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We characterize conditional Hardy spaces of the Laplacian and the fractional Laplacian by using Hardy-Stein type identities.

Introduction

Let D ⊂ R d be open and let x 0 ∈ D. For p > 0 and 0 < α < 2 we will consider the Hardy space H p (D, α) of the fractional Laplacian ∆ α/2 , (

∆ α/2 u(x) = lim

η→0 + |y-x|>η A u(y) -u(x)
|y -x| d+α dy .

Here A = Γ((d + α)/2)/(2 -α π d/2 |Γ(-α/2)|). H p (D, α) is defined as follows.

Let X be the isotropic α-stable Lévy process ( [START_REF] Bogdan | Potential analysis of stable processes and its extensions[END_REF]), i.e. the symmetric Lévy process on R d with the Lévy measure ν(dy) = A|y| -d-α dy and zero Gaussian part ( [START_REF] Bogdan | Potential analysis of stable processes and its extensions[END_REF]). Let E x be the expectation for X starting at x ∈ R d . We define τ D = inf{t ≥ 0 : X t ∈ D}, the first exit time of X from D. A Borel function u : R d → R is called α-harmonic on D if for every open U relatively compact in D (denoted U ⊂⊂ D) we have

(2) u(x) = E x u(X τ U ) , x ∈ U.
Here we assume that the expectation is absolutely convergent, in particularfinite. Equivalently, u is α-harmonic on D if u is twice continuously differentiable on D, R d |u(y)|(1 + |y|) -d-α dy < ∞, and

(3) ∆ α/2 u(x) = 0 , x ∈ D .

We refer to [START_REF] Bogdan | Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains[END_REF] and [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF] for this characterization and a detailed discussion of αharmonic functions, including structure theorems for nonnegative α-harmonic functions, and explicit formulas for the Green function, Poisson kernel and Martin kernel of ∆ α/2 for the ball. We also refer to remarks in [13, p. 120] explaining why the mean value property (2) is preferred over analogues of [START_REF] Bass | A Fatou theorem for α-harmonic functions in Lipschitz domains[END_REF] for harmonic functions of more general Markov processes. The reader may verify, using [START_REF] Bañuelos | Lower bound gradient estimates for solutions of Schrödinger equations and heat kernels[END_REF] and the strong Markov property of X, that {u(X τ U )} U ⊂⊂D is a martingale ordered by inclusion of sets U . In particular, E x |u(X τ U )| p is non-decreasing in U , if p ≥ 1.

Definition 1. Let 0 < p < ∞. We write u ∈ H p = H p (D, α), if u is αharmonic on D and (4)

u p := sup U ⊂⊂D (E x 0 |u(X τ U )| p ) 1/p < ∞ .
The finiteness condition does not depend on the choice of x 0 , because U ∋

x → E x |u(X τ U )| p satisfies Harnack inequality for arbitrary (Borel) function u ( [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]). If p ≤ q, then H p ⊃ H q . We will say that nonnegative functions f (u) and g(u) are comparable, and write f (u) ≍ g(u), if numbers 0 < c ≤ C < ∞ exist such that cf (u) ≤ g(u) ≤ Cf (u) for every u.

The reader may notice that (4) is far from being explicit because it involves the distribution of X τ U for all U ⊂ D. The following result and the exact formula for u p given in [START_REF] Dynkin | Markov Processes, I[END_REF] below may simplify the perspective. Let G D (x, y) be the Green function of ∆ α/2 for the Dirichlet problem on D ( [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]). |z -y| d+α dz dy.

In fact, u ∈ H p if and only if u is α-harmonic in D and the integral is finite.

Below we analogously decribe Hardy spaces

H p h = H p h (D, α) related to (6) ∆ α/2 h (u) = 1 h ∆ α/2 (hu) .
Here h is a fixed function harmonic for ∆ α/2 , positive on D and vanishing on D c . The boundary behavior of functions in H p h is of considerable interest because it directly relates to ratios of α-harmonic functions. In fact, the above h-transform (6) of ∆ α/2 is implicit in the relative Fatou theorems studied in [START_REF] Michalik | Relative Fatou theorem for α-harmonic functions in Lipschitz domains[END_REF][START_REF] Kim | Relative Fatou's theorem for (-∆) α/2 -harmonic functions in bounded κ-fat open sets[END_REF][START_REF] Bogdan | Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains[END_REF] and in the theory of conditional stable processes [START_REF] Bogdan | Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains[END_REF][START_REF] Bogdan | On Kelvin transformation[END_REF].

We also give similar characterizations for Hardy spaces of the classical Laplacian ∆: formula [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF] below is the celebrated Hardy-Stein identity but Theorem 3, which may be considered a conditional Hardy-Stein identity, is apparently new, and may be interesting for its own sake.

The paper is composed as follows. In Section 2 we observe the formula [START_REF] Bogdan | Censored stable processes[END_REF] sup [START_REF] Elias | On the theory of harmonic functions of several variables. II. Behavior near the boundary[END_REF] in Section 3, see also Remark 1. In Section 4 we state the results for the Laplacian: formula (36) and Theorem 3. In Section 5 we describe the norm of the Hardy spaces in terms of the Krickeberg decomposition for p ≥ 1, and we prove a classical Littlewood-Paley inequality. Formula ( 7) and its modifications [START_REF] Dynkin | Markov Processes, I[END_REF][START_REF] Elias | On the theory of harmonic functions of several variables. II. Behavior near the boundary[END_REF][START_REF] Elias | Boundary behavior of holomorphic functions of several complex variables[END_REF] below are the main subject of the paper, and they may be considered nonlocal or conditional extensions of the classical Hardy-Stein equality, for which we refer the reader to [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF] in Section 4 and [START_REF] Stević | On harmonic Hardy and Bergman spaces[END_REF][START_REF] Pavlović | Green's formula and the Hardy-Stein identities[END_REF][START_REF] Pavlović | Hardy-Stein type characterization of harmonic Bergman spaces[END_REF].

U ⊂⊂D E x 0 u 2 (X τ U ) = |u(x 0 )| 2 + D G D (x 0 , y) R d A [u(z) -u(y)]
Our work was motivated by the notion of the quadratic variation of martingales, carré du champ, and the characterization of the classical and martingale Hardy and Bergman spaces ( [START_REF] Durrett | Brownian motion and martingales in analysis[END_REF][START_REF] Mazet | A characterization of Markov property for semigroups with invariant measure[END_REF][START_REF] Protter | Stochastic integration and differential equations[END_REF][START_REF] Pavlović | Hardy-Stein type characterization of harmonic Bergman spaces[END_REF][START_REF] Stoll | The Littlewood-Paley inequalities for Hardy-Orlicz spaces of harmonic functions on domains in R n[END_REF][START_REF] Stević | On harmonic Hardy and Bergman spaces[END_REF][START_REF] Luks | Hardy spaces for the Laplacian with lower order perturbations[END_REF][START_REF] Weisz | Martingale Hardy spaces and their applications in Fourier analysis[END_REF]). The resulting technique should apply to Hardy spaces of operators and Markov processes more general than the fractional Laplacian and the isotropic stable Lévy process. The style of the presentation and the inclusion of both jump and continuous processes in the present paper is intended to clarify the methodology and indicate such extensions. Our development is analytic. In fact, the definitions of the Hardy spaces can be easily formulated analytically by using the harmonic measures of the Laplacian and the fractional Laplacian ( [START_REF] Bliedtner | Potential theory[END_REF][START_REF] Naum | Foundations of modern potential theory[END_REF]). A clarifying comparison of the conditional and the non-conditional cases is made at the end of Section 4.

Characterization of H p

Consider open U ⊂⊂ D and a real-valued function

φ : R d → R which is C 2 in a neighborhood of U and satisfies R d |φ(y)|(1 + |y|) -d-α < ∞. Then ∆ α/2
φ is bounded on U , and for every x ∈ R d we have [START_REF] Bogdan | Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains[END_REF] φ

(x) = E x φ(X τ U ) - U G U (x, y)∆ α/2 φ(y) dy .
Indeed, the difference of both sides of (8) vanishes continuously on U c and annihilates ∆ α/2 on U . Thus the difference is zero on U by the maximum principle for ∆ α/2 , see [8, Lemma 3.8 and the proof of Theorem 3.9], or [START_REF] Bogdan | Estimates of the Green function for the fractional Laplacian perturbed by gradient[END_REF]Appendix]. Alternatively, (8) may be obtained from Dynkin's formula.

Lemma 1. If u is α-harmonic on D and U ⊂⊂ D, then 

E x 0 u 2 (X τ U ) = u(x 0 ) 2 + U G U (x 0 , y) R d A [u(z) -u(y)] 2 |z -y| d+α dz dy . Proof. If R d u(y) 2 (1 + |y|) -d-α = ∞, then R d [u(z) -u(y)] 2 /|z -y| d+α dz = ∞ for every y. Also E x 0 u 2 (X τ U ) = ∞, (9) 
R d u(y) 2 (1 + |y|) -d-α < ∞. Since u 2 is smooth in a neighborhood of U , ∆ α/2 (u 2 ) is bounded on U . By (8) with φ = u 2 , for x ∈ R d we have (10) E x u 2 (X τ U ) = u 2 (x) + U G U (x, y)∆ α/2 (u 2 )(y) dy . For y ∈ U , z ∈ R d , we have u 2 (z)-u 2 (y)-2u(y)[u(z)-u(y)] = [u(z)-u(y))] 2 . Since ∆ α/2 u(y) = 0, we have ∆ α/2 u 2 (y) = ∆ α/2 u 2 (y) -2u(y)∆ α/2 u(y) = lim η→0 + {z∈R d : |z-y|>η} A u 2 (z) -u 2 (y) -2u(y)[u(z) -u(y)] |z -y| d+α dz = R d A [u(z) -u(y)] 2 |z -y| d+α dz , and (9) follows. 
Recall that G U (x, y) ↑ G D (x, y) as U ↑ D. By the monotone convergence theorem we obtain the description of H 2 aforementioned in Introduction.

Corollary 2. If u is α-harmonic in D, then (7) holds.

We conclude that H 2 consists of precisely all those functions α-harmonic on D for which the quadratic form on the right hand side of ( 7) is finite.

We will now consider (general) p > 1. We note that x → |x| p is convex on R, with the derivative pa|a| p-2 at x = a. For a, b ∈ C we let 

F (a, b) = b p -a p -pa p-1 (b -a) = (b -a) 2 p-2 k=0 (k + 1)b p-2-k a k .
For p ∈ (1, 2) we will use a certain approximation procedure. Let ε, b and a be real numbers, and define

(12) F ε (a, b) = Re F (a + iε, b + iε) = |b + iε| p -|a + iε| p -pa|a + iε| p-2 (b -a) . Of course, F ε (a, b) → F (a, b) as ε → 0.
Lemma 3. For every p > 1, we have

(13) F (a, b) ≍ (b -a) 2 (|b| ∨ |a|) p-2 , a, b ∈ R. If p ∈ (1, 2), then uniformly in ε, a, b ∈ R, we have (14) F ε (a, b) ≤ c(b -a) 2 (|b| ∨ |a|) p-2 . Proof. We denote K(a, b) = (b -a) 2 (|b| ∨ |a|) p-2 . For every k ∈ R, F (ka, kb) = |k| p F (a, b) and K(ka, kb) = |k| p K(a, b). If a = 0, then (13) 
becomes equality, hence we may assume that a = 0, in fact -that a

= 1. Let f (b) = F (1, b) = |b| p -1 -p(b -1). We will prove that (15) c p (b -1) 2 (|b| ∨ 1) p-2 ≤ f (b) ≤ C p (b -1) 2 (|b| ∨ 1) p-2 .
Since f (1) = f ′ (1) = 0 and f ′′ (y) = p(p -1)|y| p-2 , we obtain ( 16)

f (b) = p(p -1) b 1 x 1 |y| p-2 dydx = p(p -1) b 1 |y| p-2 (b -y)dy .
The first integral is over a simplex of area (b -1) 2 /2, and it is a monotone function of the simplex (as ordered by inclusion). For b close to 1 the integral is comparable to (b -1) 2 . For large |b| the (second) integral is comparable to |b| p . This proves [START_REF] Dellacherie | Probabilities and potential. B[END_REF], hence [START_REF] Bogdan | Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian[END_REF]. We will now prove [START_REF] Bogdan | On Kelvin transformation[END_REF] 

for p ∈ (1, 2). Let f ε (b) = F ε (1, b) = (b 2 + ε) p/2 -(1 + ε 2 ) p/2 -p(1 + ε 2 ) (p-2)/2 (b -1) . We have f ε (1) = f ′ ε (1) = 0 and f ′′ ε (b) = (b 2 + ε 2 ) (p-4)/2 p[b 2 (p -1) + ε 2 ] ≍ (b 2 + ε 2 ) (p-2)/2 ≤ |b| p-2 . Thus, uniformly in ε, f ε (b) ≤ c b 1 x 1 |y| p-2 dydx = c b 1 (b -y)|y| p-2 dy ≍ (b -1) 2 (|b| ∨ 1) p-2 . If a = 0, then F ε (a, b) = |a| p f ε/a (b/a) ≤ c|a| p (b/a -1) 2 (|b/a| ∨ 1) p-2 . If a = 0, then F ε (a, b) = (b 2 + ε 2 ) p/2 -|ε| p ≍ |ε| p [(b/ε) 2 ∧ |b/ε| p ] ≤ |b| p . The proof of (14) is complete. Lemma 4. If u is α-harmonic in D, U ⊂⊂ D, and p > 1, then (17) E x 0 |u(X τ U )| p = |u(x 0 )| p + U G U (x 0 , y) R d A F (u(y), u(z))
|z -y| d+α dz dy .

Proof. We proceed as in Lemma 1. In particular we will assume that R d |u(y)| p (1+ |y|) -d-α < ∞, for otherwise both sides of ( 17) are infinite. We will first consider the case of p ≥ 2 and apply (8

) to φ = |u| p ∈ C 2 (D). For y ∈ D we have ∆ α/2 u(y) = 0, hence ∆ α/2 |u| p (y) = ∆ α/2 |u| p (y) -pu(y)|u(y)| p-2 ∆ α/2 u(y) = lim η→0 + {z∈R d : |z-y|>η} A |u(z)| p -|u(y)| p -pu(y)|u(y)| p-2 [u(z) -u(y)] |z -y| d+α dz = R d A F (u(y), u(z)) |z -y| d+α dz.
This and ( 8) yield ( 17) for p ≥ 2. We now consider 1 < p < 2. We note that |u + iε| p ∈ C 2 (D). As in the first part of the proof,

∆ α/2 |u + iε| p (y) = ∆ α/2 |u + iε| p (y) -pu(y)|u(y) + iε| p-2 ∆ α/2 u(y) = R d A F ε (u(y), u(z)) |z -y| d+α dz, hence E x 0 |u(X τ U ) + iε| p = |u(x 0 ) + iε| p + U G U (x 0 , y) R d A F ε (u(y), u(z))
|z -y| d+α dz dy.

We let ε → 0. By Fatou's lemma, ( 14), [START_REF] Bogdan | Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian[END_REF] and dominated convergence, we obtain [START_REF] Durrett | Brownian motion and martingales in analysis[END_REF].

Proof of Theorem 1. Lemma 3, Lemma 4 and monotone convergence imply the comparability of u p p and ( 5) with the same constants as in [START_REF] Dellacherie | Probabilities and potential. B[END_REF], under the mere assumption that u be α-harmonic on D. In fact, (18)

u p p = |u(x 0 )| p + D G D (x 0 , y) R d A F (u(y), u(z)) |z -y| d+α dz dy .
We note that in many cases the exact asymptotics of

G D is known. For instance, if D is a bounded C 1,1 domain in R d and d > α, then G D (x 0 , y) ≍ δ D (y) α/2 |y -x 0 | α-d ,
where δ D (y) := dist(y, D c ). Here we refer the reader to [START_REF] Jakubowski | The estimates for the Green function in Lipschitz domains for the symmetric stable processes[END_REF], also for the case of Lipschitz domains.

Recall the definition of F ε , [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF], and the fact that F 0 = F of [START_REF] Bogdan | Estimates of the Green function for the fractional Laplacian perturbed by gradient[END_REF]. Before moving to conditional Hardy spaces we will record the following observation. Lemma 5. For every p > 1 and a 1 ,

a 2 , b 1 , b 2 , ε ∈ R, we have F ε (a 1 ∧ a 2 , b 1 ∧ b 2 ) ≤ F ε (a 1 , b 1 ) ∨ F ε (a 2 , b 2 ), ( 19 
)
F ε (a 1 ∨ a 2 , b 1 ∨ b 2 ) ≤ F ε (a 1 , b 1 ) ∨ F ε (a 2 , b 2 ). ( 20 
)
In particular,

F (a ∧ 1, b ∧ 1) ≤ F (a, b) and F (a ∨ (-1), b ∨ (-1)) ≤ F (a, b), for all a, b ∈ R. The latter also extends to K(a, b) = (b -a) 2 (|b| ∨ |a|) p-2 .
Proof. Let ε = 0. We claim that the function b → F ε (a, b) decreases on (-∞, a] and increases on [a, ∞). To see this, we consider 

(21) ∂F ε ∂b (a, b) = pb(b 2 + ε 2 ) p/2-1 -pa(a 2 + ε 2 ) p/2-1 . The function h(x) = px(x 2 +ε 2 ) p/2-1 has derivative h ′ (x) = p(x 2 +ε 2 ) p/2-2 (x 2 (p- 1) + ε 2 ) > 0. If
∂F ε ∂a (a, b) = p(a -b)(a 2 + ε 2 ) p/2-2 (a 2 (p -1) + ε 2 ) .
We will now prove [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF].

If b 1 ∧ b 2 = b 1 and a 1 ∧ a 2 = a 1 (or b 1 ∧ b 2 = b 2 and a 1 ∧ a 2 = a 2 ), then (19) is trivial. If b 1 ∧ b 2 = b 1 and a 1 ∧ a 2 = a 2 , then the monotonicity of F yields F ε (a 2 , b 1 ) ≤ F ε (a 1 , b 1 ), if b 1 < a 2 , F ε (a 2 , b 1 ) ≤ F ε (a 2 , b 2 ), if b 1 ≥ a 2 .
The case b 1 ∧ b 2 = b 2 and a 1 ∧ a 2 = a 1 obtains by renaming the arguments. This proves inequality [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF]. [START_REF] Gilbarg | Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften[END_REF] follows from [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF] and the identity

F ε (-a, -b) = F ε (a, b).
The case ε = 0 obtains by passing to the limit. When a = b, we have F (a, b) = 0, which yields the second last statement of the lemma. For K we obviously have

(b ∧ 1 -a ∧ 1) 2 (|b ∧ 1| ∨ |a ∧ 1|) p-2 ≤ (b -a) 2 (|b| ∨ |a|) p-2 and (b ∨ (-1) - a ∨ (-1)) 2 (|b ∨ (-1)| ∨ |a ∨ (-1)|) p-2 ≤ (b -a) 2 (|b| ∨ |a|) p-2 .
In passing we note that if the right-hand side of ( 17) is finite for u, then it is also finite (in fact-smaller) for u ∧ 1 and u ∨ (-1). The latter functions have smaller values and increments than u, a property defining normal contractions for Dirichlet forms ( [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF]).

Characterization of H 2 h

The fractional Laplacian is a nonlocal operator and the corresponding stochastic process X has jumps. In consequence the definitions of α-harmonicity (2) and ( 3) involve the values of the function on the whole of D c ( [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]). This is somewhat unusual compared with the classical theory of the Laplacian and the Brownian motion, and attempts were made by various authors to ascribe genuine boundary conditions to such processes and functions ( [START_REF] Bass | A Fatou theorem for α-harmonic functions in Lipschitz domains[END_REF][START_REF] Bogdan | Censored stable processes[END_REF][START_REF] Guan | Reflected symmetric α-stable processes and regional fractional Laplacian[END_REF][START_REF] Michalik | Relative Fatou theorem for α-harmonic functions in Lipschitz domains[END_REF]). One possibility is to study the boundary behavior of harmonic functions after an appropriate normalization. In this section we will focus on α-harmonic functions vanishing on D c , so that D c may be ignored, and we will use Doob's h-conditioning to normalize ( [START_REF] Doob | Classical Potential Theory and Its Probabilistic Counterpart[END_REF]). Let h be harmonic and positive on D, and let h vanish on D c . In particular h may be a Martin integral,

h(x) = M (x, z) µ(dz) , x ∈ D ,
where µ ≥ 0 is a finite nonzero Borel measure on the set of the so-called accessible points of ∂D, and M (•, z) denotes the Martin kernel with the pole at z ∈ ∂D, see [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]. We like to note that if D is Lipschitz, then all the points of ∂D are accessible ( [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]), while in the general case ∂ M D ⊂ ∂D ∪ {∞}. Doob's h-transform (6) yields a nontrivial modification of the potential theory of ∆ α/2 . In particular, the ratio u/h is harmonic for ∆ α/2 h if u is α-harmonic and vanishes on D c (see below). This observation offers a convenient framework for studying growth and boundary behavior of such ratios.

We will consider the transition semigroup (23)

P h t f (x) = 1 h(x)
p D (t, x, y)f (y)h(y)dy .

Here p D (t, x, y) = E x {t < τ D : p(t -τ D , X τ D , y)} is the time-homogeneous transition density of X killed on leaving D ( [START_REF] Bogdan | Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains[END_REF]). The semigroup property of P h t follows directly from the Chapman-Kolmogorov equations for p D ,

R d p D (s, x, y)p D (t, y, z)dy = p D (s + t, x, z) .
By α-harmonicity and the optional stopping theorem,

E x h(X τ U ∧t ) = h(x), if x ∈ U ⊂⊂ D.
Letting U ↑ D, by Fatou's lemma we obtain p D (t, x, y)h(y)dy = E x {t < τ D : h(X t )} ≤ h(x), i.e. P h t is subprobabilistic. The conditional process is defined as the Markov process with the transition semigroup P h , and it will be denoted by the same symbol X. We let E h x be the corresponding expectation for X starting at x ∈ D,

E h x f (X t ) = 1 h(x) E x [t < τ D ; f (X t )h(X t )] ,
see also [START_REF] Bogdan | Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains[END_REF]. A Borel function r : D → R is h-harmonic (on D) if and only if for every open U ⊂⊂ D we have

(24) r(x) = E h x r(X τ U ) = 1 h(x) E x [X τ U ∈ D; r(X τ U )h(X τ U )] , x ∈ U.
Here we assume that the expectation is absolutely convergent, in particularfinite. It is evident that r is h-harmonic if and only if r = u/h on D, where u is singular α-harmonic on D ( [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]), i.e. u is α-harmonic on D and u = 0 on D c . We are interested in L p integrability of u/h, since it amounts to weighted L p integrability of u. The following definition is adapted from [START_REF] Michalik | Hardy spaces for α-harmonic functions in regular domains[END_REF].

Definition 2. For 0 < p < ∞ we define H p h = H p h (D, α) as the class of all the functions u : R d → R, singular α-harmonic on D, and such that

u p H p h := sup U ⊂⊂D E h x 0 u(X τ U ) h(X τ U ) p = 1 h(x 0 ) sup U ⊂⊂D E x 0 |u(X τ U )| p h(X τ U ) p-1 < ∞ , where E x 0 |u(X τ U )| p /h(X τ U ) p-1 means E x 0 X τ U ∈ D; |u(X τ U )| p /h(X τ U ) p-1 .
By Harnack inequality, H p h does not depend on the choice of x 0 ∈ D. Remark 1. Note that the elements of this H p h are α-harmonic, rather than h-harmonic. In view of Definition 2, the genuine conditional Hardy space of

∆ α/2 is 1 h H p h = {u/h : u ∈ H p h }, with the norm u/h = u H p h .
H p h is more of a weighted Hardy space of ∆ α/2 , but it is convenient to call it the conditional Hardy space, too. Below we will focus on calculating u H p h , which yields a description of both spaces. Lemma 6. If u is singular α-harmonic on D and U ⊂⊂ D, then

(25) E x 0 u 2 (X τ U ) h(X τ U ) = u(x 0 ) 2 h(x 0 ) + U G U (x 0 , y) R d A u(z) h(z) - u(y) h(y) 2 h(z)dzdy |z -y| d+α . Proof. Let y ∈ D. For arbitrary z ∈ R d we have u 2 (z) h(z) - u 2 (y) h(y) -2 u(y) h(y) (u(z) -u(y)) + u 2 (y) h 2 (y) (h(z) -h(y)) = u(z) h(z) - u(y) h(y) 2 h(z) . (26) 
By [START_REF] Naum | Foundations of modern potential theory[END_REF] and α-harmonicity,

∆ α/2 u 2 h (y) = ∆ α/2 u 2 h (y) -2 u(y) h(y) ∆ α/2 u(y) + u 2 (y) h 2 (y) ∆ α/2 h(y) = R d A u(z) h(z) - u(y) h(y) 2 |z -y| -d-α h(z) dz . (27)
Noteworthy, the integrand is nonnegative. Following [START_REF] Bogdan | Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains[END_REF], for u 2 /h we get

E x 0 u 2 (X τ U ) h(X τ U ) = u(x 0 ) 2 h(x 0 ) + U G U (x 0 , y)∆ α/2 u 2 h (y) .
By using [START_REF] Luks | Hardy spaces for the Laplacian with lower order perturbations[END_REF] we obtain [START_REF] Koosis | Introduction to H p Spaces, volume 115 of Cambridge Tracts in Mathematics[END_REF].

We can interpret [START_REF] Koosis | Introduction to H p Spaces, volume 115 of Cambridge Tracts in Mathematics[END_REF] in terms of h-conditioning and r = u/h as follows,

(28) E h x 0 r(X τ U ) 2 = r(x 0 ) 2 + U G U (x 0 , y) h(x 0 )h(y) R d A [r(z) -r(y)] 2 |z -y| d+α h(z) h(y) dz h 2 (y)dy .
This is an analogue of ( 7), and also indicates the general situation. For p > 1 we will consider the expressions of the form [START_REF] Bogdan | Estimates of the Green function for the fractional Laplacian perturbed by gradient[END_REF]. If 1 < p < 2, then we will need an approximation based on

F a s , b t , a, b ∈ C, s, t > 0 , see ( 
F ε a s , b t , a, b ∈ C, s, t > 0, ε ∈ R,
where F ε is defined in [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]. By Lemma 3 we have that

F (a/s, b/t) ≥ 0, (29) 
F ( a s , b t ) ≍ b t - a s 2 |b| t ∨ |a| s p-2 , a, b ∈ R, s, t > 0 ,
and uniformly in ε ∈ R we have

(30) F ε ( a s , b t ) ≤ c b t - a s 2 |b| t ∨ |a| s p-2 , a, b ∈ R , s, t > 0 ,
and the comparisons in [START_REF] Michalik | Relative Fatou theorem for α-harmonic functions in Lipschitz domains[END_REF] hold with the constants c p and C p of (15).

Lemma 7. For p > 1, a, b ∈ C and s, t > 0, we have

(31) F a s , b t = |b| p t p - |a| p ts p-1 - p|a| p-2 a(b -a) ts p-1 + (p -1)|a| p (t -s) ts p .
Proof. The equality is straightforward to verify, and is left to the reader.

The homogeneity seen on the left-hand side of ( 31) is an interesting feature for the right-hand side of [START_REF] Pavlović | A short proof of an inequality of Littlewood and Paley[END_REF]. We also like to note that tF (a/s, b/t) is the remainder in the first order Taylor's expansion of (a, s) → |a| p /s p-1 at (b, t) and, of course,

F ε (a/s, b/t) → F (a/s, b/t) as ε → 0. Lemma 8. If u is singular α-harmonic on D, U ⊂⊂ D and p > 1, then E x 0 |u(X τ U )| p h(X τ U ) p-1 = |u(x 0 )| p h(x 0 ) p-1 + U G U (x 0 , y) R d F u(y) h(y) , u(z) h(z) A h(z)dzdy |z -y| d+α . Proof. If p ≥ 2, then |u| p /h p-1 ∈ C 2 (D)
. By ( 10), ( 32)

E x 0 |u(X τ U )| p h(X τ U ) p-1 = |u(x 0 )| p h(x 0 ) p-1 + U G U (x 0 , y)∆ α/2 |u| p h p-1 (y) dy.
By α-harmonicity of h and u, and by Lemma 7,

∆ α/2 |u| p h p-1 (y) = ∆ α/2 |u| p h p-1 (y) - p|u(y)| p-2 u(y) h(y) p-1 ∆ α/2 u(y) + (p -1)|u(y)| p h(y) p ∆ α/2 h(y) = lim η→0 + {z∈R d : |z-y|>η} A |u(z)| p h(z) p-1 - |u(y)| p h(y) p-1 - p|u(y)| p-2 u(y) h(y) p-1 (u(z) -u(y)) + (p -1)|u(y)| p h(y) p (h(z) -h(y)) |z -y| -d-α dz = R d h(z) F (u(y)/h(y), u(z)/h(z)) A |z -y| -d-α dz , (33) 
see [START_REF] Pavlović | A short proof of an inequality of Littlewood and Paley[END_REF]. This gives the result for p ≥ 2. If 1 < p < 2 then we argue as follows. Let ε → 0 and consider u + iεh in place of u in [START_REF] Pavlović | Green's formula and the Hardy-Stein identities[END_REF]. By α-harmonicity,

∆ α/2 (|u + iεh| p h 1-p ) (y) equals lim η→0 + {z∈R d : |z-y|>η} A |u(z) + iεh(z)| p h(z) p-1 - |u(y) + iεh(z)| p h(y) p-1 - p|u(y) + iεh(y)| p-2 u(y) h(y) p-1 (u(z) -u(y)) + (p -1)|u(y) + iεh(y)| p h(y) p (h(z) -h(y)) |z -y| -d-α dz = R d h(z) F ε (u(y)/h(y), u(z)/h(z)) A |z -y| -d-α dz . ( 34 
)
We then use Lemma 7, Fatou's lemma, and dominated convergence.

Theorem 2. Let 1 < p < ∞. For u singular α-harmonic on D, u p H p h is comparable with |u(x 0 )| p h(x 0 ) p + D G D (x 0 , y) h(x 0 )h(y) R d |u(z)| h(z) ∨ |u(y)| h(y) p-2 u(z) h(z) - u(y) h(y) 2 h(z)dz h 2 (y)dy h(y)|z -y| d+α .
Proof. The result follows from Lemma 8 and (29). In fact, [START_REF] Elias | On the theory of harmonic functions of several variables. II. Behavior near the boundary[END_REF] 

u p H p h = |u(x 0 )| p h(x 0 ) p + U G U (x 0 , y) h(x 0 )h(y) R d F u(y) h(y) , u(z) h(z) A h(z)dz h 2 (y)dy h(y)|z -y| d+α .
We remark in passing that for h ≡ 1 we obtain H p h = H p . To rigorously state this observation, one should discuss conditioning by functions h with nontrivial values on D c ( [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]). We will not embark on this endeavor, instead in the next section we will fully discuss the conditional Hardy spaces of a local operator, in which case the values of h on D c are irrelevant.

Classical Hardy spaces

We will describe the Hardy spaces and the conditional Hardy spaces of harmonic functions of the Laplacian ∆ = d j=1 ∂ 2 /∂x 2 j . The former case has been widely studied in the literature, mainly for the ball and the halfspace, but also for smooth and Lipschitz domains, see [START_REF] Axler | Harmonic function theory[END_REF][START_REF] Koosis | Introduction to H p Spaces, volume 115 of Cambridge Tracts in Mathematics[END_REF][START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF][START_REF] Elias | Boundary behavior of holomorphic functions of several complex variables[END_REF][START_REF] Jerison | Boundary value problems on Lipschitz domains[END_REF]. The characterization of the Hardy spaces in terms of quadratic functions appeared in [START_REF] Elias | On the theory of harmonic functions of several variables. II. Behavior near the boundary[END_REF] and [START_REF] Widman | On the boundary behavior of solutions to a class of elliptic partial differential equations[END_REF] for harmonic functions on the half-space in R d . The case of D being the unit ball was studied in detail in [START_REF] Stević | On harmonic Hardy spaces and area integrals[END_REF][START_REF] Pavlović | Green's formula and the Hardy-Stein identities[END_REF]. For more general domains in R d see [START_REF] Stoll | The Littlewood-Paley inequalities for Hardy-Orlicz spaces of harmonic functions on domains in R n[END_REF][START_REF] Elias | Boundary behavior of holomorphic functions of several complex variables[END_REF][START_REF] Jerison | Boundary value problems on Lipschitz domains[END_REF].

Throughout this section we will additionally assume that D is connected, i.e. it is a domain. For 0 < p < ∞, the classical Hardy space H p (D) may be defined as the family of all those functions u on D which are harmonic on D (i.e. u ∈ C 2 (D) and ∆u(x) = 0 for x ∈ D) and satisfy

u H p := sup U ⊂⊂D E x 0 |u(W τ U )| p 1/p < ∞.
Here W is the Brownian motion on R d and τ U = inf{t ≥ 0 : W t / ∈ D}. For a positive harmonic function h on D and 0 < p < ∞ we will consider the space H p h (D) of all those functions u harmonic on D which satisfy

u p H p h := sup U ⊂⊂D E h x 0 u(W τ U ) h(W τ U ) p = 1 h(x 0 ) sup U ⊂⊂D E x 0 |u(W τ U )| p h(W τ U ) p-1 < ∞,
where E h x is the expectation for the conditional Brownian motion (compare Section 3 or see [START_REF] Doob | Classical Potential Theory and Its Probabilistic Counterpart[END_REF]). Let G D be the classical Green function of D for ∆. If 1 < p < ∞ and u is harmonic on D, then the following Hardy-Stein identity holds (36)

u p H p = |u(x 0 )| p + p(p -1) D G D (x 0 , y)|u(y)| p-2 |∇u(y)| 2 dy.
The identity [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF] obtains by taking h ≡ 1 in the next theorem. ( 36) generalizes [40, Lemma 1] and [START_REF] Pavlović | Green's formula and the Hardy-Stein identities[END_REF]Theorem 4.3], where the formula was given for the ball in R d , see also [START_REF] Stein | On a theorem of M. Riesz[END_REF]. We note that (36) is implicit in [41, Lemma 6], but apparently the identity did not receive enough attention for general domains.

We also note that in many cases the exact asymptotics of G D is known, and we obtain explicit estimates. For instance, if D is a bounded

C 1,1 domain in R d and d ≥ 3, then G D (x 0 , y) ≍ δ D (y)|y -x 0 | 2-d
, where δ D (y) := dist(y, D c ), see [START_REF] Krzysztof | Sharp estimates for the Green function in Lipschitz domains[END_REF], also for the case of Lipschitz domains.

Theorem 3. If 1 < p < ∞ and u is harmonic on D, then (37) u p H 
p h = |u(x 0 )| p h(x 0 ) p + p(p -1) D G D (x 0 , y) h(x 0 )h(y) u(y) h(y) p-2 ∇ u h (y) 2 h 2 (y)dy.
The remainder of this section is devoted to the proof of Theorem 3. The reader interested mostly in [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF] is encouraged to carry out similar but simpler calculations for h ≡ 1 and p > 2. We note that (37) is quite more general than [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF] because usually u/h is not harmonic. The same remark concerns [START_REF] Stević | On harmonic Hardy and Bergman spaces[END_REF][START_REF] Stević | On harmonic Hardy spaces and area integrals[END_REF] for general h as opposed to [START_REF] Stević | On harmonic Hardy and Bergman spaces[END_REF][START_REF] Stević | On harmonic Hardy spaces and area integrals[END_REF] for h = 1, which is a classical result ( [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF]VII.3]). We start with the following well-known Green-type equality. Consider open U ⊂⊂ D and a real-valued function φ : R d → R which is C 2 in a neighborhood of U . Then ∆φ is bounded on U , and for every x ∈ D, [START_REF] Stein | On a theorem of M. Riesz[END_REF] φ

(x) = E x φ(W τ U ) - U G U (x, y)∆φ(y) dy ,
see, e.g., [18, p. 133] for the proof.

Lemma 9. Let ε = 0 and let u be harmonic on D. We have

(39) ∆ u 2 h 2 + ε 2 p/2 h = p u 2 h 2 + ε 2 (p-4)/2 (p -1) u 2 h 2 + ε 2 ∇ u h 2 . If u = 0 or p ≥ 2, then (40) 
∆ |u| p h p-1 = p(p -1) u h p-2 ∇ u h 2 h .
Proof. Denote u i = ∂u/∂x i , h i = ∂h/∂x i , u ii = ∂ 2 u/∂x 2 i and h ii = ∂ 2 h/∂x 2 i , i = 1, . . . , d. The lemma results from straightforward calculations based on the following observations:

∇|u| p = ∇ u 2 ) p/2 = p|u| p-2 u∇u , if p ≥ 2 or u = 0 , ∂ 2 ∂x 2 i |u| p = p(p -1)|u| p-2 u 2 i + p|u| p-2 uu ii , if p ≥ 2 or u = 0 , ∇h 1-p = (1 -p)h -p ∇h , ∆(f g) = f ∆g + 2∇f • ∇g + g∆f .
This yields [START_REF] Stević | On harmonic Hardy spaces and area integrals[END_REF] if p ≥ 2 or u(x) = 0 at the point x where the derivatives are calculated (and so |u| p h 1-p is of class C 2 there). To prove [START_REF] Stević | On harmonic Hardy and Bergman spaces[END_REF] we let ε = 0, denote f (x) = u 2 /h 2 + ε 2 , and use a few more identities:

∇ u h = ∇u h - u∇h h 2 , ∇ u h 2 = 2 u h ∇ u h , ∆ u h 2 = 2|∇u| 2 h 2 - 8u∇u • ∇h h 3 + 6u 2 |∇h| 2 h 4 , ∇f p/2 = p 2 f p/2-1 ∇ u h 2 , ∆f p/2 = p(p -2) 4 f p/2-2 ∇ u h 2 2 + p 2 f p/2-1 ∆ u h 2 , ∆ f p/2 h = p(p -2) 4 f p/2-2 ∇ u h 2 2 h + pf p/2-1 ∇ u h 2 h .
Noteworthy, we obtained nonnegative expressions in [START_REF] Stević | On harmonic Hardy and Bergman spaces[END_REF] and [START_REF] Stević | On harmonic Hardy spaces and area integrals[END_REF]. Also, if

ε → 0, then ∆[(u 2 /h 2 + ε 2 ) p/2 h] → ∆(|u| p h 1-p ) almost everywhere on D. Lemma 10. If u is harmonic on D, U ⊂⊂ D and p > 1, then E x 0 |u(X τ U )| p h(X τ U ) p-1 = |u(x 0 )| p h(x 0 ) p-1 + p(p -1) U G U (x 0 , y) u(y) h(y) p-2 ∇ u h (y) 2 h(y)dy. 
Proof. For p ≥ 2 we have |u| p h 1-p ∈ C 2 (D) and the result follows from [START_REF] Stein | On a theorem of M. Riesz[END_REF] and Lemma 9. If 1 < p < 2, then we consider u + iεh in place of u and we let ε → 0. By [START_REF] Stević | On harmonic Hardy and Bergman spaces[END_REF], [START_REF] Stein | On a theorem of M. Riesz[END_REF], Fatou's lemma and dominated convergence we obtain the result.

Proof of Theorem 3. The result follows from Lemma 10 and monotone convergence, after dividing by h(x 0 ) and rearranging the integrand.

We observe very close similarities between the Hardy-Stein identities and conditional Hardy-Stein identities discussed in this paper. Specifically, functions u and u/h undergo the same transformation under the integral sign. In each case we see the Green function (and jump kernels in the non-local case) appropriate for the given operator, and in the conditional case, h 2 (y)dy appears as a natural reference measure. We remark in passing that the framework of conditional semigroups (23) should be convenient for such calculations in more general settings.

Further results

We will now discuss the structure of H p . We start with p = 1. The following is a counterpart of the theorem of Krickeberg for martingales ( [START_REF] Dellacherie | Probabilities and potential. B[END_REF]), and an extension of [START_REF] Michalik | Hardy spaces for α-harmonic functions in regular domains[END_REF]Theorem 1], where the result was proved for singular αharmonic functions on bounded Lipschitz domains. Lemma 11. Let u ∈ H 1 . There exist nonnegative functions f and g which are α-harmonic on D, satisfy u = f -g and uniquely minimize f (x 0 ) + g(x 0 ). In fact, f (x 0 ) + g(x 0 ) = u 1 . If u is singular α-harmonic on D, then so are f and g.

If 1 ≤ p < ∞ and u ∈ H p , then u p p = f p p + g p p . Proof. Let U n be open, U n ⊂⊂ U n+1 for n = 1, 2 . . . and n U n = D. Let τ n = τ Un . We have u 1 = lim n→∞ E x 0 |u(X τn )| < ∞ .
Let u + = max(u, 0) and u -= max(-u, 0). For n = 1, 2, . . ., we define

f n (x) = E x u + (X τn ) , g n (x) = E x u -(X τn ) , x ∈ R d .
Obviously, functions f n and g n are nonnegative on R d , and finite and αharmonic on U n . We have u

= f n -g n . Since τ n ≤ τ n+1 , for every x ∈ R d , f n (x) = E x E Xτ n u(X τ n+1 ) ; u(X τn ) > 0 ≤ E x E Xτ n u + (X τ n+1 ) = f n+1 (x) ,
and g n (x) ≤ g n+1 . We let f (x) = lim f n (x) and g(x) = lim g n (x). By the monotone convergence theorem, the mean value property (2) holds for f and g. We obtain

f (x 0 ) + g(x 0 ) = lim n→∞ E x 0 |u(X τn )| = u 1 < ∞ .
In view of Harnack inequality we conclude that f and g are finite, hence αharmonic on D. Also, u = f -g. If u vanishes on D, then so do f and g.

For the uniqueness, we observe that if f , g ≥ 0 are α-harmonic on D, and u = f -g, then -g ≤ u ≤ f , hence f ≤ f and g ≤ g by the construction of f and g. Therefore f (x 0 ) + g(x 0 ) ≤ f (x 0 ) + g(x 0 ), and equality holds if and only if f (x 0 ) = f (x 0 ) and g(x 0 ) = g(x 0 ), henceforth f = f and g = g. Let p > 1 and suppose that u ∈ H p ⊂ H 1 . By Jensen's inequality,

f n (x) p ≤ E x u + (X τn ) p , g n (x) p ≤ E x u -(X τn ) p , hence f n (x) p + g n (x) p ≤ E x |u(X τn )| p . For m < n we have E x 0 (f n (X τm ) p + g n (X τm ) p ) ≤ E x 0 E Xτ m |u(X τn )| p = E x 0 |u(X τn )| p .
Letting n → ∞, we get

E x 0 (f (X τm ) p + g(X τm ) p ) ≤ u p p . Hence f p p + g p p ≤ u p p .
On the other hand, f, g ≥ 0, hence u p p = lim n→∞ E x 0 |f (X τn ) -g(X τn )| p ≤ lim n→∞ E x 0 (f (X τn ) p + g(X τn ) p ) = f p p + g p p . The proof is complete.

We note that u p p = f p p + g p p has a trivial analogue for L p spaces. In view of Lemma 11 and the representation of positive α-harmonic functions [START_REF] Bogdan | Estimates and structure of α-harmonic functions[END_REF]Theorem 3], each u ∈ H 1 has a unique integral representation Lemma 12. Let u ∈ H 1 h . There are nonnegative functions f, g ∈ H 1 h which satisfy u = f -g and uniquely minimize f (x 0 )+g(x 0 ). In fact, f (x 0 )+g(x 0 ) = u H 1 h h(x 0 ). If 1 ≤ p < ∞ and u ∈ H p h , then u p

H p h = f p H p h + g p H p h .
Proof. If u ∈ H 1 h , then u is singular α-harmonic on D, u ∈ H 1 and u H 1 h = h(x 0 ) -1 u 1 (conditioning is trivial for p = 1). By Lemma 11, u has the Krickeberg decomposition u = f -g, and f, g are nonnegative and singular αharmonic on D. In particular f H 1 h = f (x 0 )/h(x 0 ) and g H 1 h = g(x 0 )/h(x 0 ) are finite. The reader may easily verify the rest of the statement of the lemma, following the previous proof and using the conditional expectation E h . Remark 2. Analogues of Lemma 11 and Lemma 12 are true for the classical Hardy spaces H p (D) and H p h (D) for connected D. As an application of (36) we give a short proof of the following Littlewood-Paley type inequality (see [START_REF] Pavlović | A short proof of an inequality of Littlewood and Paley[END_REF], were the result was given for the ball in R 2 ). Recall the notation δ D (y) = dist(y, D c ). Proof. We may assume that u H p < ∞. ([20, Exercise 2.13], see also [START_REF] Bañuelos | Lower bound gradient estimates for solutions of Schrödinger equations and heat kernels[END_REF]). Here d is the dimension. By [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF], 

f

Theorem 1 .

 1 If 1 < p < ∞, then u p p is comparable on H p with (5) |u(x 0 )| p + D G D (x 0 , y) R d [u(z) -u(y)] 2 |u(z)| ∨ |u(y)| p-2

( 11 )

 11 F (a, b) = |b| p -|a| p -pa|a| p-2 (b -a) , a second order Taylor remainder. We have F (a, b) = |b| p if a = 0 and F (a, b) = (p -1)|a| p if b = 0. By convexity, F (a, b) ≥ 0 for a, b ∈ R.

Example 1 .

 1 For (even) p = 2, 4, . . . and a, b ∈ R, we have

  follows that the difference in (21) is positive if b > a and negative if b < a. This proves our claim.Furthermore the function a → F ε (a, b) decreases on (-∞, b] and increases on [b, ∞), as follows from calculating the derivative,[START_REF] Jakubowski | The estimates for the Green function in Lipschitz domains for the symmetric stable processes[END_REF] 

M

  D (x, z)µ(dz) + D c f (y)P D (x, y)dy , x ∈ D , where µ is a (finite) signed measure on the Martin boundary of D, M D is the Martin kernel of D, P D is the Poisson kernel of D, and the function f satisfies D c |f (y)|P D (x 0 , y)dy < ∞, see [12].

Proposition 13 .

 13 Consider a domain D ⊂ R d , and let p ≥ 2. There is a constant c > 0 such that for every function u harmonic on D,u p H p -|u(x 0 )| p ≥ p(p -1)d 2-p 2 1-p D G D (x 0 , y)δ D (y) p-2 |∇u(y)| p dy .

  p H p -|f (x 0 )| p = p(p -1) D G D (x 0 , y)|f (y)| p-2 |∇f (y)| 2 dy ≥ p(p -1)d 2-p D G D (x 0 , y)δ D (y) p-2 |∇f (y)| p dy ,and a similar estimate holds for g.

  2 |z -y| d+α dz dy for the norm of H 2 , and we extend it in Lemma 4 and Theorem 1 to H p for p > 1. The conditional Hardy spaces H p h are characterized in Lemma 8, Theorem 2 and formula

  because the distribution of X τ U has density function bounded below by a multiple of (1 + |y|) -d-α in the complement of the neighborhood of U ([START_REF] Krzysztof | The boundary Harnack principle for the fractional Laplacian[END_REF]). Therefore in what follows we may assume that

  In view of Lemma 11 and Remark 2, u = f -g, where f, g are positive and harmonic on D andu p H p = f p H p + g p H p . Clearly, |u(x 0 )| p ≤ f (x 0 ) p + g(x 0 ) p , hence u p H p -|u(x 0 )| p ≥ f p H p -|f (x 0 )| p + g p H p -|g(x 0 )| p . Furthermore, by Jensen's inequality, |∇u| p ≤ 2 p-1 (|∇f | p + |∇g| p ) .Recall the following gradient estimate for the nonnegative harmonic function f ,

f (x) ≥ |∇f (x)|δ D (x)/d , x ∈ D ,
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