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ON HARDY SPACES

KRZYSZTOF BOGDAN, BART LOMIEJ DYDA, AND TOMASZ LUKS

Abstract. We characterize conditional Hardy spaces of the Laplacian and
the fractional Laplacian by using Hardy-Stein type identities.

1. Introduction

Let D ⊂ R
d be open and let x0 ∈ D. For p > 0 and 0 < α < 2 we will

consider the Hardy space Hp(D, α) of the fractional Laplacian ∆α/2,

(1) ∆α/2u(x) = lim
η→0+

∫

|y−x|>η

A
u(y) − u(x)

|y − x|d+α
dy .

Here A = Γ((d + α)/2)/(2−απd/2|Γ(−α/2)|). Hp(D, α) is defined as follows.
Let X be the isotropic α-stable Lévy process ([9]), i.e. the symmetric Lévy
process on R

d with the Lévy measure ν(dy) = A|y|−d−αdy and zero Gaussian
part ([9]). Let Ex be the expectation for X starting at x ∈ R

d. We define
τD = inf{t ≥ 0 : Xt 6∈ D}, the first exit time of X from D. A Borel function
u : R

d → R is called α–harmonic on D if for every open U relatively compact
in D (denoted U ⊂⊂ D) we have

(2) u(x) = Exu(XτU
) , x ∈ U.

Here we assume that the expectation is absolutely convergent, in particular–
finite. Equivalently, u is α–harmonic on D if u is twice continuously differen-
tiable on D,

∫

Rd |u(y)|(1 + |y|)−d−αdy < ∞, and

(3) ∆α/2u(x) = 0 , x ∈ D .
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We refer to [8] and [12] for this characterization and a detailed discussion of α-
harmonic functions, including structure theorems for nonnegative α-harmonic
functions, and explicit formulas for the Green function, Poisson kernel and
Martin kernel of ∆α/2 for the ball. We also refer to remarks in [13, p. 120]
explaining why the mean value property (2) is preferred over analogues of (3)
for harmonic functions of more general Markov processes. The reader may
verify, using (2) and the strong Markov property of X, that {u(XτU

)}U⊂⊂D

is a martingale ordered by inclusion of sets U . In particular, Ex|u(XτU
)|p is

non-decreasing in U , if p ≥ 1.

Definition 1. Let 0 < p < ∞. We write u ∈ Hp = Hp(D, α), if u is α-
harmonic on D and

(4) ‖u‖p := sup
U⊂⊂D

(Ex0
|u(XτU

)|p)1/p < ∞ .

The finiteness condition does not depend on the choice of x0, because U ∋
x 7→ Ex|u(XτU

)|p satisfies Harnack inequality for arbitrary (Borel) function u
([12]). If p ≤ q, then Hp ⊃ Hq.

We will say that nonnegative functions f(u) and g(u) are comparable, and
write f(u) ≍ g(u), if numbers 0 < c ≤ C < ∞ exist such that cf(u) ≤ g(u) ≤
Cf(u) for every u.

The reader may notice that (4) is far from being explicit because it involves
the distribution of XτU

for all U ⊂ D. The following result and the exact for-
mula for ‖u‖p given in (18) below may simplify the perspective. Let GD(x, y)
be the Green function of ∆α/2 for the Dirichlet problem on D ([12]).

Theorem 1. If 1 < p < ∞, then ‖u‖p
p is comparable on Hp with

(5) |u(x0)|
p +

∫

D

GD(x0, y)

∫

Rd

[u(z) − u(y)]2
(

|u(z)| ∨ |u(y)|
)p−2

|z − y|d+α
dz dy.

In fact, u ∈ Hp if and only if u is α-harmonic in D and the integral is finite.

Below we analogously decribe Hardy spaces Hp
h = Hp

h(D, α) related to

(6) ∆
α/2
h (u) =

1

h
∆α/2(hu) .

Here h is a fixed function harmonic for ∆α/2, positive on D and vanishing
on Dc. The boundary behavior of functions in Hp

h is of considerable interest
because it directly relates to ratios of α-harmonic functions. In fact, the above
h-transform (6) of ∆α/2 is implicit in the relative Fatou theorems studied in
[29, 24, 10] and in the theory of conditional stable processes [8, 14].
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We also give similar characterizations for Hardy spaces of the classical Lapla-
cian ∆: formula (36) below is the celebrated Hardy-Stein identity but Theo-
rem 3, which may be considered a conditional Hardy-Stein identity, is appar-
ently new, and may be interesting for its own sake.

The paper is composed as follows. In Section 2 we observe the formula

(7) sup
U⊂⊂D

Ex0
u2(XτU

) = |u(x0)|
2 +

∫

D

GD(x0, y)

∫

Rd

A
[u(z) − u(y)]2

|z − y|d+α
dz dy

for the norm of H2, and we extend it in Lemma 4 and Theorem 1 to Hp for p >
1. The conditional Hardy spaces Hp

h are characterized in Lemma 8, Theorem 2
and formula (35) in Section 3, see also Remark 1. In Section 4 we state the
results for the Laplacian: formula (36) and Theorem 3. In Section 5 we describe
the norm of the Hardy spaces in terms of the Krickeberg decomposition for
p ≥ 1, and we prove a classical Littlewood-Paley inequality.

Formula (7) and its modifications (18, 35, 37) below are the main subject
of the paper, and they may be considered nonlocal or conditional extensions
of the classical Hardy-Stein equality, for which we refer the reader to (36) in
Section 4 and [39, 32, 33].

Our work was motivated by the notion of the quadratic variation of martin-
gales, carré du champ, and the characterization of the classical and martingale
Hardy and Bergman spaces ([17, 28, 34, 33, 41, 39, 27, 42]). The resulting tech-
nique should apply to Hardy spaces of operators and Markov processes more
general than the fractional Laplacian and the isotropic stable Lévy process.
The style of the presentation and the inclusion of both jump and continuous
processes in the present paper is intended to clarify the methodology and indi-
cate such extensions. Our development is analytic. In fact, the definitions of
the Hardy spaces can be easily formulated analytically by using the harmonic
measures of the Laplacian and the fractional Laplacian ([4, 26]). A clarifying
comparison of the conditional and the non-conditional cases is made at the
end of Section 4.

2. Characterization of Hp

Consider open U ⊂⊂ D and a real-valued function φ : R
d → R which is C2

in a neighborhood of U and satisfies
∫

Rd |φ(y)|(1 + |y|)−d−α < ∞. Then ∆α/2φ

is bounded on U , and for every x ∈ R
d we have

(8) φ(x) = Exφ(XτU
) −

∫

U

GU(x, y)∆α/2φ(y) dy .

Indeed, the difference of both sides of (8) vanishes continuously on U c and
annihilates ∆α/2 on U . Thus the difference is zero on U by the maximum
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principle for ∆α/2, see [8, Lemma 3.8 and the proof of Theorem 3.9], or [11,
Appendix]. Alternatively, (8) may be obtained from Dynkin’s formula.

Lemma 1. If u is α-harmonic on D and U ⊂⊂ D, then

(9) Ex0
u2(XτU

) = u(x0)
2 +

∫

U

GU(x0, y)

∫

Rd

A
[u(z) − u(y)]2

|z − y|d+α
dz dy .

Proof. If
∫

Rd u(y)2(1+ |y|)−d−α = ∞, then
∫

Rd [u(z)−u(y)]2/|z−y|d+α dz = ∞
for every y. Also Ex0

u2(XτU
) = ∞, because the distribution of XτU

has density
function bounded below by a multiple of (1 + |y|)−d−α in the complement of
the neighborhood of U ([5]). Therefore in what follows we may assume that
∫

Rd u(y)2(1 + |y|)−d−α < ∞. Since u2 is smooth in a neighborhood of U ,

∆α/2(u2) is bounded on U . By (8) with φ = u2, for x ∈ R
d we have

(10) Exu
2(XτU

) = u2(x) +

∫

U

GU(x, y)∆α/2(u2)(y) dy .

For y ∈ U , z ∈ R
d, we have u2(z)−u2(y)−2u(y)[u(z)−u(y)] = [u(z)−u(y))]2.

Since ∆α/2u(y) = 0, we have

∆α/2u2(y) = ∆α/2u2(y) − 2u(y)∆α/2u(y)

= lim
η→0+

∫

{z∈Rd: |z−y|>η}

A
u2(z) − u2(y) − 2u(y)[u(z) − u(y)]

|z − y|d+α
dz

=

∫

Rd

A
[u(z) − u(y)]2

|z − y|d+α
dz ,

and (9) follows. �

Recall that GU(x, y) ↑ GD(x, y) as U ↑ D. By the monotone convergence
theorem we obtain the description of H2 aforementioned in Introduction.

Corollary 2. If u is α-harmonic in D, then (7) holds.

We conclude that H2 consists of precisely all those functions α-harmonic on
D for which the quadratic form on the right hand side of (7) is finite.

We will now consider (general) p > 1. We note that x 7→ |x|p is convex on
R, with the derivative pa|a|p−2 at x = a. For a, b ∈ C we let

(11) F (a, b) = |b|p − |a|p − pa|a|p−2(b − a) ,

a second order Taylor remainder. We have F (a, b) = |b|p if a = 0 and F (a, b) =
(p − 1)|a|p if b = 0. By convexity, F (a, b) ≥ 0 for a, b ∈ R.
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Example 1. For (even) p = 2, 4, . . . and a, b ∈ R, we have

F (a, b) = bp − ap − pap−1(b − a) = (b − a)2

p−2
∑

k=0

(k + 1)bp−2−kak.

For p ∈ (1, 2) we will use a certain approximation procedure. Let ε, b and
a be real numbers, and define

(12) Fε(a, b) = Re F (a+ iε, b+ iε) = |b+ iε|p−|a+ iε|p−pa|a+ iε|p−2(b−a) .

Of course, Fε(a, b) → F (a, b) as ε → 0.

Lemma 3. For every p > 1, we have

(13) F (a, b) ≍ (b − a)2(|b| ∨ |a|)p−2, a, b ∈ R.

If p ∈ (1, 2), then uniformly in ε, a, b ∈ R, we have

(14) Fε(a, b) ≤ c(b − a)2(|b| ∨ |a|)p−2.

Proof. We denote K(a, b) = (b−a)2(|b|∨|a|)p−2. For every k ∈ R, F (ka, kb) =
|k|pF (a, b) and K(ka, kb) = |k|pK(a, b). If a = 0, then (13) becomes equality,
hence we may assume that a 6= 0, in fact – that a = 1. Let f(b) = F (1, b) =
|b|p − 1 − p(b − 1). We will prove that

(15) cp(b − 1)2(|b| ∨ 1)p−2 ≤ f(b) ≤ Cp(b − 1)2(|b| ∨ 1)p−2.

Since f(1) = f ′(1) = 0 and f ′′(y) = p(p − 1)|y|p−2, we obtain

(16) f(b) = p(p − 1)

∫ b

1

∫ x

1

|y|p−2dydx = p(p − 1)

∫ b

1

|y|p−2(b − y)dy .

The first integral is over a simplex of area (b − 1)2/2, and it is a monotone
function of the simplex (as ordered by inclusion). For b close to 1 the integral
is comparable to (b − 1)2. For large |b| the (second) integral is comparable to
|b|p. This proves (15), hence (13). We will now prove (14) for p ∈ (1, 2). Let
fε(b) = Fε(1, b) = (b2 + ε)p/2 − (1 + ε2)p/2 − p(1 + ε2)(p−2)/2(b − 1) . We have
fε(1) = f ′

ε(1) = 0 and

f ′′
ε (b) = (b2 + ε2)(p−4)/2p[b2(p − 1) + ε2] ≍ (b2 + ε2)(p−2)/2 ≤ |b|p−2.

Thus, uniformly in ε,

fε(b) ≤ c

∫ b

1

∫ x

1

|y|p−2dydx = c

∫ b

1

(b − y)|y|p−2dy ≍ (b − 1)2(|b| ∨ 1)p−2.

If a 6= 0, then Fε(a, b) = |a|pfε/a(b/a) ≤ c|a|p(b/a− 1)2(|b/a| ∨ 1)p−2. If a = 0,

then Fε(a, b) = (b2 + ε2)p/2 − |ε|p ≍ |ε|p[(b/ε)2 ∧ |b/ε|p] ≤ |b|p. The proof of
(14) is complete. �
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Lemma 4. If u is α-harmonic in D, U ⊂⊂ D, and p > 1, then

(17) Ex0
|u(XτU

)|p = |u(x0)|
p +

∫

U

GU(x0, y)

∫

Rd

A
F (u(y), u(z))

|z − y|d+α
dz dy .

Proof. We proceed as in Lemma 1. In particular we will assume that
∫

Rd |u(y)|p(1+

|y|)−d−α < ∞, for otherwise both sides of (17) are infinite. We will first con-
sider the case of p ≥ 2 and apply (8) to φ = |u|p ∈ C2(D). For y ∈ D we have
∆α/2u(y) = 0, hence

∆α/2|u|p(y) = ∆α/2|u|p(y) − pu(y)|u(y)|p−2∆α/2u(y)

= lim
η→0+

∫

{z∈Rd: |z−y|>η}

A
|u(z)|p − |u(y)|p − pu(y)|u(y)|p−2[u(z) − u(y)]

|z − y|d+α
dz

=

∫

Rd

A
F (u(y), u(z))

|z − y|d+α
dz.

This and (8) yield (17) for p ≥ 2. We now consider 1 < p < 2. We note that
|u + iε|p ∈ C2(D). As in the first part of the proof,

∆α/2|u + iε|p(y) = ∆α/2|u + iε|p(y) − pu(y)|u(y) + iε|p−2∆α/2u(y)

=

∫

Rd

A
Fε(u(y), u(z))

|z − y|d+α
dz,

hence

Ex0
|u(XτU

) + iε|p = |u(x0) + iε|p +

∫

U

GU(x0, y)

∫

Rd

A
Fε(u(y), u(z))

|z − y|d+α
dz dy.

We let ε → 0. By Fatou’s lemma, (14), (13) and dominated convergence, we
obtain (17). �

Proof of Theorem 1. Lemma 3, Lemma 4 and monotone convergence imply
the comparability of ‖u‖p

p and (5) with the same constants as in (15), under
the mere assumption that u be α-harmonic on D. In fact,

(18) ‖u‖p
p = |u(x0)|

p +

∫

D

GD(x0, y)

∫

Rd

A
F (u(y), u(z))

|z − y|d+α
dz dy .

�

We note that in many cases the exact asymptotics of GD is known. For
instance, if D is a bounded C1,1 domain in R

d and d > α, then

GD(x0, y) ≍ δD(y)α/2|y − x0|
α−d ,

where δD(y) := dist(y, Dc). Here we refer the reader to [22], also for the case
of Lipschitz domains.
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Recall the definition of Fε, (12), and the fact that F0 = F of (11). Before
moving to conditional Hardy spaces we will record the following observation.

Lemma 5. For every p > 1 and a1, a2, b1, b2, ε ∈ R, we have

Fε(a1 ∧ a2, b1 ∧ b2) ≤ Fε(a1, b1) ∨ Fε(a2, b2),(19)

Fε(a1 ∨ a2, b1 ∨ b2) ≤ Fε(a1, b1) ∨ Fε(a2, b2).(20)

In particular, F (a ∧ 1, b ∧ 1) ≤ F (a, b) and F (a ∨ (−1), b ∨ (−1)) ≤ F (a, b),
for all a, b ∈ R. The latter also extends to K(a, b) = (b − a)2(|b| ∨ |a|)p−2.

Proof. Let ε 6= 0. We claim that the function b 7→ Fε(a, b) decreases on
(−∞, a] and increases on [a,∞). To see this, we consider

(21)
∂Fε

∂b
(a, b) = pb(b2 + ε2)p/2−1 − pa(a2 + ε2)p/2−1 .

The function h(x) = px(x2+ε2)p/2−1 has derivative h′(x) = p(x2+ε2)p/2−2(x2(p−
1) + ε2) > 0. If follows that the difference in (21) is positive if b > a and neg-
ative if b < a. This proves our claim.

Furthermore the function a 7→ Fε(a, b) decreases on (−∞, b] and increases
on [b,∞), as follows from calculating the derivative,

(22)
∂Fε

∂a
(a, b) = p(a − b)(a2 + ε2)p/2−2(a2(p − 1) + ε2) .

We will now prove (19). If b1 ∧ b2 = b1 and a1 ∧ a2 = a1 (or b1 ∧ b2 = b2 and
a1 ∧ a2 = a2), then (19) is trivial. If b1 ∧ b2 = b1 and a1 ∧ a2 = a2, then the
monotonicity of F yields

Fε(a2, b1) ≤ Fε(a1, b1), if b1 < a2,

Fε(a2, b1) ≤ Fε(a2, b2), if b1 ≥ a2.

The case b1 ∧ b2 = b2 and a1 ∧ a2 = a1 obtains by renaming the arguments.
This proves inequality (19). (20) follows from (19) and the identity

Fε(−a,−b) = Fε(a, b).

The case ε = 0 obtains by passing to the limit. When a = b, we have F (a, b) =
0, which yields the second last statement of the lemma. For K we obviously
have (b∧ 1− a∧ 1)2(|b∧ 1| ∨ |a∧ 1|)p−2 ≤ (b− a)2(|b| ∨ |a|)p−2 and (b∨ (−1)−
a ∨ (−1))2(|b ∨ (−1)| ∨ |a ∨ (−1)|)p−2 ≤ (b − a)2(|b| ∨ |a|)p−2. �

In passing we note that if the right-hand side of (17) is finite for u, then it
is also finite (in fact–smaller) for u∧1 and u∨ (−1). The latter functions have
smaller values and increments than u, a property defining normal contractions
for Dirichlet forms ([19]).
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3. Characterization of H2
h

The fractional Laplacian is a nonlocal operator and the corresponding sto-
chastic process X has jumps. In consequence the definitions of α-harmonicity
(2) and (3) involve the values of the function on the whole of Dc ([12]). This
is somewhat unusual compared with the classical theory of the Laplacian and
the Brownian motion, and attempts were made by various authors to ascribe
genuine boundary conditions to such processes and functions ([3, 7, 21, 29]).
One possibility is to study the boundary behavior of harmonic functions after
an appropriate normalization. In this section we will focus on α-harmonic
functions vanishing on Dc, so that Dc may be ignored, and we will use Doob’s
h-conditioning to normalize ([16]). Let h be harmonic and positive on D, and
let h vanish on Dc. In particular h may be a Martin integral,

h(x) =

∫

M(x, z) µ(dz) , x ∈ D ,

where µ ≥ 0 is a finite nonzero Borel measure on the set of the so-called
accessible points of ∂D, and M(·, z) denotes the Martin kernel with the pole
at z ∈ ∂D, see [12]. We like to note that if D is Lipschitz, then all the
points of ∂D are accessible ([12]), while in the general case ∂MD ⊂ ∂D∪{∞}.
Doob’s h-transform (6) yields a nontrivial modification of the potential theory

of ∆α/2. In particular, the ratio u/h is harmonic for ∆
α/2
h if u is α-harmonic and

vanishes on Dc (see below). This observation offers a convenient framework
for studying growth and boundary behavior of such ratios.

We will consider the transition semigroup

(23) P h
t f(x) =

1

h(x)

∫

pD(t, x, y)f(y)h(y)dy .

Here pD(t, x, y) = Ex{t < τD : p(t − τD, XτD
, y)} is the time-homogeneous

transition density of X killed on leaving D ([8]). The semigroup property of
P h

t follows directly from the Chapman-Kolmogorov equations for pD,
∫

Rd

pD(s, x, y)pD(t, y, z)dy = pD(s + t, x, z) .

By α-harmonicity and the optional stopping theorem, Exh(XτU∧t) = h(x), if
x ∈ U ⊂⊂ D. Letting U ↑ D, by Fatou’s lemma we obtain

∫

pD(t, x, y)h(y)dy =
Ex{t < τD : h(Xt)} ≤ h(x), i.e. P h

t is subprobabilistic.
The conditional process is defined as the Markov process with the transition

semigroup P h, and it will be denoted by the same symbol X. We let E
h
x be

the corresponding expectation for X starting at x ∈ D,

E
h
xf(Xt) =

1

h(x)
Ex[t < τD; f(Xt)h(Xt)] ,
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see also [8]. A Borel function r : D → R is h–harmonic (on D) if and only if
for every open U ⊂⊂ D we have

(24) r(x) = E
h
xr(XτU

) =
1

h(x)
Ex[XτU

∈ D; r(XτU
)h(XτU

)] , x ∈ U.

Here we assume that the expectation is absolutely convergent, in particular–
finite. It is evident that r is h-harmonic if and only if r = u/h on D, where u
is singular α-harmonic on D ([12]), i.e. u is α-harmonic on D and u = 0 on
Dc. We are interested in Lp integrability of u/h, since it amounts to weighted
Lp integrability of u. The following definition is adapted from [30].

Definition 2. For 0 < p < ∞ we define Hp
h = Hp

h(D, α) as the class of all
the functions u : R

d → R, singular α-harmonic on D, and such that

‖u‖p
Hp

h

:= sup
U⊂⊂D

E
h
x0

∣

∣

∣

∣

u(XτU
)

h(XτU
)

∣

∣

∣

∣

p

=
1

h(x0)
sup

U⊂⊂D
Ex0

|u(XτU
)|p

h(XτU
)p−1

< ∞ ,

where Ex0
|u(XτU

)|p/h(XτU
)p−1 means Ex0

[

XτU
∈ D; |u(XτU

)|p/h(XτU
)p−1

]

.

By Harnack inequality, Hp
h does not depend on the choice of x0 ∈ D.

Remark 1. Note that the elements of this Hp
h are α-harmonic, rather than

h-harmonic. In view of Definition 2, the genuine conditional Hardy space of
∆α/2 is 1

h
Hp

h = {u/h : u ∈ Hp
h}, with the norm ‖u/h‖ = ‖u‖Hp

h
. Hp

h is more of

a weighted Hardy space of ∆α/2, but it is convenient to call it the conditional
Hardy space, too. Below we will focus on calculating ‖u‖Hp

h
, which yields a

description of both spaces.

Lemma 6. If u is singular α-harmonic on D and U ⊂⊂ D, then

(25) Ex0

u2(XτU
)

h(XτU
)

=
u(x0)

2

h(x0)
+

∫

U

GU(x0, y)

∫

Rd

A

[

u(z)

h(z)
−

u(y)

h(y)

]2
h(z)dzdy

|z − y|d+α
.

Proof. Let y ∈ D. For arbitrary z ∈ R
d we have

u2(z)

h(z)
−

u2(y)

h(y)
− 2

u(y)

h(y)
(u(z) − u(y)) +

u2(y)

h2(y)
(h(z) − h(y))

=

[

u(z)

h(z)
−

u(y)

h(y)

]2

h(z) .(26)

By (26) and α-harmonicity,

∆α/2

(

u2

h

)

(y) = ∆α/2

(

u2

h

)

(y) − 2
u(y)

h(y)
∆α/2u(y) +

u2(y)

h2(y)
∆α/2h(y)

=

∫

Rd

A

[

u(z)

h(z)
−

u(y)

h(y)

]2

|z − y|−d−αh(z) dz .(27)
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Noteworthy, the integrand is nonnegative. Following (10), for u2/h we get

Ex0

u2(XτU
)

h(XτU
)

=
u(x0)

2

h(x0)
+

∫

U

GU(x0, y)∆α/2

(

u2

h

)

(y) .

By using (27) we obtain (25). �

We can interpret (25) in terms of h-conditioning and r = u/h as follows,

(28) E
h
x0

r(XτU
)2 = r(x0)

2 +

∫

U

GU(x0, y)

h(x0)h(y)

∫

Rd

A
[r(z) − r(y)]2

|z − y|d+α

h(z)

h(y)
dz h2(y)dy .

This is an analogue of (7), and also indicates the general situation. For p > 1
we will consider the expressions of the form

F
(a

s
,
b

t

)

, a, b ∈ C, s, t > 0 ,

see (11). If 1 < p < 2, then we will need an approximation based on

Fε

(a

s
,
b

t

)

, a, b ∈ C, s, t > 0, ε ∈ R,

where Fε is defined in (12). By Lemma 3 we have that F (a/s, b/t) ≥ 0,

(29) F (
a

s
,
b

t
) ≍

(b

t
−

a

s

)2( |b|

t
∨
|a|

s

)p−2

, a, b ∈ R, s, t > 0 ,

and uniformly in ε ∈ R we have

(30) Fε(
a

s
,
b

t
) ≤ c

(b

t
−

a

s

)2( |b|

t
∨
|a|

s

)p−2

, a, b ∈ R , s, t > 0 ,

and the comparisons in (29) hold with the constants cp and Cp of (15).

Lemma 7. For p > 1, a, b ∈ C and s, t > 0, we have

(31) F
(a

s
,
b

t

)

=
|b|p

tp
−

|a|p

tsp−1
−

p|a|p−2a(b − a)

tsp−1
+

(p − 1)|a|p(t − s)

tsp
.

Proof. The equality is straightforward to verify, and is left to the reader. �

The homogeneity seen on the left-hand side of (31) is an interesting feature
for the right-hand side of (31). We also like to note that tF (a/s, b/t) is the
remainder in the first order Taylor’s expansion of (a, s) 7→ |a|p/sp−1 at (b, t)
and, of course, Fε(a/s, b/t) → F (a/s, b/t) as ε → 0.

Lemma 8. If u is singular α-harmonic on D, U ⊂⊂ D and p > 1, then

Ex0

|u(XτU
)|p

h(XτU
)p−1

=
|u(x0)|

p

h(x0)p−1
+

∫

U

GU(x0, y)

∫

Rd

F

(

u(y)

h(y)
,
u(z)

h(z)

)

A
h(z)dzdy

|z − y|d+α
.
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Proof. If p ≥ 2, then |u|p/hp−1 ∈ C2(D). By (10),

(32) Ex0

|u(XτU
)|p

h(XτU
)p−1

=
|u(x0)|

p

h(x0)p−1
+

∫

U

GU(x0, y)∆α/2

(

|u|p

hp−1

)

(y) dy.

By α-harmonicity of h and u, and by Lemma 7,

∆α/2

(

|u|p

hp−1

)

(y) = ∆α/2

(

|u|p

hp−1

)

(y) −
p|u(y)|p−2u(y)

h(y)p−1
∆α/2u(y)

+
(p − 1)|u(y)|p

h(y)p
∆α/2h(y)

= lim
η→0+

∫

{z∈Rd: |z−y|>η}

A

[

|u(z)|p

h(z)p−1
−

|u(y)|p

h(y)p−1
−

p|u(y)|p−2u(y)

h(y)p−1
(u(z) − u(y))

+
(p − 1)|u(y)|p

h(y)p
(h(z) − h(y))

]

|z − y|−d−α dz

=

∫

Rd

h(z) F (u(y)/h(y), u(z)/h(z)) A |z − y|−d−αdz ,(33)

see (31). This gives the result for p ≥ 2. If 1 < p < 2 then we argue as follows.
Let ε → 0 and consider u + iεh in place of u in (32). By α-harmonicity,
∆α/2 (|u + iεh|ph1−p) (y) equals

lim
η→0+

∫

{z∈Rd: |z−y|>η}

A

[

|u(z) + iεh(z)|p

h(z)p−1
−

|u(y) + iεh(z)|p

h(y)p−1

−
p|u(y) + iεh(y)|p−2u(y)

h(y)p−1
(u(z) − u(y))

+
(p − 1)|u(y) + iεh(y)|p

h(y)p
(h(z) − h(y))

]

|z − y|−d−α dz

=

∫

Rd

h(z) Fε(u(y)/h(y), u(z)/h(z)) A |z − y|−d−αdz .(34)

We then use Lemma 7, Fatou’s lemma, and dominated convergence. �

Theorem 2. Let 1 < p < ∞. For u singular α-harmonic on D, ‖u‖p
Hp

h

is

comparable with

|u(x0)|
p

h(x0)p
+

∫

D

GD(x0, y)

h(x0)h(y)

∫

Rd

( |u(z)|

h(z)
∨
|u(y)|

h(y)

)p−2
[

u(z)

h(z)
−

u(y)

h(y)

]2
h(z)dz h2(y)dy

h(y)|z − y|d+α
.

Proof. The result follows from Lemma 8 and (29). In fact,

(35) ‖u‖p
Hp

h

=
|u(x0)|

p

h(x0)p
+

∫

U

GU(x0, y)

h(x0)h(y)

∫

Rd

F

(

u(y)

h(y)
,
u(z)

h(z)

)

A
h(z)dz h2(y)dy

h(y)|z − y|d+α
.
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�

We remark in passing that for h ≡ 1 we obtain Hp
h = Hp. To rigorously

state this observation, one should discuss conditioning by functions h with
nontrivial values on Dc ([12]). We will not embark on this endeavor, instead
in the next section we will fully discuss the conditional Hardy spaces of a local
operator, in which case the values of h on Dc are irrelevant.

4. Classical Hardy spaces

We will describe the Hardy spaces and the conditional Hardy spaces of
harmonic functions of the Laplacian ∆ =

∑d
j=1 ∂2/∂x2

j . The former case
has been widely studied in the literature, mainly for the ball and the half-
space, but also for smooth and Lipschitz domains, see [1, 25, 36, 37, 23]. The
characterization of the Hardy spaces in terms of quadratic functions appeared
in [35] and [43] for harmonic functions on the half-space in R

d. The case of D
being the unit ball was studied in detail in [40, 32]. For more general domains
in R

d see [41, 37, 23].
Throughout this section we will additionally assume that D is connected,

i.e. it is a domain. For 0 < p < ∞, the classical Hardy space Hp(D) may be
defined as the family of all those functions u on D which are harmonic on D
(i.e. u ∈ C2(D) and ∆u(x) = 0 for x ∈ D) and satisfy

‖u‖Hp := sup
U⊂⊂D

(

Ex0
|u(WτU

)|p
)1/p

< ∞.

Here W is the Brownian motion on R
d and τU = inf{t ≥ 0 : Wt /∈ D}. For a

positive harmonic function h on D and 0 < p < ∞ we will consider the space
Hp

h(D) of all those functions u harmonic on D which satisfy

‖u‖p
Hp

h

:= sup
U⊂⊂D

E
h
x0

∣

∣

∣

∣

u(WτU
)

h(WτU
)

∣

∣

∣

∣

p

=
1

h(x0)
sup

U⊂⊂D
Ex0

|u(WτU
)|p

h(WτU
)p−1

< ∞,

where E
h
x is the expectation for the conditional Brownian motion (compare

Section 3 or see [16]). Let GD be the classical Green function of D for ∆. If
1 < p < ∞ and u is harmonic on D, then the following Hardy-Stein identity
holds

(36) ‖u‖p
Hp = |u(x0)|

p + p(p − 1)

∫

D

GD(x0, y)|u(y)|p−2|∇u(y)|2dy.

The identity (36) obtains by taking h ≡ 1 in the next theorem. (36) generalizes
[40, Lemma 1] and [32, Theorem 4.3], where the formula was given for the ball
in R

d, see also [38]. We note that (36) is implicit in [41, Lemma 6], but
apparently the identity did not receive enough attention for general domains.
We also note that in many cases the exact asymptotics of GD is known, and
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we obtain explicit estimates. For instance, if D is a bounded C1,1 domain in
R

d and d ≥ 3, then GD(x0, y) ≍ δD(y)|y − x0|
2−d, where δD(y) := dist(y, Dc),

see [6], also for the case of Lipschitz domains.

Theorem 3. If 1 < p < ∞ and u is harmonic on D, then

(37) ‖u‖p
Hp

h

=
|u(x0)|

p

h(x0)p
+ p(p − 1)

∫

D

GD(x0, y)

h(x0)h(y)

∣

∣

∣

∣

u(y)

h(y)

∣

∣

∣

∣

p−2 ∣

∣

∣
∇

u

h
(y)

∣

∣

∣

2

h2(y)dy.

The remainder of this section is devoted to the proof of Theorem 3. The
reader interested mostly in (36) is encouraged to carry out similar but simpler
calculations for h ≡ 1 and p > 2. We note that (37) is quite more general than
(36) because usually u/h is not harmonic. The same remark concerns (39,
40) for general h as opposed to (39, 40) for h = 1, which is a classical result
([36, VII.3]). We start with the following well-known Green-type equality.
Consider open U ⊂⊂ D and a real-valued function φ : R

d → R which is C2

in a neighborhood of U . Then ∆φ is bounded on U , and for every x ∈ D,

(38) φ(x) = Exφ(WτU
) −

∫

U

GU(x, y)∆φ(y) dy ,

see, e.g., [18, p. 133] for the proof.

Lemma 9. Let ε 6= 0 and let u be harmonic on D. We have

(39) ∆

[(

u2

h2
+ ε2

)p/2

h

]

= p

(

u2

h2
+ ε2

)(p−4)/2[

(p − 1)
u2

h2
+ ε2

]∣

∣

∣

∣

∇
u

h

∣

∣

∣

∣

2

.

If u 6= 0 or p ≥ 2, then

(40) ∆

(

|u|p

hp−1

)

= p(p − 1)

∣

∣

∣

∣

u

h

∣

∣

∣

∣

p−2∣
∣

∣

∣

∇
u

h

∣

∣

∣

∣

2

h .

Proof. Denote ui = ∂u/∂xi, hi = ∂h/∂xi, uii = ∂2u/∂x2
i and hii = ∂2h/∂x2

i ,
i = 1, . . . , d. The lemma results from straightforward calculations based on
the following observations:

∇|u|p = ∇
(

u2)p/2 = p|u|p−2u∇u , if p ≥ 2 or u 6= 0 ,

∂2

∂x2
i

|u|p = p(p − 1)|u|p−2u2
i + p|u|p−2uuii , if p ≥ 2 or u 6= 0 ,

∇h1−p = (1 − p)h−p∇h ,

∆(fg) = f∆g + 2∇f ◦ ∇g + g∆f .

This yields (40) if p ≥ 2 or u(x) 6= 0 at the point x where the derivatives are
calculated (and so |u|ph1−p is of class C2 there). To prove (39) we let ε 6= 0,
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denote f(x) = u2/h2 + ε2, and use a few more identities:

∇
u

h
=

∇u

h
−

u∇h

h2
, ∇

(

u

h

)2

= 2
u

h
∇

u

h
,

∆

(

u

h

)2

=
2|∇u|2

h2
−

8u∇u ◦ ∇h

h3
+

6u2|∇h|2

h4
,

∇fp/2 =
p

2
fp/2−1∇

(

u

h

)2

,

∆fp/2 =
p(p − 2)

4
fp/2−2

∣

∣

∣

∣

∇

(

u

h

)2∣
∣

∣

∣

2

+
p

2
fp/2−1∆

(

u

h

)2

,

∆

(

fp/2h

)

=
p(p − 2)

4
fp/2−2

∣

∣

∣

∣

∇

(

u

h

)2∣
∣

∣

∣

2

h + pfp/2−1

∣

∣

∣

∣

∇
u

h

∣

∣

∣

∣

2

h .

�

Noteworthy, we obtained nonnegative expressions in (39) and (40). Also, if
ε → 0, then ∆[(u2/h2 + ε2)p/2h] → ∆(|u|ph1−p) almost everywhere on D.

Lemma 10. If u is harmonic on D, U ⊂⊂ D and p > 1, then

Ex0

|u(XτU
)|p

h(XτU
)p−1

=
|u(x0)|

p

h(x0)p−1
+ p(p − 1)

∫

U

GU(x0, y)

∣

∣

∣

∣

u(y)

h(y)

∣

∣

∣

∣

p−2∣
∣

∣

∣

∇
u

h
(y)

∣

∣

∣

∣

2

h(y)dy.

Proof. For p ≥ 2 we have |u|ph1−p ∈ C2(D) and the result follows from (38)
and Lemma 9. If 1 < p < 2, then we consider u + iεh in place of u and we let
ε → 0. By (39), (38), Fatou’s lemma and dominated convergence we obtain
the result. �

Proof of Theorem 3. The result follows from Lemma 10 and monotone conver-
gence, after dividing by h(x0) and rearranging the integrand. �

We observe very close similarities between the Hardy-Stein identities and
conditional Hardy-Stein identities discussed in this paper. Specifically, func-
tions u and u/h undergo the same transformation under the integral sign.
In each case we see the Green function (and jump kernels in the non-local
case) appropriate for the given operator, and in the conditional case, h2(y)dy
appears as a natural reference measure. We remark in passing that the frame-
work of conditional semigroups (23) should be convenient for such calculations
in more general settings.

5. Further results

We will now discuss the structure of Hp. We start with p = 1. The following
is a counterpart of the theorem of Krickeberg for martingales ([15]), and an
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extension of [30, Theorem 1], where the result was proved for singular α-
harmonic functions on bounded Lipschitz domains.

Lemma 11. Let u ∈ H1. There exist nonnegative functions f and g which
are α-harmonic on D, satisfy u = f − g and uniquely minimize f(x0) + g(x0).
In fact, f(x0) + g(x0) = ‖u‖1. If u is singular α-harmonic on D, then so are
f and g. If 1 ≤ p < ∞ and u ∈ Hp, then ‖u‖p

p = ‖f‖p
p + ‖g‖p

p.

Proof. Let Un be open, Un ⊂⊂ Un+1 for n = 1, 2 . . . and
⋃

n Un = D. Let
τn = τUn

. We have
‖u‖1 = lim

n→∞
Ex0

|u(Xτn
)| < ∞ .

Let u+ = max(u, 0) and u− = max(−u, 0). For n = 1, 2, . . ., we define

fn(x) = Exu
+(Xτn

) , gn(x) = Exu
−(Xτn

) , x ∈ R
d .

Obviously, functions fn and gn are nonnegative on R
d, and finite and α-

harmonic on Un. We have u = fn − gn. Since τn ≤ τn+1, for every x ∈ R
d,

fn(x) = Ex

[

EXτn
u(Xτn+1

) ; u(Xτn
) > 0

]

≤ Ex

[

EXτn
u+(Xτn+1

)
]

= fn+1(x) ,

and gn(x) ≤ gn+1. We let f(x) = lim fn(x) and g(x) = lim gn(x). By the
monotone convergence theorem, the mean value property (2) holds for f and
g. We obtain

f(x0) + g(x0) = lim
n→∞

Ex0
|u(Xτn

)| = ‖u‖1 < ∞ .

In view of Harnack inequality we conclude that f and g are finite, hence α-
harmonic on D. Also, u = f − g. If u vanishes on D, then so do f and g.
For the uniqueness, we observe that if f̃ , g̃ ≥ 0 are α-harmonic on D, and
u = f̃ − g̃, then −g̃ ≤ u ≤ f̃ , hence f ≤ f̃ and g ≤ g̃ by the construction of
f and g. Therefore f(x0) + g(x0) ≤ f̃(x0) + g̃(x0), and equality holds if and

only if f(x0) = f̃(x0) and g(x0) = g̃(x0), henceforth f = f̃ and g = g̃.
Let p > 1 and suppose that u ∈ Hp ⊂ H1. By Jensen’s inequality,

fn(x)p ≤ Exu
+(Xτn

)p, gn(x)p ≤ Exu
−(Xτn

)p,

hence
fn(x)p + gn(x)p ≤ Ex|u(Xτn

)|p.

For m < n we have

Ex0
(fn(Xτm

)p + gn(Xτm
)p) ≤ Ex0

EXτm
|u(Xτn

)|p = Ex0
|u(Xτn

)|p.

Letting n → ∞, we get

Ex0
(f(Xτm

)p + g(Xτm
)p) ≤ ‖u‖p

p.

Hence ‖f‖p
p + ‖g‖p

p ≤ ‖u‖p
p. On the other hand, f, g ≥ 0, hence

‖u‖p
p = lim

n→∞
Ex0

|f(Xτn
) − g(Xτn

)|p
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≤ lim
n→∞

Ex0
(f(Xτn

)p + g(Xτn
)p) = ‖f‖p

p + ‖g‖p
p.

The proof is complete. �

We note that ‖u‖p
p = ‖f‖p

p + ‖g‖p
p has a trivial analogue for Lp spaces.

In view of Lemma 11 and the representation of positive α-harmonic functions
[12, Theorem 3], each u ∈ H1 has a unique integral representation

(41) u(x) =

∫

∂MD

MD(x, z)µ(dz) +

∫

Dc

f(y)PD(x, y)dy , x ∈ D ,

where µ is a (finite) signed measure on the Martin boundary of D, MD is the
Martin kernel of D, PD is the Poisson kernel of D, and the function f satisfies
∫

Dc |f(y)|PD(x0, y)dy < ∞, see [12].

Lemma 12. Let u ∈ H1
h. There are nonnegative functions f, g ∈ H1

h which
satisfy u = f−g and uniquely minimize f(x0)+g(x0). In fact, f(x0)+g(x0) =
‖u‖H1

h
h(x0). If 1 ≤ p < ∞ and u ∈ Hp

h, then ‖u‖p
Hp

h

= ‖f‖p
Hp

h

+ ‖g‖p
Hp

h

.

Proof. If u ∈ H1
h, then u is singular α-harmonic on D, u ∈ H1 and ‖u‖H1

h
=

h(x0)
−1‖u‖1 (conditioning is trivial for p = 1). By Lemma 11, u has the

Krickeberg decomposition u = f − g, and f, g are nonnegative and singular α-
harmonic on D. In particular ‖f‖H1

h
= f(x0)/h(x0) and ‖g‖H1

h
= g(x0)/h(x0)

are finite. The reader may easily verify the rest of the statement of the lemma,
following the previous proof and using the conditional expectation E

h. �

Remark 2. Analogues of Lemma 11 and Lemma 12 are true for the classical
Hardy spaces Hp(D) and Hp

h(D) for connected D.

As an application of (36) we give a short proof of the following Littlewood-
Paley type inequality (see [31], were the result was given for the ball in R

2).
Recall the notation δD(y) = dist(y, Dc).

Proposition 13. Consider a domain D ⊂ R
d, and let p ≥ 2. There is a

constant c > 0 such that for every function u harmonic on D,

‖u‖p
Hp − |u(x0)|

p ≥ p(p − 1)d2−p21−p

∫

D

GD(x0, y)δD(y)p−2|∇u(y)|pdy .

Proof. We may assume that ‖u‖Hp < ∞. In view of Lemma 11 and Remark 2,
u = f − g, where f, g are positive and harmonic on D and ‖u‖p

Hp = ‖f‖p
Hp +

‖g‖p
Hp . Clearly, |u(x0)|

p ≤ f(x0)
p + g(x0)

p, hence ‖u‖p
Hp − |u(x0)|

p ≥ ‖f‖p
Hp −

|f(x0)|
p + ‖g‖p

Hp − |g(x0)|
p. Furthermore, by Jensen’s inequality,

|∇u|p ≤ 2p−1(|∇f |p + |∇g|p) .

Recall the following gradient estimate for the nonnegative harmonic function f ,

f(x) ≥ |∇f(x)|δD(x)/d , x ∈ D ,
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([20, Exercise 2.13], see also [2]). Here d is the dimension. By (36),

‖f‖p
Hp − |f(x0)|

p = p(p − 1)

∫

D

GD(x0, y)|f(y)|p−2|∇f(y)|2dy

≥ p(p − 1)d2−p

∫

D

GD(x0, y)δD(y)p−2|∇f(y)|pdy ,

and a similar estimate holds for g. �
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