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Abstract

Abstract. In this short note we study the semantics of two basic computational effects, exceptions

and states, from a new point of view. In the handling of exceptions we dissociate the control from the

elementary operation which recovers from the exception. In this way it becomes apparent that there is

a duality, in the categorical sense, between exceptions and states.

Introduction

In this short note we study the semantics of two basic computational effects, exceptions and states, from a
new point of view. Exceptions are studied in Section 1. The focus is placed on the exception “flags” which
are set when an exception is raised and which are cleared when an exception is handled. We define the
exception constructor operation which sets the exception flag, and the exception recovery operation which
clears this flag. States are considered in the short Section 2. Then in Section 3 we show that our point of
view yields a surprising result: there exists a symmetry between the computational effects of exceptions and
states, based on the categorical duality between sums and products. More precisely, the lookup and update
operations for states are respectively dual to the constructor and recovery operations for exceptions. This
duality is deeply hidden, since the constructor and recovery operations for exceptions are mixed with the
control. This may explain that our result is, as far as we know, completely new.

States and exceptions are computational effects : in an imperative language there is no type of states,
and in a language with exceptions the type of exceptions which may be raised by a program is not seen
as a return type for this program. In this note we focus on the denotational semantics of exceptions and
states, so that the sets of states and exceptions are used explicitly. However, with additional logical tools,
the duality may be expressed in a way which fits better with the syntax of effects [Dumas et al. 2010].

Other points of view about computational effects, involving monads and Lawvere theories, can be found in
[Moggi 1991, Schröder & Mossakowski 2004, Levy 2006, Plotkin & Pretnar 2009]. However it seems difficult
to derive from these approaches the duality described in this note.

1 Exceptions

The syntax for exceptions heavily depends on the language. For instance in ML-like languages there are
several exception names, and the keywords for raising and handling exceptions are raise and handle, while
in Java there are several exception types, and the keywords for raising and handling exceptions are throw

and try-catch. In spite of the differences in the syntax, the semantics of exceptions share many similarities.
A major point is that there are two kinds of values: the ordinary (i.e., non-exceptional) values and the
exceptions. It follows that the operations may be classified according to the way they may, or may not,
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interchange these two kinds of values: an ordinary value may be “tagged” for constructing an exception,
then the “tag” may be cleared in order to recover the value.

First let us focus on the raising of exceptions. Let Exc denote the set of exceptions. The “tagging” process
can be modelled by injective functions ti : Par i → Exc called the exception constructors, with disjoint images:
for each index i in some set of indices I , the exception constructor ti : Par i → Exc maps a non-exceptional
value (or parameter) a ∈ Par i to an exception ti(a) ∈ Exc. When a function f : X → Y + Exc raises (or
throws) an exception of index i, the following raising operation is called:

raisei,Y : Par i → Y + Exc

The raising operation raisei,Y is defined as the exception constructor ti followed by the inclusion of Exc in
Y + Exc.

Given a function f : X → Y + Exc and an element x ∈ X , if f(x) = raisei,Y (a) for some a ∈ Par i
then one says that f(x) raises an exception of index i with parameter a into Y . One says that a function
f : X + Exc → Y + Exc propagates exceptions when it is the identity on Exc. Clearly, any function
f : X → Y + Exc can be extended in a unique way as a function which propagates exceptions.

Now let us study the handling of exceptions. The process of clearing the “exception tags” can be modelled
by functions ci : Exc → Par i +Exc called the exception recovery operations: for each i ∈ I and e ∈ Exc the
exception recovery operation ci(e) tests whether the given exception e is in the image of ti. If this is actually
the case, then it returns the parameter a ∈ Par i such that e = ti(a), otherwise it propagates the exception
e.

For handling exceptions of indices i1, . . . , in raised by some function f : X → Y + Exc, one provides
a function gik : Par ik → Y + Exc, which may itself raise exceptions, for each k in {1, . . . , n}. Then the
handling process builds a function which propagates exceptions, it may be named try{f} catch ik{gk}1≤k≤n

or f handle (ik⇒gk)1≤k≤n:

f handle (ik⇒gk)1≤k≤n : X + Exc → Y + Exc

Using the recovery operations cik , the handling process can be defined as follows.

For each x ∈ X + Exc, (f handle (ik⇒gk)1≤k≤n)(x) ∈ Y + Exc is defined by:
// if x was an exception before the try, then it is just propagated

if x ∈ Exc then return x ∈ Exc ⊆ Y + Exc;
// now x is not an exception

compute y := f(x) ∈ Y + Exc;
if y ∈ Y then return y ∈ Y ⊆ Y + Exc;
// now y is an exception

for k = 1..n repeat
compute y := cik(y) ∈ Par ik + Exc;
if y ∈ Par ik then return gk(y) ∈ Y + Exc;

// now y is an exception but it does not have index ik, for any k ∈ {1, . . . , n}
return y ∈ Exc ⊆ Y + Exc.

Given an exception e of the form ti(a), the recovery operation ci returns the non-exceptional value a while
the other recovery operations propagate the exception e. This is expressed by the equations (1) in Figure 1.
Whenever Exc =

∑

i∈I Par i with the ti’s as coprojections, then equations (1) provide a characterization of
the operations ci’s.

2 States

Now let us forget temporarily about the exceptions in order to focus on the semantics of an imperative
language. Let St denote the set of states and Loc the set of locations (also called variables or identifiers).
For each location i, let Val i denote the set of possible values for i. For each i ∈ Loc there is a lookup
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For each index i ∈ I :

• a set Par i (parameters)

• two operations ti : Par i → Exc (exception constructor)
and ci : Exc → Par i + Exc (exception recovery)

• and two equations:

{

∀ a ∈ Par i , ci(ti(a)) = a ∈ Par i ⊆ Par i + Exc

∀ b ∈ Par j , ci(tj(b)) = tj(b) ∈ Exc ⊆ Par i + Exc for every j 6= i ∈ I
(1)

which correspond to commutative diagrams, where mi and ni are the injections:

Par i + Exc Par i
mi

oo

Exc

ci

OO

Par iti

oo

id

OO

=

Par i + Exc Exc
ni

oo Par j
tj

oo

Exc

ci

OO

Par j
tj

oo

id

OO

=

Figure 1: Semantics of exceptions: constructor and recovery

operation li : St → Val i for reading the value of location i in the given state. In addition, for each i ∈ Loc

there is an update operation ui : Val i×St → St for setting the value of location i to the given value, without
modifying the values of the other locations in the given state. This is summarized in Figure 2. Whenever
St =

∏

i∈Loc Val i with the li’s as projections, two states s and s′ are equal if and only if li(s) = li(s
′) for

each i, and equations (2) provide a characterization of the operations ui’s.

For each location i ∈ Loc :

• a set Val i (values)

• two operations li : St → Val i (lookup)
and ui : Val i × St → St (update)

• and two equations:

{

∀ a ∈ Val i , ∀ s ∈ St , li(ui(a, s)) = a

∀ a ∈ Val i , ∀ s ∈ St , lj(ui(a, s)) = lj(s) for every j 6= i ∈ Loc
(2)

which correspond to commutative diagrams, where pi and qi are the projections:

Val i × St
pi

//

ui
��

Val i

id
��

St
li

// Val i

=

Val i × St
qi

//

ui
��

St
lj

// Val j

id
��

St
lj

// Val j

=

Figure 2: Semantics of states: lookup and update
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3 Duality

Our main result is now clear from Figures 1 and 2.

Theorem 3.1. The duality between categorical products and sums can be extended as a duality between the

semantics of the lookup and update operations for states on one side and the semantics of the constructor

and recovery operations for exceptions on the other side.

In [Plotkin & Power 2002] an equational presentation of states is given, with seven families of equations.
These equations can be translated in our framework, and it can be proved that they are equivalent to
equations (2) [Dumas et al. 2010]. Then by duality we get for free seven families of equations for exceptions.
For instance, it can be proved that for looking up the value of a location i only the previous updating of this
location i is necessary, and dually, when throwing an exception constructed with ti only the next recovery
operation ci, with the same index i, is necessary.
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