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Abstract

The rising popularity of graphics processing units is
bringing renewed interest in code optimization tech-
niques for SIMD processors. Many of these optimiza-
tions rely on divergence analyses, which classify vari-
ables as uniform, if they have the same value on every
thread, or divergent, if they might not. This paper
introduces a new kind of divergence analysis, that
is able to represent variables as affine functions of
thread identifiers. We have implemented this analy-
sis in Ocelot, an open source compiler, and use it to
analyze a suite of 177 CUDA kernels from well-known
benchmarks. We can mark about one fourth of all
program variables as affine functions of thread identi-
fiers. In addition to the novel divergence analysis, we
also introduce the notion of a divergence aware reg-
ister allocator. This allocator uses information from
our analysis to either rematerialize affine variables,
or to move uniform variables to shared memory. As
a testimony of its effectiveness, our divergence aware
allocator produces GPU code that is 29.70% faster
than the code produced by Ocelot’s register allocator.
Divergence analysis with affine constraints is publicly
available in the Ocelot compiler since June/2012.

1 Introduction

Increasing programmability and low hardware cost
are boosting the use of graphical processing units
(GPU) as tools to run high-performance applications.
In these processors, threads are organized in groups,
called warps, that execute in lock-step. To better un-
derstand the rules that govern threads in the same
warp, we can imagine that each warp has simulta-
neous access to a number of processing units, but
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uses only one instruction fetcher. As an example, if
a warp groups 32 threads together, then it can pro-
cess simultaneously 32 instances of the same instruc-
tion. Regular applications, such as scalar vector mul-
tiplication, fare very well in GPUs, because we have
the same operation being independently performed
on different data. However, divergences may happen
in less regular applications whenever threads inside
the same warp follow different paths after conditional
branches. The branching condition might be true to
some threads, and false to others. Given that each
warp has access to only one instruction at each time,
in face of a divergence some threads will be idle while
others execute. Hence, divergences may be a major
source of performance degradation – a loss that is
hard to overcome. Difficulties happen because find-
ing highly divergent branches burdens the application
developer with a tedious task, which requires under-
standing code that might be large and complex.

In this paper we introduce a new divergence anal-

ysis, i.e., a technique that identifies variable names
holding the same value for all the threads in a warp.
We call these variables uniform. We improve on pre-
vious divergence analyses [1, 2, 3, 4] in non-trivial
ways. In Section 3, we show that our analysis finds
not only uniform variables, but also variables that
are affine functions of thread identifiers. Contrary to
Aiken’s approach [1], we work on SIMD machines;
thus, we handle CUDA and OpenCL programs. By
taking affine relations between variables into consid-
eration, we also improve on Stratton’s [4], Karren-
berg’s [3] and Coutinho’s [2] techniques.

The problem of discovering uniform variables is
important in different ways. Firstly, it helps the
compiler to optimize the translation of SIMD lan-
guages, such as C for CUDA and OpenCL, to ordi-
nary CPUs. Currently there exist many attempts to
compile such languages to ordinary CPUs [5, 3, 4].
Vector instruction sets such as the x86’s SSE exten-



sion do not support divergences natively. Thus, com-
pilers might produce very inefficient code to handle
this phenomenon at the software level. This burden
can be safely removed from non-divergent branches.
Secondly, our analysis enables divergence aware code
optimizations, such as Coutinho et al.’s [2] branch

fusion, and Zhang et al.’s [6] thread reallocation. In
this paper, we augment this family of techniques with
a divergence aware register allocator. As we will show
in Section 4, we use divergence information to decide
the best location of variables that have been spilled
during register allocation. Our affine analysis is spe-
cially useful to this optimization, because it allows
us to perform register rematerialization [7] in SIMD
processing elements.

Our novel divergence analysis and register allocator
are, since June 2012, distributed under GPL license
as part of the Ocelot compiler [5]. We have compiled
177 CUDA kernels from 46 applications taken from
the Rodinia [8] and the NVIDIA SDK publicly avail-
able benchmarks. In practice our divergence analysis
runs in linear time on the number of variables in the
source program. The experiments also show that our
analysis is more precise than Ocelot’s previous diver-
gence analysis, which was based on Coutinho et al.’s
work [2]. We not only point that about one fourth of
the divergent variables are affine functions of thread
IDs, but also find 4% more uniform variables. Fi-
nally, our divergence aware register allocator is ef-
fective: we speedup the code produced by Ocelot’s
linear scan register allocator by almost 30%.

2 Divergences in one Example

In order to describe our analysis and optimizations,
we will be working on top of µ-Simd, a core SIMD lan-
guage whose operational semantics has been defined
by Coutinho et al. [2]. Figure 1 gives the syntax of
this language. The execution of a µ-Simd program
consists of a number of processing elements (PE)
which execute in lock-step. A program P contains
a set of variable names V , and each PE has access to
a mapping θ : V 7→ N. Each PE sees the same set
of variable names, yet these names are mapped into
different address spaces. The special variable Tid, the
thread identifier, holds a unique value for each PE. An
assignment such as v1 = v2 + c causes each active PE
to compute – simultaneously – the value of θ[v2] + c,
and to use this result to update θ[v1]. Threads com-
municate through a shared memory Σ, accessed via
load and store instructions. For instance, when pro-

Labels ::= l ⊂ N

Constants (C) ::= c ⊂ N

Variables (V ) ::= tid ∪ {v1, v2, . . .}
Operands (V ∪ C) ::= {o1, o2, . . .}
Instructions ::=
– (jump if zero/not zero) | bz/bnz v, l
– (unconditional jump) | jump l
– (store into shared memory) | ↑ vx = v
– (load from shared memory) | v =↓ vx

– (atomic increment) | v
a
←− vx + c

– (binary addition) | v1 = o1 + o2

– (binary multiplication) | v1 = o1 × o2

– (general binary operation) | v1 = o1 ⊕ o2

– (general unary operation) | v = ⊕o
– (simple copy) | v = o
– (synchronization barrier) | sync

– (halt execution) | stop

Figure 1: The syntax of µ-Simd instructions.

cessing ↑ vx = v, the active PEs performs the assign-
ment Σ[θ[vx]] = v simultaneously. Inversely, v =↓ vx

updates θ[v] with the value in Σ[θ[vx]]. The language
provides mutual exclusion via the atomic increment
v

a
←− vx + c, which, for some arbitrary serialization

of the active PEs, reads Σ[θ[vx]], increments it by c,
stores the incremented value back at Σ[θ[vx]] and uses
the modified value to update θ[v].

Figure 2(Top) shows an example of a program writ-
ten in µ-Simd that sums up the columns of a triangu-
lar matrix. However, only the odd indices in each col-
umn contribute to the sum, as we ensure with the test
at labels l7 and l8. In this program threads perform
different amounts of work: the PE that has Tid = n

visits n + 1 cells. After a thread leaves the loop, it
must wait for the others. Processing resumes once all
of them synchronize at label l15. At this point, each
thread sees a different value stored at its image of
variable d, which has been incremented Tid +1 times.
Hence, we say that d is a divergent variable outside

the loop. Inside the loop, d is uniform, because ev-
ery active thread sees the same value stored at that
location. Consequently, the threads active inside the
loop take the same path at the branch in label l8.

A conditional test bnz v, l′ at label l causes all
the threads to evaluate their θ[v]. Those that find
θ[v] 6= 0 branch to l′, whereas the others fall through
the next instruction at l + 1. If two threads take
different paths, i.e., v is divergent, then we say that
the threads diverge at l. Figure 2(Bottom) illustrates
this phenomenon via a snapshot of the execution of
our example program. Our running program contains
four threads: t0, . . . , t3. When visiting the branch at
label l6 for the second time, the predicate p is 0 for
thread t0, and 1 for the other PEs. In face of this di-
vergence, t0 is pushed onto a stack of waiting threads,
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l7: p = d % 2

     bnz p, l11

l15: sync

      x = d ! 1

    "x = s

 stop

l0:  s = 0

      d = 0
      i = tid

     x = tid + 1

     L = c # x

l5: p  = i ! L

 bz p, l15

l9: x = $i

     s = s + x

l11: sync

      d = d + 1
      i = i + c

 jmp l5

Cycle Instruction t0 t1 t2 t3

14 l5 : p = i − L X X X X

15 l6 : bz p, l15 X X X X

16 l7 : p = i % 2 • X X X

17 l8 : bz p, l11 • X X X

. . .

25 l6 : bz p, l15 • X X X

26 l7 : p = i % 2 • • X X

27 l8 : bz p, l11 • • X X

. . .

44 l5 : bz p, l15 • • • X

45 l15 : sync X X X X

Figure 2: (Top) A µ-Simd program. (Bottom) An
execution trace of the program. If a thread t executes
an instruction at cycle j, we mark the entry (t, j) with
the symbol X. Otherwise, we mark it with •.

while the other threads continue executing the loop.
When the branch is visited a third time, a new diver-
gence will happen, this time causing t1 to be stacked
for later execution. This pattern will happen once
again with thread t2, although we do not show it in
Figure 2. Once t3 leaves the loop, all the threads
synchronize via the sync instruction at label l15, and
resume lock-step execution.

3 The Analysis

Gated Single Static Assignment Form. To in-
crease the precision of our analysis, we convert pro-
grams to the Gated Static Single Assignment form [9,
10] (GSA). This program representation uses three
special instructions: µ, γ and η functions, defined as
follows: γ functions represent the joining point of dif-
ferent paths created by an “if-then-else” branch in

the source program. The instruction v = γ(p, o1, o2)
denotes v = o1 if p, and v = o2 if ¬p; µ functions,
which only exist at loop headers, merge initial and
loop-carried values. The instruction v = µ(o1, o2)
represents the assignment v = o1 in the first itera-
tion of the loop, and v = o2 in the others; η functions
represent values that leave a loop. The instruction
v = η(p, o) denotes the value of o assigned in the last
iteration of this loop, which is controlled by the pred-
icate p. Figure 3 shows the GSA version of the pro-
gram in Figure 2. This format serves us well because
it separates variables into different names, which we
can classify independently as divergent or uniform,
while taking control dependences into consideration.

We use Tu and Padua’s [10] almost linear time
algorithm to convert a program into GSA form. Ac-
cording to this algorithm, γ and η functions exist at
the post-dominator of the branch that controls them.
A label lp post-dominates another label l if every
path from l to the end of the program goes through
lp. Fung et al. [11] have shown that re-converging
divergent PEs at the immediate post-dominator of
the divergent branch is nearly optimal with respect
to maximizing hardware utilization. Thus, we
assume that each γ or η function encodes an implicit
synchronization barrier, and omit the sync instruc-
tion from labels where these functions appear. We
use Appel’s parallel copy semantics [12] to evaluate
these functions. For instance, the µ assignment at
l5, in Figure 3 denotes two parallel copies: either
we perform [i1, sum1, d1] = (i0, sum0, d0), in case we
are entering the loop for the first time, or we do
[i1, sum1, d1] = (i2, sum3, d2) otherwise.

Affine Analysis. The objective of the divergence
analysis with affine constraints is to associate with
every program variable an abstract state which tells
us if that variable is uniform, divergent or affine, a
term that we shall define soon. This abstract state
is a point in a lattice A, which is the product of two
instances of a simpler lattice C, e.g., A = C × C.
We let C be the lattice formed by the set of integers
Z augmented with a top element ⊤ and a bottom
element ⊥, plus a meet operator ∧, such that c1∧c2 =
⊥ if c1 6= c2, and c∧c = c. Notice that C is the lattice
used in the compiler optimization known as constant
propagation; hence, for a proof of monotonicity, see
Aho et al [13, p.633-635]. If (a1, a2) are elements of
A, we represent them using the notation a1Tid + a2.
We define the meet operator of A as follows:

(a1Tid + a2) ∧ (a′1Tid + a′2) = (a1 ∧ a′1)Tid +(a2 ∧ a′2)
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l8: p1 = d1 % 2

     bnz p1, l12

l16: [s4, d3] = ![p0, (s1, d1)]

      x3 = d3 " 1
    #x3 = s4

 stop

l0:  s0 = 0

      d0 = 0

      i0 = tid

     x0 = tid + 1

     L0 = c $ x0

l5: [i1,s1,d1]  = µ[(i0, s0 ,d0),(i2, s3, d2)]
     p0  = i1 " L0

bz p0, l16

l10: x2 = %i1

      s2 = s1 + x2

l12: [s3] = &(p1, s2, s1)

      d2 = d1 + 1

i2 = i1 + c

 jmp l5

Figure 3: The program from Figure 2 converted into
GSA form.

We let the constraint variable JvK = a1Tid+a2 denote
the abstract state associated with variable v. We
determine the set of divergent variables in a µ-Simd
program P via the constraint system seen in Figure 4.
Initially we let JvK = (⊤,⊤) for every v defined in the
text of P , and JcK = (0, c) for each c ∈ Z.

Complexity. The constraint system in Figure 4 can
be solved in time linear on the size of the program’s
dependence graph [14]. The dependence graph has
a node for each program variable. If the constraint
that produces JvK uses Jv′K as a premise, then the
dependence graph contains an edge from v′ to v. As
an example, Figure 5 shows the program dependence
graph that we have extracted from Figure 3. We show
only the dependence relations in the program slice
that contributes to create variable d3. Each node in
Figure 5 has been augmented with the results of our
divergence analysis with affine constraints.

Correctness. Given a µ-Simd program P , plus
a variable v ∈ P , we say that v is uniform if ev-
ery processing element always sees v with the same
value at simultaneous execution cycles. On the other
hand, if these processing elements see v as the same
affine function of their thread identifiers, e.g., v =
c1Tid + c2, c1, c2 ∈ Z, then we say that v is affine.
Otherwise, if v is neither uniform nor affine, then we
call it divergent. The abstract state of each variable
tells us if the variable is uniform, affine or divergent.

Theorem 3.1 If JvK = 0Tid + a, a ∈ C, then v is

uniform. If JvK = cTid + a, a ∈ C, c ∈ Z, c 6= 0, then

v is affine.

d0

d1

d2

µ

+

!

d3p0

L0

i1 "

c x0

tid +

i0

i2

0

#

µ

+

1

(0, 0)

(0, 1)

(1, 0)

(1, !)

(1, !)

(0, !)

(1, 0)

(1, 1)

(!, !)

(!, !) (!, !)

(0, 0)

(0, !)

(0, !)

p1 (0, !)

Figure 5: The dependence graph denoting the slice
of the program in Figure 3 that produces variable
d3. The figure shows the results of our divergence
analysis with affine constraints.

4 Register Allocation

Register allocation is the problem of finding storage
location to the values manipulated in a program. Ei-
ther we place these values in registers or in memory.
Values mapped to memory are called spills. A mod-
ern GPU has many memory levels that the compiler
must take into consideration when trying to decide
where to place spills. Traditional register allocators,
such as the one used in the NVIDIA compiler, or in
Ocelot [5], map spills to the local memory. This mem-
ory is exclusive to each thread, and is located off-chip
in all the architectures that we are aware off. We have
observed that spilled values that our analysis classi-
fies as uniform or affine can be shared among all the
threads in the same warp. This observation is par-
ticularly useful in the context of graphics processing
units, because they are equipped with a fast-access
shared memory, which is visible to all the threads in
execution. The main advantage of mapping spills to
the shared memory is speed. This memory is approx-
imately 100x faster than the local memory [15].

We have developed a set of rewriting rules that can
be applied after register allocation, mapping some of
the spills to the shared memory. To accommodate
the notion of local memory in µ-Simd, we have aug-
mented its syntax with two new instructions: v =⇓ vx

loads the value stored at local memory address vx

into v; ⇑ vx = v stores v into the local memory ad-
dress vx. The table in Figure 6 shows our rewriting
rules. In row (ii) we are simply remapping uniform
variables from the local to the shared memory. The
affine analysis sometimes lets us perform constant
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v = c× Tid [TidA] JvK = cTid + 0 v = v′ [AsgA] JvK = Jv′K

v
a
←− vx + c [AtmA] JvK = ⊥Tid +⊥ v = c [CntA] JvK = 0Tid + c

v = ⊕o [GuzA]
JoK = 0Tid + a

JvK = 0Tid + (⊕a)
v = ⊕o [GunA]

JoK = a1Tid + a2 a1 6= 0

JvK = ⊥Tid +⊥

v =↓ vx [LduA]
JvxK = 0Tid + a

JvK = 0Tid +⊥
v =↓ vx [LddA]

JvxK = a1Tid + a2, a1 6= 0

JvK = ⊥Tid +⊥

v = γ[p, o1, o2] [GamA]
JpK = 0Tid + a

JvK = Jo1K ∧ Jo2K
v = η[p, o] [EtaA]

JpK = 0Tid + a

JvK = JoK

v = o1 + o2 [SumA]
Jo1K = a1Tid + a

′

1
Jo2K = a2Tid + a

′

2

JvK = (a1 + a2)Tid + (a
′

1
+ a

′

2
)

v = o1 × o2 [MlvA]
Jo1K = a1Tid + a

′

1
Jo2K = a2Tid + a

′

2
a1, a2 6= 0

JvK = ⊥Tid +⊥

v = o1 × o2 [MlcA]
Jo1K = a1Tid + a

′

1
Jo2K = a2Tid + a

′

2
a1 × a2 = 0

JvK = (a1 × a
′

2
+ a

′

1
× a2)Tid + (a

′

1
× a

′

2
)

v = o1 ⊕ o2 [GbzA]
Jo1K = 0Tid + a

′

1
Jo2K = 0Tid + a

′

2

JvK = 0Tid + (a
′

1
⊕ a

′

2
)

v = o1 ⊕ o2 [GbnA]
Jo1K = a1Tid + a

′

1
Jo2K = a2Tid + a

′

2
a1, a2 6= 0

JvK = ⊥Tid +⊥

v = γ[p, o1, o2] or v = η[p, o] [PdvA]
JpK = aTid + a

′

, a 6= 0

JvK = ⊥Tid +⊥

v = µ[o1, . . . , on] [RmuA] JvK = Jo1K ∧ Jo2K ∧ . . . ∧ JonK

Figure 4: Constraint system used to solve our divergence analysis with affine constraints.

propagation and rematerialization. Constant prop-
agation, possibly the most well-known compiler op-
timization, replaces a variable by the constant that
it holds. Row (i) replaces loads of constants by the
constant itself, and removes stores of constants. Re-
materialization recomputes the value of a spilled vari-
able, whenever possible, instead of moving it to and
from memory [7]. Row (iii) shows the rewriting rules
that do rematerialization. In this case each thread
recalculates a spilled value based on its Tid, plus the
coefficients of the value, as determined by the affine
analysis. Finally, row (iv) combines rematerializa-
tion with shared storage. If we spill an affine vari-
able whose highest coefficient we cannot determine,
e.g., JvK = c1Tid + t, then we move only its unknown
component t to shared memory. Given Theorem 3.1,
this value is guaranteed to be the same for all the
threads. Once we load it back from shared memory,
we can combine it with c1, which the affine analysis
determines statically, to recompute the value of v.

Implementation details: Graphics processing
units are not exclusively SIMD machines. Rather, a

JvK Load Store

(i) (0, c) v = c ∅

(ii) (0,⊥) v =↓ vx ↑ vx = v

(iii) (c1, c2) v = c1Tid + c2 ∅

(iv) (c,⊥) t =↓ vx; t = vx − cTid;

v = cTid + t ↑ vx = v

Figure 6: Rewriting rules that replace loads (v =⇓
vx) and stores (⇑ vx = v) to local memory with faster
instructions. The arrows ↑, ↓ represent accesses to
shared memory.

single GPU executes many independant SIMD groups
of threads, or warps. Our divergence analysis finds
uniform variables per warp. Hence, to implement
the divergence aware register allocator, we partition
the shared memory among all the warps that might
run simultaneously. Due to this partitioning we do
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not need to synchronize accesses to the shared mem-
ory among different warps. On the other hand, the
register allocator requires more space in the shared
memory. That is, if the allocator finds out that a
given program demands N bytes to accommodate the
spilled values, and the target GPU runs up to M

warps simultaneously, then this allocator will need
M ×N bytes in shared memory.

5 Experimental Evaluation

Every technique described in this paper has been
implemented in the Ocelot compiler, and as of
June/2012, is part of its official distribution. We run
Ocelot on a quad-core AMD Phenom II 925 proces-
sor with a 2.8 GHz clock. The same workstation also
hosts the GPU that we use to run the kernels: a
NVIDIA GTX 570 (Fermi) graphics processing unit.
Benchmarks: We have successfully tested our diver-
gence analysis in all the 177 different CUDA kernels
from the Rodinia [8] and NVIDIA SDK 3.1 bench-
mark suites. These benchmarks give us 31,487 PTX
instructions. In this paper, we report numbers to the
40 kernels with the longest running times that our
divergence aware register allocator produces. If the
kernel already uses too much shared memory, our al-
locator has no room to place spilled values in that
region, and performs no optimization. We have ob-
served this situation in two of the Rodinia bench-
marks: leukocite and lud. The 40 kernels that we
show in this paper give us 7,646 PTX instructions
and 9,858 variables – in the GSA-form programs – to
analyze. The larger number of variables is due to the
definitions produced by the η, γ and µ functions used
to create the GSA intermediate program representa-
tion. We name each kernel with four letters. The
first two identify the application name, and the oth-
ers identify the name of the kernel. The full names
are available in our webpage.
Runtime of the divergence analysis with affine

constraints: Our divergence analysis with affine
constraints took 58.6 msecs to go over all the 177
kernels. Figure 7 compares the analysis runtime with
the number of variables per program, considering the
40 chosen kernels only. The top chart measures time
in CPU ticks, as given by the rdtsc x86 instruction.
The coefficient of determination between these two
quantities, 0.972, indicates that in practice our anal-
ysis is linear on the number of variables in the target
program. Figure 7 also compares the runtime of our
analysis with the divergent analysis originally present

!"#$%!&

!"#$%'&

!"#$%(&

!"#$%)&

!"#$%*&

!"#$%+&

!"#$%,&

!"#$%-&

!"#$%.&

!"#$!%&

/01234&56&784982:3;& <913&=50>?@5&3A&8:"& <913&8B?3&8?8:C;9;&

Figure 7: Time, in CPU cycles, to run the divergent
analyses compared with the number of variables per
kernel in GSA-form. Points in the X-axis are kernels,
sorted by the number of variables they contain. We
report time of analyses only, excluding other compi-
lation phases.

in the Ocelot distribution. This analysis was imple-
mented after Coutinho et al.’s [2], and was available
by default in Ocelot until revision 1520, when it was
replaced by our algorithm. On the average, our anal-
ysis is just 1.39x slower, even though Ocelot’s old
analysis only marks a variable as uniform or not.
Precision of the divergence analysis with affine

constraints: Figure 8 compares the precision of our
analysis with the precision of the old divergence anal-
ysis of Ocelot. Ocelot’s analysis reports that 63.78%
of the variables are divergent, while we report 58.81%.
However, the old divergence analysis can only mark
a variable as uniform or not [2]. On the other hand,
our analysis can find that 24.84% of the divergent
variables are affine functions of the thread identifier.
Register allocation: Figure 9 compares three dif-
ferent divergence aware register allocators. We use,
as a baseline, the linear scan register allocator [16]
that is publicly available in the Ocelot distribution,
and is not divergence aware. All the four allocators
use the same policy to assign variables to registers
and to spill variables. The divergence aware alloca-
tors are: (DivRA) which moves to shared memory
only the variables that Ocelot’s old divergence analy-
sis [2] marks as uniform. This allocator can only use
the row (ii) in Figure 6; (RemRA), which does not
use shared memory, but tries to eliminate stores and
replace loads by rematerializations of spilled values
that are affine functions of Tid with known constants.
This allocator uses only rows (i) and (iii) in Figure 6;
(AffRA), which uses all the four rows in Figure 6, and
is enabled by this paper’s analysis.

Times are taken from the average of 15 runs of
each kernel. We take about one and a half hours to
execute the 40 benchmarks 15 times on our GTX 570
GPU. Linear Scan and RemRA use nine registers,
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Figure 8: Percentage of divergent variables reported by our divergence analysis with affine constraints and
the divergence analysis of Coutinho et al. [2]. Kernels are sorted by the number of variables.
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Figure 9: From top to bottom: (i) Runtime of the kernels after register allocation using AffRA. (ii) Relative
speedup of different register allocators. Every bar is normalized to the time given by Ocelot’s linear scan
register allocator. The shorter the bar, the faster the kernel. (iii) Static number of instructions inserted to
implement loads of spilled variables. Numbers count loads from local memory that have not been rewritten.
SDK’s Kmeans::invert mapping (km.im) and Transpose::transpose naive did not contain spill code.

whereas DivRA and AffRA use eight, because these
two allocators require one register to load the base
address that each warp receives in shared memory
to place spill code. Each kernel has access to 48KB
of shared memory, and 16KB of cache for the local
memory. On the average, all the divergence aware
register allocators improve on Ocelot’s simple linear
scan. The code produced by RemRA, which only
does rematerialization, is 7.31% faster than the code
produced by linear scan. DivRA gives a speedup of
12.75%, and AffRA gives a speedup of 29.70%. These

numbers are the geometric mean over the results in
Figure 9. There are situations when both DivRA and
AffRA produce code that is slower than the Ocelot’s
linear scan. This fact happens because (i) the local
memory has access to a 16KB cache that is as fast as
shared memory; (ii) loads and stores after rewriting
take three instructions each, according to rule four
of Figure 6: a type conversion, a multiply-add, and
the memory access itself; and (iii) DivRA and AffRA
insert into the kernel some setup code to delimit the
storage area that is given to each warp.
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Figure 9(Bottom) shows how often AffRA uses each
rewriting pattern in Figure 6, column “Load”. The
tuples (0,⊥) ↓, (c, c) ↓ and (c,⊥) ↓ refer to lines ii,
iii and iv of Figure 6, respectively. We did not find
opportunities to rematerialize constants; thus, the
rules in the first line of Figure 6 have not been used.
(⊥,⊥) ⇓ represents loads from local memory that
have not been rewritten. Overall we have been able
to replace 46.8% of all the loads from local memory
with more efficient instructions. The pattern (0,⊥) ↓
replaced 24.1% of the loads, and the pattern (c,⊥) ↓
replaced 15.3%. The remaining 7.4% modified loads
were rematerialized, i.e., they were replaced by the
pattern (c, c) ↓. Stores from local memory have been
replaced similarly. For the exact numbers, see [18].

6 Conclusion

This paper has presented the divergence analysis with
affine constraints. We believe that this is currently
the most precise description of a divergence analysis
in the literature. This paper has also introduced the
notion of a divergence aware register allocator. We
have tested our ideas on a NVIDIA GPU, but these
techniques work in any SIMD-like environment. As
future work, we plan to improve the reach of our anal-
ysis by augmenting it with symbolic constants. We
also want to use it as an enabler of other automatic
optimizations, such as Coutinho et al.’s branch fu-
sion, or Carrillo et al.’s [17] branch splitting.
Reproducibility: our code is publicly available in
Ocelot, revision 1521, June/2012. All the bench-
marks used in this paper are publicly available. For
more information about the experiments, see our
website at http://simdopt.wordpress.com.
Extended version: a more extensive discussion
about our work, including the proof of Theorem 3.1,
is available in the extended version of this paper [18].
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