
HAL Id: hal-00650269
https://hal.science/hal-00650269v2

Submitted on 20 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decorated proofs for computational effects: States
Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude

Reynaud

To cite this version:
Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. Decorated proofs
for computational effects: States. Electronic Proceedings in Theoretical Computer Science, 2012, 93,
pp.45-59. �10.4204/EPTCS.93.3�. �hal-00650269v2�

https://hal.science/hal-00650269v2
https://hal.archives-ouvertes.fr

Decorated proofs for computational effects: States

Jean-Guillaume Dumas∗, Dominique Duval†, Laurent Fousse‡, Jean-Claude Reynaud§

December 15., 2011 (v.2)

Abstract

Abstract. The syntax of an imperative language does not mention explicitly the state, while its
denotational semantics has to mention it. In this paper we show that the equational proofs about an
imperative language may hide the state, in the same way as the syntax does.

Introduction

The evolution of the state of the memory in an imperative program is a computational effect: the state
is never mentioned as an argument or a result of a command, whereas in general it is used and modified
during the execution of commands. Thus, the syntax of an imperative language does not mention explicitly
the state, while its denotational semantics has to mention it. This means that the state is encapsulated :
its interface, which is made of the functions for looking up and updating the values of the locations, is
separated from its implementation; the state cannot be accessed in any other way than through his interface.
In this paper we show that equational proofs in an imperative language may also encapsulate the state:
proofs can be performed without any knowledge of the implementation of the state. We will see that a naive
approach (called “apparent”) cannot deal with the updating of states, while this becomes possible with
a slightly more sophisticated approach (called “decorated”). This is expressed in an algebraic framework
relying on category theory. To our knowledge, the first categorical treatment of computational effects, using
monads, is due to Moggi [Moggi 1991]. The examples proposed by Moggi include the side-effects monad
T (A) = (A × St)St where St is the set of states. Later on, Plotkin and Power used Lawvere theories for
dealing with the operations and equations related to computational effects. The Lawvere theory for the
side-effects monad involves seven equations [Plotkin & Power 2002]. In Section 1 we describe the intended
denotational semantics of states. Then in Section 2 we introduce three variants of the equational logic for
formalizing the computational effects due to the states: the apparent, decorated an explicit logics. This
approach is illustrated in Section 3 by proving some of the equations from [Plotkin & Power 2002], using
rules which do not mention any type of states.

1 Motivations

This section is made of three independent parts. Section 1.1 is devoted to the semantics of states, an example
is presented in Section 1.2, and our logical framework is described in Section 1.3.

∗LJK, Université de Grenoble, France. Jean-Guillaume.Dumas@imag.fr
†LJK, Université de Grenoble, France. Dominique.Duval@imag.fr
‡LJK, Université de Grenoble, France. Laurent.Fousse@imag.fr
§Malhivert, Claix, France. Jean-Claude.Reynaud@imag.fr

1

Jean-Guillaume.Dumas@imag.fr
Dominique.Duval@imag.fr
Laurent.Fousse@imag.fr
Jean-Claude.Reynaud@imag.fr

1.1 Semantics of states

This section deals with the denotational semantics of states, by providing a set-valued interpretation of the
lookup and update operations. Let St denote the set of states. Let Loc denote the set of locations (also called
variables or identifiers). For each location i, let Val i denote the set of possible values for i. For each location
i there is a lookup function for reading the value of location i in the given state, without modifying this state:
this corresponds to a function lookupi,1 : St → Val i or equivalently to a function lookupi : St → Val i × St
such that lookupi(s) = 〈lookupi,1(s), s〉 for each state s. In addition, for each location i there is an update
function updatei : Val i × St → St for setting the value of location i to the given value, without modifying
the values of the other locations in the given state. This is summarized as follows, for each i ∈ Loc : a set
Val i, two functions lookupi,1 : St → Val i and updatei : Val i × St → St , and equations (1):

(1.1) ∀ a ∈ Val i , ∀ s ∈ St , lookupi,1(updatei(a, s)) = a ,

(1.2) ∀ a ∈ Val i , ∀ s ∈ St , lookupj,1(updatei(a, s)) = lookupj,1(s) for every j ∈ Loc, j 6= i .

The state can be observed thanks to the lookup functions. We may consider the tuple 〈lookupi,1〉i∈Loc :
St →

∏

i∈Loc
Val i. If this function is an isomorphism, then Equations (1) provide a definition of the update

functions. In [Plotkin & Power 2002] an equational presentation of states is given, with seven equations:
in Remark 1.1 these equations are expressed according to [Melliès 2010] and they are translated in our
framework. We use the notations li = lookupi : St → Val i × St , li,1 = lookupi,1 : St → Val i and ui =
updatei : Val i × St → St , and in addition id i : Val i → Val i and qi : Val i × St → St respectively denote the
identity of Val i and the projection, while perm i,j : Val j × Val i × St → Val i × Val j × St permutes its first
and second arguments.

Remark 1.1. The equations in [Plotkin & Power 2002] can be expressed as the following Equations (2):

(2.1) Annihilation lookup-update. Reading the value of a location i and then updating the location i with the
obtained value is just like doing nothing.

∀ i ∈ Loc, ∀ s ∈ St , ui(li(s)) = s ∈ St

(2.2) Interaction lookup-lookup. Reading twice the same location loc is the same as reading it once.
∀ i ∈ Loc, ∀ s ∈ St , li(qi(li(s))) = li(s) ∈ Val i × St

(2.3) Interaction update-update. Storing a value a and then a value a′ at the same location i is just like
storing the value a′ in the location.

∀ i ∈ Loc, ∀ s ∈ St , ∀ a, a′ ∈ Val i, ui(a
′, ui(a, s)) = ui(a

′, s) ∈ St

(2.4) Interaction update-lookup. When one stores a value a in a location i and then reads the location i,
one gets the value a.

∀ i ∈ Loc, ∀ s ∈ St , ∀ a ∈ Val i, li,1(ui(a, s)) = a ∈ Val i

(2.5) Commutation lookup-lookup. The order of reading two different locations i and j does not matter.
∀ i 6= j ∈ Loc, ∀ s ∈ St , (id i × lj)(li(s)) = perm i,j((id j × li)(lj(s))) ∈ Val i ×Valj × St

(2.6) Commutation update-update. The order of storing in two different locations i and j does not matter.
∀ i 6= j ∈ Loc, ∀ s ∈ St , ∀ a ∈ Val i, ∀ b ∈ Valj , uj(b, ui(a, s)) = ui(a, uj(b, s)) ∈ St

(2.7) Commutation update-lookup. The order of storing in a location i and reading in another location j

does not matter.
∀ i 6= j ∈ Loc, ∀ s ∈ St , ∀ a ∈ Val i, lj(ui(a, s)) = (id j × ui)(permj,i(a, lj(s))) ∈ Valj × St

Proposition 1.2. Let us assume that 〈li,1〉i∈Loc : St →
∏

i∈Loc
Val i is invertible. Then Equations (1) are

equivalent to Equations (2).

2

Proof. It may be observed that (2.4) is exactly (1.1). In addition, (2.7) is equivalent to (1.2) : indeed,
(2.7) is equivalent to the conjunction of its projection on Val j and its projection on St ; the first one is
lj,1(ui(a, s)) = lj,1(s), which is (1.2), and the second one is ui(a, s) = ui(a, s). Equations (2.2) and (2.5)
follow from qi(li(s)) = s. For the remaining equations (2.1), (2.3) and (2.6), which return states, it is easy to
check that for each location k, by applying lk to both members and using equation (1.1) or (1.2) according
to k, we get the same value in Valk for both hand-sides. Then equations (2.1), (2.3) and (2.6) follow from
the fact that 〈li,1〉i∈Loc : St →

∏

i∈Loc
Val i is invertible.

Proposition 1.2 will be revisited in Section 3, where it will be proved that equations (1) imply equations
(2) without ever mentioning explicitly the state in the proof.

1.2 Computational effects: an example

In an informal way, we consider that a computational effect occurs when there is an apparent mismatch,
i.e., some lack of soundness, between the syntax and the denotational semantics of a language. For instance
in an object-oriented language, the state of an object does not appear explicitly as an argument nor as a
result of any of its methods. In this section, as a toy example, we build a class BankAccount for managing
(very simple!) bank accounts. We use the types int and void, and we assume that int is interpreted by
the set of integers Z and void by a singleton {⋆}. In the class BankAccount, there is a method balance()

which returns the current balance of the account and a method deposit(x) for the deposit of x Euros on
the account. The deposit method is a modifier, which means that it can use and modify the state of the
current account. The balance method is an inspector, or an accessor, which means that it can use the state
of the current account but it is not allowed to modify this state. In the object-oriented language C++, a
method is called a member function; by default a member function is a modifier, when it is an accessor it
is called a constant member function and the keyword const is used. So, the C++ syntax for declaring the
member functions of the class BankAccount looks like:

int balance () const ;
void deposit (int) ;

• Forgetting the keyword const, this piece of C++ syntax can be translated as a signature Bankapp, which
we call the apparent signature (we use the word “apparent” in the sense of “seeming” i.e., “appearing
as such but not necessarily so”).

Bankapp :

{

balance : void → int

deposit : int → void

In a model (or algebra) of the signature Bankapp, the operations would be interpreted as functions:

{

[[balance]] : {⋆} → Z
[[deposit]] : Z → {⋆}

which clearly is not the intended interpretation.

• In order to get the right semantics, we may use another signature Bankexpl, which we call the explicit
signature, with a new symbol state for the “type of states”:

Bank expl :

{

balance : state → int

deposit : int× state → state

The intended interpretation is a model of the explicit signature Bank expl, with St denoting the set of
states of a bank account:

{

[[balance]] : St → Z
[[deposit]] : Z× St → St

3

So far, in this example, we have considered two different signatures. On the one hand, the apparent signature
Bankapp is simple and quite close to the C++ code, but the intended semantics is not a model of Bankapp. On
the other hand, the semantics is a model of the explicit signature Bank expl, but Bank expl is far from the C++
syntax: actually, the very nature of the object-oriented language is lost by introducing a “type of states”.
Let us now define a decorated signature Bankdeco, which is still closer to the C++ code than the apparent
signature and which has a model corresponding to the intended semantics. The decorated signature is not
exactly a signature in the classical sense, because there is a classification of its operations. This classification
is provided by superscripts called decorations : the decorations (1) and (2) correspond respectively to the
object-oriented notions of accessor and modifier.

Bankdeco :

{

balance(1) : void → int

deposit(2) : int → void

The decorated signature is similar to the C++ code, with the decoration (1) corresponding to the keyword
const. The apparent specification Bankapp may be recovered from Bankdeco by dropping the decorations. In
addition, we claim that the intended semantics can be seen as a decorated model of this decorated signature:
this will become clear in Section 2.3. In order to add to the signature constants of type int like 0, 1, 2,
. . . and the usual operations on integers, a third decoration is used: the decoration (0) for pure functions,
which means, for functions which neither inspect nor modify the state of the bank account. So, we add
to the apparent and explicit signatures the constants 0, 1, . . . : void → int and the operations +, -, ∗ :
int× int → int, and we add to the decorated signature the pure constants 0(0), 1(0), . . . : void → int and
the pure operations +(0), -(0), ∗(0) : int× int → int. For instance the C++ expressions

deposit(7); balance() and 7 + balance()

can be seen as the decorated terms:

balance(1) ◦ deposit(2) ◦ 7(0) and +(0) ◦ 〈7(0), balance(1)〉

which may be illustrated as:

void
7(0)

// int
deposit(2)

// void
balance(1)

// int

and void
〈7(0),balance(1)〉

// int× int
+(0)

// int

These two decorated terms have different effects: the first one does modify the state while the second one is
an accessor; however, both return the same integer. Let us introduce the symbol ∼ for the relation “same
result, maybe distinct effects”. Then:

balance(1) ◦ deposit(2) ◦ 7(0) ∼ +(0) ◦ 〈7(0), balance(1)〉

1.3 Diagrammatic logics

In this paper, in order to deal with a relevant notion of morphisms between logics, we define a logic as a
diagrammatic logic, in the sense of [Domı́nguez & Duval 2010]. For the purpose of this paper let us simply
say that a logic L determines a category of theories T which is cocomplete, and that a morphism of logics
is a left adjoint functor, so that it preserves the colimits. The objects of T are called the a theories of the
logic L. Quite often, T is a category of structured categories. The inference rules of the logic L describe the
structure of its theories. When a theory Φ is generated by some presentation or specification Σ, a model of
Σ with values in a theory Θ is a morphism M : Φ → Θ in T.

4

The monadic equational logic. For instance, and for future use in the paper, here is the way we
describe the monadic equational logic Lmeqn. In order to focus on the syntactic aspect of the theories, we
use a congruence symbol “≡” rather than the equality symbol “=”. Roughly speaking, a monadic equational
theory is a sort of category where the axioms hold only up to congruence (in fact, it is a 2-category). Precisely,
a monadic equational theory is a directed graph (its vertices are called objects or types and its edges are
called morphisms or terms) with an identity term idX : X → X for each type X and a composed term
g ◦ f : X → Z for each pair of consecutive terms (f : X → Y, g : Y → Z); in addition it is endowed with
equations f ≡ g : X → Y which form a congruence, which means, an equivalence relation on parallel terms
compatible with the composition; this compatibility can be split in two parts: substitution and replacement.
In addition, the associativity and identity axioms hold up to congruence. These properties of the monadic
equational theories can be described by a set of inference rules, as in Figure 1.

(id)
X

idX : X → X
(comp)

f : X → Y g : Y → Z

g ◦ f : X → Z

(id-src)
f : X → Y

f ◦ idX ≡ f
(id-tgt)

f : X → Y

idY ◦ f ≡ f
(assoc)

f : X → Y g : Y → Z h : Z → W

h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f

(≡-refl)
f ≡ f

(≡-sym)
f ≡ g

g ≡ f
(≡-trans)

f ≡ g g ≡ h

f ≡ h

(≡-subs)
f : X → Y g1 ≡ g2 : Y → Z

g1 ◦ f ≡ g2 ◦ f : X → Z
(≡-repl)

f1 ≡ f2 : X → Y g : Y → Z

g ◦ f1 ≡ g ◦ f2 : X → Z

Figure 1: Rules of the monadic equational logic

Adding products to the monadic equational logic. In contrast with equational theories, the existence
of products is not required in a monadic equational theory. However some specific products may exist. A
product in a monadic equational theory T is “up to congruence”, in the following sense. Let (Yi)i∈I be a
family of objects in T, indexed by some set I. A product with base (Yi)i∈I is a cone (qi : Y → Yi)i∈I such that
for every cone (fi : X → Yi)i∈I on the same base there is a term 〈fi〉i∈I : X → Y such that qi ◦ 〈fi〉i∈I ≡ fi
for each i, and in addition this term is unique up to congruence, in the sense that if f, g : X → Y are such
that qi ◦ f ≡ qi ◦ g for each i then f ≡ g. When I is empty, we get a terminal object 1, such that for every
X there is an arrow 〈 〉X : X → 1 which is unique up to congruence. The corresponding inference rules are
given in Figure 2. The quantification “∀i”, or “∀i ∈ I”, is a kind of “syntactic sugar”: when occuring in the
premisses of a rule it stands for a conjunction of premisses.

2 Three logics for states

In this section we introduce three logics for dealing with states as computational effects. This generalizes
the example of the bank account in Section 1.2. We present first the explicit logic (close to the semantics),
then the apparent logic (close to the syntax), and finally the decorated logic and the morphisms from the
decorated logic to the apparent and the explicit ones. In the syntax of an imperative language there is no
type of states (the state is “hidden”) while the interpretation of this language involves a set of states St .
More precisely, if the types X and Y are interpreted as the sets [[X]] and [[Y]], then each term f : X → Y

is interpreted as a function [[f]] : [[X]] × St → [[Y]] × St . In Moggi’s paper introducing monads for effects
[Moggi 1991] such a term f : X → Y is called a computation, and whenever the function [[f]] is [[f]]0 × idSt

for some [[f]]0 : [[X]] → [[Y]] then f is called a value. We keep this distinction, using modifier and pure

5

When (qi : Y → Yi)i∈I is a product:

(tuple)
(fi :X → Yi)i
〈fi〉i :X → Y

(tuple-proj-i)
(fi :X → Yi)i
qi ◦ 〈fj〉j ≡ fi

(tuple-unique)
f, g : X → Y ∀i qi ◦ f ≡ qi ◦ g

f ≡ g

When 1 is a terminal type (“empty product”):

(final)
X

〈 〉X : X → 1 (final-unique)
f, g : X → 1

f ≡ g

Figure 2: Rules for products

term instead of computation and value, respectively. In addition, an accessor (or inspector) is a term
f : X → Y that is interpreted by a function [[f]] = 〈[[f]]1, qX〉, for some [[f]]1 : [[X]] × St → [[Y]], where
qX : [[X]]× St → St is the projection. It follows that every pure term is an accessor and every accessor is a
modifier. We will respectively use the decorations (0), (1) and (2), written as superscripts, for pure terms,
accessors and modifiers. Moreover, we distinguish two kinds of equations: when f, g : X → Y are parallel
terms, then a strong equation f ≡ g is interpreted as the equality [[f]] = [[g]] : [[X]] × St → [[Y]] × St ,
while a weak equation f ∼ g is interpreted as the equality pY ◦ [[f]] = pY ◦ [[g]] : [[X]]× St → [[Y]], where
pY : [[Y]] × St → [[Y]] is the projection. Clearly, strong and weak equations coincide on accessors and on
pure terms, while they differ on modifiers. As in Section 1.1, we consider some given set of locations Loc and
for each location i a set Val i of possible values for i. The set of states is defined as St =

∏

i∈Loc
Val i, and the

projections are denoted by lookupi,1 : St → Val i. For each location i, let updatei : Val i×St → St be defined
by Equations (1) as in Section 1.1. In order to focus on the fundamental properties of states as effects, the
three logics for states are based on the “poor” monadic equational logic (as described in Section 1.3).

2.1 The explicit logic for states

The explicit logic for states Lexpl is a kind of “pointed” monadic equational logic: a theory Θexpl for Lexpl

is a monadic equational theory with a distinguished object S, called the type of states, and with a product-
with-S functor X ×S. As in Section 1.2, the explicit logic provides the relevant semantics, but it is far from
the syntax. The explicit theory for states Stateexpl is generated by a type Vi and an operation li,1 : S → Vi

for each location i, which form a product (li,1 : S → Vi)i∈Loc. Thus, for each location i there is an operation
ui : Vi × S → S, unique up to congruence, which satisfies the equations below (where pi : Vi × S → Vi and
qi : Vi × S → S are the projections):

Stateexpl :











operations li,1 : S → Vi , ui : Vi × S → S

product (li,1 : S → Vi)i∈Loc

equations li,1 ◦ ui ≡ pi : Vi × S → Vi , lj,1 ◦ ui ≡ lj,1 ◦ qi : Vi × S → Vj for each j 6= i

Let us define the explicit theory Setexpl as the category of sets with the equality as congruence and with the
set of states St =

∏

j∈Loc
Val j as its distinguished set. The semantics of states, as described in Section 1.1,

is the model Mexpl : Stateexpl → Setexpl which maps the type Vi to the set Val i for each i ∈ Loc, the type S

to the set St , and the operations li,1 and ui to the functions lookupi,1 and updatei, respectively.

2.2 The apparent logic for states

The apparent logic for states Lapp is the monadic equational logic (Section 1.3). As in Section 1.2, the
apparent logic is close to the syntax but it does not provide the relevant semantics. The apparent theory for

6

states Stateapp can be obtained from the explicit theory Stateexpl by identifying the type of states S with
the unit type 1. So, there is in Stateapp a terminal type 1 and for each location i a type Vi for the possible
values of i and an operation li : 1 → Vi for observing the value of i. A set-valued model for this part of
Stateapp, with the constraint that for each i the interpretation of Vi is the given set Val i, is made of an
element ai ∈ Val i for each i (it is the image of the interpretation of li). Thus, such a model corresponds
to a state, made of a value for each location; this is known as the states-as-models or states-as-algebras
point of view [Gaudel et al. 1996]. In addition, it is assumed that in Stateapp the operations li’s form a
product (li : 1 → Vi)i∈Loc. This assumption implies that each li is an isomorphism, so that each Vi must be
interpreted as a singleton: this does not fit with the semantics of states. However, we will see in Section 2.3
that this assumption becomes meaningful when decorations are added, in a similar way as in the bank
example in Section 1.2. Formally, the assumption that (li : 1 → Vi)i∈Loc is a product provides for each
location i an operation ui : Vi → 1, unique up to congruence, which satisfies the equations below (where
id i : Vi → Vi is the identity and 〈 〉i = 〈 〉Vi

: Vi → 1) :
Stateapp :











operations li : 1→ Vi , ui : Vi → 1
product (li : 1→ Vi)i∈Loc with terminal type 1
equations li ◦ ui ≡ id i : Vi → Vi , lj ◦ ui ≡ lj ◦ 〈 〉i : Vi → Vj for each j 6= i

At first view, these equations mean that after ui(a) is executed, the value of i is put to a and the value of
j (for j 6= i) is unchanged. However, as noted above, this intuition is not supported by the semantics in the
apparent logic. We will see in Section 2.3 that these equations become sound when relevant decorations are
added, so that the apparent logic can be used for checking the validity of a decorated proof, as explained in
Section 2.4.

2.3 The decorated logic for states

Now, as in Section 1.2, we introduce a third logic for states, which is close to the syntax and which provides
the relevant semantics. It is defined by adding “decorations” to the apparent logic. A theory Θdeco for the
decorated logic for states Ldeco is made of:

• A monadic equational theory Θ(2). The terms in Θ(2) may be called the modifiers and the equations
f ≡ g may be called the strong equations.

• Two additional monadic equational theories Θ(0) and Θ(1), with the same types as Θ(2), and such that
Θ(0) ⊆ Θ(1) ⊆ Θ(2) and the congruence on Θ(0) and on Θ(1) is the restriction of the congruence on
Θ(2). The terms in Θ(1) may be called the accessors, and if they are in Θ(0) they may be called the
pure terms.

• A second equivalence relation ∼ between parallel terms in Θ(2), which is only “weakly” compatible
with the composition; the relation ∼ satisfies the substitution property but only a weak version of the
replacement property, called the pure replacement : if f1 ∼ f2 : X → Y and g : Y → Z then in general
g ◦ f1 6∼ g ◦ f2, except when g is pure. The relations f ∼ g are called the weak equations. It is assumed
that every strong equation is a weak equation and that every weak equation between accessors is a
strong equation, so that the relations ≡ and ∼ coincide on Θ(0) and on Θ(1).

We use the following notations, called decorations : a pure term f is denoted f (0), an accessor f is denoted
f (1), and a modifier f is denoted f (2); this last decoration is unnecessary since every term is a modifier,
however it may be used for emphasizing. Figure 3 provides the decorated rules, which describe the properties
of the decorated theories. For readability, the decoration properties may be grouped with other properties:
for instance, “f (1) ∼ g(1)” means “f (1) and g(1) and f ∼ g”.

Some specific kinds of products may be used in a decorated theory, for instance:

• A distinguished type 1 with the following decorated terminality property: for each type X there is a
pure term 〈 〉X : X → 1 such that every modifier g : X → 1 satisfies g ∼ 〈 〉X . It follows from the
properties of weak equations that 1 is a terminal type in Θ(0) and in Θ(1).

7

Rules of the monadic equational logic, and:

(0-id)
X

id
(0)
X : X → X

(0-comp)
f (0) g(0)

(g ◦ f)(0)
(0-to-1)

f (0)

f (1)
(1-comp)

f (1) g(1)

(g ◦ f)(1)

(1-∼-to-≡)
f (1) ∼ g(1)

f ≡ g
(≡-to-∼)

f ≡ g

f ∼ g

(∼-refl)
f ∼ f

(∼-sym)
f ∼ g

g ∼ f
(∼-trans)

f ∼ g g ∼ h

f ∼ h

(∼-subs)
f : X → Y g1 ∼ g2 : Y → Z

g1 ◦ f ∼ g2 ◦ f : X → Z
(0-∼-repl)

f1 ∼ f2 : X → Y g(0) : Y → Z

g ◦ f1 ∼ g ◦ f2 : X → Z

Figure 3: Rules of the decorated logic for states

• An observational product with base (Yi)i∈I is a cone of accessors (qi : Y → Yi)i∈I such that for every
cone of accessors (fi : X → Yi)i∈I on the same base there is a modifier 〈fi〉i∈I : X → Y such that
qi ◦ 〈fi〉i∈I ∼ fi for each i, and in addition this modifier is unique up to strong equations, in the sense
that if f, g : X → Y are modifiers such that qi ◦ f ∼ qi ◦ g for each i then f ≡ g. An observational
product allows to prove strong equations from weak ones: by looking at the results of some observations,
thanks to the properties of the observational product, we get information on the state.

When 1 is a decorated terminal type:

(0-final)
X

〈 〉
(0)
X : X → 1 (∼-final-unique)

f, g : X → 1
f ∼ g

When (q
(1)
i : Y → Yi)i is an observational product: (obs-tuple)

(f
(1)
i : X → Yi)i

〈fi〉
(2)
i :X → Y

(obs-tuple-proj-i)
(f

(1)
i : X → Yi)i
qi ◦ 〈fj〉j ∼ fi

(obs-tuple-unique)
f (2), g(2) : X → Y ∀i qi ◦ f ∼ qi ◦ g

f ≡ g

Figure 4: Rules for some decorated products for states

The decorated theory of states Statedeco is generated by a type Vi and an accessor l
(1)
i : 1 → Vi for each

i ∈ Loc, which form an observational product (l
(1)
i : 1 → Vi)i∈Loc. The modifiers ui’s are defined (up to

strong equations), using the property of the observational product, by the weak equations below:

Statedeco :











operations l
(1)
i : 1 → Vi , u

(2)
i : Vi → 1

observational product (l
(1)
i : 1→ Vi)i∈Loc with decorated terminal type 1

equations li ◦ ui ∼ id i : Vi → Vi , lj ◦ ui ∼ lj ◦ 〈 〉i : Vi → Vj for each j 6= i

The decorated theory of sets Setdeco is built from the category of sets, as follows. There is in Setdeco a
type for each set, a modifier f (2) : X → Y for each function f : X × St → Y × St , an accessor f (1) : X → Y

8

for each function f : X × St → Y , and a pure term f (0) : X → Y for each function f : X → Y , with
the straightforward conversions. Let f (2), g(2) : X → Y corresponding to f, g : X × St → Y × St . A
strong equation f ≡ g is an equality f = g : X × St → Y × St , while a weak equation f ∼ g is an
equality p ◦ f = p ◦ g : X × St → Y , where p : Y × St → Y is the projection. For each location i the

projection lookupi : St → Val i corresponds to an accessor lookup
(1)
i : 1→ Val i in Setdeco, so that the family

(lookup
(1)
i)i∈Loc forms an observational product in Setdeco. We get a model Mdeco of Statedeco with values

in Setdeco by mapping the type Vi to the set Val i and the accessor l
(1)
i to the accessor lookup

(1)
i , for each

i ∈ Loc. Then for each i the modifier u
(2)
i is mapped to the modifier update

(2)
i .

2.4 From decorated to apparent

Every decorated theory Θdeco gives rise to an apparent theory Θapp by dropping the decorations, which
means that the apparent theory Θapp is made of a type X for each type X in Θdeco, a term f : X → Y

for each modifier f : X → Y in Θdeco (which includes the accessors and the pure terms), and an equation
f ≡ g for each weak equation f ∼ g in Θdeco (which includes the strong equations). Thus, the distinction
between modifiers, accessors and pure terms disappears, as well as the distinction between weak and strong
equations. Equivalently, the apparent theory Θapp can be defined as the apparent theory Θ(2) together with
an equation f ≡ g for each weak equation f ∼ g in Θdeco which is not associated to a strong equation in
Θdeco (otherwise, it is yet in Θ(2)). Thus, a decorated terminal type in Θdeco becomes a terminal type in

Θapp and an observational product (q
(1)
i : Y → Yi)i in Θdeco becomes a product (qi : Y → Yi)i in Θapp.

In the same way, each rule of the decorated logic is mapped to a rule of the apparent logic by dropping
the decorations. This property can be used for checking a decorated proof in two steps, by checking on one
side the undecorated proof and on the other side the decorations. This construction of Θapp from Θdeco, by
dropping the decorations, is a morphism from Ldeco to Lapp, denoted Fapp.

2.5 From decorated to explicit

Every decorated theory Θdeco gives rise to an explicit theory Θexpl by expanding the decorations, which
means that the explicit theory Θexpl is made of:

• A type X for each type X in Θdeco; projections are denoted by pX : X × S → X and qX : X ×S → S.

• A term f2 : X × S → Y × S for each modifier f : X → Y in Θdeco, such that:

– if f is an accessor then there is a term f1 : X × S → Y in Θexpl such that f2 = 〈f1, qX〉,

– if moreover f is a pure term then there is a term f0 : X → Y in Θexpl such that f1 = f0 ◦ pX ,
hence f2 = 〈f0 ◦ pX , qX〉 = f0 × idS in Θexpl.

• An equation f2 ≡ g2 : X × S → Y × S for each strong equation f ≡ g : X → Y in Θdeco.

• An equation pY ◦ f2 ≡ pY ◦ g2 : X × S → Y for each weak equation f ∼ g : X → Y in Θdeco.

• A product (qi,1 : Y × S → Yi)i for each observational product (q
(1)
i : Y → Yi)i in Θdeco.

This construction of Θexpl from Θdeco is a morphism from Ldeco to Lexpl, denoted Fexpl and called the
expansion. The expansion morphism makes explicit the meaning of the decorations, by introducing a “type
of states” S. Thus, each modifier f gives rise to a term f2 which may use and modify the state, while
whenever f is an accessor then f2 may use the state but is not allowed to modify it, and when moreover f
is pure then f2 may neither use nor modify the state. When f ≡ g then f2 and g2 must return the same
result and the same state; when f ∼ g then f2 and g2 must return the same result but maybe not the same
state. We have seen that the semantics of states cannot be described in the apparent logic, but can be
described both in the decorated logic and in the explicit logic. It should be reminded that every morphism
of logics is a left adjoint functor. This is the case for the expansion morphism Fexpl : Ldeco → Lexpl: it

9

is a left adjoint functor Fexpl : Tdeco → Texpl, its right adjoint is denoted Gexpl. In fact, it is easy to
check that Setdeco = Gexpl(Setexpl), and since Stateexpl = Fexpl(Statedeco) it follows that the decorated
model Mdeco : Statedeco → Setdeco and the explicit model Mexpl : Stateexpl → Setexpl are related by the
adjunction Fexpl ⊣ Gexpl. This means that the models Mdeco and Mexpl are two different ways to formalize
the semantics of states from Section 1.1. In order to conclude Section 2, the morphims of logic Fapp and
Fexpl are summarized in Figure 5.

Θapp Θdeco

Fapp
oo

Fexpl
// Θexpl

f : X → Y modifier f (2) : X → Y f2 : X × S → Y × S

f : X → Y accessor f (1) : X → Y f1 : X × S → Y

f : X → Y pure term f (0) : X → Y f0 : X → Y

f ≡ g : X → Y strong equation f ≡ g : X → Y f2 ≡ g2 : X × S → Y × S

f ≡ g : X → Y weak equation f ∼ g : X → Y pY ◦ f2 ≡ pY ◦ g2 : X × S → Y

Figure 5: A span of logics for states

3 Decorated proofs

The inference rules of the decorated logic Ldeco are now used for proving some of the Equations (2) (in
Remark 1.1). All proofs in this section are performed in the decorated logic; for readability the identity
and associativity rules (id-src) , (id-tgt) and (assoc) are omitted. Some derived rules are proved in
Section 3.1, then Equation (2.1) is proved in Section 3.2. In order to deal with the equations with two values
as argument or as result, we use the semi-pure products introduced in [Dumas et al. 2011a]; the rules for
semi-pure products are reminded in Section 3.3, then all seven Equations (2) are expressed in the decorated
logic and Equation (2.6) is proved in Section 3.4. Proving the other equations would be similar. We use as
axioms the fact that li is an accessor and the weak equations in Statedeco (Section 2.3).

3.1 Some derived rules

Let us now derive some rules from the rules of the decorated logic (Figures 3 and 4).

(E
(1)
1)

f (1) : X → 1 g(1) : X → 1
f ≡ g

(E
(0)
1)

f (0) : X → 1 g(0) : X → 1
f ≡ g

(E
(1)
2)

f (1) : X → 1
f ≡ 〈 〉X

(E
(0)
2)

f (0) : X → 1
f ≡ 〈 〉X

(E
(1)
3)

f (1) : X → Y g(1) : Y → 1 h(1) : X → 1
g ◦ f ≡ h

(E
(0)
3)

f (0) : X → Y g(0) : Y → 1 h(0) : X → 1
g ◦ f ≡ h

(E
(1)
4)

f (1) : 1 → X

〈 〉X ◦ f ≡ id1 (E
(0)
4)

f (0) : 1 → X

〈 〉X ◦ f ≡ id1
Figure 6: Some derived rules in the decorated logic for states

Proof. The derived rules in the left part of Figure 6 can be proved as follows. The proof of the rules in the
right part are left to the reader.

10

f (1) g(1)
f, g : X → 1

(∼-final-unique)
f ∼ g

(1-∼-to-≡)
f ≡ g (E

(1)
1)

f (1) : X → 1 X(0-final)
〈 〉

(0)
X : X → 1

(0-to-1)
〈 〉

(1)
X : X → 1

(E
(1)
1)

f ≡ 〈 〉X (E
(1)
2)

f (1) : X → Y g(1) : Y → 1
(1-comp)

(g ◦ f)(1) : X → 1 h(1) : X → 1
(E

(1)
1)

g ◦ f ≡ h (E
(1)
3)

f (1) : 1 → X

X(0-final)
〈 〉

(0)
X : X → 1

(0-to-1)
〈 〉

(1)
X : X → 1 1(0-id)

id
(0)1 : 1 → 1

(0-to-1)
id

(1)1 : 1 → 1
(E

(1)
3)

〈 〉X ◦ f ≡ id1 (E
(1)
4)

3.2 Annihilation lookup-update

In this section we prove the decorated equation u
(2)
i ◦ l

(1)
i ≡ id

(0)1 . It is easy to check that this decorated
equation gets expanded as ui ◦ li ≡ idS , which clearly gets interpreted as Equation (2.1) in Remark 1.1. This
decorated equation is now proved using the axioms of Statedeco in Section 2.3; for each location i:

(A0) l
(1)
i , (A1) li ◦ ui ∼ id i , (A2) lj ◦ ui ∼ lj ◦ 〈 〉i for each j 6= i .

Proposition 3.1. For each location i , reading the value of a location i and then updating the location i with
the obtained value is just like doing nothing.

u
(2)
i ◦ l

(1)
i ≡ id

(0)1 : 1→ 1 .

Proof. Let i be a location. Using the unicity property of the observational product (rule (obs-tuple-
unique) in Figure 4), we have to prove that lk ◦ ui ◦ li ∼ lk : 1→ Vk for each location k .

• When k = i, the substitution rule for ∼ yields:

(A1) li ◦ ui ∼ id i
(∼-subs)

li ◦ ui ◦ li ∼ li

• When k 6= i, using the substitution rule for ∼ and the replacement rule for ≡ we get:

(A2) lk ◦ ui ∼ lk ◦ 〈 〉i
(∼-subs)

lk ◦ ui ◦ li ∼ lk ◦ 〈 〉i ◦ li

(A0) l
(1)
i

(E
(1)
4)

〈 〉i ◦ li ≡ id1
(≡-repl)

lk ◦ 〈 〉i ◦ li ≡ lk
(≡-to-∼)

lk ◦ 〈 〉i ◦ li ∼ lk
(∼-trans)

lk ◦ ui ◦ li ∼ lk

11

3.3 Semi-pure products

Let Θdeco be a theory with respect to the decorated logic for states and let Θ(0) be its pure part, so that
Θ(0) is a monadic equational theory. The product of two types X1 and X2 in Θdeco is defined as their
product in Θ(0) (it is a product up to strong equations, as in Section 1.1). The projections from X1 ×X2

to X1 and X2 are respectively denoted by π
(0)
1 and π

(0)
2 (the types X1 and X2 will always be clear from

the context). The product of two pure morphisms f
(0)
1 : X1 → Y1 and f

(0)
2 : X2 → Y2 is a pure morphism

(f1 × f2)
(0) = 〈f1 ◦ π1, f2 ◦ π2〉 : X1 ×X2 → Y1 × Y2 subject to the rules in Figure 7, which are the usual

rules for products up to strong equations. Moreover when X1 or X2 is 1 it can be proved in the usual way

that the projections π
(0)
1 : X1 × 1 → X1 and π

(0)
2 : 1 × X2 → X2 are isomorphisms. The permutation

perm
(0)
X1,X2

: X1 ×X2 → X2 ×X1 is defined as usual by π1 ◦ permX1,X2
≡ π2 and π2 ◦ permX1,X2

≡ π1.

(0-prod)
f
(0)
1 : X1 → Y1 f

(0)
2 : X2 → Y2

(f1 × f2)(0) : X1 ×X2 → Y1 × Y2

(0-proj-1)
f
(0)
1 : X1 → Y1 f

(0)
2 : X2 → Y2

π1 ◦ (f1 × f2) ≡ f1 ◦ π1
(0-proj-2)

f
(0)
1 : X1 → Y1 f

(0)
2 : X2 → Y2

π2 ◦ (f1 × f2) ≡ f2 ◦ π2

(0-prod-unique)
f (0), g(0) : X → Y1 × Y2 π1 ◦ f ≡ π1 ◦ g π2 ◦ f ≡ π2 ◦ g

f ≡ g

Figure 7: Rules for products of pure morphisms

The rules in Figure 7, which are symmetric in f1 and f2, cannot be applied to modifiers: indeed, the effect
of building a pair of modifiers depends on the evaluation strategy. However, following [Dumas et al. 2011a],
we define the left semi-pure product of an identity idX and a modifier f : X2 → Y2, as a modifier idX ⋉ f :
X ×X2 → X × Y2 subject to the rules in Figure 8, which form a decorated version of the rules for products.
Symmetrically, the right semi-pure product of a modifier f : X1 → Y1 and an identity idX is a modifier
f ⋊ idX : X1 ×X → Y1 ×X subject to the rules symmetric to those in Figure 8.

(left-prod)
f (2) : X2 → Y2

(idX ⋉ f)(2) : X ×X2 → X × Y2

(left-proj-1)
f (2) : X2 → Y2

π1 ◦ (idX ⋉ f) ∼ π1
(left-proj-2)

f (2) : X2 → Y2

π2 ◦ (idX ⋉ f) ≡ f ◦ π2

(left-prod-unique)
f (2), g(2) : X → Y1 × Y2 π1 ◦ f ∼ π1 ◦ g π2 ◦ f ≡ π2 ◦ g

f ≡ g

Figure 8: Rules for left semi-pure products

Let us add the rules for semi-pure products to the decorated logic for states. In the decorated theory
of states Statedeco, let us assume that there are products Vi × Vj and Vi × 1 and 1 × Vj for all locations i
and j. Then it is easy to check that the expansion of the decorated Equations (2)d below gets interpreted
as Equations (2) in Remark 1.1. We use the simplified notations id i = idVi

and 〈 〉i = 〈 〉Vi
and permi,j =

permVi,Vj
. Equation (2.1)d has been proved in Section 3.2 and Equation (2.6)d will be proved in Section 3.4.

The other equations can be proved in a similar way.

(2.1)d Annihilation lookup-update. ∀ i ∈ Loc, ui ◦ li ≡ id1 : 1→ 1
12

(2.2)d Interaction lookup-lookup. ∀ i ∈ Loc, li ◦ 〈 〉i ◦ li ≡ li : 1→ Vi

(2.3)d Interaction update-update. ∀ i ∈ Loc, ui ◦ π2 ◦ (ui ⋊ id i) ≡ ui ◦ π2 : Vi × Vi → 1
(2.4)d Interaction update-lookup. ∀ i ∈ Loc, li ◦ ui ∼ id i : Vi → Vi

(2.5)d Commutation lookup-lookup. ∀ i 6= j ∈ Loc, lj ◦ 〈 〉i ◦ li ≡ permj,i ◦ li ◦ 〈 〉j ◦ lj : 1→ Vi × Vj

(2.6)d Commutation update-update. ∀ i 6= j ∈ Loc, uj ◦ π2 ◦ (ui ⋊ id j) ≡ ui ◦ π1 ◦ (id i ⋉ uj) : Vi × Vj → 1
(2.7)d Commutation update-lookup. ∀ i 6= j ∈ Loc, lj ◦ ui ≡ π2 ◦ (id i ⋉ lj) ◦ (ui ⋊ id j) ◦ π

−1
1 : Vi → Vj

3.4 Commutation update-update

Proposition 3.2. For each locations i 6= j , the order of storing in two different locations i and j does not
matter.

u
(2)
j ◦ π

(0)
2 ◦ (ui ⋊ id j)

(2) ≡ u
(2)
i ◦ π

(0)
1 ◦ (id i ⋉ uj)

(2) : Vi × Vj → 1 .

Proof. Let i and j be two distinct locations. Using the unicity property of the observational product (rule
(obs-tuple-unique) in Figure 4), we have to prove that lk ◦ uj ◦ π2 ◦ (ui ⋊ id j) ∼ lk ◦ ui ◦ π1 ◦ (id i ⋉ uj) for
each location k .

• When k 6= i, j, let us prove independently four weak equations (W1) to (W4):

(A2) lk ◦ uj ∼ lk ◦ 〈 〉j
(∼-subs)

lk ◦ uj ◦ π2 ◦ (ui ⋊ idj) ∼ lk ◦ 〈 〉j ◦ π2 ◦ (ui ⋊ idj) (W1)

...
(E

(0)
3)

〈 〉j ◦ π2 ≡ π1

ui(right-prod)
ui ⋊ id j

(≡-subs)
〈 〉j ◦ π2 ◦ (ui ⋊ idj) ≡ π1 ◦ (ui ⋊ idj)

ui(right-proj-1)
π1 ◦ (ui ⋊ id j) ≡ ui ◦ π1

(≡-trans)
〈 〉j ◦ π2 ◦ (ui ⋊ id j) ≡ ui ◦ π1

(≡-repl)
lk ◦ 〈 〉j ◦ π2 ◦ (ui ⋊ id j) ≡ lk ◦ ui ◦ π1

(≡-to-∼)
lk ◦ 〈 〉j ◦ π2 ◦ (ui ⋊ id j) ∼ lk ◦ ui ◦ π1 (W2)

(A2) lk ◦ ui ∼ lk ◦ 〈 〉i
(∼-subs)

lk ◦ ui ◦ π1 ∼ lk ◦ 〈 〉i ◦ π1 (W3)

...
(E

(0)
3)

〈 〉i ◦ π1 ≡ 〈 〉Vi×Vj
(≡-subs)

lk ◦ 〈 〉i ◦ π1 ≡ lk ◦ 〈 〉Vi×Vj
(≡-to-∼)

lk ◦ 〈 〉i ◦ π1 ∼ lk ◦ 〈 〉Vi×Vj
(W4)

Equations (W1) to (W4) together with the transitivity rule for ∼ give rise to the weak equation:

lk ◦ uj ◦ π2 ◦ (ui ⋊ id j) ∼ lk ◦ 〈 〉Vi×Vj
.

A symmetric proof shows that lk ◦ui ◦π1 ◦(id i⋉uj) ∼ lk ◦〈 〉Vi×Vj
. With the symmetry and transitivity

rules for ∼, this concludes the proof when k 6= i, j.

• When k = i, on the one hand it is easy to prove that li ◦ ui ◦ π1 ◦ (id i ⋉ uj) ∼ π1, as follows.

(A1) li ◦ ui ∼ id i
(∼-subs)

li ◦ ui ◦ π1 ◦ (id i ⋉ uj) ∼ π1 ◦ (id i ⋉ uj)

uj
(left-proj-1)

π1 ◦ (id i ⋉ uj) ∼ π1
(∼-trans)

li ◦ ui ◦ π1 ◦ (id i ⋉ uj) ∼ π1

On the other hand it can also be proved that li ◦ uj ◦ π2 ◦ (ui ⋊ id j) ∼ π1, as follows.

13

(A2) li ◦ uj ∼ li ◦ 〈 〉j
(∼-subs)

li ◦ uj ◦ π2 ∼ li ◦ 〈 〉j ◦ π2

...
(E

(0)
3)

〈 〉j ◦ π2 ≡ 〈 〉1×Vj
(≡-repl)

li ◦ 〈 〉j ◦ π2 ≡ li ◦ 〈 〉1×Vj
(≡-to-∼)

li ◦ 〈 〉j ◦ π2 ∼ li ◦ 〈 〉1×Vj
(∼-trans)

li ◦ uj ◦ π2 ∼ li ◦ 〈 〉1×Vj
(∼-subs)

li ◦ uj ◦ π2 ◦ (ui ⋊ id j) ∼ li ◦ 〈 〉1×Vj
◦ (ui ⋊ idj) (W ′

1)

...
(E

(0)
1)

〈 〉1×Vj
≡ π1

(≡-subs)
〈 〉1×Vj

◦ (ui ⋊ idj) ≡ π1 ◦ (ui ⋊ idj)

ui(right-proj-1)
π1 ◦ (ui ⋊ idj) ≡ ui ◦ π1

(≡-trans)
〈 〉1×Vj

◦ (ui ⋊ idj) ≡ ui ◦ π1
(≡-repl)

li ◦ 〈 〉1×Vj
◦ (ui ⋊ idj) ≡ li ◦ ui ◦ π1

(≡-to-∼)
li ◦ 〈 〉1×Vj

◦ (ui ⋊ idj) ∼ li ◦ ui ◦ π1 (W ′
2)

(A1) li ◦ ui ∼ id i
(∼-subs)

li ◦ ui ◦ π1 ∼ π1 (W ′
3)

Equations (W ′
1) to (W ′

3) and the transitivity rule for ∼ give rise to li ◦ uj ◦ π2 ◦ (ui ⋊ id j) ∼ π1. With
the symmetry and transitivity rules for ∼, this concludes the proof when k = i.

• The proof when k = j is symmetric to the proof when k = i.

Conclusion

In this paper, decorated proofs are used for proving properties of states. This can be applied to other
computational effects, like exceptions [Dumas et al. 2011b]. In addition, associating to each effect a span of
logics as in Section 2 should result in a simple framework for combining effects.

References

[Domı́nguez & Duval 2010] César Domı́nguez, Dominique Duval. Diagrammatic logic applied to a parame-
terization process Mathematical Structures in Computer Science 20, p. 639-654 (2010).

[Dumas et al. 2011a] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Cartesian effect cat-
egories are Freyd-categories. Journal of Symbolic Computation 46, p. 272-293 (2011).

[Dumas et al. 2011b] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud.
States and exceptions considered as dual effects. arXiv:1001.1662v4 (2011).

[Gaudel et al. 1996] Marie-Claude Gaudel, Pierre Dauchy, Carole Khoury. A Formal Specification of the
Steam-Boiler Control Problem by Algebraic Specifications with Implicit State. Formal Methods for
Industrial Applications 1995. Springer-Verlag Lecture Notes in Computer Science 1165, p. 233-264
(1996).

[Melliès 2010] Paul-André Melliès. Segal condition meets computational effects. LICS 2010. IEEE Computer
Society, p. 150-159 (2010).

14

[Moggi 1991] Eugenio Moggi. Notions of Computation and Monads. Information and Computation 93(1),
p. 55-92 (1991).

[Plotkin & Power 2002] Gordon D. Plotkin, John Power. Notions of Computation Determine Monads. FoS-
SaCS 2002. Springer-Verlag Lecture Notes in Computer Science 2303, p. 342-356 (2002).

15

	1 Motivations
	1.1 Semantics of states
	1.2 Computational effects: an example
	1.3 Diagrammatic logics

	2 Three logics for states
	2.1 The explicit logic for states
	2.2 The apparent logic for states
	2.3 The decorated logic for states
	2.4 From decorated to apparent
	2.5 From decorated to explicit

	3 Decorated proofs
	3.1 Some derived rules
	3.2 Annihilation lookup-update
	3.3 Semi-pure products
	3.4 Commutation update-update

