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A FLEXIBLE GENERALIZED CONJUGATE RESIDUAL METHOD
WITH INNER ORTHOGONALIZATION AND DEFLATED

RESTARTING∗

L. M. CARVALHO†, S. GRATTON‡ , R. LAGO§ , AND X. VASSEUR¶

Abstract. This work is concerned with the development and study of a minimum residual norm
subspace method based on the generalized conjugate residual method with inner orthogonalization
(GCRO) method that allows flexible preconditioning and deflated restarting for the solution of non-
symmetric or non-Hermitian linear systems. First we recall the main features of flexible generalized
minimum residual with deflated restarting (FGMRES-DR), a recently proposed algorithm of the
same family but based on the GMRES method. Next we introduce the new inner-outer subspace
method named FGCRO-DR. A theoretical comparison of both algorithms is then made in the case of
flexible preconditioning. It is proved that FGCRO-DR and FGMRES-DR are algebraically equiva-
lent if a collinearity condition is satisfied. While being nearly as expensive as FGMRES-DR in terms
of computational operations per cycle, FGCRO-DR offers the additional advantage to be suitable for
the solution of sequences of slowly changing linear systems (where both the matrix and right-hand
side can change) through subspace recycling. Numerical experiments on the solution of multidimen-
sional elliptic partial differential equations show the efficiency of FGCRO-DR when solving sequences
of linear systems.

Key words. flexible or inner-outer Krylov subspace methods, variable preconditioning, defla-
tion, iterative solver
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1. Introduction. In recent years, several authors studied inner-outer Krylov
subspace methods that allow variable preconditioning for the iterative solution of
large sparse linear systems of equations. One of the first papers describing a sub-
space method with variable preconditioning is due to Axelsson and Vassilevski, who
proposed the generalized conjugate gradient method [1]. See also [2, section 12.3] for
additional references. Since then, numerous methods have been proposed to address
the symmetric, nonsymmetric, or non-Hermitian cases; these include flexible conjugate
gradient [20], flexible GMRES (FGMRES) [24], flexible QMR [31], and GMRESR [34],
among others. This class of methods is required when preconditioning with a different
(possibly nonlinear) operator at each iteration of a subspace method is considered.
This notably occurs when adaptive preconditioners using information obtained from
previous iterations [3, 14] are used or when inexact solutions of the preconditioning
system using, e.g., adaptive cycling strategy in multigrid [19] or approximate interior
solvers in domain decomposition methods [32, section 4.3] are considered. The latter
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situation is frequent when solving very large systems of linear equations resulting from
the discretization of partial differential equations in three dimensions. Thus flexible
Krylov subspace methods have gained a considerable interest in the recent years and
are the subject of both theoretical and numerical studies [27]. We refer the reader to
[29, section 10] for additional comments on flexible methods.

When nonvariable preconditioning is considered, the full GMRES method [23] is
often chosen for the solution of nonsymmetric or non-Hermitian linear systems be-
cause of its robustness and its minimum residual norm property [26]. Nevertheless to
control both the memory requirements and the computational cost of the orthogonal-
ization scheme, restarted GMRES is preferred; it corresponds to a scheme where the
maximal dimension of the approximation subspace is fixed. It means in practice that
the orthonormal basis built is thrown away at the end of the cycle. Since some infor-
mation is discarded at the restart, the convergence may stagnate and is expected to be
slower compared to full GMRES. Nevertheless to retain the convergence rate a num-
ber of techniques have been proposed; they fall in the class of augmented and deflated
methods; see, e.g., [4, 10, 11, 16, 25]. Deflated methods compute spectral informa-
tion at a restart and use this information to improve the convergence of the subspace
method. One of the most recent procedures based on a deflation approach is GMRES
with deflated restarting (GMRES-DR) [18]. This method reduces to restarted GM-
RES when no deflation is applied, but may provide a much faster convergence than
restarted GMRES for well-chosen deflation spaces as described in [18].

Quite recently a new minimum residual norm subspace method based on GMRES
allowing deflated restarting and variable preconditioning has been proposed in [15]. It
mainly attempted to combine the numerical features of GMRES-DR and the flexibil-
ity property of FGMRES. Numerical experiments in [15] have shown the efficiency of
FGMRES with deflated restarting (FGMRES-DR) on both academic and industrial
examples. In this paper we study a new minimum residual norm subspace method
based on the generalized conjugate method with inner orthogonalization (GCRO) [9]
allowing deflated restarting and variable preconditioning. It is named flexible gener-
alized conjugate residual method with inner orthogonalization and deflated restarting
(FGCRO-DR) and can be viewed as an extension of GCRO-DR [22] to the case of
variable preconditioning. A major advantage of FGCRO-DR over FGMRES-DR is
its ability to solve sequences of linear systems (where both the left- and right-hand
sides can change) through recycling [22]. In [22] Parks et al. mentioned that GCRO-
DR and GMRES-DR were algebraically equivalent, i.e., both methods produce the
same iterates in exact arithmetic when solving the same given linear system starting
from the same initial guess. When variable preconditioning is considered, it seems
therefore natural to ask whether FGCRO-DR and FGMRES-DR could also be alge-
braically equivalent. We address this question in this paper, and the main theoretical
developments that are proposed will help us to answer this question. The main
contributions of the paper are then twofold. First we prove that FGCRO-DR and
FGMRES-DR can be considered algebraically equivalent if a collinearity condition
between two certain vectors is satisfied at each cycle. When considering nonvari-
able preconditioning, these theoretical developments will also allow us to show the
algebraic equivalence between GCRO-DR and GMRES-DR that was stated without
proof in [22]. Second we carefully analyze the computational cost of FGCRO-DR and
show that the proposed method is nearly as expensive as FGMRES-DR in terms of
operations per cycle. Furthermore it is explained how to include subspace recycling
into FGCRO-DR, and numerical experiments are reported showing the efficiency of
FGCRO-DR.
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This paper is organized as follows. In section 2 we introduce the general back-
ground of this study. We briefly recall the main properties of FGMRES-DR and then
introduce the FGCRO-DR method both from a mathematical and an algorithmic
point of view. Section 3 is mainly devoted to the analysis of both flexible methods.
Therein we show that both methods can be algebraically equivalent in the flexible
case if a certain collinearity condition is satisfied at each cycle. In section 4 we com-
pare FGCRO-DR and FGMRES-DR in terms of computational operations per cycle
and storage and discuss the solution of sequences of linear systems through subspace
recycling. Finally we draw some conclusions and perspectives in section 5.

2. Flexible Krylov methods with restarting.

2.1. General setting.
Notation. Throughout this paper we denote by ‖.‖ the Euclidean norm, by Ik ∈

Ck×k the identity matrix of dimension k, and by 0i×j ∈ Ci×j the zero rectangular
matrix with i rows and j columns. Given N ∈ Cn×m, ΠN⊥ = In − N N † will
represent the orthogonal projector onto range(N)⊥, where the superscript † refers
to the Moore–Penrose inverse. Finally, given Zm = [z1, . . . , zm] ∈ Cn×m, we will
usually decompose Zm into two submatrices defined as Zk = [z1, . . . , zk] ∈ C

n×k and
Zm−k = [zk+1, . . . , zm] ∈ Cn×(m−k).

Setting. We focus on minimum residual norm based subspace methods that allow
flexible preconditioning for the iterative solution of

(2.1) Ax = b, A ∈ C
n×n, x, b ∈ C

n,

given an initial vector x0 ∈ Cn. In this paper A is supposed to be nonsingular.
Flexible methods refer to a class of methods where the preconditioner is allowed to
vary at each iteration. We refer the reader to, e.g., [29] for a general introduction
on Krylov subspace methods and to [29, section 10] and [26, section 9.4] for a review
on flexible methods. The minimum residual norm GMRES method [23] has been
extended by Saad [24] to allow variable preconditioning. The resulting algorithm
known as FGMRES(m) relies on the Arnoldi relation

(2.2) AZm = Vm+1H̄m,

where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) has orthonormal columns and H̄m ∈ C(m+1)×m

is upper Hessenberg. We denote by Mj the preconditioning operator at iteration j
and remark that Mj may be a nonlinear preconditioning function. We will then
denote by Mj(v) the action of Mj on a vector v. In (2.2), the columns of Vm+1 form
an orthonormal basis of the subspace spanned by the vectors

{r0, Az1, . . . , Azm} with r0 = b−Ax0,

whereas Zm = [z1, . . . , zm] and Vm = [v1, . . . , vm] are related by

Zm = [M1(v1), . . . ,Mm(vm)] with v1 =
r0

‖r0‖ .

At the end of the cycle an approximate solution xm ∈ Cn is then found by minimizing
the residual norm ‖r0 −AZmy‖ over the space x0 + range(Zm). Thus we obtain that

xm = x0 + Zmy∗,

where y∗ is the solution of the following least-squares problem of size (m+ 1)×m:

y∗ = argminy∈Cm‖r0 −AZmy‖ = argminy∈Cm‖‖r0‖ e1 − H̄my‖,
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where e1 is the first canonical vector of C
m+1. Flexible subspace methods with restart-

ing are based on a procedure where the construction of the subspace is stopped after
a certain number of steps (denoted by m in this paper with m < n). The method
is then restarted mainly to control both the memory requirements and the cost of
the orthogonalization scheme. In FGMRES(m) the restarting consists in taking as an
initial guess the last iterate of the cycle (xm).

The main focus of this paper is to present minimum residual norm subspace
methods with deflated restarting that allow flexible preconditioning. Deflated restart-
ing aims at determining an approximation subspace of dimension m as a direct sum
of two subspaces of smaller dimension, where one of these subspaces will contain rele-
vant spectral information that will be kept for the next cycle. We refer the reader to,
e.g., [25] and [29, section 9] for a review of augmented and deflated methods. Flexible
methods with deflated restarting will notably satisfy the following flexible Arnoldi
relation:

(2.3) AZm = Vm+1H̄m with V H
m+1 Vm+1 = Im+1,

where H̄m ∈ C(m+1)×m is not necessarily of upper Hessenberg form. In this paper we
call this relation a flexible Arnoldi-like relation due to its similarity to relation (2.2).

Stagnation and breakdown. We refer the reader to [27, section 6] for general com-
ments and a detailed discussion on the possibility of both breakdown and stagnation
in flexible inner-outer Krylov subspace methods. Although important, these issues
are not addressed in this paper, and we assume that no breakdown occurs in the
inner-outer subspace methods that will be proposed.

2.2. Flexible GMRES with deflated restarting. A number of techniques
have been proposed to compute spectral information at a restart and use this infor-
mation to improve the convergence rate of the Krylov subspace methods; see, e.g.,
[16, 17, 18, 25]. These techniques have been exclusively developed in the case of a
fixed preconditioner. GMRES-DR is one of these methods. It focuses on removing
(or deflating) the eigenvalues of smallest magnitude. A full subspace of dimension
k, k < m (and not only the approximate solution with minimum residual norm) is
now retained at the restart, and the success of this approach has been demonstrated
in many academic examples [16]. Approximations of eigenvalues of smallest magni-
tude are obtained by computing harmonic Ritz pairs of A with respect to a certain
subspace [18]. We present here a definition of a harmonic Ritz pair equivalent to the
one introduced in [21, 30]; it will be of key importance when defining appropriate
deflation strategies.

Definition 2.1 (harmonic Ritz pair). Consider a subspace U of Cn. Given
B ∈ Cn×n, θ ∈ C, and y ∈ U , (θ, y) is a harmonic Ritz pair of B with respect to U if
and only if

By − θ y ⊥ B U
or, equivalently, for the canonical scalar product,

∀w ∈ range(B U) wH (By − θ y) = 0.

We call y a harmonic Ritz vector associated with the harmonic Ritz value θ.
As in the case of fixed preconditioning, deflated restarting may also improve

the convergence rate of flexible subspace methods. In [15] a deflated restarting pro-
cedure has been proposed for the FGMRES algorithm. The ith cycle of the re-
sulting algorithm, called FGMRES-DR, is now briefly described, and we denote by
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r
(i−1)
0 = b − Ax

(i−1)
0 , Vm+1, H̄m, and Zm the residual and matrices obtained at the

end of the (i − 1)th cycle.
Based on the Arnoldi-like relation (2.3), the deflation procedure proposed in [15,

Proposition 1] relies on the use of k harmonic Ritz vectors Yk = VmPk of AZmV H
m

with respect to range(Vm), where Yk ∈ Cn×k and Pk ∈ Cm×k. In Lemma 2.2 shown
in [15, Lemma 3.1], we recall a useful relation satisfied by the harmonic Ritz vectors.

Lemma 2.2. In FGMRES-DR, the harmonic Ritz vectors are given by Yk =
VmPk with corresponding harmonic Ritz values λk. Pk ∈ Cm×k satisfies the following
relation:

AZmPk = Vm+1

[[
Pk

01×k

]
, c− H̄my∗

] [
diag(λ1, . . . , λk)

α1×k

]
,(2.4)

AZmPk = [VmPk, r
(i−1)
0 ]

[
diag(λ1, . . . , λk)

α1×k

]
,(2.5)

where r
(i−1)
0 = Vm+1(c− H̄my∗) and α1×k = [α1, . . . , αk] ∈ C1×k.

Next, the QR factorization of the (m + 1) × (k + 1) matrix appearing on the
right-hand side of relation (2.4) is performed as[[

Pk

01×k

]
, c− H̄my∗

]
= QR,(2.6)

where Q ∈ C(m+1)×(k+1) has orthonormal columns and R ∈ C(k+1)×(k+1) is upper
triangular, respectively. We write the matrix Q obtained in relation (2.6) as

(2.7) Q =

[[
Qm×k

01×k

]
,

ρ̄

‖ρ̄‖
]
,

where Qm×k ∈ Cm×k and ρ̄ ∈ Cm+1 is defined as

(2.8) ρ̄ =

(
Im+1 −

[
Qm×k

01×k

] [
Qm×k

01×k

]H)
(c− H̄my∗).

Proposition 1. In FGMRES-DR, the flexible Arnoldi relation

A Zk = Vk+1H̄k,(2.9)

V H
k+1Vk+1 = Ik+1,(2.10)

range
([

Yk, r
(i−1)
0

])
= range (Vk+1)(2.11)

holds at the ith cycle with matrices Zk, Vk ∈ Cn×k and H̄k ∈ C(k+1)×k defined as

Zk = ZmQm×k,(2.12)

Vk+1 = Vm+1Q,(2.13)

H̄k = QHH̄mQm×k,(2.14)

where Vm+1, Zm, and H̄m refer to matrices obtained at the end of the (i−1)th cycle.
Proof. Relations (2.9), (2.10), (2.12), (2.13), and (2.14) have been shown in [15,

Proposition 2]. From relations (2.13) and (2.6), respectively, we deduce

Vk+1R = Vm+1

[[
Pk

01×k

]
, c− H̄my∗

]
,

Vk+1R =
[
VmPk, r

(i−1)
0

]
,(2.15)
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which finally shows that range([Yk, r
(i−1)
0 ]) = range(Vk+1) since R is supposed to be

nonsingular.
FGMRES-DR then carries out m− k Arnoldi steps with flexible preconditioning

and starting vector vk+1 while maintaining orthogonality to Vk, leading to

A [zk+1, . . . , zm] = [vk+1, . . . , vm+1] H̄m−k and V H
m+1 Vm+1 = Im+1.

We note that H̄m−k ∈ C(m−k+1)×(m−k) is upper Hessenberg. At the end of the ith
cycle this gives the flexible Arnoldi-like relation

A [Zk, Zm−k] = [Vm+1]

[[
H̄k

0m−k×k

] [
Bk×m−k

H̄m−k

]]
,

where Vm+1 ∈ Cn×(m+1), H̄m ∈ C(m+1)×m, and Bk×m−k ∈ Ck×(m−k) results from
the orthogonalization of [vk+2, . . . , vm+1] against Vk+1. We note that H̄m is no longer
upper Hessenberg due to the leading dense (k+1)×k submatrix H̄k. At the end of the

ith cycle, an approximate solution x
(i)
0 ∈ Cn is then found by minimizing the residual

norm ‖b − A(x
(i−1)
0 + Zmy)‖ over the space x

(i−1)
0 + range(Zm), the corresponding

residual being r
(i)
0 = b− Ax

(i)
0 , with r

(i)
0 ∈ range(Vm+1). We refer the reader to [15]

for the complete derivation of the method and numerical experiments showing the
efficiency of FGMRES-DR in both academic and industrial examples.

2.3. Flexible GCRO with deflated restarting. GCRO-DR [22]—a combi-
nation of GMRES-DR and GCRO—is a Krylov subspace method that allows deflated
restarting and subspace recycling simultaneously. This latter feature is particularly
interesting when solving sequences of linear systems with possibly different left- or
right-hand sides. As pointed out in [22], GCRO-DR is attractive because any sub-
space may be recycled. In this paper we restrict the presentation to the case of a
single linear system as proposed in (2.1).

GCRO and GCRO-DR belong to the family of inner-outer methods [2, Chap.
12] where the outer iteration is based on GCR, a minimum residual norm method
proposed by Eisenstat, Elman, and Schultz [13]. To this end GCR maintains a cor-
rection subspace spanned by range(Zm) and an approximation subspace spanned by
range(Vm), where Zm, Vm ∈ Cn×m satisfy

A Zm = Vm,

V H
m Vm = Im.

The optimal solution of the minimization problem min ‖b − Ax‖ over the subspace
x0 + range(Zm) is then found as xm = x0 +Zm V H

m r0. Consequently rm = b−A xm

satisfies

rm = r0 − Vm V H
m r0 = ΠV ⊥

m
r0, rm ⊥ range(Vm).

In [9] de Sturler proposed an improvement to GMRESR [34], an inner-outer method
based on GCR in the outer part and GMRES in the inner part, respectively. He
suggested that the inner iteration takes place in a subspace orthogonal to the outer
Krylov subspace. In this inner iteration the projected residual equation(

In − Vm V H
m

)
Az = rm

is solved only approximately. If a minimum residual norm subspace method is used
in the inner iteration to solve this projected residual linear system, the residuals over

6



 
 

 
 
 
 

 
 
 
 
 

 

 
 
 

 

 
 
 
 

 
 

 

 
 

both the inner and outer subspaces are minimized. This leads to the GCRO Krylov
subspace method [9]. Numerical experiments [9] indicate that the resulting method
may perform better than other inner-outer methods (without orthogonalization) in
some cases.

The GCRO method with deflated restarting (named GCRO-DR) based on har-
monic Ritz value information was proposed in [22]. An approximate invariant sub-
space is used for deflation following closely the GMRES-DR method. We refer the
reader to [22] for a description of this method, algorithms, and implementation de-
tails. We present now a new variant of GCRO-DR that allows flexible preconditioning
by explaining the different steps occurring during the ith cycle. Again we denote by

r
(i−1)
0 = b − Ax

(i−1)
0 , Vm+1, H̄m, and Zm the residual and matrices obtained at the

end of the (i − 1)th cycle.
We suppose that a flexible Arnoldi-like relation of type (2.3) holds. As in sec-

tion 2.2 an important point is to specify which harmonic Ritz information is selected.
Given a certain matrix Wm ∈ Cn×m to be specified later on, such as range(Wm) =
range(Vm), the deflation procedure relies on the use of k harmonic Ritz vectors Yk =
WmPk of AZmW †

m with respect to range(Wm), where Yk ∈ C
n×k and Pk ∈ C

m×k.
Wm will notably satisfy a property detailed in Lemma 3.3 and we point out that the
calculation of W †

m is not needed in the practical implementation of the algorithm (see
section 4.1.1). In Lemma 2.3 we detail a useful relation satisfied by the harmonic Ritz
vectors.

Lemma 2.3. In flexible GCRO with deflated restarting (FGCRO-DR), the har-
monic Ritz vectors are given by Yk = WmPk with corresponding harmonic Ritz values
θk. The matrix Pk = [p1, . . . , pk] ∈ Cm×k satisfies the following relation:

(2.16) AZmPk =
[
WmPk, r

(i−1)
0

] [ diag(θ1, . . . , θk)
β1×k

]
,

where r
(i−1)
0 = Vm+1(c− H̄my∗) and β1×k = [β1, . . . , βk] ∈ C1×k.

Proof. According to Definition 2.1, the harmonic residual vectorsAZmW †
mWmpj−

θj Wmpj and the residual vector r
(i−1)
0 = Vm+1(c− H̄my∗) all belong to a subspace of

dimension m+ 1 (spanned by the columns of Vm+1) and are orthogonal to the same
subspace of dimension m (spanned by the columns of AZm subspace of range(Vm+1)),
so they must be collinear. Consequently there exist k coefficients noted βj ∈ C with
1 ≤ j ≤ k such that

∀j ∈ {1, . . . , k} AZmpj − θjWmpj = βjr
(i−1)
0 .(2.17)

Setting β1×k = [β1, . . . , βk] ∈ C1×k, the collinearity expression (2.17) can be written
in matrix form as

AZmPk =
[
WmPk, r

(i−1)
0

] [ diag(θ1, . . . , θk)
β1×k

]
.

Due to the flexible Arnoldi-like relation (2.3), relation (2.16) can be also expressed as

(2.18) Vm+1H̄mPk =
[
WmPk, r

(i−1)
0

] [
diag(θ1, . . . , θk)

β1×k

]
.

If required, β1×k can be deduced from (2.18) by

(2.19) (c− H̄my∗)H(H̄mPk − V H
m+1WmPkdiag(θ1, . . . , θk))

= (c− H̄my∗)H(c− H̄my∗)β1×k.

7



 
 

 
 
 
 

 
 
 
 
 

 

 
 
 

 

 
 
 
 

 
 

 

 
 

Next, the QR factorization of the (m+1)× k matrix H̄mPk appearing in relation
(2.18) is performed as H̄mPk = QR with Q ∈ C(m+1)×k and R ∈ Ck×k.

Proposition 2. In FGCRO-DR, the relation AZk = Vk with V H
k Vk = Ik holds

at the ith cycle with matrices Zk, Vk ∈ Cn×k defined as

Zk = ZmPkR
−1,

Vk = Vm+1Q,

where Vm+1 and Zm refer to matrices obtained at the end of the (i − 1)th cycle. In

addition V H
k r

(i−1)
0 = 0 holds during the ith cycle.

Proof. By using information related to the QR factorization of H̄mPk and the
flexible Arnoldi relation (2.3) exclusively, we obtain

A Zk = AZmPkR
−1

= Vm+1H̄mPkR
−1

= Vm+1Q

= Vk.

Since both Vm+1 and Q have orthonormal columns, Vk satisfies V H
k Vk = Ik. Finally

since r
(i−1)
0 is the optimum residual at the (i− 1)th cycle, i.e., (AZm)Hr

(i−1)
0 = 0, we

obtain

PH
k (AZm)Hr

(i−1)
0 = 0,

(Vm+1H̄mPk)
Hr

(i−1)
0 = 0,

RHV H
k r

(i−1)
0 = 0.

This finally shows that V H
k r

(i−1)
0 = 0 since R is supposed to be nonsingular.

To complement the subspaces, the inner iteration is based on the approximate
solution of (

In − Vk V H
k

)
Az =

(
In − Vk V H

k

)
r
(i−1)
0 = r

(i−1)
0 ,

where the last equality is due to Proposition 2. For that purpose FGCRO-DR then
carries out m− k steps of the Arnoldi method with flexible preconditioning, leading
to (

In − VkV
H
k

)
A [zk+1, . . . , zm] = [vk+1, . . . , vm+1] H̄m−k,(

In − VkV
H
k

)
A Zm−k = Vm−k+1 H̄m−k

with vk+1 = r
(i−1)
0 /||r(i−1)

0 ‖. At the end of the cycle this gives the flexible Arnoldi-like
relation

A [Zk, Zm−k] = [Vk, Vm−k+1]

[
Ik V H

k A Zm−k

0m−k+1×k H̄m−k

]
,

A Zm = Vm+1 H̄m,

where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1), and H̄m ∈ C(m+1)×m. At the end of the ith

cycle, an approximate solution x
(i)
0 ∈ Cn is then found by minimizing the residual

norm ‖b − A(x
(i−1)
0 + Zmy)‖ over the space x

(i−1)
0 + range(Zm), the corresponding

residual being r
(i)
0 = b− Ax

(i)
0 , with r

(i)
0 ∈ range(Vm+1).
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2.4. Algorithms. Details of the FGCRO-DR method are given in Algorithm 1,
where MATLAB-like notations are adopted (for instance, in step 7b, Q(1 : m, 1 : k)
denotes the submatrix made of the first m rows and first k columns of matrix Q noted
Qm×k in (2.7)). For the sake of completeness the FGMRES-DR algorithm has also
been described with notation chosen as closely as possible to FGCRO-DR to make
code comparison easier. Concerning Algorithm 1 we make the following comments:

• As will be discussed later, the computation of W †
m in step 5a is not required

thanks to the definition of the harmonic Ritz pair (see Definition 2.1).
• As pointed out by Morgan [18] and Parks et al. [22] we might have to adjust k

during the algorithm to include both the real and imaginary parts of complex
eigenvectors.

• In steps 10a and 10b M(i)
j denotes the possibly nonlinear preconditioning

operator at iteration j during the ith cycle.

Algorithm 1. FGCRO-DR(m, k) and FGMRES-DR(m, k).
1: Choose m, k, tol, and x0

2: r0 = b− Ax0, β = ‖r0‖, v1 = r0/β, c = βe1, i ← 0
3: Apply FGMRES(m) to obtain H̄m, Zm, Vm+1 such that AZm = Vm+1H̄m, y∗ =

arg min
y∈Cm

‖c− H̄my‖, x(0)
0 = x0 + Zmy∗, r(0)0 = b− Ax

(0)
0 = Vm+1(c− H̄my∗), Wm = Vm

4: while ‖r(i)0 ‖ > ‖b‖ × tol do i ← i+ 1

FGCRO-DR
5a: Compute k harmonic Ritz

vectors of AZmW †
m with

respect to range(Wm) and
store them in Yk. Define Pk
such that Yk = WmPk

6a: Q R = H̄mPk
7a: Wk = WmPkR

−1

8a: Vk = Vm+1Q

9a: Zk = ZmPkR
−1

10a: Apply m − k flexible pre-
conditioned Arnoldi steps
with (In − VkV

H
k )A and

vk+1 = r
(i−1)
0 /‖r(i−1)

0 ‖
such that (In −
VkV

H
k )A

[
zk+1, . . . , zm

]
=[

vk+1, . . . , vm+1
]
H̄m−k

with zj = M(i)
j (vj)

11a: Set H̄m =[
Ik V H

k AZm−k
0m−k+1×k H̄m−k

]
yielding A

[
z1, . . . , zm

]
=[

v1, . . . , vm+1
]
H̄m

and define Wm =[
Wk Vm(1 : n, k + 1 : m)

]

FGMRES-DR
5b: Compute k harmonic Ritz

vectors of AZmV H
m with re-

spect to range(Vm) and store
them in Yk. Define Pk such
that Yk = VmPk

6b: QR =

[[
Pk

01×k

]
c− H̄my∗

]
7b: H̄k = QHH̄mQ( 1 : m , 1 : k)
8b: Vk+1 = Vm+1Q
9b: Zk = ZmQ( 1 : m , 1 : k)

10b: Apply m − k flexible precon-
ditioned Arnoldi steps with A
and vk+1 while maintaining
orthogonality to Vk such
that A

[
zk+1, . . . , zm

]
=[

vk+1, . . . , vm+1
]
H̄m−k

with zj = M(i)
j (vj) and

V H
m+1 Vm+1 = Im+1

11b: Set H̄m =[[
H̄k

0m−k×k

] [
Bk×m−k

H̄m−k

]]
yielding A

[
z1, . . . , zm

]
=[

v1, . . . , vm+1
]
H̄m

12: y∗ = arg min
y∈Cm

‖c − H̄my‖ with c = V H
m+1r

(i−1)
0

13: x
(i)
0 = x

(i−1)
0 + Zmy∗

14: r
(i)
0 = b− Ax

(i)
0

15: end while
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3. Analysis of FGMRES-DR and FGCRO-DR. We compare now the flexi-
ble variants of GMRES-DR and GCRO-DR introduced in sections 2.2 and 2.3, respec-
tively. In the following we use ˜ to denote quantities related to the FGMRES-DR algo-
rithm, e.g., Ỹk denotes the set of harmonic Ritz vectors computed in the FGMRES-DR
algorithm. When analyzing both algorithms we will suppose that identical precondi-
tioning operators are used in steps 10a and 10b, respectively, i.e.,

(3.1) ∀i, ∀j ∈ {k + 1, . . . ,m}, M(i)
j (.) = M̃(i)

j (.).

3.1. Equivalent preconditioning matrix.
Definition 3.1 (equivalent preconditioning matrix). Suppose that Vp = [v1, . . . ,

vp] ∈ Cn×p and Zp = [M1(v1), . . . ,Mp(vp)] ∈ Cn×p obtained during a cycle of a
flexible method with (standard or deflated) restarting (with 1 ≤ p ≤ m < n) are both
of full rank, i.e., rankVp = rankZp = p. We will then denote by MVp ∈ Cn×n a
nonsingular equivalent preconditioning matrix defined as

(3.2) Zp
def
= MVp Vp.

Such a matrix represents the action of the nonlinear operators Mj on the set of vectors
vj (with j = 1, . . . , p). It can be chosen, e.g., as MVp = [Zp Zp][Vp Vp]

−1, where Zp

(respectively, Vp) denotes an orthogonal complement of Zp (respectively, Vp) in Cn.

3.2. Relations between Zm and Wm and Z̃m and Ṽm. We denote by M
(0)
Wm

and M̃
(0)
˜Vm

the equivalent preconditioning matrices used in the initialization phase of

both algorithms (step 3 in Algorithm 1). With this notation we remark that the
following relations hold:

Zm = M
(0)
Wm

Wm = Z̃m = M̃
(0)
˜Vm

Ṽm.(3.3)

We first analyze the relation between Z̃m and Ṽm.
Lemma 3.2. At the end of the ith cycle of the FGMRES-DR method, Z̃m and

Ṽm satisfy

(3.4) Z̃m = M̃
(i)
˜Vm

Ṽm =
[
M̃

(i−1)
˜Vm

Ṽk, M̃
(i)
˜Vm−k

Ṽm−k

]
.

Proof. The initialization phase leads to the relation Z̃m = M̃
(0)
˜Vm

Ṽm. We suppose

that at the end of the (i − 1)th cycle the following relation holds: Z̃m = M̃
(i−1)
˜Vm

Ṽm.

At step 9b of the ith cycle, Z̃k is defined as

Z̃k = Z̃mQ̃m×k = M̃
(i−1)
˜Vm

ṼmQ̃m×k = M̃
(i−1)
˜Vm

Ṽk.

The proof is then complete since Z̃m−k = [M̃(i)
k+1(ṽk+1), . . . ,M̃(i)

m (ṽm)] = M̃
(i)
˜Vm−k

Ṽm−k

at the end of step 10b.
The next lemma details a relation between Zm and Wm that is satisfied in the

FGCRO-DR method.
Lemma 3.3. At the end of the ith cycle of the FGCRO-DR method, Zm and Wm

satisfy

(3.5) Zm = M
(i)
Wm

Wm =
[
M

(i−1)
Wm

Wk, M
(i)
Wm−k

Wm−k

]
.
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Proof. The initialization phase leads to the relation Zm = M
(0)
Wm

Wm. We suppose

that at the end of the (i − 1)th cycle the following relation holds: Zm = M
(i−1)
Wm

Wm.
At step 9a of the ith cycle, Zk is defined as

Zk = ZmPkR
−1

= M
(i−1)
Wm

WmPkR
−1

= M
(i−1)
Wm

Wk.

The proof is then complete since Zm−k = [M(i)
k+1(wk+1), . . . ,M(i)

m (wm)] = M
(i)
Wm−k

Wm−k at the end of step 11a.

Lemmas 3.2 and 3.3 show that Z̃m, Ṽm, Zm, and Wm satisfy relations that will
play a central role in section 3.3. We investigate next the relation between Zm and
Vm.

Lemma 3.4. At the end of the ith cycle of the FGCRO-DR method, Zm and Vm

satisfy

(3.6) [AZk, Zm−k] =
[
Vk, M

(i)
Vm−k

Vm−k

]
.

Proof. We use the relation AZk = Vk satisfied in the FGCRO-DR method

shown in Proposition 2. The proof is then complete since Zm−k = [M(i)
k+1(vk+1), . . . ,

M(i)
m (vm)] = M

(i)
Vm−k

Vm−k at the end of step 11a.
We conclude this section by presenting a technical lemma related to the FGMRES-

DR method.
Lemma 3.5. During the ith cycle of the FGMRES-DR method, ṽk+1 satisfies the

relation

(3.7) ṽk+1 = ˜̄vk+1/||˜̄vk+1|| with ˜̄vk+1 = Π[˜Yk]⊥
r̃
(i−1)
0 ,

where r̃
(i−1)
0 = b − Ax̃

(i−1)
0 denotes the residual obtained at the end of the (i − 1)th

cycle.
Proof. Using Proposition 1 and relation (2.8) we obtain

˜̄vk+1 = Ṽm+1ρ̄ = r̃
(i−1)
0 − Ṽm+1

[
Q̃m×k

01×k

] [
Q̃m×k

01×k

]H
Ṽ H
m+1r̃

(i−1)
0 ,

˜̄vk+1 = Ṽm+1ρ̄ = r̃
(i−1)
0 − ṼmQ̃m×k(ṼmQ̃m×k)

H r̃
(i−1)
0 .

Since ṼmQ̃m×k has orthonormal columns, this last expression now becomes

v̄k+1 = Π[˜Vm
˜Qm×k]⊥

r̃
(i−1)
0 .

Because Q̃m×k is the orthogonal factor of the QR decomposition of P̃k, we obtain

range(ṼmP̃k) = range(ṼmQ̃m×k).

Since from Lemma 2.3 Ỹk = ṼmP̃k, the proof is then complete.
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3.3. Analysis of the FGMRES-DR and FGCRO-DR methods. Lemma
3.3 has already described an important property satisfied by Wm in the FGCRO-
DR method proposed in Algorithm 1. We will analyze further the relation between
the FGMRES-DR and FGCRO-DR methods. The next theorem states that the two
flexible methods generate the same iterates in exact arithmetic under some conditions
involving notably two vectors.

Theorem 3.6. We denote by r
(i)
0 = b−Ax

(i)
0 the residual obtained at the end of

the ith cycle of the FGCRO-DR method (see step 14 of Algorithm 1). We suppose that
Definition 3.1 holds and that the same equivalent preconditioning matrix is obtained
at the end of the ith cycle of both the FGCRO-DR and FGMRES-DR algorithms, i.e.,

M
(i)
Wm

= M̃
(i)
˜Vm

. Under this assumption the harmonic Ritz vectors Ỹk and Yk can be

chosen equal during the (i+1)th cycle. If in addition there exists a real-valued positive
coefficient ηi+1 such that

(3.8) Π
[Yk,r

(i)
0 /‖r(i)0 ‖]⊥AM

(i+1)
k+1

(
ΠY ⊥

k
r
(i)
0 /‖ΠY ⊥

k
r
(i)
0 ‖
)

= ηi+1 Π
[Yk,r

(i)
0 /‖r(i)0 ‖]⊥AM

(i+1)
k+1

(
r
(i)
0 /‖r(i)0 ‖

)
in the FGCRO-DR algorithm, then both algorithms generate the same iterates in exact
arithmetic and

range(Vm+1) = range(Ṽm+1),(3.9)

range(Zm) = range(Z̃m),(3.10)

with

Vm+1 = [Ṽk+1Q̂, vk+2, . . . , vm+1], Ṽm+1 = [Ṽk+1, vk+2, . . . , vm+1],(3.11)

Zm = [Z̃k+1X̂, zk+2, . . . , zm], Z̃m = [Z̃k+1, zk+2, . . . , zm],(3.12)

where Q̂ ∈ C
(k+1)×(k+1) is a unitary matrix and X̂ ∈ C(k+1)×(k+1) is a nonsingular

triangular matrix.
Proof. The whole proof is performed in three parts assuming that we analyze

the (i+ 1)th cycle of each algorithm. Suppose that at the beginning of the (i+ 1)th

cycle (step 4) there exist a unitary matrix Q̂ ∈ C(k+1)×(k+1) and a nonsingular matrix

X̂ ∈ C(k+1)×(k+1) such that the following relations hold:

Vk+1 = Ṽk+1Q̂,(3.13)

Zk+1 = Z̃k+1X̂,(3.14)

[vk+2, . . . , vm+1] = [ṽk+2, . . . , ṽm+1] ,(3.15)

[zk+2, . . . , zm] = [z̃k+2, . . . , z̃m] .(3.16)

We will then prove the existence of a unitary matrix Q̂′ ∈ C(k+1)×(k+1) and of a
nonsingular matrix X̂ ′ ∈ C(k+1)×(k+1) such that at the end of the (i+ 1)th cycle

Vk+1 = Ṽk+1Q̂
′,(3.17)

Zk+1 = Z̃k+1X̂
′,(3.18)

[vk+2, . . . , vm+1] = [ṽk+2, . . . , ṽm+1] ,(3.19)

[zk+2, . . . , zm] = [z̃k+2, . . . , z̃m] .(3.20)
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Regarding FGCRO-DR we assume that at the beginning of the (i + 1)th cycle (step
4)

range(Wm) = range(Vm).(3.21)

We will also prove that relation (3.21) holds at the end of the (i+1)th cycle. Note that
relations (3.9), (3.10), and (3.21) are obviously satisfied before the first cycle, because

steps 1 to 3 are identical in both algorithms, yielding Vm+1 = Ṽm+1, Zm = Z̃m, and
Wm = Vm. Finally a consequence of (3.13), (3.15), (3.14), and (3.16) is that the
residuals of the linear system Ax = b in both algorithms are equal at the beginning

of the (i + 1)th cycle, i.e., r
(i)
0 = r̃

(i)
0 . We will denote by r0 this residual for ease of

notation.
Part I: Steps 5a and 5b. In this part, we prove that we can choose Ỹk = Yk with

Yk = WmPk = ṼmP̃k.
FGCRO-DR. Let yj = Wmpj be the jth column of Yk. Since yj is a harmonic

Ritz vector of AZmW †
m with respect to range(Wm), the following relation holds (see

Definition 2.1):

ZH
mAH (AZmpj − θjWmpj) = 0.(3.22)

Due to (3.14) and (3.16) there exists a nonsingular matrix X ∈ Cm×m that relates

Zm and Z̃m:

Zm = Z̃mX.(3.23)

Using (3.23), the harmonic Ritz relation (3.22) now becomes

XH Z̃H
mAH (AZ̃mXpj − θjWmpj) = 0.

From Lemma 3.3 and relation (3.23) we deduce

XHZ̃H
mAH (AZ̃mXpj − θjM

(i)−1

Wm
Zmpj) = 0,

XH Z̃H
mAH (AZ̃mXpj − θjM̃

(i)−1

˜Vm
Z̃mXpj) = 0,

where we have used explicitly the assumption on the equivalent preconditioning matrix

obtained at the end of the ith cycle, i.e., M
(i)
Wm

= M̃
(i)
˜Vm

. Next, the application of

Lemma 3.2 leads to

XHZ̃H
mAH (AZ̃mṼ H

m ṼmXpj − θj ṼmXpj) = 0.(3.24)

Since X is nonsingular the last equality proves that ṼmXpj is a harmonic Ritz vector

of AZ̃mṼ H
m with respect to range(Ṽm) associated to the Ritz value θj . From relations

(3.22) and (3.24) we deduce that the harmonic Ritz vectors can be chosen to be equal
and correspond to the same harmonic Ritz values. In this case they notably satisfy
the following equality:

∀j ∈ {1, . . . , k}, ṼmXpj = Wmpj , i.e., p̃j = Xpj.(3.25)

We will then denote by Y = Ỹk = Yk the k harmonic Ritz vectors computed in
either FGCRO-DR or FGMRES-DR. We assume that the harmonic Ritz values θj
(1 ≤ j ≤ k) are nonzero.
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Part IIa: Steps 6a–10a, 6b–10b. We show that at the end of steps 10a and 10b the

following relations hold: range(Vk+1) = range(Ṽk+1) = range([Y, r
(i)
0 /‖r(i)0 ‖]). This

result will help us to prove the existence of the matrix Q̂′ introduced in relation (3.17).
FGCRO-DR. Since AZmPk = VkR (Proposition 2), we deduce from Lemma 2.3[

Vk, r
(i)
0 /‖r(i)0 ‖

]
=
[
Y, r

(i)
0 /‖r(i)0 ‖

] [ diag(θ1, . . . θk)R
−1 0k×1

‖r(i)0 ‖β1×kR
−1 1

]
.(3.26)

This relation leads to the following result:

(3.27) range(Vk+1) = range
([

Y, r
(i)
0 /‖r(i)0 ‖

])
.

Similarly Wk+1 = [Wk,
r
(i)
0

‖r(i)0 ‖ ], using Y = WmPk, can be written as

[Wk, r
(i)
0 /‖r(i)0 ‖] =

[
WmPkR

−1,
r
(i)
0

‖r(i)0 ‖

]
=
[
Y R−1, r

(i)
0 /‖r(i)0 ‖

]
=
[
Y, r

(i)
0 /‖r(i)0 ‖

] [
R−1 0k×1

01×k 1

]
.(3.28)

From relations (3.28) and (3.27) we deduce that

(3.29) range(Wk+1) = range(Vk+1).

This last result also proves that range(Wm) = range(Vm) at the end of the cycle.
FGMRES-DR. In Proposition 1 we have shown that

(3.30) range(Ṽk+1) = range
([

Y, r
(i)
0 /‖r(i)0 ‖

])
.

Since both Vk+1 and Ṽk+1 have orthonormal columns, we deduce from (3.27) and

(3.30) that there exists a unitary matrix Q̂′ such that

(3.31) Vk+1 = Ṽk+1Q̂
′,

which proves the relation proposed in (3.17).
Part IIb: Steps 6a–10a, 6b–10b. We show that at the end of steps 10a and 10b

the following relation holds: range(Zk+1) = range(Z̃k+1). This result will help us to

prove the existence of the matrix X̂ ′ introduced in relation (3.18).
FGCRO-DR. Concerning Zk+1 = [Zk, zk+1], there exists a nonsingular matrix

M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖] ∈ C

n×n (see Definition 3.1) such that

Zk+1 = M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[
Wk, r

(i)
0 /‖r(i)0 ‖

]
.

If T ∈ C(k+1)×(k+1) denotes the triangular matrix

T =

[
R 0k×1

01×k 1

]
due to relation (3.28), then Zk+1T can be written as

Zk+1T = M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[
Y, r

(i)
0 /‖r(i)0 ‖

]
.(3.32)
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FGMRES-DR. Similarly, from Lemma 3.2, Z̃k+1 can be expressed as

Z̃k+1 = M̃
(i+1)
˜Vk+1

Ṽk+1,

where M̃
(i+1)
˜Vk+1

∈ Cn×n is nonsingular (see Definition 3.1). If T̃ ∈ C(k+1)×(k+1) denotes

the triangular matrix

T̃ = R̃

[
Ik 0k×1

01×k 1/‖r(i)0 ‖
]
,

Z̃k+1T̃ can be expressed as

Z̃k+1T̃ = M̃
(i+1)
˜Vk+1

[
Y, r

(i)
0 /‖r(i)0 ‖

]
(3.33)

thanks to relation (2.15). Relations (3.32) and (3.33) characterize Zk+1T and Z̃k+1T̃

with respect to [Y, r
(i)
0 /‖r(i)0 ‖]. We can further improve this result by showing the

following equality:

M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[
Y, r

(i)
0 /‖r(i)0 ‖

]
= M̃

(i+1)
˜Vk+1

[
Y, r

(i)
0 /‖r(i)0 ‖

]
.(3.34)

Lemma 3.3 and Lemma 3.2, respectively, give us two useful relations forM
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[Y, r
(i)
0 /‖r(i)0 ‖] and M̃

(i+1)
˜Vk+1

[Y, r
(i)
0 /‖r(i)0 ‖], i.e.,

M
(i+1)

[Wk,r
(i)
0 /‖r(i)0 ‖]

[
Y, r

(i)
0 /‖r(i)0 ‖

]
=
[
M

(i)
Wm

Y, M(i+1)
k+1

(
r
(i)
0 /‖r(i)0 ‖

)]
,(3.35)

M̃
(i+1)
˜Vk+1

[
Y, r

(i)
0 /‖r(i)0 ‖

]
=
[
M̃

(i)
˜Vm

Y, M̃(i+1)
k+1

(
r
(i)
0 /‖r(i)0 ‖

)]
.(3.36)

Using the assumption on the equivalent preconditioning matrix obtained at the end

of the ith cycle, i.e., M
(i)
Wm

= M̃
(i)
˜Vm

, we have

M
(i)
Wm

Y = M̃
(i)
˜Vm

Y.(3.37)

The fact that identical (possibly nonlinear) preconditioning operators are used in steps
10a and 10b of Algorithm 1 (see relation (3.1)) allows us to write

M(i+1)
k+1

(
r
(i)
0 /‖r(i)0 ‖

)
= M̃(i+1)

k+1

(
r
(i)
0 /‖r(i)0 ‖

)
.(3.38)

Relations (3.37) and (3.38) finally show the relation (3.34). Consequently from re-
lations (3.32), (3.33), and (3.34) we deduce that there exists a nonsingular matrix

X̂ ′ ∈ C(k+1)×(k+1) such that

(3.39) Zk+1 = Z̃k+1X̂
′.

This proves the relation proposed in (3.18). Since T and T̃ are both triangular, we

note that X̂ ′ = T̃ T−1 is also triangular.
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Part IIIa: Steps 10a and 10b. We first show that ṽk+2 = vk+2 by expressing these

two quantities as a function of r
(i)
0 and Y .

FGCRO-DR. The Arnoldi relation (step 10a) yields vk+2 = v̄k+2/||v̄k+2||, where
v̄k+2 = (In − vk+1v

H
k+1)(In − VkV

H
k )AM(i+1)

k+1 (r
(i)
0 /‖r(i)0 ‖). Since from Proposition 2

V H
k r

(i)
0 = 0 in the (i + 1)th cycle, (In − vk+1v

H
k+1) and (In − VkV

H
k ) commute, and

from Part IIa of the proof, the following expression can be derived:

(3.40) v̄k+2 = ΠV ⊥
k+1

AM(i+1)
k+1 (r

(i)
0 /‖r(i)0 ‖) = Π

[Y,r
(i)
0 /‖r(i)0 ‖]⊥AM

(i+1)
k+1 (r

(i)
0 /‖r(i)0 ‖).

FGMRES-DR. The following expression for ṽk+2 = ˜̄vk+2/||˜̄vk+2|| is obtained
using Lemma 3.5:
(3.41)˜̄vk+2 = (In−Ṽk+1Ṽ

H
k+1)AM(i+1)

k+1 (ṽk+1) = Π
[Y,r

(i)
0 /‖r(i)0 ‖]⊥AM

(i+1)
k+1 (ΠY ⊥r

(i)
0 /‖ΠY ⊥r

(i)
0 ‖).

Due to the assumption (3.8) of Theorem 3.6 we deduce from (3.40) and (3.41)
that v̄k+2 = ηi+1 ˜̄vk+2 with ηi+1 positive, and therefore vk+2 = ṽk+2.

Part IIIb: Steps 10a and 10b. In this part we continue the analysis of the Arnoldi
procedure with flexible preconditioning and show that vk+2+j = ṽk+2+j for j =
1, . . . ,m− k − 1.

For the case j = 1, we introduce v̄k+3 and ˜̄vk+3 such that vk+3 = v̄k+3/||v̄k+3|| and
ṽk+3 = ˜̄vk+3/||˜̄vk+3||. The application of the Arnoldi procedure in both algorithms
leads to

v̄k+3 = (In − vk+2v
H
k+2)(In − Vk+1V

H
k+1) AM(i+1)

k+2 (v̄k+2),˜̄vk+3 = (In − ṽk+2ṽ
H
k+2)(In − Ṽk+1Ṽ

H
k+1) AM(i+1)

k+2 (˜̄vk+2).

Thus from Parts II and IIIa of the proof we obtain that vk+3 and ṽk+3 are equal. The
proof can then be completed by induction.

Results from Parts II and III justify relation (3.19), i.e., [vk+2, . . . , vm+1] =
[ṽk+2, . . . , ṽm+1]. Consequently from Lemma 3.2, Lemma 3.4, and relation (3.1) we
deduce relation (3.20). This finally shows the main relations (3.9) and (3.10) of The-
orem 3.6 that are satisfied at the end of the (i+ 1)th cycle.

3.3.1. First consequence of Theorem 3.6.
Corollary 3.7. If the same flexible preconditioning operators are used in both

Arnoldi procedures (steps 10a and 10b of Algorithm 1) and if at each cycle i there
exists a real-valued positive coefficient ηi such that

Π
[Y,r

(i−1)
0 /‖r(i−1)

0 ‖]⊥AM
(i)
k+1(ΠY ⊥r

(i−1)
0 /‖ΠY ⊥r

(i−1)
0 ‖)

= ηi Π[Y,r
(i−1)
0 /‖r(i−1)

0 ‖]⊥AM
(i)
k+1(r

(i−1)
0 /‖r(i−1)

0 ‖),

or, equivalently (from relations (3.40) and (3.41)), such that ˜̄vk+2 = ηi v̄k+2, FGCRO-
DR and FGMRES-DR are algebraically equivalent.

Proof. We have already emphasized that M
(0)
Wm

= M̃
(0)
˜Vm

in relation (3.3). In

Theorem 3.6 we have analyzed the (i + 1)th cycle of both algorithms assuming that

M
(i)
Wm

= M̃
(i)
˜Vm

. First we have proved in Part IIb the relation (3.34), and second in Parts

IIIa and IIIb that [vk+2, . . . , vm] = [ṽk+2, . . . , ṽm] and [zk+2, . . . , zm] = [z̃k+2, . . . , z̃m],
respectively. Consequently the same equivalent preconditioner matrix is obtained at

the end of the (i+1)th cycle, i.e., M
(i+1)
Wm

and M̃
(i+1)
˜Vm

can be chosen equal. We deduce

that FGCRO-DR and FGMRES-DR are algebraically equivalent.
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3.3.2. About GCRO-DR and GMRES-DR. We propose a second conse-
quence of Theorem 3.6 analyzed now with a fixed preconditioning matrix M .

Corollary 3.8. When a fixed right preconditioner is used, the GCRO-DR and
GMRES-DR methods sketched in Algorithm 1 are algebraically equivalent.

Proof. We denote by M the fixed right preconditioning operator. A straightfor-
ward reformulation of Lemma 3.3 in this context leads to the relation Zm = MWm

in GCRO-DR. Exploiting now Lemma 2.3 allows us to derive the following relation,
which holds during the (i+ 1)th cycle:

AMWmPk = AMY = [Y, r
(i)
0 ]

[
diag(θ1, . . . , θk)

β1×k

]
.

Thus

(3.42) Π
[Y,r

(i)
0 ]⊥AMY = 0.

Due to (3.42) and Part IIIa of the proof of Theorem 3.6 we deduce the following
development:

v̄k+2 = Π
[Y,r

(i)
0 ]⊥AM

(
r
(i)
0 − Y Y †r(i)0

)
,

v̄k+2 = Π
[Y,r

(i)
0 ]⊥AMΠY ⊥r

(i)
0 ,

v̄k+2 = ˜̄vk+2.

By induction it is possible to deduce the rest of the proof regarding v̄k+j , j > 2. Using

range(Ṽk+1) = range(Vk+1) obtained in Part IIa we deduce that

(3.43) range(Ṽm) = range(Vm) = range(Wm).

A straightforward reformulation of Lemma 3.2 leads to the relation Z̃m = MṼm in
GMRES-DR. From relation (3.43) we finally deduce that

range(Z̃m) = range(Zm).

Consequently the minimization problem min ‖r(i)0 − AZmy‖ leads to the same so-
lution for both algorithms at each cycle: GCRO-DR and GMRES-DR sketched in
Algorithm 1 are thus algebraically equivalent.

3.3.3. A numerical illustration. In this section we intend to illustrate the re-
sults shown in sections 3.3.1 and 3.3.2 on a simple numerical example. We consider a
real symmetric positive definite matrix A = Q D QT of size 200 with Q orthonormal
and D diagonal with entries ranging from 10−4 to 1. The spectrum of A contains
eigenvalues of small magnitude,1 and consequently the use of deflation techniques
should improve the convergence rate of Krylov subspace methods if the harmonic
Ritz values of smallest modulus are taken into account. In this experiment we con-
sider a polynomial preconditioner represented by two iterations of unpreconditioned
GMRES for the solution of Ax = b with b given by b = Ae

‖Ae‖2
(e ∈ R200 denot-

ing the vector with all components equal to one) starting from a zero initial guess.
Figure 3.1 shows the histories of convergence of various flexible methods minimizing

1The eigenvalues of A are logarithmically spaced (10−4, 10−3, 10−2) and linearly distributed
between 0.02 and 1 with step 1/200.
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Fig. 3.1. Convergence histories of different flexible methods applied to Ax = b, where A ∈
R200×200 is symmetric positive definite with some eigenvalues of small magnitude.

Table 3.1

Scalar product vTk+2ṽk+2 during the first five cycles of FGCRO-DR(10,6) when solving the

linear system considered in section 3.3.3 using a variable preconditioner (two iterations of GMRES)
and a fixed right preconditioner (diagonal preconditioning).

Cycle index 1 2 3 4 5

Variable preconditioner 0.92 0.89 0.45 0.90 0.90

Fixed right preconditioner 1.00 1.00 1.00 1.00 1.00

over a subspace of same dimension, i.e., FGMRES(10), FGMRES-DR(10,6), FGCRO-
DR(10,6), respectively, and full flexible GMRES with such a variable preconditioner.
Flexible methods with deflated restarting are found to be efficient since they are close
to the full flexible GMRES method in terms of performances. We also remark that
the convergence histories of FGCRO-DR(10,6) and FGMRES-DR(10,6) are different.
According to Corollary 3.7 we compute the scalar product of vk+2 and ṽk+2 (which
are both vectors of unit norm) to determine the cosine of the angle between these
two vectors. The values are reported in Table 3.1 for the first five cycles. With such
a variable preconditioner it is found that the methods are not equivalent in the first
cycle already since the collinearity condition between vk+2 and ṽk+2 is not fulfilled.
The situation is similar during the following cycles, which explains why different con-
vergence histories for FGMRES-DR(10,6) and FGCRO-DR(10,6) observed in Figure
3.1 are obtained in such a case. As expected from section 3.3.2, if a fixed right precon-
ditioner is used, the convergence histories of GMRES-DR(10,6) and GCRO-DR(10,6)
are found to be exactly the same (results not shown here). In such a case vk+2 and
ṽk+2 fulfill the collinearity condition; this is confirmed in Table 3.1 when a diagonal
preconditioning is used.
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4. Further features of FGCRO-DR(m,k). In this section we first compare
FGCRO-DR(m, k) with FGMRES-DR(m, k) presented in Algorithm 1 from both a
computational and a storage point of view. Then we detail how subspace recycling
can be used in FGCRO-DR(m, k) when solving a sequence of linear systems.

4.1. Computational cost. We first analyze the computational cost related to
the generalized eigenvalue problem to deduce harmonic Ritz information and then
detail the total cost of the proposed method.

4.1.1. Harmonic Ritz information. The generalized eigenvalue problem (3.22)
can also be written as

(4.1) H̄H
m H̄my = θH̄H

mV H
m+1Wmy.

Since Wm = [Wk+1, vk+2, . . . , vm], V H
m+1Wm can be decomposed at the end of the

cycle as

(4.2) V H
m+1Wm =

⎡⎣ V H
k+1 Wk+1 0(k+1)×(m−k−1)

0(m−k−1)×(k+1) Im−k−1

01×(k+1) 01×(m−k−1)

⎤⎦ ,

where the structure of the (k + 1)× (k + 1) block V H
k+1 Wk+1 is as follows:

V H
k+1 Wk+1 =

[
V H
k Wk V H

k wk+1

vHk+1 Wk vHk+1 wk+1

]
=

[
V H
k Wk 0k×1

vHk+1 Wk 1

]
.

V H
k Wk is a k × k matrix that satisfies the following relation at the end of the ith

cycle:

(V H
k Wk)

(i) = QH (V H
m+1Wm)(i−1) PkR

−1,

where the superscript is related to the cycle index. Thus storing the (m + 1) × m
matrix (V H

m+1Wm)(i−1) can be used to obtain (V H
k Wk)

(i) at a cost that is independent
of n. Next we analyze how to compute efficiently vHk+1 Wk during the ith cycle. From
relation (2.18) shown in Lemma 2.3 and Proposition 2, respectively, we deduce the
relation

vHk+1VkR = vHk+1WkR diag(θ1, . . . , θk) + vHk+1r
(i−1)
0 β1×k.(4.3)

Due to Proposition 2 and the definition of vk+1, we have v
H
k+1Vk = 0. Thus we finally

obtain that

vHk+1Wk = −‖(c− H̄my∗)(i−1)‖2 β1×k (R diag(θ1, . . . , θk))
−1,(4.4)

where β1×k is obtained from relation (2.19), which does only involve projected quan-
tities. This allows us to deduce vHk+1Wk at a cost independent of n. From this de-
velopment we draw two important consequences from a computational point of view.
First, (V H

m+1Wm)(i) can be obtained recursively at a cost that is independent of the
problem size n. Second, storing Wm (which would represent m additional vectors of
size n) is not mandatory; only V H

m+1Wm—matrix of size (m+ 1)×m—is required.
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Table 4.1

Computational cost of a generic cycle of FGMRES-DR(m, k) and FGCRO-DR(m, k). C rep-
resents the total cost of FGCRO-DR(m, k) and corresponds to C = (m− k)(opM + opA) + n(2(m+
1)k + 1 + 2mk + (m− k)(2m+ 2k + 6)).

Computation of FGMRES-DR(m,k) FGCRO-DR(m,k)

Vm(:, 1 : k + 1) 2n(m + 1)(k + 1) 2n(m + 1)k + n

Zm(:, 1 : k) 2nmk 2nmk

Vm(:, k + 2 : m+ 1)
(m − k)opA+

n(m− k)(2m + 2k + 5)
(m − k)opA+

n(m− k)(2m + 2k + 6)

Zm(:, k + 1 : m) (m− k)opM (m− k)opM

Total cost C + n (m + k + 1) C

4.1.2. Cost of a cycle. We summarize in Table 4.1 the main computational
costs associated with each generic cycle of FGMRES-DR(m, k) and FGCRO-DR(m, k).
In FGCRO-DR(m, k), an Arnoldi method based on the modified Gram–Schmidt pro-
cedure has been assumed.2 We have included only the costs proportional to the size
of the original problem n which is supposed to be much greater than m and k. We
denote by opA and opM the floating point operation counts for the matrix-vector
product and the preconditioner application, respectively.

The generalized eigenvalue problem in FGCRO-DR(m, k) has been ignored in
Table 4.1 since it can be performed at a cost independent of n as outlined in sec-
tion 4.1.1. Furthermore the computation of c (required at step 12 of Algorithm 1)
has not been included in Table 4.1 since in both methods it can be obtained at a
cost independent of n (see Proposition 3 in [15] for FGMRES-DR). From Table 4.1
we deduce that FGCRO-DR(m, k) requires slightly fewer operations per cycle than
FGMRES-DR(m, k).

4.2. Storage requirements. We consider only the storage proportional to the
size of the original problem n. Similarly, as in FGMRES-DR(m, k) (see [15, sec-
tion 3.2.2]), if the matrix multiplications Vm+1Q and ZmPkR

−1 at steps 8a and 9a
of Algorithm 1 are performed in place (i.e., overwriting Vk and Zk, respectively),
FGCRO-DR(m, k) requires only the storage of Zm and Vm+1, which corresponds to
(2m+1) vectors of length n. The same storage cost is needed in FGMRES-DR(m, k)
as detailed in [15].

4.3. Solution of sequence of linear systems. As advocated in [22], GCRO-
DR(m, k) is suited for the solution of a sequence of slowly changing linear systems
defined as Alxl = bl where both the matrix Al ∈ C

n×n and the right-hand side
bl ∈ Cn change from one system to the next, and the linear systems may typically not
be available simultaneously. Next, we analyze how subspace recycling can be used in
FGCRO-DR(m, k). We suppose that FGCRO-DR(m, k) has been applied for the so-
lution of a given linear system (indexed by s−1) in this sequence and that appropriate
subspaces to be recycled, Zs−1

k and W s−1
k , have been selected during a given cycle.

2In FGCRO-DR(m, k) (step 10a of Algorithm 1) the action of (In − VkV
H
k ) requires∑m

j=k+1(4nk + n) operations, the Arnoldi method based on modified Gram–Schmidt requires∑m
j=k+1

∑j
i=k+1(4n) operations, whereas norm computation and normalization cost

∑m
j=k+1(3n)

operations. In FGMRES-DR(m, k) (step 10b of Algorithm 1) the Arnoldi method based on modi-

fied Gram–Schmidt requires
∑m

j=k+1

∑j
i=1(4n) operations due to maintaining orthogonality to Vk,

whereas norm computation and normalization cost
∑m

j=k+1(3n) operations.
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As explained in Proposition 2, the relations As−1Zs−1
k = V s−1

k with V s−1
k

H
V s−1
k = Ik

and range(W s−1
k ) = range(V s−1

k ) are then supposed to hold. Proposition 3 details
how to consider subspace recycling in the initial phase of FGCRO-DR(m, k), when
solving the new linear system Asxs = bs with x0 as an initial guess.

Proposition 3. Suppose that Zs−1
k and W s−1

k are defined from solving a previous
linear system As−1xs−1 = bs−1 with FGCRO-DR(m, k) and that Asxs = bs is the new
linear system to be solved. In the initial phase of FGCRO-DR with subspace recycling,
the relation AsZs

k = V s
k with V s

k
HV s

k = Ik holds with matrices V s
k , Z

s
k ∈ C

n×k defined
as

V s
k = Q,

Zs
k = Zs−1

k R−1

with QR = AsZs−1
k , where Q ∈ Cn×k has orthonormal columns and R ∈ Ck×k is

upper triangular. In addition we define W s
k ∈ Cn×k as W s

k = W s−1
k R−1.

Proof. By using information related to the reduced QR factorization of AsZs−1
k

and the relation As−1Zs−1
k = V s−1

k , respectively, we easily obtain

AsZs
k = AsZs−1

k R−1 = Q

= V s
k .

Since Q has orthonormal columns, V s
k satisfies V s

k
HV s

k = Ik. Finally W s
k = W s−1

k R−1

is imposed to make sure that the relation shown in Lemma 3.3 will hold at the end
of the initial phase of FGCRO-DR(m, k) with subspace recycling.

In the case of a sequence where only the right-hand sides are changing, we note
that the reduced QR factorization (step 3 in Algorithm 2) is not required. The
complete construction of the initial generation of subspaces V s

m+1, Z
s
m,W s

m is sketched
in Algorithm 2. Once V s

m+1, Z
s
m, and W s

m have been obtained, the main cycle of
FGCRO-DR(m, k) (lines 4 to 15 of Algorithm 1) can be applied straightforwardly.

Algorithm 2. Initial generation of V s
m+1, Z

s
m, and W s

m when subspace recycling is
used to solve Asxs = bs.

1: Suppose that V s−1
k , Zs−1

k and W s−1
k are defined from solving a previous linear

system As−1xs−1 = bs−1 and satisfy As−1Zs−1
k = V s−1

k with V s−1
k

H
V s−1
k =

Ik and range(W s−1
k ) = range(V s−1

k )
2: r0 = bs −Asx0

3: Q R = AsZs−1
k

4: V s
k = Q

5: Zs
k = Zs−1

k R−1

6: W s
k = W s−1

k R−1

7: x
(0)
0 = x0 + Zs

kV
s
k
Hr0

8: r
(0)
0 = r0 − V s

k V
s
k
Hr0

9: Apply m − k flexible preconditioned Arnoldi steps with (In − V s
k V

s
k
H)As

and vsk+1 = r
(0)
0 /‖r(0)0 ‖ such that (In − V s

k V
s
k
H)As

[
zsk+1, . . . , z

s
m

]
=[

vsk+1, . . . , v
s
m+1

]
H̄m−k with zsj = M(i)

j (vsj )

10: d∗ = arg min
d∈Zs

m

‖r(0)0 −Asd‖, x(1)
0 = x

(0)
0 + d∗, r(1)0 = bs −Asx

(1)
0

11: W s
m =

[
W s

k V s
m(1 : n, k + 1 : m)

]
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Table 4.2

Solution of a d-dimensional elliptic partial differential equation problem on a 16d grid with
homogeneous Dirichlet boundary conditions (d = 2, . . . , 5). Shown are the total number of matrix-
vector products (#Mvp) required to solve a sequence of twelve linear systems with different flexible
methods. The variable preconditioner is based on four iterations of unpreconditioned GMRES. The
stopping criterion corresponds to a reduction of six orders of magnitude of the normalized residual in
the Euclidean norm. Harmonic Ritz values of smallest modulus have been considered when deflating.

Grid 162 163 164 165

Problem size (n) (225) (3375) (50625) (759375)

Method #Mvp #Mvp #Mvp #Mvp

FGMRES(20) 972 1176 1272 1128

FGMRES-DR(20,10) 732 948 1020 876

FGCRO-DR(20,10) (no recycling) 732 948 1020 876

FGCRO-DR(20,10) (with recycling) 457 541 547 529

Subspace recycling can thus be easily used in FGCRO-DR(m, k) to solve sequences
of linear systems.

4.3.1. A numerical illustration. As a numerical illustration we consider se-
quences of linear systems arising from the finite difference discretization of multi-
dimensional elliptic partial differential equations (isotropic Laplace operator) posed
on the [0, 1]d hypercube with homogeneous Dirichlet boundary conditions. These se-
quences correspond to situations where only the right-hand sides are changing for
a given dimension d. An efficient solution method is of primary interest in certain
applications related to, e.g., financial engineering, molecular biology, or quantum dy-
namics [5, 6]. In the numerical experiments reported here (performed in MATLAB)
we have used second order finite difference discretization schemes leading to sparse
matrices with at most 2d+1 nonzero elements per row. We analyze the performances
of various flexible methods used with four iterations of unpreconditioned GMRES
as a preconditioner. This polynomial preconditioner is a variable nonlinear function
which thus requires a flexible Krylov subspace method as an outer method [28]. Table
4.2 collects the number of matrix-vector products of some flexible methods minimiz-
ing over a subspace of the same dimension, i.e., FGMRES(20), FGMRES-DR(20,10),
FGCRO-DR(20,10), and FGCRO-DR(20,10) with subspace recycling, respectively.
Using deflation helps to improve the convergence rate of FGMRES in this application
since a reduction of approximately 20% to 25% in terms of matrix-vector products
is obtained for FGMRES-DR(20,10) independently of the dimension d. FGCRO-
DR(20,10) leads to numbers of matrix-vector products which are similar to FGMRES-
DR(20,10) although the convergence histories are found to be different. Finally, using
both deflation and recycling in FGCRO-DR leads to a significant decrease in terms of
matrix-vector products. A reduction in the range of 40% to 45% is indeed obtained
versus another flexible Krylov subspace method with deflated restarting (FGMRES-
DR(m, k)). This can be considered as a primary advantage over FGMRES-DR(m, k)
since FGMRES-DR(m, k) does not allow subspace recycling. It nicely extends to the
flexible setting the advantage of GCRO-DR versus GMRES-DR previously illustrated
in [22]. We note that the resulting method is factorization free and mostly relies on
matrix-vector products, a nice feature if distributed memory platforms are targeted
to address numerical problems of larger size in higher dimension.

5. Conclusion and perspectives. In this paper we have studied a new min-
imum residual norm subspace method with deflated restarting that allows flexible
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preconditioning based on the GCRO subspace method. The resulting method, named
FGCRO-DR, has been presented together with FGMRES-DR, a recently proposed
algorithm of the same family but based on the GMRES subspace method. A the-
oretical comparison analysis of both algorithms has been performed in section 3,
where Theorem 3.6—the main result of this paper—proves the algebraic equivalence
of FGMRES-DR and FGCRO-DR if a certain collinearity condition holds at each cy-
cle. Corollary 3.8 has also proved that GMRES-DR and GCRO-DR are algebraically
equivalent when a fixed right preconditioner is used. Furthermore we have carefully
analyzed the computational cost of a given cycle of FGCRO-DR and have shown that
FGCRO-DR is nearly as expensive as FGMRES-DR in terms of operations. FGCRO-
DR offers the additional advantage of being suitable for the solution of sequences
of slowly changing linear systems (where both the matrix and right-hand side can
change) through subspace recycling.

In [8] variants of FGCRO-DR have been proposed which only differ in the for-
mulation of the projected generalized eigenvalue problem. In future work we plan to
investigate the numerical properties of these variants on realistic problems of large
size for both single and multiple left- or right-hand side situations. Of interest are
applications related to, e.g., steady or unsteady simulations of nonlinear equations
[7] or stochastic finite element methods [12, 33] in three dimensions where variable
preconditioning using approximate solvers has to be usually considered. We also note
that when all right-hand sides are available simultaneously and when the matrix is
fixed, block subspace methods may be also suitable. Thus a perspective could be to
propose a block variant of FGCRO-DR.
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