

DG P0 CF= FV P0 CF= FE L8 = FD D CG 2

DG P1 CF= FE G8. (8)

Note that in the case of the homogeneous medium, the numerical �ux mimics the continuities of quantities and thus leads to direct
relation to the classical FE schemes. We may also explicitly emphasize the equivalence of DG P0 CF and FV P0 CF.

3.4 The spectral-element schemes

The power of the SE method to numerically model seismic wave propagation is now well evident from many applications and publications.
For details on the method, we refer to the original papers by Komatitsch & Vilotte (1998) and Komatitsch & Tromp (1999) as well as to the
comprehensive reviews by Komatitschet al. (2005) and Chaljubet al. (2007).

The SE method is a special kind of the FE method that relies on the use of a high-order polynomial basis function. Although in the other
investigated schemes, one and the same formula is applied to update a displacement-vector component at all grid positions, in the SE scheme
it is necessary to distinguish different schemes for different nodes even in the cubic element. In this paper, we restrict to two representative
nodes—the vertex node and the central node. Consequently, we distinguish two schemes—SE 4 cn for the central node and SE 4 vn for the
vertex node. The element with the central and vertex nodes is illustrated in Fig. 1(c).

We may also mention the choice of the fourth order. The spectral element calculations in elastodynamics use polynomial orders between
3 and 8. This range of values allows bene�ting from the low level of numerical dispersion of the spectral methods (De Basabe & Sen 2007;
Seriani & Oliveira 2008) while preventing the use of too severe CFL constraints (due to the quadratic stretching of the grid points near the
element edges). The fourth order is, therefore, among the best choices in terms of accuracy and computational costs.

3.5 UniÞed representation of the numerical schemes

All 13 numerical schemes can be represented in a uni�ed form. De�ne theVP/VS ratio r :

r = �
�

�. (9)

Throughout the text,r andVP/VS, � andVP, and � andVS will be used interchangeably. Leth be a grid spacing in each of the three Cartesian
directions and�t be a time step. LetUm

 = Um
 (I , K, L) be a discrete approximation tou (I h, K h, Lh, m�t ) = u (xI , yK , zL , tm);

 � { x, y, z}. Each numerical scheme can be then written as (compare with eqs (5))

Um+1
x = 2Um

x Š UmŠ1
x

+ (�t )2 � 2
�

r 2
�
Dxx

�
Um

x

�
+ Dyx

�
Um

y

�
+ Dzx

�
Um

z

� �

+ Dyy

�
Um

x

�
Š Dyx

�
Um

y

�
+ Dzz

�
Um

x

�
Š Dzx

�
Um

z

�	

Um+1
y = 2Um

y Š UmŠ1
y

+ (�t )2 � 2
�

r 2
�
Dyy

�
Um

y

�
+ Dzy

�
Um

z

�
+ Dxy

�
Um

x

� �

+ Dzz

�
Um

y

�
Š Dzy

�
Um

z

�
+ Dxx

�
Um

y

�
Š Dxy

�
Um

x

�	

Um+1
z = 2Um

z Š UmŠ1
z

+ (�t )2 � 2
�

r 2
�
Dzz

�
Um

z

�
+ Dxz

�
Um

x

�
+ Dyz

�
Um

y

��

+ Dxx

�
Um

z

�
Š Dxz

�
Um

x

�
+ Dyy

�
Um

z

�
Š Dyz

�
Um

y

�	
. (10)

The numerical schemes differ from each other by the difference operatorsD andD� ;  , � � { x, y, z} for approximating second non-mixed
and mixed spatial derivatives. Here, we explicitly presentDxx and Dzx operators. The other operators can be easily obtained by the even
permutation of the Cartesian indices.

In the set of the considered 13 numerical schemes, we can recognize two types of non-mixed operators. The �rst type can be expressed
as

Dxx [� (I , K, L)] =
1
h2

J


j =0

wxx
j

�
�

�
I Š � j , K, L

�
+ �

�
I + � j , K, L

��
. (11)
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1652 P. Moczoet al.

Table 1. Grid positions for theDxx operators de�ned by eq. (11).

� j
Dscheme

xx
j = 0 j = 1 j = 2 j = 3 j = 4

D FD D CG 2
xx

D FE L8
xx

D DG P0 CF
xx

0 1

D FD DS SG 2
xx 0 1

D FD D CG 4a
xx 0 1 2 3

D FD D CG 4b
xx 0 1 2

D FD DS SG 4
xx 0 1 2 3

D SE 4 cn
xx 0

�
12/7 2

D SE 4 vn
xx 0 2Š

�
12/7 2 2+

�
12/7 4

Table 2. Weight coef�cients for theDxx operators de�ned by eq. (11).

576wxx
jDscheme

xx
j = 0 j = 1 j = 2 j = 3 j = 4

D FD D CG 2
xx

D FE L8
xx

D DG P0 CF
xx

Š576 576

D FD DS SG 2
xx Š576 576

D FD D CG 4a
xx Š400 288 144 Š32

D FD D CG 4b
xx Š720 768 Š48

D FD DS SG 4
xx Š730 783 Š54 1

D SE 4 cn
xx Š480 588 Š108

D SE 4 vn
xx Š2520 294(5+

�
21) Š384 294(5Š

�
21) –36

Here� represents a displacement component. According to eq. (11), operators of different schemes may differ from each other by the
number of the grid positions at which displacement components are used for the approximation and the weight coef�cients of the considered
displacement component at those grid positions. The grid positions and weight coef�cients are given in Tables 1 and 2, respectively.

The second type can be expressed as

Dxx [� (I , K, L)] =
1
h2

L+1


l= LŠ1

K+1


k= KŠ1

� xx
lŠ L+2, kŠ K+2 D FD D CG 2

xx � (I , k, l ). (12)

The weight coef�cients are given in Table 3.
Note that the grid spacingh represents the average spacing between the nodes in the SE schemes. We may emphasize that we consider

the exact SEM schemes with no assumption of the regular grid spacing. The average grid spacingh is introduced just to make it possible to
directly compare the SE schemes with the other schemes in terms of the spatial sampling ratio. The average grid spacing thus only means
how many grid points of the SEM element are used to sample theSwavelength.

Similarly, we can recognize two types of the mixed operators. The �rst type can be expressed as

Dzx [� (I , K, L)] =
1
h2

N


n=1

N


j =1

wzx
n j [ � (I + � j , K, L + � n) Š � (I + � j , K, L Š � n)

Š � (I Š � j , K, L + � n) + � (I Š � j , K, L Š � n) ].
(13)

The grid positions and weight coef�cients are given in Tables 4 and 5, respectively.
The second type can be expressed as

Dzx [� (I , K, L)] =
1
h2

K+1


k= KŠ1

� zx
kŠ K+2 D FD D CG 2

zx � (I , k, L). (14)

The weight coef�cients are given in Table 6.

3.6 Truncation errors of the discrete spatial operators

The truncation error, the difference between the discrete approximation to a derivative and the exact derivative, is an important characteristic
of accuracy of the discrete approximation. The lowest power of the argument increment (here, the grid spacingh) determines the order of
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Table 3. Weight coef�cients for the
Dxx operators de�ned by eq. (12).

Dscheme
xx � xx

D FD DS PSG 2
xx

D FE G1
xx

1
16

�

�


1 2 1

2 4 2

1 2 1

�

�
�

D FE G8
xx

D DG P1 CF
xx

1
36

�

�


1 4 1

4 16 4

1 4 1

�

�
�

Table 4. Grid positions for theDzx operators de�ned by eq. (13).

� j , � n
Dscheme

zx
j , n = 1 j , n = 2 j , n = 3 j , n = 4

D FD D CG 2
zx

D FE L8
zx

D DG P0 CF
zx

1

D FD DS SG 2
zx 1/2

D FD D CG 4a
zx 1 2

D FD D CG 4b
zx 1 2

D FD DS SG 4
zx 1/2 3/2

D SE 4 cn
zx

�
12/7 2

D SE 4 vn
zx 2 Š

�
12/7 2 2+

�
12/7 4

accuracy of the discrete approximation. The coef�cients of terms in the truncation error are also important. Table (A1) of the Appendix gives
the leading and �rst higher terms of the truncation errors of all operators de�ned by eqs (11)–(14). We will discuss the truncation errors in
the analysis and interpretation of the numerical results.

4 L O C A L E R RO R O F T H E N U M E R I C A L S C H E M E S

4.1 Concept of the local error

To evaluate accuracy of the numerical schemes, we de�ne a local error of a numerical scheme. First, we can symbolically express all schemes
in a uni�ed form

Um+1
 (I , K, L) = numericalscheme{UmŠ1, Um}, (15)

or, equivalently,

U (I , K, L, t + �t ) = numericalscheme{U (t Š �t ) , U (t)} . (16)

Here, � { x, y, z} andU(t Š �t ) andU(t) represent displacement components at relevant grid positions around (I , K, L) at timest Š �t
andt, respectively. De�ne a numerical solution in one time step as

U N
 (I , K, L, t + �t ) = numericalscheme{UE (t Š �t ) , UE (t)}, (17)

where the upper index N indicates the numerical solution and the upper index E indicates an exact value. Thus, if we know the exact value of
displacement at any time, we can de�ne and calculate a relative local error in amplitude as

� Rel
ampl =

�
�t ref

�t

� 2 �
�
�
�

AN Š AE

AE

�
�
�
� . (18)

Here,AN is the amplitude of the numerical solution (modulus of the displacement vector) in one time step andAE is the exact amplitude—both
evaluated at timet + �t . Because different numerical schemes use different time steps�t , we have to normalize the error for a unit time.
Because the time derivative is approximated by the second-order FD formula, we have to normalize with the square of�t . The division of
the relative error by (�t)2, however, arti�cially increases the value of the error. This can be compensated, for example, by multiplication by
some time step value taken as a reference. We specify this later.

In their analysis of the 2-D second-order FD and FE schemes, Moczoet al. (2010b) also de�ned the relative error in the direction of
the displacement vector (or error in polarization or angle). The 3-D problem involves three displacement-vector components and two angles.
This considerably complicates the quanti�cation of the polarization error and direct comparison of their values with the values of the error
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1654 P. Moczoet al.

Table 5. Weight coef�cients for theDzx operators de�ned by eq. (13).

Dscheme
zx wzx

D FD D CG 2
zx

D FE L8
zx

D DG P0 CF
zx

1
4

D FD DS SG 2
zx 1

D FD D CG 4a
zx

1
576

�
256 Š32

Š32 4

�

D FD D CG 4b
zx

1
576

�
240 Š24

Š24 0

�

D FD DS SG 4
zx

1
576

�
729 Š27

Š27 1

�

D SE 4 cn
zx

1
768

�
343 Š21

�
21

Š21
�

21 27

�

D SE 4 vn
zx

1
1152

�

�
�
�
�
�


343(5+
�

21) Š112(7+
�

21) 686 Š21(7 +
�

21)

Š112(7+
�

21) 512 Š112(7Š
�

21) 96

686 Š112(7Š
�

21) 343(5Š
�

21) Š21(7 Š
�

21)

Š21(7 +
�

21) 96 Š21(7 Š
�

21) 18

�

�
�
�
�
�
�

Table 6. Weight coef�cients for
the Dzx operators de�ned by
eq. (14).

Dscheme
zx � zx

D FD DS PSG 2
zx

D FE G1
zx

1
4

[ 1 2 1 ]

D FE G8
zx

D DG P1 CF
zx

1
6

[ 1 4 1 ]

in amplitude. Therefore, instead of de�ning errors analogous to the error used by Moczoet al. (2010b), we de�ne the error in the vector
difference as

� Rel
vdiff =

�
�t re f

�t

� 2 1
AE

��
UN

x Š UE
x

� 2
+

�
UN

y Š UE
y

� 2
+

�
UN

z Š UE
z

� 2� 1/2. (19)

This absolute value of the vector difference between the numerically calculated displacement vector and the exact displacement vector
comprises both errors in amplitude and polarization in one reasonable value. This value can be directly compared with the error in amplitude.

4.2 Note on the local error and grid dispersion

It is clear that the local error in amplitude, as de�ned by eq. (18), quanti�es, how the exact amplitude changes in one time step due to
inaccuracy of a numerical scheme.

In an analysis of stability the problem is different: one investigates condition for propagation of a harmonic plane wave by a numerical
scheme in a discrete grid in a stable manner. For example, Moczoet al. (2000) investigated condition for propagation of a plane harmonic
wave with a constant amplitude by the fourth-order DS staggered grid FD scheme. They obtained the standard stability condition and the
grid-dispersion relation. The price for propagating the harmonic plane wave with the constant amplitude in a discrete grid is a grid velocity
that differs from the true velocity, and the difference depends on the size of the grid spacing.

4.3 The exact solution-Ða harmonic plane S wave in an unbounded homogeneous medium

It is reasonable to consider a harmonic planeS wave propagating in an unbounded homogeneous elastic isotropic medium as the exact
solution in de�nitions of the local errors. We will consider a harmonic planeS wave polarized in a vertical plane determined by thez-axis
and wavenumber vector�k. The displacement components are

u (x, y, z, t ; � ; �, � ) = A Et Ex Ey Ez ;  � {x, y, z} , (20)
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Accuracy of the seismic numerical schemes1655

Figure 3. Cartesian coordinate system, angles� and� for de�ning a direction of propagation, displacement vector and displacement components of the plane
Swave.

where

Et = exp[Ši � t ]

Ex = exp[ikxx] Ey = exp
�
iky y

�
Ez = exp[ikzz]

kx = k cos� sin� ky = k sin� sin� kz = k cos�

Ax = A cos� cos� Ay = A sin� cos� Az = Š A sin�

k = �/� , 0 � � � � , 0 � � � 2 �, (21)

� is the angular frequency,k = | �k| is the wavenumber,� is the angle between the positivez-axis and the wavenumber vector�k (the direction
of propagation),� is the angle between the positivex-axis and the vertical plane determined by thez-axis and wavenumber vector�k (Fig. 3).
Note thati in the arguments of the exponential function denotes the imaginary unit throughout the entire text. Otherwise,i will be used to
indicate a Cartesian component of the displacement vector or spatial coordinate.

It is known from the numerical experience that modelling of theP wave poses a minor problem compared to the modelling of theSwave
if the modelling comprises both waves. Later, we explain why it is so.

4.4 Evaluation of the exact and numerical values of displacement in a grid

Let h and� be the grid spacing and wavelength, respectively. The spatial sampling ratios is de�ned as

s = h
�

�. (22)

Then

k = �
�

� = 2� s
�

h, (23)

kxh = 2� s cos� sin� , kyh = 2� s sin� sin� , kzh = 2� scos�, (24)

� = 2� s�
�

h. (25)

Considering the stability condition for any of the numerical schemes in the form

�t � � (h, �, � ) (26)

and the stability ratiop

p = �t
�

� , p � 1, (27)

the time step can be expressed as

�t = p � (h, �, � ) . (28)

(Note that the stability parameter sometimes is de�ned asp = �t �/ h.)
Without loss of generality, consider for simplicity

xI = 0 , yK = 0 , zL = 0 , tm = 0. (29)

Then the errors are evaluated at

xI = 0 , yK = 0 , zL = 0 , tm+1 = �t . (30)

The real exact displacement at this space–time grid position is [see eqs (20) and (21)]

Re
�

u (0, 0, 0, � t)
	

= A cos� � t (31)
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1656 P. Moczoet al.

Table 7. Quantities entering the numerical schemes and formulas for the errors.

� � t � t �/ h � t

FD D CG 2
FE L8
DG P0 CF

2� p s
1

(1 + r 2)1/2

p
(1 + r 2)1/2 p

s
(1 + r 2)1/2

�
�

FD DS PSG 2
FE G1
FE G8
DG P1 CF

2� p s
1
r

p
r

p
s
r

�
�

FD DS SG 2 2�
1

�
3

p s
1
r

1
�

3
p

1
r

1
�

3
p

s
r

�
�

FD D CG 4a
FD D CG 4b

2� 0.7p s
1

(1 + r 2)1/2 0.7
p

(1 + r 2)1/2 0.7p
s

(1 + r 2)1/2

�
�

FD DS SG 4 2�
6

7
�

3
p s

1
r

6

7
�

3
p

1
r

6

7
�

3
p

s
r

�
�

SE 4 cn, vn 2�0.55

�
1
2

Š

�
3
28

�

p s
1
r

0.55

�
1
2

Š

�
3
28

�
p
r

0.55

�
1
2

Š

�
3
28

�

p
s
r

�
�

and

AE =
�
(Ax cos� � t)2 +

�
Ay cos� � t

� 2
+ (Az cos� � t)2

� 1/2
= A |cos� � t | . (32)

The exact values of (complex) displacements entering the r.h.s. of schemes (10) are evaluated as

UmŠ1
 (I , K, L)

= u (0, 0, 0, t = Š �t ; � ; �, � )

= A exp[+ i � � t ]

Um
 (I , K, L)

= u (0, 0, 0, t = 0 ; � ; �, � )

= A

Um
 (I + � I , K + � K , L + � L )

= u (h � I , h � K , h � L , t = 0 ; � ; �, � )

= A exp[+ ikxh � I ] exp[+ ikyh � K ] exp[+ ikzh � L ] . (33)

The grid-index increments� I , � K and� L depend on a numerical scheme. Quantitieskxh, kyh andkzh are given by eq. (24).
It is clear from schemes (10) and de�nitions of the difference operators (11)–(14) that each scheme effectively includes the second

power of quantity� t �/ h. Quantities� � t , � t �/ h and� t entering the numerical schemes and formulae for the errors are summarized in
Table 7.

U m+1
x , Um+1

y andUm+1
z , evaluated at (I , K, L), are obtained using schemes (10). Then

AN =
� �

Re
�
Um+1

x

	� 2
+

�
Re

�
Um+1

y

	� 2
+

�
Re

�
Um+1

z

	� 2
� 1/2

. (34)

In principle, we can take any of the time steps as the reference time step� tref appearing in formulae (18) and (19) for the errors. As a
reasonable choice we consider

� tref = �t for FD DS SG 4 ; p = 0.9, s = 1/6, r = 1.42. (35)

The argument for the choice is: as it will be clear from the numerical calculations, scheme FD DS SG 4 is least sensitive to increasing
VP/VS ratio r , s = 1

6 is the most common choice for the spatial sampling ratio in the numerical modelling of earthquake motion in surface
sedimentary basins using the fourth-order staggered-grid FD scheme,r = 1.42 is taken in this article instead of the exact minimum value
r =

�
2.

Note that the time steps in Table 7 include factors�
� . It could be replaced byh� but in both cases the time steps include explicitly the

S-wave speed� in addition to theVP/VS ratio r . Because, however, the errors (18) and (19) include ratio (� tref
�t )2 the explicit presence of�

and� is removed from the errors. Consequently, apart from the absolute quantities� and� (angles determining the direction of propagation),
errors� Rel

ampl and� Rel
vdiff depend only on relative dimensionless quantities—the spatial sampling ratios, stability ratiop and theVP/VS ratio r .
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Accuracy of the seismic numerical schemes1657

Figure 4. Relative local errors in amplitude for the planeS waves propagating in all directions of thexz-plane (angle� = 0� , top panel) and in the vertical
plane of the body diagonal (angle� = 45� , bottom panel). The errors are calculated for the stability ratiop = 0.9, the spatial sampling ratios corresponding
to 12 and 6 grid spacings per wavelength in the second- and fourth-order schemes, respectively, and three values of theVP/VS ratio r : 1.42, 5 and 10. In each
graph, the innermost circle (black thick solid) of the scale grid corresponds to the zero error.

5 N U M E R I C A L R E S U LT S

5.1 Relative local errors in amplitude for plane S waves propagating in any direction in the xz-plane and vertical plane of
the body diagonal

Because the medium is isotropic, it is enough to look at the errors of the schemes for waves propagating in all directions in two planes-–for
example, thexz-plane and the vertical plane determined by thez-axis and body diagonal.

Fig. 4 shows the relative local errors in amplitude, see de�nition eq. (18), of all numerical schemes for the planeS waves as functions
of direction of propagation in thexz-plane (angle� = 0� ; top panel) and in the vertical plane of the body diagonal (angle� = 45� ; bottom
panel), that is for all angles� in both planes. The errors are calculated for the stability ratiop = 0.9. The values of the spatial sampling
ratio s correspond to 12 and 6 grid spacings per wavelength in the second- and fourth-order schemes, respectively. These spatial samplings
are common in the numerical modelling of the earthquake ground motion in sedimentary basins (later, we investigate the error as a function
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1658 P. Moczoet al.

of s). Recall that in the SE schemes, the grid spacingh represents the average spacing between the nodes to directly compare the SE schemes
with the other schemes in terms of the spatial sampling ratio.

The errors were calculated for three values of theVP/VS ratio r : 1.42, 5 and 10. The speed ratior = 1.42 represents the minimum
possible value of theVP/VS ratio r (the exact value being

�
2), r = 5 is a common value in surface sediments, mainly under the water level,

andr = 10, though relatively large, certainly is not the maximum possible value in the unconsolidated surface water-saturated sediments.
Practically taken,r � 5 often have to be accounted for in the numerical modelling of seismic motion in sedimentary basins and valleys.

The thin broken line separates the second- and fourth-order schemes. Within these two parts of the �gure, the spatial arrangement of the
schemes roughly re�ects sensitivity and thus inaccuracy of the schemes with respect to the varyingVP/VS ratior . The least sensitive schemes
are placed on the left-hand side (l.h.s.).

The �gure indicates that the staggered-grid schemes FD DS SG 2 and FD DS SG 4 are both least sensitive and most accurate in the
range of the consideredVP/VS ratio values. Close to them is the partly-staggered-grid scheme FD DS PSG 2= FE G1. The fourth-order
conventional-grid scheme FD D CG 4a comes out as a surprise given the well-known poor behaviour of the most classical conventional-grid
scheme FD D CG 2. An immediate notion from comparing FD D CG 4a with FD D CG 4b is that the sensitivity and accuracy with respect to
theVP/VS ratior is not dominantly linked to the order of the schemes. An important conclusion also comes from comparison of the three FE
schemes. They differ from each other only by the integration within the element but their behaviours with respect to the varyingVP/VS ratio
r differ considerably. The two SE schemes also appear sensitive to the increasingVP/VS ratior and surprisingly inaccurate forVP/VS equal to
5 and 10.

5.2 Relative local errors in the vector difference for plane S waves propagating in any direction in the xz-plane and vertical
plane of the body diagonal

The arrangement of Fig. 5 is the same as that of Fig. 4 but Fig. 5 shows the relative errors in the vector difference, see de�nition eq. (19). The
striking difference between Figs 4 and 5 is that for each scheme the error in the vector difference clearly depends on theVP/VS ratio r . This
difference is the most apparent with the four schemes, FD DS SG 4, FD DS SG 2, FD DS PSG 2= FE G1 and FD D CG 4a, which were
most accurate and least sensitive to the increasingr in terms of the relative error in amplitude. Still, however, the maximum errors of FD DS
SG 4 and FD DS SG 2 are smaller than the errors of the other schemes—as in the case of the relative errors in amplitude.

Recall that the relative local error in the vector difference comprises the errors in individual components and, thus, also the error in
polarization (difference between the true and numerical directions of the displacement vector). This means that the difference between errors
in Fig. 5 and errors in Fig. 4 is due to the polarization errors. Clearly, the polarization errors of each scheme depend on theVP/VS ratio r .

5.3 Equivalent spatial sampling for the errors in amplitude and the vector difference

Because the errors shown in Figs 4 and 5 were calculated for the commonly used values of the spatial sampling ratios, they have only
indicative meaning. To quantitatively compare the accuracy of the schemes with respect to varyingVP/VS ratio r , we proceed as follows. We
choose a reference maximum error as the maximum relative error in amplitude of FD DS SG 4 forr = 10 ands = 1/6. This error is equal to
0.00112. For each individual numerical scheme, we then calculate an equivalent spatial sampling ratiosequiv as a function ofr . The equivalent
spatial sampling ratiosequiv is de�ned as a ratio at which the maximum relative error of the scheme is equal to the reference maximum error.
The maximum relative error is determined as maximum of errors calculated for angles� � [0, 90]� and� � [0, 90]� with angle increment of
0.5� . We �nd the equivalent spatial-sampling ratio based on the relative error in amplitude and the equivalent spatial-sampling ratio based on
the relative error in the vector difference.

Fig. 6(a) shows the 1/sequiv(r ) curves based on the relative error in amplitude for all the investigated schemes (recall that 1/sequiv is equal
to the number of the grid spacings per wavelength). The left-hand panel shows the curves for the stability ratiop = 0.3, the right-hand panel
for p = 0.9. The solid lines are used for the fourth-order schemes, the dashed lines for the second-order schemes.

The curves for the two values of the stability ratio differ from each other only negligibly. Small differences can be seen only for the
lowest values ofr .

At �rst sight, we realize that the curves are consistent with the indicative Fig. 4. FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS
PSG 2= FE G1 make one distinct group of schemes. The equivalent sampling ratios of these schemes only little depend on theVP/VS ratior .

FD D CG 4b, SE 4 cn, SE 4 vn, FE G8= DG P1 CF and FD D CG 2= FE L8 = DG P0 CF make the other distinct group of schemes
whose equivalent spatial sampling ratios considerably change with increasingVP/VS ratior . Among the schemes of the second group, we can
distinguish the subgroup of the FD D CG 4b, SE 4 cn and SE 4 vn schemes, distinct FE G8= DG P1 CF, and, �nally, the worst FD D CG 2
= FE L8= DG P0 CF.

Fig. 6(b) shows the 1/sequiv(r ) curves based on the relative error in the vector difference. As indicated by Fig. 5 the 1/sequiv increase with
increasingr for each scheme.

Fig. 6 clearly shows that, in terms of the equivalent spatial sampling, FD DS SG 4 is more accurate and more ef�cient than the other
schemes for media withr > 2.

Table 8 lists the 1/sequiv values forp = 0.9 and three values of theVP/VS ratio r —1.42, 5 and 10.
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Accuracy of the seismic numerical schemes1659

Figure 5. The same as Fig. 4 but for the errors in the vector difference.

5.4 Essential summary of the numerical results

The relative local error in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG 2= FE G1 is almost independent
on theVP/VS ratio r . However, the error in the vector difference increases with increasingVP/VS ratio. This can be explained only by the
dependence of the polarization errors of all schemes on theVP/VS ratio. The dependence of the error in the vector difference on theVP/VS

ratio has to be accounted for by a proper spatial sampling.
FD D CG 2 = FE L8= DG P0 CF is the most sensitive to increasingVP/VS ratio and forVP/VS > 2 requires considerably denser spatial

sampling than any other scheme.
The maximum errors in the vector difference of schemes FD DS SG 2, FE G8= DG P1 CF and FD DS PSG 2= FE G1 increase with

the increasingVP/VS ratio in the same way. Schemes FD DS PSG 2= FE G1 and FE G8= DG P1 CF require denser spatial sampling than
FD DS SG 2 to achieve the same accuracy.

The maximum errors in the vector difference of all fourth-order schemes increase forVP/VS > 3 in the same way. Schemes FD D CG
4a, FD D CG 4b, SE 4 cn and SE 4 vn require denser spatial sampling than FD DS SG 4 to achieve the same accuracy.

The fourth-order schemes are forVP/VS > 3 less sensitive to increasingVP/VS ratio than the second-order schemes.

C� 2011 The Authors,GJI, 187, 1645–1667
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1660 P. Moczoet al.

Figure 6. The 1/sequiv(r ) curves. The equivalent spatial sampling ratiosequiv is de�ned as a ratio at which the maximum absolute value of the relative error of
the scheme is equal to the reference maximum error. The chosen reference maximum error, 0.00112, is equal to the maximum relative error in amplitude of
FD DS SG 4 for theVP/VS ratior = 10 and spatial sampling ratios = 1/6. The left-hand panel shows the curves for the stability ratiop = 0.3, the right-hand
panel forp = 0.9.

Table 8. The 1/sequiv values for the stability ratiop = 0.9 and reference maximum error equal to 0.00112.
Boldface indicates schemes for which the 1/sequiv based on the relative error in amplitude varies with theVP/VS

ratio r only negligibly.

VP/VS

ratio r
FD DS
SG 4

FD D
CG 4a

FD DS
SG 2

FD D
CG 4b

SE
4 cn

FD DS
PSG 2=
FE G1

SE
4 vn

FE G8=
DG

P1 CF

FD D
CG 2=
FE L8=

DG
P0 CF

1/sequiv based on the relative error in amplitude

1.42 5.3 8.8 16.6 7.8 6.6 25.6 5.5 17.7 15.4
5 5.9 9.7 17.7 14.0 14.4 26.9 18.0 38.7 75.4
10 6.0 9.7 17.8 19.7 20.4 27.1 26.2 85.3 153.5

1/sequiv based on the relative error in the vector difference

1.42 5.3 8.8 16.6 7.8 6.6 25.6 5.5 20.4 15.4
5 8.1 13.1 33.3 14.0 14.4 47.5 18.0 45.6 76.3
10 11.5 18.7 67.3 19.8 20.5 97.5 26.2 97.0 162.1

6 A NA LY S I S A N D I N T E R P R E TAT I O N O F T H E N U M E R I C A L R E S U LT S

6.1 How does the equation of motion see the S and P waves?

Recall the equation of motion (5) in the concise form

ui,tt = � 2u j, j i + � 2( ui, j j Š u j, j i ). (36)

TheSwave is solenoidal, that is, div�u = u j, j = 0. Consequently, in the case of theSwave, we have

u j, j i = 0, ui, j j Š u j, j i =
1
� 2

ui,t t . (37)
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Accuracy of the seismic numerical schemes1661

TheP wave is irrotational, that is, rot�u = 0 or � k j i ui, j = 0, where� k j i is the Levi-Civita symbol. Consequently, in the case of theP wave it
is

u j, j i =
1
� 2

ui,t t , ui, j j Š u j, j i = 0. (38)

6.2 How does a numerical scheme see the S and P waves?

A numerical scheme solving equation of motion (36) can be written in the form

D A{ui,tt } 	 � 2D A{u j, j i } + � 2D A{ ui, j j Š u j, j i }, (39)

whereD A means a discrete approximation. Eq. (39) is, in fact, a concise symbolic form of eqs (10). A discrete approximation to any operator
in general can be expressed as a sum of the exact differential operator and a truncation error (for which we will use symbolT r E). Eq. (39)
can be written as

ui,tt + T r E{ui,tt } 	 � 2( u j, j i + T r E{u j, j i } ) + � 2( ui, j j Š u j, j i + T r E{ ui, j j Š u j, j i } ). (40)

6.2.1 The case of the harmonic plane S wave

Considering the �rst of eqs (37), equalityuS
i,t t = Š � 2uS

i , and the fact that each second spatial derivative of a displacement-vector component
is proportional toŠ� 2uS

i /�
2, eq. (40) can be rewritten as

�
1 + error t S

i

� �
Š� 2u S

i

�
	 � 2

�
0 + error� S

i

� Š� 2uS
i

� 2
+ � 2

�
1 + error � S

i

� Š� 2uS
i

� 2
(41)

and

uS
i 	

�
r 2 error� S

i + 1 + error � S
i Š error t S

i

�
uS

i . (42)

Note that the double-index summation rule does not apply to indexi from eqs (41)–(57).
The error terms

error� S
i =

� 2 T r E
�

uS
j, j i

	

Š� 2 uS
i

, error � S
i =

� 2 T r E
�

uS
i, j j Š uS

j, j i

	

Š� 2 uS
i

(43)

do not depend onr . The error termerror t S
i does depend onr

error t S
i =

T r E
�
uS

i,t t

	

Š� 2 uS
i

= c1
1
r 2

+ c2
1
r 4

+ · · · (44)

Coef�cientscl ; l = 1, 2, . . . do not depend onr . Note that the series in powers of1
r 2 is due to the second-order approximation to the second

time derivative. The squares of the time step, (�t )2, are expressed using1
r 2 .

6.2.2 The case of the harmonic plane P wave

Considering the second of eqs (38), equalityuP
i,t t = Š � 2uP

i , and the fact that each second spatial derivative of a displacement-vector
component is proportional toŠ� 2uP

i /� 2, eq. (40) can be rewritten as

�
1 + error t P

i

� �
Š� 2uP

i

�
	 � 2

�
1 + error� P

i

� Š� 2uP
i

� 2
+ � 2

�
0 + error� P

i

� Š� 2uP
i

� 2
(45)

and

uP
i 	

�
1 + error� P

i +
1
r 2

error� P
i Š error t P

i

�
uP

i . (46)

Analogously to the error terms in eqs (43),error� P
i anderror� P

i do not depend onr . The dependence oferror t P
i on r is analogous to that of

error t S
i in eq. (44).

6.2.3 Comparison

We see the important difference between eq. (42) for theS wave and eq. (46) for theP wave: In the case of theS wave, termr 2error � S
i

increases with increasingVP/VS ratio r , whereas in the case of theP wave, term 1
r 2 error� P

i decreases with increasingVP/VS ratio r . This is
why a large value of theVP/VS ratio r does not pose a problem for theP wave.

Because we restrict our investigation to theS wave, in the following section, we will omit the explicit indication of theS wave in the
displacement-vector components and error terms.
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1662 P. Moczoet al.

6.3 Structure of the relative errors in amplitude and vector difference

Recall eq. (39)

D A{ui,tt } 	 � 2D A{u j, j i } + � 2D A{ ui, j j Š u j, j i }. (47)

The investigated numerical schemes differ from each other by the approximations on the r.h.s. They share the same approximation to the
second time derivative

D A{ui,tt } 	
�

um+1
i Š 2um

i + umŠ1
i

� 1
(�t )2

. (48)

After substitutingD A{ui,tt } in eq. (47) by approximation (48), we can get the scheme for the numerical displacement component at the time
levelm + 1 in the form
Num+1

i = 2um
i Š umŠ1

i + (�t )2
�

� 2D A{u j, j i } + � 2D A{ ui, j j Š u j, j i }
�

. (49)

Recalling the concept of the local error, eqs (15)–(19), we distinguish the numerical value, labelled N, on the l.h.s., from the exact values of
the displacement components on the r.h.s. (not labelled). Subtractingum+1

i from both sides of eq. (49), dividing the equation by (�t )2 and
using eq. (48), we get
�

Num+1
i Š um+1

i

� 1
(�t )2

= Š D A{ui,tt } + � 2D A{u j, j i } + � 2D A{ ui, j j Š u j, j i }. (50)

Each of the discrete approximations on the r.h.s. can be replaced by the sum of the exact operator and truncation error. Then
�

Num+1
i Š um+1

i

� 1
(�t )2

= Š ui,tt + � 2u j, j i + � 2( ui, j j Š u j, j i )

Š T r E{ui,tt } + � 2T r E{u j, j i } + � 2T r E{ ui, j j Š u j, j i }. (51)

The sum of the �rst three terms on the r.h.s. is equal to zero, see eq. (36), and thus
�

Num+1
i Š um+1

i

� 1
(�t )2

= Š Tr E{ui,tt } + � 2T r E{u j, j i } + � 2T r E{ ui, j j Š u j, j i }. (52)

Considering eqs (43) and (44), the case of the harmonic planeSwave,
�

Num+1
i Š um+1

i

� 1
(�t )2

=
�

error t S
i Š r 2error� S

i Š error � S
i

�
� 2u i . (53)

Referring to de�nition (19) of the error in the vector difference and eq. (32), we can consider an auxiliary error-component term

�̃ i, vdiff =

�
Num+1

i Š um+1
i

�

AE

1
(�t )2

=
�

error t S
i Š r 2error� S

i Š error � S
i

� � 2u i

|Acos� � t |
. (54)

Referring now to de�nition (18) of the error in amplitude and eq. (32), we can rearrange eq. (54) and consider an auxiliary error-component
term

�̃ i, ampl =
Num+1

i

AE

1
(�t )2

=
�

error t S
i Š r 2error� S

i Š error � S
i

� � 2u i

|Acos� � t |
+

um+1
i

|Acos� � t |
1

(�t )2
. (55)

Accounting for eqs (20) and (21), we have

um+1
i = ui (t + �t ) = exp[Ši � � t ] ui (t) . (56)

Consequently,

�̃ i , ampl =
Num+1

i

AE

1
(�t )2

=
�

error t S
i Š r 2error� S

i Š error � S
i +

exp[Ši � � t ]
(� � t)2

�
� 2u i

|Acos� � t |
. (57)

The errors in the vector difference (19) and amplitude (18) can be then written as

� Rel
vdiff = (�t ref)

2 �
�̃ 2

x, vdiff + �̃ 2
y, vdiff + �̃ 2

z, vdiff

� 1/2 (58)

and

� Rel
ampl = (�t ref)

2
�
�
�
�
�̃ 2

x, ampl + �̃ 2
y, ampl + �̃ 2

z, ampl

� 1/2 Š 1
�
�
� . (59)

Although the auxiliary error-component terms eqs (54) and (57) do not quantitatively represent the entire values of the relative errors in
amplitude and the vector difference, they indicate where the difference between the error in amplitude and error in the vector difference comes
from. The r.h.s of eqs (54) and (57) differ by the fourth term in the parenthesis in eq. (57). The absolute value of this term is proportional to
r 2, see Table 7. The fact that the errors in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG 2= FE G1 are
almost independent onr is likely related to the interaction of the second and fourth terms, as they are both proportional tor 2.
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Accuracy of the seismic numerical schemes1663

6.4 Truncation errors of the discrete approximations to the second non-mixed and mixed spatial derivatives

It is also reasonable to look at the truncation errors of the discrete approximations to the second non-mixed and mixed spatial derivatives.
The leading and �rst higher terms of the truncation errors of the second- and fourth-order operators are listed in Table A1 in Appendix. Here,
we compare coef�cients of these terms.

Denote the truncation errors of the operators for the mixed and non-mixed derivatives asTr E{Dzx} andTr E{Dxx}, respectively. De�ne
ratios for each scheme

C LT =
coeff. of the leading term ofT r E {Dzx}
coeff. of the leading term ofT r E {Dxx}

Ck HT =
coeff. of the k-th higher term ofT r E {Dzx}
coeff. of the k-th higher term ofT r E {Dxx}

; k = 1, 2, 3, . . . (60)

C LT andC1 HT are shown in Fig. 7. Fig. 7(a) includes the four schemes for which the errors in amplitude are almost independent on theVP/VS

ratior , Fig. 7(b) includes all other schemes. All the four schemes in Fig. 7(a) haveC LT = 1. It is easy to �nd that schemes FD DS SG 4, FD
DS SG 2 and FD DS PSG 2= FE G1 have alsoCk HT = 1. On the other hand, none of schemes in Fig. 7(b) hasC LT or C1HT equal to 1.

Let c2
2 andc2

4 be coef�cients of the leading term and �rst higher term ofT r E{Dxx} or T r E{Dzx} of the second-order FD DS SG 2
operators. The upper index indicates the second-order, the lower index the power of the grid spacingh. Similarly, letc4

4 andc4
6 be coef�cients of

the leading term and �rst higher term ofT r E{Dxx} or T r E{Dzx} of the fourth-order FD DS SG 4 operators. Fig. 7 shows the corresponding
coef�cients of other second-order operators as multiples ofc2

2 and c2
4. Similarly, the �gure also shows coef�cients of other fourth-order

operators as multiples ofc4
4 andc4

6.
In general, for the schemes of the same order (that is either second or fourth) for givenC LT or C1HT the errors in amplitude and the

vector difference increase with increasing absolute values of coef�cients of terms in the truncation errors. This can be well seen in the case
of schemes FD DS SG 2 and FD DS PSG 2= FE G1 and schemes SE 4 cn and SE 4 vn. In both comparisons, theC LT or C1HT ratios are
the same for the compared schemes but the coef�cients of terms in the truncation errors are different.

It is interesting to compare FD DS SG 4 and FD D CG 4a. Although they have differentC1HT , the ratio of the coef�cients of the leading
terms (7.1, see Fig. 7a) well quanti�es the difference in their errors (see Fig. 6).

7 C O N C LU S I O N S

We considered an unbounded homogeneous isotropic elastic medium and uniform cubic grid, and analysed 13 3-D time-domain explicit
numerical schemes of the second-order in time for modelling seismic wave propagation and earthquake motion for their behaviour with a
varyingP-wave toS-wave speed ratio (VP/VS or r ).

The schemes of the second-order in space are:

FD D CG 2—�nite-difference displacement conventional grid
FD DS PSG 2—�nite-difference displacement-stress partly-staggered grid
FD DS SG 2—�nite-difference displacement-stress staggered grid
FE L8—�nite-element Lobatto 8-integration points
FE G1—�nite-element Gauss 1-integration point
FE G8—�nite-element Gauss 8-integration points
DG P0 CF—discontinuous-Galerkin polynomial order zero centred-�ux
DG P1 CF—discontinuous-Galerkin polynomial order one centred -�ux

The schemes of the fourth-order in space are:

FD D CG 4a—�nite-difference displacement conventional grid variant a
FD D CG 4b—�nite-difference displacement conventional grid variant b
FD DS SG 4—�nite-difference displacement-stress staggered grid
SE 4 cn—spectral-element central node
SE 4 vn—spectral-element vertex node.

We wrote all schemes in the uni�ed form. Some of the schemes are equivalent

FD D CG 2= FE L8= DG P0 CF
FD DS PSG 2= FE G1
FE G8= DG P1 CF.

We de�ned the numerical solution as the displacement vector at time levelm + 1 obtained from the numerical scheme entered by the
exact values of displacement of the planeSwave at time levelsm Š 1 andm. We de�ned the relative local error in amplitude and the relative
local error in the vector difference based on the difference between the numerical solution and the exact solution. Because different schemes
use different time steps, we normalized the errors for a unit time.
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1664 P. Moczoet al.

Figure 7. Comparison of coef�cients of the leading and the �rst higher terms of the truncation errorsTr E{Dxx} andTr E{Dzx}. (a) schemes with the error
in amplitude almost independent on theVP/VS ratio r . (b) schemes with the error in amplitude dependent on theVP/VS ratio r .
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Accuracy of the seismic numerical schemes1665

We also de�ned the equivalent spatial sampling ratio as a ratio at which the maximum relative error of the scheme is equal to the
reference maximum error.

The numerical evaluations of the errors and equivalent spatial sampling ratios led to the following conclusions:
The relative local error in amplitude of schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG 2= FE G1 is almost

independent on theVP/VS ratio. The error in the vector difference increases with increasingVP/VS ratio. This can be explained only by the
dependence of the polarization errors of all schemes on theVP/VS ratio.

FD D CG 2= FE L8 = DG P0 CF is the most sensitive to the increasingVP/VS ratio and forVP/VS > 2 requires considerably denser
spatial sampling than any other scheme.

The maximum errors in the vector difference of the second-order schemes FD DS SG 2, FE G8= DG P1 CF and FD DS PSG 2= FE
G1 increase with the increasingVP/VS ratio in the same way. Schemes FD DS PSG 2= FE G1 and FE G8= DG P1 CF require denser spatial
sampling than FD DS SG 2 to achieve the same accuracy.

The maximum errors in the vector difference of all the fourth-order schemes increase with the increasingVP/VS ratio for VP/VS > 3 in
the same way. Schemes FD D CG 4a, FD D CG 4b, SE 4 cn and SE 4 vn require denser spatial sampling than FD DS SG 4 to achieve the
same accuracy.

The fourth-order schemes are forVP/VS > 3 less sensitive to the increasingVP/VS ratio than the second-order schemes.
We theoretically showed how a numerical scheme sees theP wave andS wave if theVP/VS ratio increases. In this study, we show that

the increasingVP/VS ratio does not pose a problem for a scheme to model theP wave.
We also showed the structure of the errors in amplitude and the vector difference.
We compared the schemes in terms of the truncation errors of the discrete approximations to the second mixed and non-mixed spatial

derivatives. The most important �nding is this: Schemes FD DS SG 4, FD D CG 4a, FD DS SG 2 and FD DS PSG 2= FE G1 with the errors
in amplitude almost independent on theVP/VS ratio have the same coef�cients of the leading terms of the truncation errors of approximations
to the second mixed and non-mixed spatial derivatives. None of the other schemes have those coef�cients equal.

Scheme FD DS SG 2 with the smallest errors among the second-order schemes and scheme FD DS SG 4 with the smallest errors among
the fourth-order schemes have the same coef�cients also at each higher term of the truncation errors of approximations to the second mixed
and non-mixed spatial derivatives. The absolute values of the coef�cients are smaller than the absolute values of coef�cients of the truncation
errors of the other schemes.

The general theoretical conclusion based on the investigation of the 13 numerical schemes is that the homogeneity of the approximations
to the second mixed and non-mixed spatial derivatives in terms of the coef�cients of the leading terms of their truncation errors as well as the
absolute values of the coef�cients are key factors for the behaviour of the numerical schemes with increasingVP/VS ratio.

The practical conclusion for the existing numerical schemes is that the dependence of the errors in the vector difference on theVP/VS

ratio should be accounted for by a proper (suf�ciently dense) spatial sampling. We quanti�ed the proper sampling with respect to the local
errors in amplitude and in the vector difference.
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A P P E N D I X

Table A1. The leading and �rst higher terms of the truncation errors of the non-mixed and mixed spatial operators de�ned by eqs (11)–(14). Part a:
second-order operators, part b: fourth-order operators.

Operator Truncation error× 20160

Part (a)

D FD D CG 2
xx

D FE L8
xx

D DG P0 CF
xx

1680� (4,0,0) h2

+ 56 � (6,0,0) h4

D FD D CG 2
zx

D FE L8
zx

D DG P0 CF
zx

6720
�

1
2

� (1,0,3) +
1
2

� (3,0,1)
�

h2

+ 896
�

3
16

� (1,0,5) +
10
16

� (3,0,3) +
3
16

� (5,0,1)
�

h4

D FD DS PSG 2
xx

D FE G1
xx

11760
�

3
7

� (2,0,2) +
1
7

� (4,0,0) +
3
7

� (2,2,0)
�

h2

+ 2996
�

1
107

�
2� (6,0,0) + 15� (4,2,0) + 15� (4,0,2) + 15� (2,4,0) + 45� (2,2,2) + 15� (2,0,4)

� �
h4

D FD DS PSG 2
zx

D FE G1
zx

11760
�

2
7

� (1,0,3) +
3
7

� (1,2,1) +
2
7

� (3,0,1)
�

h2

+ 2996
�

1
107

�
6� (1,0,5) + 30� (1,2,3) + 15� (1,4,1) + 20� (3,0,3) + 30� (3,2,1) + 6� (5,0,1)

� �
h4
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Table A1. (Continued.)

Operator Truncation error× 20160

D FD DS SG 2
xx

1680� (4,0,0) h2

+ 56 � (6,0,0) h4

D FD DS SG 2
zx

1680
�

1
2

� (1,0,3) +
1
2

� (3,0,1)
�

h2

+ 56
�

3
16

� (1,0,5) +
10
16

� (3,0,3) +
3
16

� (5,0,1)
�

h4

D FE G8
xx

D DG P1 CF
xx

8400
�

2
5

� (2,0,2) +
1
5

� (4,0,0) +
2
5

� (2,2,0)
�

h2

+ 1736
�

1
31

�
� (6,0,0) + 5� (4,2,0) + 5� (4,0,2) + 5� (2,4,0) + 10� (2,2,2) + 5� (2,0,4)

� �
h4

D FE G8
zx

D DG P1 CF
zx

10080
�

1
3

� (1,0,3) +
1
3

� (1,2,1) +
1
3

� (3,0,1)
�

h2

+ 2996
�

1
41

�
3� (1,0,5) + 10� (1,2,3) + 5� (1,4,1) + 10� (3,0,3) + 10� (3,2,1) + 3� (5,0,1)

� �
h4

Part (b)

D FD D CG 4a
xx

Š 1344� (6,0,0) h4

Š 300� (8,0,0) h6

D FD D CG 4a
zx

Š 1344
�

1
2

� (1,0,5) +
1
2

� (5,0,1)
�

h4

Š 160
�

1
2

� (1,0,7) +
1
2

� (7,0,1)
�

h6

D FD D CG 4b
xx

Š 224� (6,0,0) h4

Š 20 � (8,0,0) h6

D FD D CG 4b
zx

Š 1904
�

6
17

� (1,0,5) +
5
17

� (3,0,3) +
6
17

� (5,0,1)
�

h4

Š 440
�

4
22

� (1,0,7) +
7
22

� (3,0,5) +
7
22

� (5,0,3) +
4
22

� (7,0,1)
�

h6

D FD DS SG 4
xx

Š 189� (6,0,0) h4

Š
45
4

� (8,0,0) h6

D FD DS SG 4
zx

Š 189
�

1
2

� (1,0,5) +
1
2

� (5,0,1)
�

h4

Š
45
4

�
1
2

� (1,0,7) +
1
2

� (7,0,1)
�

h6

D SE 4 cn
xx

Š 384� (6,0,0) h4

Š
1920
49

� (8,0,0) h6

D SE 4 cn
zx

Š 2304
�

1
2

� (1,0,5) +
1
2

� (5,0,1)
�

h4

Š
15 360

49

�
1
2

� (1,0,7) +
1
2

� (7,0,1)
�

h6

D SE 4 vn
xx

Š 1 024� (6,0,0) h4

Š
58 880

49
� (8,0,0) h6

D SE 4 vn
zx

Š 6144
�

1
2

� (1,0,5) +
1
2

� (5,0,1)
�

h4

Š
471 040

49

�
1
2

� (1,0,7) +
1
2

� (7,0,1)
�

h6
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