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Abstract

The problem of handling missing data in generalized linear mixed models
with correlated covariates is considered when the missing mechanism con-
cerns both the response variable and the covariates. An imputation algorithm
combining multiple imputation and Partial Least Squares (PLS) regression
is proposed. The method relies on two steps. In a first step, using a lin-
earization technique, the generalized linear mixed model is approximated by
a linear mixed model. A latent variable is introduced and its associated PLS
components are constructed. In a second step these PLS components are
used in the generalized linear mixed model to impute the response variable.
The method is applied on simulations and on a real data.

Keywords: Missing data, Multiple imputation, PLS regression, Schall
linearization, Generalized linear mixed models

1. Introduction

Missing data are frequently encountered in dataset leading to various
challenging problems. When the non-response is independent of the response
variable the missing mechanism is said to be Missing At Random (MAR),
according to Rubin (1987). In this case different authors proposed multiple
imputation to recover the non-response value. This method of imputation is
the most reliable method both from accuracy and efficiency point of view.
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It consists of replacing each missing value by a vector of imputed values.
Multiple imputations have been developed in linear models and in generalized
linear models by Schafer (1997) and Ibrahim (1990), respectively.

In the context of generalized linear models with correlated covariates,
Bastien (2008) combined the Partial Least Squares (PLS) regression tech-
nique with the multiple imputation method, obtaining a successfull method,
called Multiple Imputation with Partial Least Squares (MI-PLS). It consists
of imputing the missing data on the variable of interest by a PLS regres-
sion after imputation of missing values on each explicative variable. Another
method appropriate to multicollinear data is the use of principal components
as done in Aguilera et al. (2006) for estimating logistic regression with high-
dimensional data. In linear mixed models the problem of missing data has
been investigated by Schafer and Yucel (1998). In generalized linear mixed
models, Wu and Lang (2006) proposed an extension of multiple imputation
combining Monte-Carlo EM algorithms with Gibbs sampler. Multiple impu-
tation in generalized linear mixed models have also been studied by Little
(1995), Ten Have et al. (1998), and Wu (2004) among others. However these
methods can break down when covariates are linearly dependent.

Recently Guyon and Pommeret (2011) considered the case of collinearity
and proposed a solution for the problem of handling missing data in linear
mixed models with correlated covariates. Their method can be decomposed
into two steps: a first one consists in deleting the random effect to apply a
PLS regression on standard linear model. Random effect is then reintroduced
in a second step taking into account the PLS components. This method gave
satisfactory results on simulations as well as on real dataset. The aim of this
paper is to extend this work to the case of generalized linear mixed models.

We assume that a MAR missing mechanism acts both on the response
variable and on the covariates. Our aim is to recover a complete dataset
using the multiple imputation technique. The main idea is to apply the
method of Schall (1991) to construct a latent variable by linearization. In this
way we obtain a linear mixed model with unobserved responses. Although
the latent variable is unobserved, we can estimate its correlation with the
covariates which permits to determine the PLS components and to adapt
the method of Guyon and Pommeret (2011). Finally, by reconstructing the
original response variable from the complete latent ones, we get a complete
dataset .

This proposed method, that we shall call multiple imputation by PLS
regression for generalized linear mixed models (MI-PLS-GLMMs), is applied
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on simulations for Poisson and logistic mixed models. It is also applied to
the plant vegetation dataset (Zuur et al., 2009).

The paper is organized as follow: in Section 2 the model is introduced, the
linearization procedure of Schall (1991) and the PLS regression are used in
combination with multiple imputation procedure to predict values for miss-
ing data. In Section 3, two simulations experiment designed to analyze the
efficiency of the method are implemented. Section 4 presents the analysis of
the plant vegetation dataset. Finally, Section 5 contains a brief conclusion.

2. The model and the proposed method

2.1. The model

We consider a generalized linear mixed model with Y a n-vector of re-
sponses, given a set of p potential covariates, through the classical regression:

g(E(Yi|ξ)) = XT
i β + UT

i ξ, ∀i ∈ {1, ..., n}, (1)

where g denotes the link function, Xi and Ui are fixed covariates and random
effect, β ∈ Rp is the fixed effects coefficient and ξ = (ξ′1, ..., ξ

′
K) is the ran-

dom effect coefficient with ξj a random vector of dimension qj. The design
matrices X and U are known. We will restrict our attention to the case
where the covariates are correlated or collinear. Write ηξ = Xβ + Uξ and
µξ = E(Y |ξ). It is assumed, that given ξ, the Y components are independent
and ∀i ∈ {1, ..., n}, Yi|ξ follows a distribution from an exponential family. It
is also required that ξ follows a centered normal distribution with variance
matrix D, written as ξ ∼ N (0, D).

2.2. The proposed method

The proposed method is a multiple imputation method and can be de-
composed into three parts: imputation, analysis and pooling. The imputation
results in m complete datasets. The analysis consists in analyzing each of
the m completed datasets. The pooling integrates the m analysis results into
a final result. We describe these three consecutive parts.

Imputation. For each missing data entry, m imputations (m ≥ 2) are gener-
ated by bootstrap with replacement of the covariates X1, ..., Xp .
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Analysis. Following Schall (1991), we consider the first order Taylor expan-
sion of the link function,

Z = Xβ + Uξ + (Y − µξ)g
′(µξ),

where g′ stands for the first derivative of g. Note that we construct Z for
each of the m dataset obtained by imputation, with

E(Z) = Xβ, and V ar(Z) = UDU ′ + Wξ,

where Wξ = V ar(Z|ξ). To estimated β, D and Wξ, we solve the following
Henderson’s system (Henderson et al., 1959):

[
X ′W−1

ξ X X ′W−1
ξ U

U ′W−1
ξ X U ′W−1

ξ U + D−1

] [
β
ξ

]
=

[
X ′W−1

ξ z

U ′W−1
ξ z

]
.

To overcome the random effect, imitating Guyon and Pommeret (2011) we
put

Z̃ = Z − Uξ,

where Z is the m previous latent variables obtained by Schall linearization.
The associated PLS model with k components fits the following expansion:

fk(x, c, w) =
k∑

h=1

chth,

=
k∑

h=1

ch

p∑

j=1

xh−1,jwhj,

=
k∑

h=1

ch

p∑

j=1

xjw
∗
hj,

where wh = arg maxwh
cov(Xh−1wh, Z̃), ch is the regression coefficient of th in

the regression of Z̃ on t1, ..., tk and w∗
h = wh/||wh||. It is clear that the variable

Z̃ is not observed since it depends on the latent variable Z. However, it is
possible to calculate the PLS components through the covariances between
Z and the covariates X. For instance,

cov(Z̃,X) = cov(Z − Uξ,X),

= cov(Xβ + (Y − µ)g′(µ), X),

= βV ar(X) + g′(µ)cov(Y, X),
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which can be determined as soon as β and ξ are estimated.
The selection of the appropriate number of components h is based on the

cross-validation criterion Q2
h (Tenenhaus, 1998),

Q2
h = 1 −

PRESSh

RSSh−1

,

where RSS and PRESS denote the Residual Sum of Squares and the PRe-
dictor Error Sum of Squares, respectively (see Appendix).

In order to take into account the random effect, let us consider the new
linear mixed model

g(E(Yi|ξ, C)) = TC + UT
i ξ. (2)

The fixed parameters C are estimated and the random parameter ξ is pre-
dicted using the Henderson method. We denote by Ĉ and ξ̂ their respective
estimators. We reformulate β̂ according to the weights of the PLS compo-
nents and Ĉ is recovered using the formulas given in Bastien et al. (2005)
(see Appendix).

As in Guyon and Pommeret (2011), we use a bootstrap validation proce-
dure to assess the statistical significance of the explanatory variables. This
selection method is inspired from the work of Bastien et al. (2005). More pre-
cisely, the bootstrap procedure consists in sampling with replacement from Y
with their associated components T and U . Applying (2) to the B (B fixed)
bootstrap samples, we obtain a vector β∗ of B estimators of β. It allows us to
calculate a bootstrapped confidence interval of the regressors and empirical
distributions are used to retain the significant variables at a prescribed level
(arbitrarily 5%).

Pooling. The last part consists of pooling the m estimates into a single one
equal to the estimated parameters mean, as done in Little and Rubin (1987).
From the previous step, we obtained m estimators of D, the variance of ξ,
D̂1, ..., D̂m and m predictors of ξ: ξ̂1, ..., ξ̂m. We simulate S ∼ Nn(Uξ, F̂ ),
where

ξ =
1

m

m∑

k=1

ξ̂k, F̂ = V + (1 +
1

m
)W,

with

V =
1

m

m∑

k=1

D̂k, and W =
1

m − 1

m∑

k=1

(ξ̂k − ξ)(ξ̂k − ξ)′. (3)
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Finally, if Yi is missing, we replaced it by

̂g(E(Yi|β, ξ)) = Xiβ̂ + Si.

2.3. Proposed algorithm

The MI-PLS-GLMM algorithm can be decomposed into six consecutive
steps.

• Step 1. Imputation of covariates to get m complete dataset.

• Step 2. Schall linearization.

• Step 3. PLS procedure based on the latent variable without random
effect.

• Step 4. Taking into account the random effect to estimate C and ξ.

• Step 5. Bootstrap selection.

• Step 6. Pooling.

3. Simulation study

In order to evaluate the performance of the proposed algorithm, simula-
tions were performed with two sample sizes (N = 100 and N = 500) and
for two variances of the random effects (V ar(ξ) = 0.5 and V ar(ξ) = 2). For
each simulation, we have computed the algorithm and the results presented
were the mean of 30 simulations. The performance criterion used is the Mean
Squared Error (MSE) for missing values defined by

MSE =

∑Nmis

i=1 (Ŷi − Yi)
2

V ar(Y )
,

where Nmis denotes the number of missing values.
In our simulations, the design matrix X consists of a N -sample of a

5-dimensional covariate vector such that the last 2 components of the co-
variate vector are collinear with the first 3 ones, as it is shown in Table 1.
The covariates are constructed as follows: three independent uniform vari-
ables X1 ∼ U([0; 10]), X2 ∼ U([−5; 5]), X3 ∼ U([5; 15]), and two linearly
dependent variables

X4 = X1 + X2 + X3, X5 = 2X1 + 3X2 + X3.
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We add a random effect as follows: For N = 100 observations, the random
effect was a 3-level vector ξ ∼ N3(0, 2I). For N = 500 observations, the
random effect was first a 3-level vector ξ ∼ N3(0, 2I), and second a 3-level
vector ξ ∼ N3(0, 0.5I).

3.1. The Poisson model

Assuming that Y |X, ξ is Poisson distributed with

E(Y |ξ, X) = exp (βX + ξU),

where β = (0.5, 0.5,−0.5, 0.5, 0.5). The MI-PLS-GLMM algorithm was run
with various percentage p of missing value on Y and X. We chose p ∈
{8%, 10%, 15%, 20%}.

Table 1: Correlation matrix between the variables (Pearson correlation coefficients)

Y X1 X2 X3 X4 X5
X1 0.193 1
X2 0.170 0.057 1
X3 0.037 0.081 -0.046 1
X4 0.227 0.641 0.584 0.559 1
X5 0.243 0.580 0.809 0.252 0.930 1

Following Rubin (1987) the number of multiple imputation was fixed to
m = 5. The different estimations of β and of the standard errors of ξ were
obtained with p = {0%, 8%, 10%, 15%, 20%}. As expected, only three PLS
components were retained for all models and they were used to reconstruct
the β parameters. Tables 2-4 contain estimations. The risk level was fixed
at α = 0.05 and the test of significance was based on B = 200 bootstrap
samples. All coefficients were significant.
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Table 2: Estimations for the model with N = 100 and V ar(ξ) = 2 (se = standard error)

Missing (%) 0% 8% 10% 15% 20%

β̂1 (se) 0.477 (0.042) 0.425 (0.039) 0.409 (0.044) 0.355 (0.051) 0.359 (0.047)

β̂2 (se) 0.329 (0.061) 0.300 (0.068) 0.191 (0.068) 0.155 (0.066) 0.124 (0.067)

β̂3 (se) -0.560 (0.007) -0.440 (0.020) -0.474 (0.021) -0.658 (0.021) -0.424 (0.026)

β̂4 (se) 0.440 (0.012) 0.366 (0.023) 0.528 (0.023) 0.517 (0.031) 0.529 (0.027)

β̂5 (se) 0.220 (0.008) 0.176 (0.014) 0.257 (0.013) 0.257 (0.022) 0.244 (0.026)

se(ξ) 1.455 1.408 1.402 1.402 1.402

N observed 100 92 90 85 80

Table 3: Estimations for the Poisson model with N = 500 and V ar(ξ) = 0.5 (se = standard
error)

Missing (%) 0% 8% 10% 15% 20%

β̂1 (se) 0.530 (0.018) 0.528 (0.019) 0.525 (0.019) 0.530 (0.021) 0.537 (0.021)

β̂2 (se) 0.613 (0.023) 0.612 (0.026) 0.624 (0.028) 0.624 (0.027) 0.659 (0.031)

β̂3 (se) -0.517 (0.006) -0.529 (0.008) -0.547 (0.009) -0.529 (0.008) -0.534 (0.010)

β̂4 (se) 0.583 (0.007) 0.580 (0.009) 0.598 (0.008) 0.593 (0.009) 0.598 (0.009)

β̂5 (se) 0.535 (0.006) 0.579 (0.006) 0.596 (0.005) 0.597 (0.006) 0.597 (0.006)

se(ξ) 0.552 0.564 0.498 0.599 0.494

N observed 500 460 450 425 400
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Table 4: Estimations for the Poisson model with N = 500 and V ar(ξ) = 2 (se = standard
error)

Missing (%) 0% 8% 10% 15% 20%

β̂1 (se) 0.510 (0.009) 0.508 (0.007) 0.511 (0.008) 0.513 (0.008) 0.514 (0.012)

β̂2 (se) 0.389 (0.015) 0.384 (0.010) 0.385 (0.009) 0.340 (0.010) 0.386 (0.010)

β̂3 (se) -0.482 (0.003) -0.493 (0.003) -0.495 (0.003) -0.500 (0.003) -0.515 (0.003)

β̂4 (se) 0.511 (0.004) 0.519 (0.003) 0.507 (0.003) 0.534 (0.003) 0.503 (0.003)

β̂5 (se) 0.511 (0.002) 0.515 (0.002) 0.522 (0.002) 0.523 (0.002) 0.506 (0.002)

se(ξ) 1.248 1.232 1.288 1.253 1.398

N observed 500 460 450 425 400

For N = 100 and V ar(ξ) = 2, the estimations of β were less accurate when
the number of missing values increased. However, the estimation of V ar(ξ)
was relatively close to the initial value. For N = 500 and V ar(ξ) = 0.5, the
estimations of β were more stable with respect to the proportion p of missing
values. Further, V ar(ξ) was overpredicted, but this bias seems to be due to
the Schall linearization. Finally, for N = 500 and V ar(ξ) = 2, there was
clearly a gain of precision for the estimations of β and V ar(ξ).

In order to evaluate the efficiency of the algorithm, we considered the
case p = 0 in Tables 2-4. We observed a bias due to the hight correlation
between covariates. This bias was balanced among the components of β.
Finally a certain stability through the sample size and the variance of the
random effect ξ was observed.

Concerning the MSE, it increased with the number of missing values and
figure 1 shows the three MSE associated to the three simulations. It can be
observed that the increasing is slow with the percentage of missing value.

9



5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Missing%

M
S
E

N=100, Var(xi)=2

N=500, Var(xi)=0.5

N=500, Var(xi)=2

Figure 1: MSE associated to the three simulations with respect to the % of missing data

3.2. The logistic model

Assume that Y |ξ, X follows a logistic distribution

E(Y |ξ, X) =
exp (βX + ξU)

1 + exp (βX + ξU)
,

with β = (0.5, 0.5,−0.5, 0.5, 0.5). The MI-PLS-GLMM algorithm was run
with p ∈ {8%, 10%, 15%, 20%}. Only three PLS components were retained
for all models and were used to reconstruct the β coefficient. Tables 5-7
contain estimations for the estimators at the risk level α = 0.05. The test of
significance was based on B = 200 bootstrap samples.
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Table 5: Estimations for the logistic model with N = 100 and V ar(ξ) = 2 (se = standard
error)

Missing (%) 0% 8% 10% 15% 20%

β̂1 (se) 0.867 (0.233) 0.880 (0.299) 0.821 (0.357) 0.785 (0.635) 0.799 (0.931)

β̂2 (se) 0.467 (0.330) 0.450 (0.365) 0.490 (0.302) 0.445 (0.325) 0.449 (0.320)

β̂3 (se) -0.525 (0.048) -0.560 (0.060) -0.549 (0.056) -0.483 (0.061) -0.471 (0.058)

β̂4 (se) 0.185 (0.048) 0.170 (0.061) 0.126 (0.053) 0.200 (0.076) 0.122 (0.080)

β̂5 (se) 0.206 (0.295) 0.207 (0.187) 0.270 (0.239) 0.294 (0.214) 0.272 (0.219)

se(ξ) 1.166 1.234 1.326 1.124 1.121

N observed 100 92 90 85 80

Table 6: Estimations for the logistic model with N = 500 and V ar(ξ) = 0.5 (se = standard
error)

Missing (%) 0% 8% 10% 15% 20%

β̂1 (se) 0.757 (0.096) 0.640 (0.103) 0.702 (0.091) 0.598 (0.108) 0.708 (0.135)

β̂2 (se) 0.268 (0.162) 0.170 (0.157) 0.198 (0.175) 0.165 (0.210) 0.199 (0.190)

β̂3 (se) -0.416 (0.020) -0.489 (0.024) -0.419 (0.022) -0.458 (0.028) -0.468 (0.048)

β̂4 (se) 0.293 (0.120) 0.268 (0.144) 0.233 (0.119) 0.205 (0.166) 0.184 (0.187)

β̂5 (se) 0.774 (0.293) 0.739 (0.468) 0.721 (0.301) 0.608 (0.316) 0.593 (0.310)

se(ξ) 0.747 0.702 0.702 0.753 0.764

N observed 500 460 450 425 400
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Table 7: Estimations for the logistic model with N = 500 and V ar(ξ) = 2 (se = standard
error)

Missing (%) 0% 8% 10% 15% 20%

β̂1 (se) 0.521 (0.109) 0.610 (0.115) 0.501 (0.109) 0.597 (0.134) 0.476 (0.141)

β̂2 (se) 0.374 (0.152) 0.391 (0.158) 0.365 (0.157) 0.239 (0.191) 0.239 (0.165)

β̂3 (se) -0.456 (0.055) -0.432 (0.052) -0.523 (0.031) -0.547 (0.038) -0.440 (0.073)

β̂4 (se) 0.456 (0.092) 0.409 (0.105) 0.549 (0.096) 0.437 (0.111) 0.534 (0.115)

β̂5 (se) 0.509 (0.179) 0.579 (0.187) 0.434 (0.214) 0.595 (0.303) 0.552 (0.223)

se(ξ) 1.349 1.045 1.303 1.544 1.578

N observed 500 460 450 425 400

The same conclusions than with the Poisson model can be drawn and we
omit it for brievity. We just illustrate the increasing of the MSE in Figure 2.
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Figure 2: MSE associated to the three simulations with respect to the % of missing data

4. Real dataset

4.1. The plant vegetation example

We considered the data presented in Zuur et al. (2009): they consist of
grassland data from a monitoring program from communities in Montana,
USA. The data were measured in eight different transects and each transect
was measured repeatdly over time with time intervals of about four to ten
years. The aim of the study was to determinate whether the biodiversity
of the bunchgrass communities changes over time and if they did, whether
the changes in biodiversity relate to specific environmental factors. In order
to quantify biodiversity, species richness were used. Richness is defined as
the different number of species per site, and it is assumed that this response
variable follows a Poisson distribution. Since the data are longitudinal, we
take into account the time and we consider that the site is a random effect
with 8 levels. Note that in the original analysis of Zuur et al. (2009) the
longitudinal aspect was ignored. The explanatory variables are rock content,
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litter content, bare soil, rainfall in the fall, maximum temperature in the
spring. They are correlated and Table 8 shows the correlation values of the
fixed effects and the response variable.

Table 8: Correlation between the response variable and the fixed effects

Richness Rock Litter Baresoil Rainfall Temperature
Rock -0.3 1
Litter 0.09 -0.7 1

Baresoil -0.6 0.04 -0.2 1
Rainfall 0.2 0.07 -0.2 0.1 1

Temperature -0.6 -0.02 0.2 0.4 -0.2 1

The response variable and some of the explanatory variables have 9.7%
of missing values. The missing mechanism is considered as MAR. We apply
the algorithm MI-PLS-GLMM on the dataset.

4.2. Results

We retained two PLS components based on the Q2
h criterion. In Zuur

et al. (2009), two components were also obtained in their PLS approach
with a Poisson model. The parameters β were reconstructed from the PLS
regression. Table 9 presents their estimates for the fixed effects, before and
after imputation. Based on the bootstrap procedure, they are all significant
at the risk level α = 0.05.
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Table 9: Estimates associated to the fixed effects and to the random effect (se = standard
error).

Missing Before Imputation After Imputation

Rock (se) -0.004 (0.004 ) -0.003 (0.004)
Litter (se) 0.005 (0.007) 0.006 (0.007)

Baresoil (se) -0.018 (0.006) -0.010 (0.006)
Rainfall (se) 0.019 (0.003) 0.006 (0.004)

Temperature (se) 0.104 (0.030) 0.107 (0.038)
Time (se) 0.002 (0.002) 0.028 (0.017)

se(ξ) 0.606 0.829

4.3. Interpretation

From Table 9, we distinguished two groups of covariates. A first group
with negative coefficients including, for instance, bare soil that reduces the
mean of the number of species, by 1.78% per unit more. In contrast, the
second group increases the number of species. For instance for an additional
unit of temperature, the mean of the number of species increases by 11.29%.

The prediction of the random effect leads to detect two other groups of
sites, as shown in Table 10.

Table 10: Prediction of the random effect

Site1 Site2 Site3 Site4 Site5 Site6 Site7 Site8

ξ̂ 0.047 -0.077 0.050 0.004 0.051 -0.008 -0.047 0.096

A first type of site, formed by sites 1, 3, 4, 5 and 8, seems to be more
propitious to the biodiversity a priori. In contrast, the second type formed
the other sites seems to be less propitious to the diversity of species.

Finally, Figure 4.3 shows the boxplots before and after imputation. They
were very close, indicating a stability of the original distribution shape after
imputation.
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Figure 3: Boxplot of the distribution of Richness: before imputation (left) and after
imputation (right)

5. Conclusion

The algorithm MI-PLS-GLMM was proposed to deal with the problem of
missing data in a generalized linear mixed model when covariates are corre-
lated. It combines the multiple imputation theory adapted to the generalized
linear mixed models with the PLS method. It is based on the Schall method
which allows to reduce the problem to a linear mixed model. It is also an
adaptation of the MI-PLS initiated by Bastien (2008) and the MI-PLS-LMM
algorithm proposed by Guyon and Pommeret (2011) since it is dedicated to
the problem of missing data in the presence of both collinearity and random
effect.

Simulation studies were carried out which suggest that the proposed
method works well for mixed Poisson and mixed logistic models. Thus,
MI-PLS-GLMM provided good estimates of the parameters and kept the
distribution shape of the original data before imputation. It was also shown
that the MSE increase slowly with the percentage of missing values. The
limit of the method seemed to be inherent to the Schall linearization which
may lead to overestimations of the variance of the random effect.

The application of this method to a real dataset shown it is easily relevant
in the case of longitudinal data.
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mixed models. Journal de la Société Française de Statistique 152 (4), 30–
46.

Henderson, C., Kempthorne, O., Searle, S., von Krosigk, C., 1959. The esti-
mation of environmental and genetic trends from records subject to culling.
Biometrics 15, 192–218.

Ibrahim, J., 1990. Incomplete data in generalized linear models. Journal of
the American Statistical Association 85, 765–769.

Little, R., Rubin, D., 1987. Statistical analysis with missing data. Wiley
series in probability and mathematical statistics: Applied probability and
statistics. Wiley.

Little, R. J. A., 1995. Modeling the drop-out mechanism in repeated-
measures studies. Journal of the American Statistical Association 90 (431),
1112– 1121.

Rubin, D., 1987. Multiple Imputation for Non-response in Survey. J. Wiley
and Sons, New York. Wiley.

Schafer, J., 1997. Analysis of Incomplete Multivariate Data. Chapman and
Hall, London. Chapman and Hall.

Schafer, J., Yucel, R., 1998. Fitting multivariate linear mixed models with
incomplete data. In: Proceedings of the Statistical Computing Section of
the American Statistical Association. Vol. 8. pp. 177–182.

17



Schall, R., 1991. Estimation in generalized linear models with random effects.
Biometrika 78, 719–727.

Ten Have, T., Pulkstenis, E., K. A., Landis, J., 1998. Mixed effects logistics
regression models fro longitudinal binary response data with droupout.
Biometrics 54, 367–383.
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Appendix

1. Schall linearization

The Schall algorithm can be summarized as follow: at each iteration t,
we consider β[t], ξ[t] and σ2[t] = (σ

2[t]
1 , ..., σ

2[t]
K ).

1 Calculation of Z [t] = Xβ[t] + Uξ[t] + (y − µ
[t]
ξ )g′(µ

[t]
ξ ).

2 Calculation of W
[t]
ξ and Γ

[t]
ξ .

3 Determination of β[t+1] and ξ[t+1] as solution of the Henderson’s system.

4 Calculation of σ2[t+1].

For the fourth step, with the maximum likelihood,

σ
2[t+1]
j =

ξ
′[t+1]
j A−1

j ξ
[t+1]
j

qj −
tr(A−1

j C
∗[t]
jj )

σ
2[t]
j

,

where C∗
jj is the j × j submatrix of C∗ = (U ′W−1

ξ U + D−1)−1.
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2. PLS linear regression algorithm

Step1. Computation of the PLS regression components
Computation of the first PLS regression component t1:

1. Computation of the coefficients a1j for each simple linear regression of

Z̃ on xj, j = 1, ..., p.

2. Normalization of the column vector a1 made by a1j’s: w1 = a1

||a1||
.

3. Computation of the PLS regression component as t1 = Xw1.

Computation of the kth PLS regression component tk:

1. Computation of the residual xk−1,1, ..., xk−1,p from the multiple regres-
sion of xj, j = 1, ..., p on t1, ..., tk−1. Let Xk−1 = [xk−1,1, ..., xk−1,p].

2. Computation of the coefficients akj of xk−1,j in the linear regression of

Z̃ on t1, ..., tk−1 and each xk−1,j, j = 1, ..., p.

3. Normalization of the column vector ak made by akj’s: wk = ak

||ak||
.

4. Computation of the kth PLS regression component as tk = Xk−1wk.

5. Expression of the component tk in terms of X as tk = Xw∗
k.

Step2. Linear regression of Z̃ on the k retained PLS regression compo-
nents

3. Number of PLS components

Consider the regression model of z on the h PLS components:

z = c1t1 + ... + chth︸ ︷︷ ︸
ẑh

+zh. (4)

At each step h, a criterion is calculated for each new component th:

Q2
h = 1 −

PRESSh

RSSh−1

,

where RSSh (Residual Sum of Squares) and PRESSh (PRediction Error
Sum of Squares) are defined as:

RSSh =
n∑

i=1

(zi − ẑhi)
2 and PRESSh =

n∑

i=1

(zi − ẑh(−i))
2,
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where ẑh(−i) is the prediction of zi obtained by (4) without the observation
i. For h = 1,

RSS0 =
n∑

i=1

(zi − zi)
2,

Referring to Tenenhaus (1998), a new component is considered as significant
as soon as Q2

h ≥ 0.0975.

4. Expression of PLS components in terms of the original explanatory vari-
ables (Bastien et al., 2005, from)

All variables Y, X1, ..., Xj, ..., Xp are assumed to be centered. The PLS
regression model with h components is written as

Y =
h∑

H=1

cH(

p∑

j=1

w∗
HjXj) + residual, (5)

with the constraint that the PLS components tH =
∑p

j=1 w∗
HjXj are orthog-

onal and the parameters cH and w∗
Hj in (5) are to be estimated.

The estimated regression equation may be then expressed in terms of the
original variables Xj’s:

Ŷ =
h∑

H=1

cH(

p∑

j=1

w∗
HjXj) =

p∑

j=1

(
h∑

H=1

cHw∗
Hj)Xj =

p∑

j=1

βjXj.
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