Jean-Guillaume Dumas
email: jean-guillaume.dumas@imag.fr

Dominique Duval
email: dominique.duval@imag.fr

Laurent Fousse
email: laurent.fousse@imag.fr

Jean-Claude Reynaud
email: jean-claude.reynaud@imag.fr

Decorated proofs for computational effects: States

The syntax of an imperative language does not mention explicitly the state, while its denotational semantics has to mention it. In this paper we show that the equational proofs about an imperative language may hide the state, in the same way as the syntax does.

Introduction

The evolution of the state of the memory in an imperative program is a computational effect: the state is never mentioned as an argument or a result of a command, whereas in general it is used and modified during the execution of commands. Thus, the syntax of an imperative language does not mention explicitly the state, while its denotational semantics has to mention it. This means that the state is encapsulated : its interface, which is made of the functions for looking up and updating the values of the locations, is separated from its implementation; the state cannot be accessed in any other way than through his interface.

In this paper we show that equational proofs in an imperative language may also encapsulate the state: proofs can be performed without any knowledge of the implementation of the state. We will see that a naive approach (called "apparent") cannot deal with the updating of states, while this becomes possible with a slightly more sophisticated approach (called "decorated"). This is expressed in an algebraic framework relying on category theory. To our knowledge, the first categorical treatment of computational effects, using monads, is due to Moggi [Moggi 1991]. The examples proposed by Moggi include the side-effects monad T (A) = (A × St) St where St is the set of states. Later on, Plotkin and Power used Lawvere theories for dealing with the operations and equations related to computational effects. The Lawvere theory for the side-effects monad involves seven equations [Plotkin & Power 2002]. In Section 1 we describe the intended denotational semantics of states. Then in Section 2 we introduce three variants of the equational logic for formalizing the computational effects due to the states: the apparent, decorated an explicit logics. This approach is illustrated in Section 3 by proving some of the equations from [Plotkin & Power 2002], using rules which do not mention any type of states.

Motivations

This section is made of three independent parts. Section 1.1 is devoted to the semantics of states, an example is presented in Section 1.2, and our logical framework is described in Section 1.3.

Semantics of states

This section deals with the denotational semantics of states, by providing a set-valued interpretation of the lookup and update operations. Let St denote the set of states. Let Loc denote the set of locations (also called variables or identifiers). For each location i, let Val i denote the set of possible values for i. For each location i there is a lookup function for reading the value of location i in the given state, without modifying this state: this corresponds to a function lookup i,1 : St → Val i or equivalently to a function lookup i : St → Val i × St such that lookup i (s) = lookup i,1 (s), s for each state s. In addition, for each location i there is an update function update i : Val i × St → St for setting the value of location i to the given value, without modifying the values of the other locations in the given state. This is summarized as follows, for each i ∈ Loc : a set Val i , two functions lookup i,1 : St → Val i and update i : andequations (1): (

Val i × St → St,
1.1) ∀ a ∈ Val i , ∀ s ∈ St , lookup i,1 (update i (a, s)) = a , (1.2) ∀ a ∈ Val i , ∀ s ∈ St , lookup j,1 (update i (a, s)) = lookup j,1 (s) for every j ∈ Loc, j = i .
The state can be observed thanks to the lookup functions. We may consider the tuple lookup i,1 i∈Loc : St → i∈Loc Val i . If this function is an isomorphism, then Equations (1) provide a definition of the update functions. In [Plotkin & Power 2002] an equational presentation of states is given, with seven equations: in Remark 1.1 these equations are expressed according to [Melliès 2010] and they are translated in our framework. We use the notations

l i = lookup i : St → Val i × St, l i,1 = lookup i,1 : St → Val i and u i = update i : Val i × St → St ,
and in addition id i : Val i → Val i and q i : Val i × St → St respectively denote the identity of Val i and the projection, while perm i,j :

Val j × Val i × St → Val i × Val j × St
permutes its first and second arguments.

Remark 1.1. The equations in [Plotkin & Power 2002] can be expressed as the following Equations (2):

(2.1) Annihilation lookup-update. Reading the value of a location i and then updating the location i with the obtained value is just like doing nothing.

∀ i ∈ Loc, ∀ s ∈ St , u i (l i (s)) = s ∈ St (2.
2) Interaction lookup-lookup. Reading twice the same location loc is the same as reading it once.

∀ i ∈ Loc, ∀ s ∈ St , l i (q i (l i (s))) = l i (s) ∈ Val i × St (2.
3) Interaction update-update. Storing a value a and then a value a ′ at the same location i is just like storing the value a ′ in the location.

∀ i ∈ Loc, ∀ s ∈ St , ∀ a, a ′ ∈ Val i , u i (a ′ , u i (a, s)) = u i (a ′ , s) ∈ St
(2.4) Interaction update-lookup. When one stores a value a in a location i and then reads the location i, one gets the value a.

∀ i ∈ Loc, ∀ s ∈ St , ∀ a ∈ Val i , l i,1 (u i (a, s)) = a ∈ Val i
(2.5) Commutation lookup-lookup. The order of reading two different locations i and j does not matter.

∀ i = j ∈ Loc, ∀ s ∈ St, (id i × l j)(l i (s)) = perm i,j ((id j × l i)(l j (s))) ∈ Val i × Val j × St
(2.6) Commutation update-update. The order of storing in two different locations i and j does not matter.

∀ i = j ∈ Loc, ∀ s ∈ St, ∀ a ∈ Val i , ∀ b ∈ Val j , u j (b, u i (a, s)) = u i (a, u j (b, s)) ∈ St
(2.7) Commutation update-lookup. The order of storing in a location i and reading in another location j does not matter.

∀ i = j ∈ Loc, ∀ s ∈ St, ∀ a ∈ Val i , l j (u i (a, s)) = (id j × u i)(perm j,i (a, l j (s))) ∈ Val j × St
Proposition 1.2. Let us assume that l i,1 i∈Loc : St → i∈Loc Val i is invertible. Then Equations (1) are equivalent to Equations (2).

Proof. It may be observed that (2.4) is exactly (1.1). In addition, (2.7) is equivalent to (1.2) : indeed, (2.7) is equivalent to the conjunction of its projection on Val j and its projection on St; the first one is l j,1 (u i (a, s)) = l j,1 (s), which is (1.2), and the second one is u i (a, s) = u i (a, s). Equations (2.2) and (2.5) follow from q i (l i (s)) = s. For the remaining equations (2.1), (2.3) and (2.6), which return states, it is easy to check that for each location k, by applying l k to both members and using equation (1.1) or (1.2) according to k, we get the same value in Val k for both hand-sides. Then equations (2.1), (2.3) and (2.6) follow from the fact that l i,1 i∈Loc : St → i∈Loc Val i is invertible. Proposition 1.2 will be revisited in Section 3, where it will be proved that equations (1) imply equations (2) without ever mentioning explicitly the state in the proof.

Computational effects: an example

In an informal way, we consider that a computational effect occurs when there is an apparent mismatch, i.e., some lack of soundness, between the syntax and the denotational semantics of a language. For instance in an object-oriented language, the state of an object does not appear explicitly as an argument nor as a result of any of its methods. In this section, as a toy example, we build a class BankAccount for managing (very simple!) bank accounts. We use the types int and void, and we assume that int is interpreted by the set of integers and void by a singleton {⋆}. In the class BankAccount, there is a method balance() which returns the current balance of the account and a method deposit(x) for the deposit of x Euros on the account. The deposit method is a modifier, which means that it can use and modify the state of the current account. The balance method is an inspector, or an accessor, which means that it can use the state of the current account but it is not allowed to modify this state. In the object-oriented language C++, a method is called a member function; by default a member function is a modifier, when it is an accessor it is called a constant member function and the keyword const is used. So, the C++ syntax for declaring the member functions of the class BankAccount looks like: int balance () const ; void deposit (int) ;

• Forgetting the keyword const, this piece of C++ syntax can be translated as a signature Bank app , which we call the apparent signature (we use the word "apparent" in the sense of "seeming" i.e., "appearing as such but not necessarily so").

Bank app : balance : void → int deposit : int → void
In a model (or algebra) of the signature Bank app , the operations would be interpreted as functions:

[[balance]] : {⋆} → [[deposit]] : → {⋆}
which clearly is not the intended interpretation.

• In order to get the right semantics, we may use another signature Bank expl , which we call the explicit signature, with a new symbol state for the "type of states":

Bank expl : balance : state → int deposit : int × state → state
The intended interpretation is a model of the explicit signature Bank expl , with St denoting the set of states of a bank account:

[[balance]] : St → [[deposit]] : × St → St
So far, in this example, we have considered two different signatures. On the one hand, the apparent signature Bank app is simple and quite close to the C++ code, but the intended semantics is not a model of Bank app . On the other hand, the semantics is a model of the explicit signature Bank expl , but Bank expl is far from the C++ syntax: actually, the very nature of the object-oriented language is lost by introducing a "type of states".

Let us now define a decorated signature Bank deco , which is still closer to the C++ code than the apparent signature and which has a model corresponding to the intended semantics. The decorated signature is not exactly a signature in the classical sense, because there is a classification of its operations. This classification is provided by superscripts called decorations: the decorations (1) and (2) correspond respectively to the object-oriented notions of accessor and modifier.

Bank deco : balance (1) : void → int deposit (2) : int → void
The decorated signature is similar to the C++ code, with the decoration (1) corresponding to the keyword const. The apparent specification Bank app may be recovered from Bank deco by dropping the decorations. In addition, we claim that the intended semantics can be seen as a decorated model of this decorated signature: this will become clear in Section 2.3. In order to add to the signature constants of type int like 0, 1, 2, . . . and the usual operations on integers, a third decoration is used: the decoration (0) for pure functions, which means, for functions which neither inspect nor modify the state of the bank account. So, we add to the apparent and explicit signatures the constants 0, 1, . . . : void → int and the operations +, -, * : int × int → int, and we add to the decorated signature the pure constants 0 (0) , 1 (0) , . . . : void → int and the pure operations

+ (0) , -(0) , * (0) : int × int → int.
For instance the C++ expressions deposit(7); balance() and 7 + balance() can be seen as the decorated terms:

balance (1) • deposit (2) • 7 (0) and + (0) • 7 (0) , balance (1)
which may be illustrated as:

void 7 (0) / / int deposit (2) / / void balance (1)
/ / int and void

7 (0) ,balance (1)
/ / int × int

+ (0)
/ / int These two decorated terms have different effects: the first one does modify the state while the second one is an accessor; however, both return the same integer. Let us introduce the symbol ∼ for the relation "same result, maybe distinct effects". Then:

balance (1) • deposit (2) • 7 (0) ∼ + (0) • 7 (0) , balance (1)

Diagrammatic logics

In this paper, in order to deal with a relevant notion of morphisms between logics, we define a logic as a diagrammatic logic, in the sense of [Domínguez & Duval 2010]. For the purpose of this paper let us simply say that a logic L determines a category of theories T which is cocomplete, and that a morphism of logics is a left adjoint functor, so that it preserves the colimits. The objects of T are called the a theories of the logic L. Quite often, T is a category of structured categories. The inference rules of the logic L describe the structure of its theories. When a theory Φ is generated by some presentation or specification Σ, a model of Σ with values in a theory Θ is a morphism M : Φ → Θ in T.

The monadic equational logic. For instance, and for future use in the paper, here is the way we describe the monadic equational logic L meqn . In order to focus on the syntactic aspect of the theories, we use a congruence symbol "≡" rather than the equality symbol "=". Roughly speaking, a monadic equational theory is a sort of category where the axioms hold only up to congruence (in fact, it is a 2-category). Precisely, a monadic equational theory is a directed graph (its vertices are called objects or types and its edges are called morphisms or terms) with an identity term id X : X → X for each type X and a composed term g • f : X → Z for each pair of consecutive terms (f : X → Y, g : Y → Z); in addition it is endowed with equations f ≡ g : X → Y which form a congruence, which means, an equivalence relation on parallel terms compatible with the composition; this compatibility can be split in two parts: substitution and replacement.

In addition, the associativity and identity axioms hold up to congruence. These properties of the monadic equational theories can be described by a set of inference rules, as in Figure 1. Adding products to the monadic equational logic. In contrast with equational theories, the existence of products is not required in a monadic equational theory. However some specific products may exist. A product in a monadic equational theory T is "up to congruence", in the following sense. Let (Y i) i∈I be a family of objects in T, indexed by some set I. A product with base (Y i) i∈I is a cone (q i : Y → Y i) i∈I such that for every cone (f i : X → Y i) i∈I on the same base there is a term f i i∈I : X → Y such that q i • f i i∈I ≡ f i for each i, and in addition this term is unique up to congruence, in the sense that if f, g : X → Y are such that q i • f ≡ q i • g for each i then f ≡ g. When I is empty, we get a terminal object ½, such that for every X there is an arrow X : X → ½ which is unique up to congruence. The corresponding inference rules are given in Figure 2. The quantification "∀i", or "∀i ∈ I", is a kind of "syntactic sugar": when occuring in the premisses of a rule it stands for a conjunction of premisses.

(id) X id X : X → X (comp) f : X → Y g : Y → Z g • f : X → Z (id-src) f : X → Y f • id X ≡ f (id-tgt) f : X → Y id Y • f ≡ f (assoc) f : X → Y g : Y → Z h : Z → W h • (g • f) ≡ (h • g) • f (≡-refl) f ≡ f (≡-sym) f ≡ g g ≡ f (≡-trans) f ≡ g g ≡ h f ≡ h (≡-subs) f : X → Y g 1 ≡ g 2 : Y → Z g 1 • f ≡ g 2 • f : X → Z (≡-repl) f 1 ≡ f 2 : X → Y g : Y → Z g • f 1 ≡ g • f 2 : X → Z

Three logics for states

In this section we introduce three logics for dealing with states as computational effects. This generalizes the example of the bank account in Section 1.2. We present first the explicit logic (close to the semantics), then the apparent logic (close to the syntax), and finally the decorated logic and the morphisms from the decorated logic to the apparent and the explicit ones. In the syntax of an imperative language there is no type of states (the state is "hidden") while the interpretation of this language involves a set of states St.

More precisely, if the types X and Y are interpreted as the sets [

[X]] and [[Y]], then each term f : X → Y is interpreted as a function [[f]] : [[X]] × St → [[Y]] × St.
In Moggi's paper introducing monads for effects [Moggi 1991] such a term f : X → Y is called a computation, and whenever the function

[[f]] is [[f]] 0 × id St for some [[f]] 0 : [[X]] → [[Y]
] then f is called a value. We keep this distinction, using modifier and pure

When (q i : Y → Y i) i∈I is a product: (tuple) (f i : X → Y i) i f i i : X → Y (tuple-proj-i) (f i : X → Y i) i q i • f j j ≡ f i (tuple-unique) f, g : X → Y ∀i q i • f ≡ q i • g f ≡ g
When ½ is a terminal type ("empty product"):

(final)

X X : X → ½ (final-unique) f, g : X → ½ f ≡ g Figure 2:
Rules for products term instead of computation and value, respectively. In addition, an accessor (or inspector) is a term

f : X → Y that is interpreted by a function [[f]] = [[f]] 1 , q X , for some [[f]] 1 : [[X]] × St → [[Y]]
, where q X : [[X]] × St → St is the projection. It follows that every pure term is an accessor and every accessor is a modifier. We will respectively use the decorations (0), (1) and (2), written as superscripts, for pure terms, accessors and modifiers. Moreover, we distinguish two kinds of equations: when f, g : X → Y are parallel terms, then a strong equation f ≡ g is interpreted as the equality

[[f]] = [[g]] : [[X]] × St → [[Y]] × St, while a weak equation f ∼ g is interpreted as the equality p Y • [[f]] = p Y • [[g]] : [[X]] × St → [[Y]], where p Y : [[Y]] × St → [[Y]
] is the projection. Clearly, strong and weak equations coincide on accessors and on pure terms, while they differ on modifiers. As in Section 1.1, we consider some given set of locations Loc and for each location i a set Val i of possible values for i. The set of states is defined as St = i∈Loc Val i , and the projections are denoted by lookup i,1 : St → Val i . For each location i, let update i : Val i × St → St be defined by Equations (1) as in Section 1.1. In order to focus on the fundamental properties of states as effects, the three logics for states are based on the "poor" monadic equational logic (as described in Section 1.3).

The explicit logic for states

The explicit logic for states L expl is a kind of "pointed" monadic equational logic: a theory Θ expl for L expl is a monadic equational theory with a distinguished object S, called the type of states, and with a productwith-S functor X × S. As in Section 1.2, the explicit logic provides the relevant semantics, but it is far from the syntax. The explicit theory for states State expl is generated by a type V i and an operation l i,1 : S → V i for each location i, which form a product (l i,1 : S → V i) i∈Loc . Thus, for each location i there is an operation u i : V i × S → S, unique up to congruence, which satisfies the equations below (where p i : V i × S → V i and q i : V i × S → S are the projections):

State expl :      operations l i,1 : S → V i , u i : V i × S → S product (l i,1 : S → V i) i∈Loc equations l i,1 • u i ≡ p i : V i × S → V i , l j,1 • u i ≡ l j,1 • q i : V i × S → V j for each j = i
Let us define the explicit theory Set expl as the category of sets with the equality as congruence and with the set of states St = j∈Loc Val j as its distinguished set. The semantics of states, as described in Section 1.1, is the model M expl : State expl → Set expl which maps the type V i to the set Val i for each i ∈ Loc, the type S to the set St, and the operations l i,1 and u i to the functions lookup i,1 and update i , respectively.

The apparent logic for states

The apparent logic for states L app is the monadic equational logic (Section 1.3). As in Section 1.2, the apparent logic is close to the syntax but it does not provide the relevant semantics. The apparent theory for states State app can be obtained from the explicit theory State expl by identifying the type of states S with the unit type ½. So, there is in State app a terminal type ½ and for each location i a type V i for the possible values of i and an operation l i : ½ → V i for observing the value of i. A set-valued model for this part of State app , with the constraint that for each i the interpretation of V i is the given set Val i , is made of an element a i ∈ Val i for each i (it is the image of the interpretation of l i). Thus, such a model corresponds to a state, made of a value for each location; this is known as the states-as-models or states-as-algebras point of view [START_REF] Gaudel | [END_REF]. In addition, it is assumed that in State app the operations l i 's form a product (l i : ½ → V i) i∈Loc . This assumption implies that each l i is an isomorphism, so that each V i must be interpreted as a singleton: this does not fit with the semantics of states. However, we will see in Section 2.3 that this assumption becomes meaningful when decorations are added, in a similar way as in the bank example in Section 1.2. Formally, the assumption that (l i : ½ → V i) i∈Loc is a product provides for each location i an operation u i : V i → ½, unique up to congruence, which satisfies the equations below (where

id i : V i → V i is the identity and i = Vi : V i → ½) : State app :      operations l i : ½ → V i , u i : V i → ½ product (l i : ½ → V i) i∈Loc with terminal type ½ equations l i • u i ≡ id i : V i → V i , l j • u i ≡ l j • i : V i → V j for each j = i
At first view, these equations mean that after u i (a) is executed, the value of i is put to a and the value of j (for j = i) is unchanged. However, as noted above, this intuition is not supported by the semantics in the apparent logic. We will see in Section 2.3 that these equations become sound when relevant decorations are added, so that the apparent logic can be used for checking the validity of a decorated proof, as explained in Section 2.4.

The decorated logic for states

Now, as in Section 1.2, we introduce a third logic for states, which is close to the syntax and which provides the relevant semantics. It is defined by adding "decorations" to the apparent logic. A theory Θ deco for the decorated logic for states L deco is made of:

• A monadic equational theory Θ (2) . The terms in Θ (2) may be called the modifiers and the equations f ≡ g may be called the strong equations.

• Two additional monadic equational theories Θ (0) and Θ (1) , with the same types as Θ (2) , and such that Θ (0) ⊆ Θ (1) ⊆ Θ (2) and the congruence on Θ (0) and on Θ (1) is the restriction of the congruence on Θ (2) . The terms in Θ (1) may be called the accessors, and if they are in Θ (0) they may be called the pure terms.

• A second equivalence relation ∼ between parallel terms in Θ (2) , which is only "weakly" compatible with the composition; the relation ∼ satisfies the substitution property but only a weak version of the replacement property, called the pure replacement

: if f 1 ∼ f 2 : X → Y and g : Y → Z then in general g • f 1 ∼ g • f 2
, except when g is pure. The relations f ∼ g are called the weak equations. It is assumed that every strong equation is a weak equation and that every weak equation between accessors is a strong equation, so that the relations ≡ and ∼ coincide on Θ (0) and on Θ (1) .

We use the following notations, called decorations: a pure term f is denoted f (0) , an accessor f is denoted f (1) , and a modifier f is denoted f (2) ; this last decoration is unnecessary since every term is a modifier, however it may be used for emphasizing. Figure 3 provides the decorated rules, which describe the properties of the decorated theories. For readability, the decoration properties may be grouped with other properties: for instance, "f (1) ∼ g (1) " means "f (1) and g (1) and f ∼ g". Some specific kinds of products may be used in a decorated theory, for instance:

• A distinguished type ½ with the following decorated terminality property: for each type X there is a pure term X : X → ½ such that every modifier g : X → ½ satisfies g ∼ X . It follows from the properties of weak equations that ½ is a terminal type in Θ (0) and in Θ (1) .

Rules of the monadic equational logic, and: • An observational product with base (Y i) i∈I is a cone of accessors (q i : Y → Y i) i∈I such that for every cone of accessors (f i : X → Y i) i∈I on the same base there is a modifier f i i∈I : X → Y such that q i • f i i∈I ∼ f i for each i, and in addition this modifier is unique up to strong equations, in the sense that if f, g : X → Y are modifiers such that q i • f ∼ q i • g for each i then f ≡ g. An observational product allows to prove strong equations from weak ones: by looking at the results of some observations, thanks to the properties of the observational product, we get information on the state.

(0-id) X id (0) X : X → X (0-comp) f (0) g (0) (g • f) (0) (0-to-1) f (0) f (1) (1-comp) f (1) g (1) (g • f) (1) (1-∼-to-≡) f (1) ∼ g (1) f ≡ g (≡-to-∼) f ≡ g f ∼ g (∼-refl) f ∼ f (∼-sym) f ∼ g g ∼ f (∼-trans) f ∼ g g ∼ h f ∼ h (∼-subs) f : X → Y g 1 ∼ g 2 : Y → Z g 1 • f ∼ g 2 • f : X → Z (0-∼-repl) f 1 ∼ f 2 : X → Y g (0) : Y → Z g • f 1 ∼ g • f 2 : X → Z
When ½ is a decorated terminal type:

(0-final) X (0)

X : X → ½ (∼-final-unique) f, g : X → ½ f ∼ g When (q (1) i : Y → Y i) i is an observational product: (obs-tuple) (f (1) i : X → Y i) i f i (2) i : X → Y (obs-tuple-proj-i) (f (1) i : X → Y i) i q i • f j j ∼ f i (obs-tuple-unique) f (2) , g (2) : X → Y ∀i q i • f ∼ q i • g f ≡ g
Figure 4: Rules for some decorated products for states

The decorated theory of states State deco is generated by a type V i and an accessor l

(1) i

: ½ → V i for each i ∈ Loc, which form an observational product (l

(1) i : ½ → V i) i∈Loc .
The modifiers u i 's are defined (up to strong equations), using the property of the observational product, by the weak equations below:

State deco :      operations l (1) i : ½ → V i , u (2) i : V i → ½ observational product (l (1) i : ½ → V i) i∈Loc with decorated terminal type ½ equations l i • u i ∼ id i : V i → V i , l j • u i ∼ l j • i : V i → V j for each j = i
The decorated theory of sets Set deco is built from the category of sets, as follows. There is in Set deco a type for each set, a modifier f (2) : X → Y for each function f : X × St → Y × St , an accessor f (1) : X → Y for each function f : X × St → Y , and a pure term f (0) : X → Y for each function f : X → Y , with the straightforward conversions. Let f (2) , g (2) : X → Y corresponding to f, g :

X × St → Y × St. A strong equation f ≡ g is an equality f = g : X × St → Y × St, while a weak equation f ∼ g is an equality p • f = p • g : X × St → Y ,

From decorated to apparent

Every decorated theory Θ deco gives rise to an apparent theory Θ app by dropping the decorations, which means that the apparent theory Θ app is made of a type X for each type X in Θ deco , a term f : X → Y for each modifier f : X → Y in Θ deco (which includes the accessors and the pure terms), and an equation f ≡ g for each weak equation f ∼ g in Θ deco (which includes the strong equations). Thus, the distinction between modifiers, accessors and pure terms disappears, as well as the distinction between weak and strong equations. Equivalently, the apparent theory Θ app can be defined as the apparent theory Θ (2) together with an equation f ≡ g for each weak equation f ∼ g in Θ deco which is not associated to a strong equation in Θ deco (otherwise, it is yet in Θ (2)). Thus, a decorated terminal type in Θ deco becomes a terminal type in Θ app and an observational product (q

(1) i : Y → Y i) i in Θ deco becomes a product (q i : Y → Y i) i in Θ app .
In the same way, each rule of the decorated logic is mapped to a rule of the apparent logic by dropping the decorations. This property can be used for checking a decorated proof in two steps, by checking on one side the undecorated proof and on the other side the decorations. This construction of Θ app from Θ deco , by dropping the decorations, is a morphism from L deco to L app , denoted F app .

From decorated to explicit

Every decorated theory Θ deco gives rise to an explicit theory Θ expl by expanding the decorations, which means that the explicit theory Θ expl is made of:

• A type X for each type X in Θ deco ; projections are denoted by p X : X × S → X and q X : X × S → S.

• A term f 2 : X × S → Y × S for each modifier f : X → Y in Θ deco , such that:

if f is an accessor then there is a term f

1 : X × S → Y in Θ expl such that f 2 = f 1 , q X , -if moreover f is a pure term then there is a term f 0 : X → Y in Θ expl such that f 1 = f 0 • p X , hence f 2 = f 0 • p X , q X = f 0 × id S in Θ expl . • An equation f 2 ≡ g 2 : X × S → Y × S for each strong equation f ≡ g : X → Y in Θ deco . • An equation p Y • f 2 ≡ p Y • g 2 : X × S → Y for each weak equation f ∼ g : X → Y in Θ deco . • A product (q i,1 : Y × S → Y i) i for each observational product (q (1) i : Y → Y i) i in Θ deco .
This construction of Θ expl from Θ deco is a morphism from L deco to L expl , denoted F expl and called the expansion. The expansion morphism makes explicit the meaning of the decorations, by introducing a "type of states" S. Thus, each modifier f gives rise to a term f 2 which may use and modify the state, while whenever f is an accessor then f 2 may use the state but is not allowed to modify it, and when moreover f is pure then f 2 may neither use nor modify the state. When f ≡ g then f 2 and g 2 must return the same result and the same state; when f ∼ g then f 2 and g 2 must return the same result but maybe not the same state. We have seen that the semantics of states cannot be described in the apparent logic, but can be described both in the decorated logic and in the explicit logic. It should be reminded that every morphism of logics is a left adjoint functor. This is the case for the expansion morphism F expl : L deco → L expl : it is a left adjoint functor F expl : T deco → T expl , its right adjoint is denoted G expl . In fact, it is easy to check that Set deco = G expl (Set expl), and since State expl = F expl (State deco) it follows that the decorated model M deco : State deco → Set deco and the explicit model M expl : State expl → Set expl are related by the adjunction F expl ⊣ G expl . This means that the models M deco and M expl are two different ways to formalize the semantics of states from Section 1.1. In order to conclude Section 2, the morphims of logic F app and F expl are summarized in Figure 5. The inference rules of the decorated logic L deco are now used for proving some of the Equations (2) (in Remark 1.1). All proofs in this section are performed in the decorated logic; for readability the identity and associativity rules (id-src) , (id-tgt) and (assoc) are omitted. Some derived rules are proved in Section 3.1, then Equation (2.1) is proved in Section 3.2. In order to deal with the equations with two values as argument or as result, we use the semi-pure products introduced in [Dumas et al. 2011a]; the rules for semi-pure products are reminded in Section 3.3, then all seven Equations (2) are expressed in the decorated logic and Equation (2.6) is proved in Section 3.4. Proving the other equations would be similar. We use as axioms the fact that l i is an accessor and the weak equations in State deco (Section 2.3).

Θ app Θ deco Fapp o o F expl / / Θ expl f : X → Y modifier f (2) : X → Y f 2 : X × S → Y × S f : X → Y accessor f (1) : X → Y f 1 : X × S → Y f : X → Y pure term f (0) : X → Y f 0 : X → Y f ≡ g : X → Y strong equation f ≡ g : X → Y f 2 ≡ g 2 : X × S → Y × S f ≡ g : X → Y weak equation f ∼ g : X → Y p Y • f 2 ≡ p Y • g 2 : X × S → Y

Some derived rules

Let us now derive some rules from the rules of the decorated logic (Figures 3 and4).

(E

(1) 1)

f (1) : X → ½ g (1) : X → ½ f ≡ g (E (0) 1) f (0) : X → ½ g (0) : X → ½ f ≡ g (E (1)
2)

f (1) : X → ½ f ≡ X (E (0) 2) f (0) : X → ½ f ≡ X (E (1)
3)

f (1) : X → Y g (1) : Y → ½ h (1) : X → ½ g • f ≡ h (E (0) 3) f (0) : X → Y g (0) : Y → ½ h (0) : X → ½ g • f ≡ h (E (1) 4) f (1) : ½ → X X • f ≡ id½ (E (0) 4) f (0) : ½ → X X • f ≡ id½

Figure 1 :

 1 Figure 1: Rules of the monadic equational logic

Figure 3 :

 3 Figure 3: Rules of the decorated logic for states

 where p : Y × St → Y is the projection. For each location i the projection lookup i : St → Val i corresponds to an accessor lookup (1) i : ½ → Val i in Set deco , so that the family (lookup (1) i) i∈Loc forms an observational product in Set deco . We get a model M deco of State deco with values in Set deco by mapping the type V i to the set Val i and the accessor l

 each i ∈ Loc. Then for each i the modifier u

Figure 5 :

 5 Figure 5: A span of logics for states

Figure 6 :

 6 Figure 6: Some derived rules in the decorated logic for states

f (1) g (1) f, g :

2)

3)

½ : ½ → ½ (0-to-1) id

(1)

3) X • f ≡ id½ (E

(1) 4)

Annihilation lookup-update

In this section we prove the decorated equation u

(2) i

• l

(1) i ≡ id

½ . It is easy to check that this decorated equation gets expanded as u i • l i ≡ id S , which clearly gets interpreted as Equation (2.1) in Remark 1.1. This decorated equation is now proved using the axioms of State deco in Section 2.3; for each location i:

Proposition 3.1. For each location i , reading the value of a location i and then updating the location i with the obtained value is just like doing nothing.

u

(2)

Proof. Let i be a location. Using the unicity property of the observational product (rule (obs-tupleunique) in Figure 4), we have to prove that l k • u i • l i ∼ l k : ½ → V k for each location k .

• When k = i, the substitution rule for ∼ yields:

• When k = i, using the substitution rule for ∼ and the replacement rule for ≡ we get:

Semi-pure products

Let Θ deco be a theory with respect to the decorated logic for states and let Θ (0) be its pure part, so that Θ (0) is a monadic equational theory. The product of two types X 1 and X 2 in Θ deco is defined as their product in Θ (0) (it is a product up to strong equations, as in Section 1.1). The projections from X 1 × X 2 to X 1 and X 2 are respectively denoted by π (0) 1 and π (0) 2

(the types X 1 and X 2 will always be clear from the context). The product of two pure morphisms f (0) 1

to the rules in Figure 7, which are the usual rules for products up to strong equations. Moreover when X 1 or X 2 is ½ it can be proved in the usual way that the projections π (0) 1

Figure 7: Rules for products of pure morphisms

The rules in Figure 7, which are symmetric in f 1 and f 2 , cannot be applied to modifiers: indeed, the effect of building a pair of modifiers depends on the evaluation strategy. However, following [Dumas et al. 2011a], we define the left semi-pure product of an identity id X and a modifier f : X 2 → Y 2 , as a modifier id X ⋉ f : X × X 2 → X × Y 2 subject to the rules in Figure 8, which form a decorated version of the rules for products. Symmetrically, the right semi-pure product of a modifier f : X 1 → Y 1 and an identity id X is a modifier f ⋊ id X : X 1 × X → Y 1 × X subject to the rules symmetric to those in Figure 8. Let us add the rules for semi-pure products to the decorated logic for states. In the decorated theory of states State deco , let us assume that there are products V i × V j and V i × ½ and ½ × V j for all locations i and j. Then it is easy to check that the expansion of the decorated Equations (2) d below gets interpreted as Equations (2) in Remark 1.1. We use the simplified notations id i = id Vi and i = Vi and perm i,j = perm Vi,Vj . Equation (2.1) d has been proved in Section 3.2 and Equation (2.6) d will be proved in Section 3.4.

The other equations can be proved in a similar way.

(2.1) d Annihilation lookup-update. ∀ i ∈ Loc, u i • l i ≡ id ½ : ½ → ½

Commutation update-update

Proposition 3.2. For each locations i = j , the order of storing in two different locations i and j does not matter. u

(2)

Proof. Let i and j be two distinct locations. Using the unicity property of the observational product (rule (obs-tuple-unique) in Figure 4), we have to prove that

for each location k .

• When k = i, j, let us prove independently four weak equations (W 1) to (W 4):

3

3

Equations (W 1) to (W 4) together with the transitivity rule for ∼ give rise to the weak equation:

With the symmetry and transitivity rules for ∼, this concludes the proof when k = i, j.

• When k = i, on the one hand it is easy to prove that l

On the other hand it can also be proved that

Equations (W ′ 1) to (W ′ 3) and the transitivity rule for ∼ give rise to l i • u j • π 2 • (u i ⋊ id j) ∼ π 1 . With the symmetry and transitivity rules for ∼, this concludes the proof when k = i.

• The proof when k = j is symmetric to the proof when k = i.

Conclusion

In this paper, decorated proofs are used for proving properties of states. This can be applied to other computational effects, like exceptions [Dumas et al. 2011b]. In addition, associating to each effect a span of logics as in Section 2 should result in a simple framework for combining effects.