
HAL Id: hal-00650095
https://hal.science/hal-00650095

Submitted on 9 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Evaluating Targeted Attacks in Large
Scale Dynamic Systems

Emmanuelle Anceaume, Bruno Sericola, Romaric Ludinard, Frédéric Tronel

To cite this version:
Emmanuelle Anceaume, Bruno Sericola, Romaric Ludinard, Frédéric Tronel. Modeling and Evaluat-
ing Targeted Attacks in Large Scale Dynamic Systems. Proceedings of the 41rst 2011 International
Conference on Dependable Systems and Networks (DSN), Jun 2011, Hong-Kong, China. pp.12. �hal-
00650095�

https://hal.science/hal-00650095
https://hal.archives-ouvertes.fr


Modeling and Evaluating Targeted Attacks in Large Scale Dynamic Systems

Emmanuelle Anceaume

CNRS IRISA, France

anceaume@irisa.fr

Bruno Sericola

INRIA Rennes Bretagne-Atlantique, France

sericola@inria.fr

Romaric Ludinard, Frédéric Tronel

Supélec, France

frederic.tronel@rennes.supelec.fr

romaric.ludinard@rennes.supelec.fr

Abstract—In this paper we consider the problem of targeted
attacks in large scale peer-to-peer overlays. These attacks
aimed at exhausting key resources of targeted hosts to diminish
their capacity to provide or receive services. To defend the sys-
tem against such attacks, we rely on clustering and implement
induced churn to preserve randomness of nodes identifiers so
that adversarial predictions are impossible. We propose robust
join, leave, merge and split operations to discourage brute
force denial of services and pollution attacks. We show that
combining a small amount of randomization in the operations,
and adequately tuning the sojourn time of peers in the same
region of the overlay allows first to decrease the effect of
targeted attacks at cluster level, and second to prevent pollution
propagation in the whole overlay.

Keywords-Clusterized P2P Overlays, Adversary, Churn, Col-
lusion, Markov chains.

I. INTRODUCTION

In this paper we consider the problem of targeted attacks

in large scale peer-to-peer systems. These attacks aimed at

exhausting key resources of targeted hosts to diminish their

capacity to provide or receive services [1], at preventing

data indexed at targeted nodes from being discovered and

retrieved by poisoning their routing tables, or simply at

rerouting or dropping messages addressed to targeted nodes.

Such malicious behaviors have led to the proposition of

malicious-resilient overlay systems (e.g., [2], [3], [4]). In all

these systems, it is assumed that at any time, and anywhere

in the overlay, the proportion of compromised peers is

bounded and known. Unfortunately, targeted attacks violate

such an assumption. It has been shown that peer-to-peer

overlays can survive these attacks only if malicious nodes

are not able to isolate honest nodes within the system.

This is achieved by i) preserving randomness of nodes

identifiers [5], and ii) limiting the period of time where

nodes can stay at the same position in the overlay. Induced

churn has been shown to be a fundamental ingredient to

preserve randomness. Churn is classically defined as the rate

of turnover of peers in the system [6], and thus induced

churn refers to the general idea of forcing peers to move

within the system. Several strategies based on this principle

have been proposed. Most of them are based on locally

induced churn. However either they were proven incorrect or

they involve a too high level of complexity to be practically

acceptable [5]. Some other strategies, based on globally

induced churn, force each node to periodically leave and

re-join the system. This may be enforced through nodes

limited lifetime in the system. If not properly handled, these

solutions keep the system in an unnecessary hyper-activity,

which increases accordingly the impact of churn.

In the present work, we investigate adversarial strategies

that aim at isolating honest nodes in cluster based overlays,

and we present an analytical study of the long term behavior

of the system. Our analysis shows that i) by limiting the

sojourn time of nodes at the same position in the overlay

and ii) by introducing randomness in the operations of the

overlay, pollution attacks are severely reduced at cluster level

and do not propagate to the whole overlay. A preliminary

work [7] investigates adversarial strategies in the specific

context where the sequence of join and leave events is well

interleaved. In this paper we extend this preliminary work

to a general context in which clusters size varies with churn

and thus, undergo merge and split operations. To the best

of our knowledge, this is the first work that has conducted

such a study.

The remainder of this paper is as follows: In Section II,

we present existing works that focus on making structured-

based overlays robust against attacks. In Section III we

briefly describe the main features of cluster-based overlays,

and present the assumptions made in this work. Section IV

describes the robust operations implemented in the overlay.

Then, in Section V, we specify the strategy the adversary

adopts to perform targeted attacks in the system. The adver-

sarial behavior is modeled and its impact at both cluster

level and at the overlay level are respectively studied in

Sections VI and VIII. Section IX concludes.

II. RELATED WORK

Different approaches have been proposed to face adversar-

ial setting, each one focusing on a particular adversary strat-

egy. Regarding eclipse attacks, a very common technique,

called constrained routing table, consists in selecting neigh-

bors based on their identifiers so that all of them are close

to some particular points in the identifier space [8]. Such

an approach has been implemented into several overlays

(e.g., [9], [10], [11]). Another defense against those attacks

comes from the observation that during eclipse attacks, the

degree of attackers is much higher than the average degree

of peers in the overlay. Addressing such attacks consists

in bounding peers degrees. Singh et al. [12] propose to



anonymously audit peers to continuously check the bounded

degree of peers. Results of their experimentation show that

their solution is effective in an overlay with low to moder-

ately high churn. More generally, the seminal works on DHT

routing security by Castro et al. [8] and Sit and Morris [13]

combine routing failure tests and redundant routing as a

solution to ensure robust routing. Their approach has then

been successfully implemented in different structured-based

overlays (e.g., [2], [4], [14]). In all these above cited works,

it is assumed that at any time, and anywhere in the overlay,

the proportion of compromised peers is bounded and a

priori known. It allows powerful building blocks such as

Byzantine tolerant agreement protocols to be used among

peers subsets [2], [4]. When such an assumption does not

hold, additional mechanisms are needed. Awerbuch et al [5]

propose the Cuckoo&flip strategy. This strategy consists

in introducing local induced churn upon each join and

leave operation. This strategy prevents malicious peers from

predicting what is going to be the state of the overlay after

a given sequence of join and leave operations. Subsequently

to this work, experiments have been conducted to check

the feasibility of global induced churn. These experiments

assume that the overlay is populated by no more than 25% of

compromised peers [15], or that the topology of the overlay

is static [7].

III. SYSTEM MODEL

A. Model of the Network.

We consider a dynamic system populated by a large

collection of peers in which each peer is assigned a unique

and permanent random identifier from an m-bit identifier

space. Peer identifiers (simply denoted ids in the following)

are derived by applying some standard strong cryptographic

hash function on peers intrinsic characteristics (see below).

The value of m (128 for the standard MD5 hash function) is

chosen to be large enough to make the probability of iden-

tifiers collision negligible. The system is subject to churn,

which is classically defined as the rate of turnover of peers

in the system [6]. For scalability reasons, each peer knows

only a small set of peers existing within the system and this

knowledge generally varies according to the activity of the

system. This set is typically called the node’s local view.

The particular algorithm used by peers to build their local

view and to route messages induces the resulting overlay

topology. Structured overlays (also called Distributed Hash

Tables (DHTs)) build their topology according to structured

graphs (e.g., hypercube, torus) as proposed in [9], [10], [11],

[16], [17]. Peers self-organize within the structured graph

according to a distance function D based on peers ids, plus

possibly other criteria such as geographical distance. Each

data is assigned a unique identifier, called key, selected from

the same m-bit identifiers space. Each peer p owns a fraction

of all the data items of the overlay. The mapping derives

from the distance function D. In cluster-based overlays,

clusters of peers substitute for peers at the vertices of the

structured graph. Each vertex of the structured graph is

composed of a set or cluster of peers. Peers join the clusters

according to distance D. For instance in eQuus [18], peer p
joins the (unique) cluster whose members are geographically

the closest to p, while in PeerCube [4], p joins the (unique)

cluster whose label is a prefix of p’s identifier. Clusters in

the overlay are uniquely labelled. Size of each cluster is

both lower and upper bounded. The lower bound, named

C in the following, usually satisfies some constraint based

on the assumed failure model. The upper bound, that we

will call Smax, is typically in O(logN) where N is the

current number of peers in the overlay, to meet scalability

requirements. Once a cluster size exceeds Smax, this cluster

splits into two smaller clusters, each one populated with

the peers that are closer to each other according to distance

D. Once a cluster undershoots its minimal size C, this

cluster merges with the closest cluster in its neighborhood.

In the present work we assume that at cluster level, peers

are organized as core and spare members. Members of

the core set are primarily responsible for handling mes-

sages routing and clusters operations. Management of the

core set is such that its size is maintained to constant C.

Spare members are the complement number of peers in

the cluster. Size s of the spare set is such that s ≤ ∆
where ∆ = Smax − C. In contrast to core members, spare

members are not involved in any of the overlay operations.

Rationale of this classification is two-fold: first it limits the

management overhead caused by the natural churn present in

typical overlay networks through the spare set management.

Second it allows to introduce the unpredictability required

to deal with malicious attacks through a randomized core

set generation algorithm as shown in the sequel.

In the following we assume that join and leave events

have an equal chance to occur in any cluster.

B. Model of the Adversary

A fundamental issue faced by any practical open system

is the inevitable presence of peers that try to manipulate

the system by exhibiting undesirable behaviors [13]. Such

peers are classically called malicious or Byzantine. Mali-

cious peers can devise complex strategies to prevent peers

from discovering the correct mapping between peers and

data keys. They can mount Sybil attacks [19] (i.e., an at-

tacker generates numerous fake peers to pollute the system),

they can do routing-table poisoning (also called eclipse

attacks [8], [13]) by having honest peers redirecting outgoing

links towards malicious ones, or they can simply drop or

re-route messages towards other malicious peers. They can

magnify their impact by colluding and coordinating their

behavior. We model these strategies through a strong adver-

sary that controls these malicious peers. A strong adversary

is an adversary allowed to deviate arbitrarily far from the

protocol specification. We assume that the adversary has

2



large but bounded resources in that it cannot control more

than a fraction µ (0 < µ < 1) of malicious peers in

the whole network. Note that in the following we make a

difference between the whole universe and the overlay. The

universe U encompasses all the peers that at some point may

participate to the overlay (i.e. 2m peers), while the overlay

contains at any time the subset of participating peers (whose

size is equal to N ). Thus, while µ represents the assumed

fraction of malicious peers in the network, the goal of the

adversary is to populate some parts of the overlay with a

larger fraction of malicious peers in order to subvert the

correct functioning of the overlay. Finally, a peer which

always follows the prescribed protocols is said to be honest.

Note that honest peers cannot a priori distinguish honest

peers from malicious ones.

C. Security Schemes

We assume the existence of a public key cryptography

scheme that allows each peer to verify the signature of each

other peer. We also assume that correct peers never reveal

their private keys. Peers ids and keys (private and public) are

acquired via a registration authority. When describing the

protocols, we ignore the fact that messages are signed, and

recipients of a message ignore any message that is not signed

properly. We also use cryptographic techniques to prevent a

malicious peer from observing or unnoticeably modifying a

message sent by a correct peer. However a malicious peer

has complete control over the messages it sends and receives.

D. Limited Sojourn Time and Random Distribution of ids

As said in the Introduction, the two fundamental proper-

ties that prevent peers isolation are the guarantee that the

distribution of peers identifiers is random, and that peers

cannot stay forever at the same position in the system [5].

Both properties have been analytically proven assuming that

the region size is kept constant [7].

To implement both limited sojourn time of the nodes at the

same place in the overlay and unpredictable identifier assign-

ment in a cluster-based overlay, we propose to limit the life-

time of peers identifiers and to randomize their computation.

Specifically, peers identifiers are initially generated based on

certificates acquired at trustworthy Certification Authorities

(CAs). Initial identifiers (denoted id0) are generated as the

result of applying a hash function H to some of the fields

of a X.509 [20] certificate. To enforce all peers, including

malicious ones, to leave and rejoin the system from time to

time, we add the creation date t0 to the fields that appear

in the peer certificate that will be hashed to generate the

peer identifier (note that by the properties of hash functions,

this guarantees that peers identifiers are unpredictable). We

limit the lifetime peers identifier through an incarnation

number. The current incarnation k of any peer is given by

the following expression k = ⌈(t− t0)/L⌉, where t0 is the

initial creation time of the peer’s certificate, t is the current

time, and L is the length of the lifetime of peers incarnation.

Thus, the kth incarnation of a peer p expires when p local

clock reads t0 + kL. At this time p must rejoin the system

using its (k + 1)th incarnation. The t0 parameter is one of

the fields in the peer’s certificate and since certificates are

signed by the CA, it cannot be unnoticeably modified by a

malicious peer. Moreover, a certificate commonly contains

the public key of the certified entity. This way, messages

exchanged by the peers can be signed using the sender

private key, preventing malicious peers from unnoticeably

altering messages originated from other peers in the system.

Messages must contain the certificate of their issuer, so as

to allow recipients to validate them.1

Therefore, at any time, any peer can check the validity

of the identifier of any other peer q in the system, by

simply calculating the current incarnation k of peer q
and generating the corresponding identifier. Specifically, the

current identifier of peer q, denoted in the following as idq ,

is calculated by hashing q initial identifier (id0
q) with the

current incarnation k of q, i.e., idq = H(id0
q×k). This leads

to the following property.

Property 1 (Limited Sojourn Time): Let D be some

cluster of the system and p some peer in the overlay. Then

q belongs to D at time t if only if idq matches the label of

D according to distance D (we say that q is valid for D).

If some peer p detects that the id of one of its neighbors

q is not valid then it cuts its connection with q. Peer q
may re-join the overlay by triggering a join operation at

cluster D′ such that idq is valid for D′. Note that because

clocks are loosely synchronized, it is possible that a correct

peer is still using its id for incarnation k when other correct

peers would expect it to be in incarnation k+1. To mitigate

this problem, we assume that any correct peer may have

two subsequent valid incarnation numbers, for a fixed grace

window W of time that encompasses the expiration time

of an incarnation number (W is the maximum deviation of

the clocks of any two correct peers). More precisely, at any

time t, both incarnation k and k′ are valid, where k = ⌈(t−
W/2−t0)/L⌉, and k′ = ⌈(t+W/2−t0)/L⌉. Thus, although

each peer p has, at any time t, a single incarnation number

that it uses to define its current id, other peers calculate

two possible incarnation numbers for p. These are frequently

equal, but may differ when p’s local time is close to the

expiration time of its current/last incarnation.

IV. OPERATIONS OF THE OVERLAY

To protect the system against the presence of malicious

peers in the overlay, we propose to take advantage of peers

role separation at cluster level to design robust operations.

1Note that there are means to optimize this procedure as for example by
exchanging certificates during an initialization phase. However this is out
of the scope of our paper.

3



Briefly, the join operation is designed so that brute force

denial of service attacks are discouraged. The Leave

operation impedes the adversary from predicting what is

going to be the composition of the core set after a given

sequence of join and leave events triggered by its malicious

peers. Finally, as both merge and split operations induce

topological changes in the overlay, and more importantly

may have an influence on the subset of the identifier space

the adversary may gain control over, 2 these operations have

been designed so that the adversary has, in expectation, no

interest to trigger them. Specifically,

• join(p): when a peer p joins the system, it joins

the spare set of the closest cluster in the system

(according to distance D). Core members of this cluster

update their spare view to reflect p’s insertion (note

that the spare view update does not need to be tightly

synchronized at all core members).

• leave(p): When a peer p leaves a cluster either

p belongs to the spare set or to the core set. In the

former case, core members simply update their spare

view to reflect p’s departure, while in the latter case,

the core view maintenance procedure is triggered. This

procedure consists in replacing k− 1 randomly chosen

members of the core set with k peers randomly chosen

from the whole cluster, where 1 ≤ k ≤ C (recall that

C is the size of the core set, cf. Section III-A).

• split(D): when a cluster D has reached the con-

ditions to split into two smaller clusters D′ and

D′′, core sets of both D′ and D′′ are built. Priority

is given to core members of D and completion is done

with randomly chosen spares in D. This random choice

is handled through a Byzantine-tolerant consensus run

among core members of D. Spares members of D′

(resp. D′′) are populated with the remaining spares

members of D that are closer to D′ than to D′′ (resp.

closer to D′′ than to D′).

• merge(D′,D′′): when some cluster D′ has reached the

conditions to merge (i.e., its spare set is empty), it

merges with the closest cluster D′′ to D′. The created

cluster D is composed by a core set whose members

are the core set members of D′′ and by a spare set

whose members are the union of the spare members of

D′′ and the core set members of D′.

These four operations make up the overlay protocol. In

the following protocolk will refer to as these four operations

with 1 ≤ k ≤ C the amount of randomization of the core

view maintenance procedure of the leave operation.

V. SPECIFICATION OF THE ADVERSARIAL BEHAVIOR

Based on the operations described in the previous sec-

tion, we investigate how malicious peers could proceed

2Indeed, a merge operation doubles the subset of the identifier space a
cluster is responsible for, while a split operation divides it per two.

to compromise correctness of a targeted cluster. Clusters

correctness is jeopardized as soon as a quorum of its core

members are malicious. It is well known that a necessary

and sufficient condition to prevent agreement among a set

of nodes is that strictly more than a third of the population

set is malicious [21]. In our context, cluster D is said to be

polluted if its core set is populated by more than a quorum c
of malicious peers where c = ⌊(C − 1)/3⌋ malicious peers.

Otherwise, this cluster D is said to be safe.

A. Increasing Global Representation of Malicious Identifiers

As a consequence of assigning an initial unique random

id from an m-bit identifier space to peers and of periodically

pushing peers to random regions in the overlay, the strategy

of the adversary to increase the global representation of

malicious identifiers is a combination of the following three

actions.

First, the adversary maximizes the number of malicious

peers that sit in the whole overlay. By doing so, the adversary

augments the likelihood for its malicious peers to join

targeted clusters. For those peers which cannot immediately

enter targeted clusters (because their current ids do not

match the targeted clusters label), but rather join different

clusters, the goal of the adversary is to pollute these clusters

as well. This augments the subset of identifiers space the

adversary has gained control over, and thus empowers it to

progressively surround the targeted clusters.

Second, the adversary may in some specific cases decide

to trigger a leave operation for some malicious peer in

a given core set if the outcome of the operation increases

the global representation of malicious identifiers in that set.

Indeed, if by having a malicious peer leaving the core

set of a cluster, the likelihood that the outcome of the core

set maintenance process strictly increases the number of

malicious peers in the renewed core set, then the adversary

triggers a leave operation. Formally,

Rule 1 (Adversarial Leave Strategy): Let D be a

cluster such that at time t its core set C contains 0 < x ≤ c
valid malicious peers and its spare set contains y > 1 valid

malicious peers. At time t the adversary triggers a leave(p)

operation for malicious peer p in C if, for a given small

positive threshold ν

x−1+min(k,y)
∑

j=x+1

P

{

exactly j malicious peers ∈ C
after the leave operation

}

> 1−ν. (1)

Recall that k is the amount of randomization of the leave

operation. Note that for k = 1, Relation (1) is never satisfied.

Thus in this specific situation, there is no incentive for

malicious peers to trigger voluntary leaves. For k > 1,

malicious peers collude together to force the one among

them (whose id will expire the soonest) to leave the core.

As the experiments will show, decreasing the amount of

randomization of the leave operation provides the best

strategy against targeted attacks.

4



Finally, once the adversary has succeeded in polluting a

cluster D, he must minimize the likelihood that D switches

back to a safe state. Switching to a safe state may occur

subsequent to either the core maintenance procedure, the

merge, or the split operations. The two latter cases are

detailed in the following section. Regarding the former case,

the adversary can bias the core set maintenance procedure

by replacing the left peer with a (valid) malicious peer from

the spare set if any. On the other hand, if the spare set does

not contain any malicious peers then the adversary has no

choice other than choosing a honest peer (otherwise clusters

in D vicinity will quickly detect that the size of D core set

is less than C).

B. Decreasing the Occurrence of Topological Operations

So far we have seen that the adversary triggers leave

operations for its malicious peers if with high probability it

increases the population of malicious peers in the core set.

However, the adversary will trigger such departures only

if this does not lead the cluster to merge with another

cluster. Indeed, by construction of the merge operation (cf.

Section IV), when D core members trigger a merge with

their closest neighbor D′ then all D members are pushed

to the spare set of the new created cluster D′′ while core

members of D′ keep their status of core members in D′′.

This clearly deters the adversary from triggering merge

operations. We have also seen that to gain the control of

clusters, the strategy of the adversary is to maximize the

number of malicious peers in both the core and the spare

sets of any cluster. However once a cluster is polluted, the

adversary has no interest to let this cluster grow in such

a way that this cluster will undergo a split operation.

Indeed, the outcome of a split operation cannot increase

the subset of identifiers space the adversary has gained

control over—at best, it keeps it the same. Thus when a

polluted cluster is close to split, the adversary acts so that

no join operations are triggered. Note that the adversary

can prevent honest peers from joining D whenever s > 1.

This guarantees that D will not grow because of honest

peers, while ensuring that D will not undergo a merge

operation as much as possible. Specifically,

Rule 2 (Adversarial Join Strategy): Let D be a clus-

ter such that at time t its core set contains ℓ > c valid

malicious peers. Any join event issued by peer q and

received at D at time t is discarded if (q is honest and s > 1)

or (s = ∆ − 1). Recall that ∆ represents the maximal size

of the spare set (c.f. Section III-A).

A possible implementation of Rule 2 is as follows: upon

receipt of a join event from an honest peer q, the adversary

asks the malicious core members to positively acknowledge

q, so that q does not detect that D is polluted, however the

associated join operation is not triggered.

To summarize, the strategy of the adversary is to maxi-

mize the whole subset of the identifiers space it has gained

control over. This is achieved by first never asking its mali-

cious peers to leave their cluster except if either Property 1

does not hold or Rule 1 holds, and second by having the

maximal number of malicious peers join the system except

if Rule 2 holds.

VI. MODELING THE ADVERSARIAL STRATEGY

The evolution of any given cluster D follows both the

overlay protocol protocolk (cf. Section IV) and the strategy

of the adversary (cf. Section V). To analyze the impact of

the adversarial strategy, we make a difference between join

(resp. leave) events and join (resp. leave) operations.

Indeed, from above, the number of leave and join events

issued at malicious peers is greater than or equal to the

number of the associated leave and join operations.

We model the effect of join and leave events using

a homogeneous discrete-time Markov chain denoted by

X = {Xn, n ≥ 0}. Markov chain X represents the evolution

of the number of malicious peers in both the core set and

the spare set of cluster D. The state space Ω of X is defined

by Ω = {(s, x, y) | 0 ≤ s ≤ ∆, 0 ≤ x ≤ C, 0 ≤ y ≤ s}.
For n ≥ 1, the event Xn = (s, x, y) means that, after the

n-th transition (i.e., the n-th join or leave event), the size of

the spare set is equal to s, the number of malicious peers in

the core set is equal to x and the number of malicious peers

in the spare set is equal to y. In the remaining of the paper,

the initial probability distribution of X is denoted by α. The

transition probability matrix M of X is detailed below.

We define a state as polluted if in this state the core

set contains more than c = ⌊(C − 1)/3⌋ malicious peers.

Conversely, a state that is not polluted is said to be safe.

The subset of safe states, denoted by S, is defined by

S = {(s, x, y) | 0 < s < ∆, 0 ≤ x ≤ c, 0 ≤ y ≤ s},
while the subset of polluted states, denoted by P , is defined

by P = {(s, x, y) | 0 < s < ∆, c + 1 ≤ x ≤ C, 0 ≤
y ≤ s}. The system alternates between safe and polluted

states until entering closed states. Closed states represent

the logical disappearance of cluster D from the graph. This

occurs when either D splits into two smaller clusters (i.e.,

its spare set has reached its maximal size ∆) or D merges

with its closest neighbor (i.e., the size of its spare set has

shrunk to 0). Three sets of closed states exist. The set of

safe merge closed states Am
S defined as Am

S = {(s, x, y) |
(s = 0) ∧ (0 ≤ x ≤ c)}, the set of safe split closed states

Aℓ
S defined as Aℓ

S = {(s, x, y) | (s = ∆) ∧ (0 ≤ x ≤ c)},

and the set of polluted merge closed states Am
P defined as

Am
P = {(s, x, y) | (s = 0)∧ (c+1 ≤ x ≤ C)}. Note that by

Rule 2 the states such that s = ∆ and c + 1 ≤ x ≤ C are

not reachable because the adversary strategizes to prevent

a polluted cluster from triggering a split operation (cf.

Section V-B). As a consequence the set of polluted split

closed states is empty. Matrix P is partitioned with respect

5



to the decomposition of Ω = S ∪ P ∪Am
S ∪Aℓ

S ∪Am
P

M =











MS MSP MSAm

S
MSAℓ

S

MSAm

P

MPS MP MPAm

S
MPAℓ

S

MPAm

P

0 0 MAm

S
0 0

0 0 0 MAℓ

S

0

0 0 0 0 MAm

P











where MUV is the sub-matrix of dimension |U | × |V |
containing the transitions from states of U to states of V ,

with U, V ∈ {S, P,Am
S , Aℓ

S , A
m
P }. We simply write MU for

MUU . Note that Am
S , Aℓ

S , and Am
P are absorbing classes.

In the same way, the initial probability distribution α is

partitioned by writing α = (αS αP αAm

S
αAℓ

S

αAm

P
),

where sub-vector αU contains the initial probabilities of

states U ∈ {S, P,Am
S , Aℓ

S , A
m
P }. Figure 1 depicts an ag-

gregated view of the states partition of process X .

S

P

Am
S

Aℓ
S

Am
P

Figure 1: Aggregated view of Markov chain X . All the transient
safe and polluted states are respectively represented by S and P .
States Am

S , Aℓ
S and Am

P represent all the closed safe and polluted
states. For C = 7 and ∆ = 7, we have 288 states.

Computation of transition matrix M is illustrated in

Figure 2. In this tree, each edge is labelled by a probability

and each leaf represents the state of the cluster. This figure

shows all the states that can be reached from state (s, x, y)
and the corresponding transition probabilities. Transition

probabilities depend on i) the type of operation that occurred

(join or leave operation from the core or the spare set),

ii) the type of peers involved in this operation (honest or

malicious), and iii) the ratio of malicious peers already

present in the core set. The probability associated with each

one of these states is obtained by summing the products of

the probabilities discovered along each path starting from

the root to the leaf corresponding to the target state. For

instance, the leftmost branch of the tree corresponds to the

scenario in which some malicious peer wishes to join the

polluted cluster D. By Rule 2, this peer successfully joins

the cluster, leading to state (s + 1, x, y + 1). Now if we

consider the rightmost branch in the tree, this represents

the situation in which cluster D is polluted and one of its

malicious core member p is no more valid. By Property 1,

p leaves D, however as D is polluted, the adversary bias

the core management procedure by replacing p with another

malicious peer from D spare set. State (s − 1, x, y − 1)
is reached. For space reasons, derivation of the transition

probability matrix M is presented in [22].

Modeling and computation of both Property 1 and Rule 1

are as follows. Regarding Property 1, let d be the probability

(per unit of time) that the limited lifetime of some peer p has

not expired. Hence d is homogeneous to a frequency, and

d×∆t represents the probability that the lifetime of a given

peer identifier has not expired during ∆t units of time. From

a practical point of view, we model the limited lifetime of a

peer identifier as an exponential decay process whose half-

time constant (denoted t1/2) is related to d by the standard

relation t1/2 = ln 2/(1 − d). Consequently, the value of

L (cf. III-D) might be calibrated so that 99% of a given

population has decayed after L unit of time. Setting L =
6.65× t1/2 satisfies this requirement3. Then the probability

that for all the peers belonging to a set of size z Property 1

holds is equal to dz . Regarding Rule 1, let q(k, ℓ, u, v) be

the probability of getting u red balls when k balls are drawn

without replacement from an urn containing v red balls and

ℓ − v white balls. We have q(k, ℓ, u, v) =
(

v
u

)(

ℓ−v
k−u

)

/
(

ℓ
k

)

.

q(.) is referred to as the hypergeometric distribution. Let

(s, x, y) be the current state of the Markov chain associated

to cluster D. Then Rule 1 holds if the chain enters one of the

following states (s−1, x+1, y−2), . . . , (s−1, x′, y′), with

x′ = x+y−1 and y′ = 0 if k ≥ x+y−1 otherwise x′ = k
and y′ = x+ y − 1− k, right after the voluntary departure

of one malicious valid core member with probability 1− ν.

From the leave operation Relation (1) writes as

imax
∑

i=i0

jmax
∑

j=i+2

q(k−1, C−1, i, x−1)q(k, s+k−1, j, y+ i) > 1−ν.

(2)

where i0 = max(0, k−1−(C−x)), imax = min(k−1, x−1)
and jmax = min(k, y + i). In Figure 2, notation “1{(2)}”

means that Relation (2) holds.

VII. STUDY OF A CLUSTER BEHAVIOR IN AN

ADVERSARIAL SETTING

In this section, we study the behavior of a cluster ac-

cording to the power of the adversary, the frequency of

the induced churn, and the amount of randomization k
introduced in protocolk.

A. Initial Distributions

In the experiments conducted for this work, we consider

two initial distributions. The first one, which we denote by

β, consists in assuming that the initial size of the spare set

(denoted as s0) is uniformly distributed on {1, . . . ,∆− 1}.

The initial number C0 of malicious peers in the core set

and the one S0 in the spare set both follow a binomial

distribution. The initial state X0 is thus defined by X0 =
(s0, C0, S0). Assuming that C0 and S0 are independent, we

get for x = 0, . . . , C and y = 0, . . . , s0

β(x, y) = P{C0 = x, S0 = y}

=

(

C

x

)

µx(1− µ)C−x

(

s0
y

)

µy(1− µ)s0−y.(3)

3We have that 6.65 ≥ ln 100/ ln 2.

6



(s,x,y)
0 < s < ∆

(s
+
1,

x,
y+

1)
p m

(s
,x

,y
)

1
-p

m

1 {
s
>
1
}

(s
+
1,

x,
y+

1)
p m

(s
+
1,

x,
y)

1
-p

m

1
{
s
=
1
}

1 {
s<

∆
−
1}

(s
,x

,y
)

1
{s=

∆
−
1}

1{x>
c}

(s
+
1,

x,
y)

1
−
pm

(s
+
1,

x,
y+

1)

p
m

1
{x≤c}

pj

(s
-1

,x
,y

)

1-
pm

s

(s
,x

,y
)

d
y

(s
-1

,x
,y

-1
)

1
-d y

p
m
s

1−
pc

(s
-1

,x
+
1,

y-
1)

1 {
y
>
0
}

(s
-1

,x
,y

)

1
{
y
=
0
}

1 {
x
>
c
}

(s
-1

,x
-a

+
b,

y+
a-

b)

τ
(x

,a
,b
)

1
{
x
≤
c
}

1-
pm

c

(s-1,x-1-a+b,y+a-b)

τ
(x

-1
,a

,b
)

1 {
s>

1}

(s
,x

,y
)

1
{
s=

1}

1 {
(2

)}

(s
,x

,y
)

1
{
(2

)}

1 {
x
≤
c
}

(s
,x

,y
)

1
{
x
>
c
}

d
x

(s
-1

,x
-1

-a
+
b,

y+
a-

b)τ
(x

-1
,a

,b
)

1
{
x
−

1
≤

c
}

(s
-1

,x
-1

,y
)

1 {
y
=
0
}

(s
-1

,x
,y

-1
)

1
{
y
>
0
}

1
{
x
−
1
>
c
}

1
-d x

p
m
c

pc

pℓ

Probabilities Value Meaning of the probability

µ ratio of Byzantine peers in the universe U

Smax maximal size of a cluster

C size of the core set of a cluster (C is a system parameter)

∆ Smax − C maximal size of the spare set of a cluster

s current size of the spare set

x number of malicious peers in the core set

y number of malicious peers in the core set

d
probability that the lifetime of a given peer identifier has not expired
(per unit of time)

t1/2 ln 2/(1− d) half-life of a peer identifier

pj (resp. pℓ) 1/2 join (resp. leave) event probability

pc C/(C + s) probability for a peer to belong to the cluster core set

pm µ probability that the joined peer is malicious

pmc x/C probability for a core member to be malicious

pms y/s probability for a spare member to be malicious

1− dx probability that Property 1 is satisfied in the core set during one unit of time

1− dy probability that Property 1 is satisfied in the spare set during one unit of time

1{A} 1 if condition A is true, 0 otherwise represents the indicator function

τ(x, a, b)

probability of building the core (resp. spare) set with x− a+ b
q(k − 1, C − 1, a, x)q(k, s+ k − 1, b, y + a) (resp. y − b+ a) malicious peers where

with q(k, ℓ, u, v) =
(v
u

)(ℓ−v
k−u

)

/
(ℓ
k

)

max(0, k − 1− (C − 1− x)) ≤ a ≤ min(x, k − 1), and

max(0, k − (s+ k − 1− (y + a)) ≤ b ≤ min(y + a, k)

Figure 2: Transition diagram for the computation of the transition probability matrix M .

7



The second one, that we denote by δ, consists in starting

from state (s0, 0, 0), that is the state free from malicious

peers, where s0 = ⌊∆/2⌋. We have

δ(s0, x, y) = 1{x=0,y=0}. (4)

B. Time Spent by Protocolk in Safe States

As described in Section VI the Markov chain X is

reducible, the subset of states S and P are transient and

the subsets Am
S , Aℓ

S and Am
P are closed subsets. We

start our study by first investigating the distribution of

T
(k)
S which counts the total time spent by protocolk in

the subset of safe states S before absorption. Specifically

T
(k)
S =

∑∞
n=0 1{Xn∈S}. Following the results in [23], the

expectation of T
(k)
S is given by

E(T
(k)
S ) = v(I −R)−1

✶. (5)

where v = αS + αP (I − MP )
−1MPS and R = MS +

MSP (I −MP )
−1MPS .

C. Time Spent by Protocolk in Polluted States

In the same way, its expectation is given by

E(T
(k)
P ) = w(I −Q)−1

✶, (6)

where w = αP + αS(I − MS)
−1MSP and Q = MP +

MPS(I −MS)
−1MSP .

Figure 3 compares the expected number of operations

spent in safe and polluted states before absorption for two

protocols, protocol1 and protocolC , as a function of µ, d and

the two initial distributions δ and β. We have only detailed

protocols 1 and C (here C = 7) as we have observed that

they bound the performance of the other ones (here, the

5 other ones). The reason is that protocol1 implements the

least amount of randomization of the leave operation while

protocolC implements the largest one. This will allow us

to illustrate the fact that, counterintuitively, increasing the

amount of randomization of the operations does not make

them necessarily more resilient to strong adversaries.

Lessons Learnt from these Experiments: The first les-

son that we can draw from this figure is the impact of

the initial distribution on the behavior of the cluster. When

this distribution equals δ (i.e., the cluster is initially free

from malicious peers), the number of operations run in safe

states is much larger than the one spent in polluted ones

for both protocols. This holds even for very large values

of both µ and d. This comes from the combined effects

of both the join and leave operations. The former one

prevents new peers to directly belong to the core set, while

the latter one randomizes the core set population, demanding

accordingly a certain amount of time for the adversary to

successfully pollute a cluster. On the other hand, when

starting with α = β, both the core and the spare sets are

initially populated with malicious peers (proportionally to

µ). Hence this requires less effort for the adversary to gain

control of the cluster.

The second lesson relates to the impact of randomiza-

tion on cluster resiliency. For a given initial distribution

α, protocol1 always outperforms protocolC , that is for

both a given µ and a given d, E(T
(1)
S ) ≥ E(T

(C)
S ) and

E(T
(1)
P ) ≤ E(T

(C)
P ). This shows that increasing the amount

of randomization does not make the protocols more resilient

to targeted attacks.

The third lesson is linked to peers identifiers lifetime d.

For increasing values of d, the expected time spent in safe

clusters strictly increases, while the one spent in polluted

clusters slightly decreases, for a fixed µ. This is explained

by the fact that malicious peers can stay longer in the cluster,

increasing accordingly their proportion in the cluster up

to pollution. Once polluted, the adversary prevents split

operations from occurring. This increases accordingly the

time spent in polluted states and thus the lifetime of the

cluster. Clearly this phenomenon is more noticeable for

larger values of µ. Now for d close to 1, malicious peers are

allowed to stay almost forever in their cluster. This enables

them to quickly gain the quorum in their cluster, and thus

prevent any safe operation to be triggered even for very small

values of µ (see Table I). This clearly confirms that churn is

a fundamental ingredient to defend against targeted attacks.

Finally, it is interesting to remark that in a failure free

environment (µ = 0), we have E(T
(k)
S ) + E(T

(k)
P ) =

⌊∆2/4⌋ = 12. Actually ⌊∆2/4⌋ corresponds to the max-

imal expected number of steps before absorption in a one

dimensional random walk with borders (here, ∆ is the length

between the two borders).

D. Successive Times Spent by Protocolk in Polluted and Safe

States

A deeper investigation of protocolk can be conducted by

studying the duration and frequency of successive times

spent in subsets S and P . For n ≥ 1, we denote by T
(k)
S,n

(resp. T
(k)
P,n) the distribution of the time spent by the Markov

chain X during its n-th sojourn in subset S (resp. P ). Thus

the total time spent in subset S (resp. P ) before reaching

subsets AS and AP is given by

T
(k)
S =

∞
∑

n=1

T
(k)
S,n and T

(k)
P =

∞
∑

n=1

T
(k)
P,n.

From [24], we have for n ≥ 1 and ℓ ≥ 0

E(T
(k)
S,n) = vGn−1(I −MS)

−1
✶, (7)

where v is defined in Relation (5) and G = (I −
MS)

−1MSP (I −MP )
−1MPS , and

E(T
(k)
P,n) = wHn−1(I −MP )

−1
✶, (8)

where w is defined in Relation 6 and H = (I −
MP )

−1MPS(I −MS)
−1MSP .

8



 0

 2

 4

 6

 8

 10

 12

 14

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

Expected Number of Events in Transient States (Safe and Polluted) for Protocol 1

ET(S)
ET(P)

d=90%d=80%d=30%d=0%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

Expected Number of Events in Transient States (Safe and Polluted) for Protocol 1

ET(S)
ET(P)

d=90%d=80%d=30%d=0%

 0

 2

 4

 6

 8

 10

 12

 14

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

Expected Number of Events in Transient States (Safe and Polluted) for Protocol 7

ET(S)
ET(P)

d=90%d=80%d=30%d=0%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

Expected Number of Events in Transient States (Safe and Polluted) for Protocol 7

ET(S)
ET(P)

d=90%d=80%d=30%d=0%

Figure 3: E(T
(k)
S ) (Relation (5)) represented by hatched bars, and E(T

(k)
P ) (Relation (6)) represented by plain bars as a

function of k, µ and d. In all these experiments C = 7, ∆ = 7, and for the two figures on the left (resp. right), we have

α = δ (resp. α = β).

µ = 0% µ = 10% µ = 20% µ = 30%
d 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999

E(T
(1)
S ) 12.0 12.0 12.0 12.09 12.08 12.08 11.88 11.84 11.83 11.54 11.48 11.47

E(T
(1)
P ) 0.0 0.0 0.0 0.15 2.6 1518 1.14 699.7 511810822. 5.96 12597. 9299884149

Table I: E(T
(k)
S ) and E(T

(k)
S ) as a function of µ and d. In these experiments k = 1, C = 7, ∆ = 7, and α = δ.

µ = 0% µ = 10% µ = 20% µ = 30%

E(T
(1)
S,1) 12 12.085 11.890 11.570

E(T
(1)
S,2) 0 0.013 0.033 0.043

E(T
(1)
P,1) 0 0.099 0.558 1.611

E(T
(1)
P,2) 0 0.004 0.26 0.075

Table II: Successive sojourn times in transient states S and

P as a function of µ and d. In these experiments k = 1,

C = 7, ∆ = 7, d = 90%, and α = δ.

Table II shows the expected duration of successive sojourn

times in subsets S and P for protocolk, with k = 1. We can

see that E(T
(k)
S ) ≃ E(T

(k)
S,1 ) and E(T

(k)
P ) ≃ E(T

(k)
P,1), that

is the protocol does not alternate between safe and polluted

states. This is very noticeable for small values of µ while a

little bit less for larger ones.

E. Absorption Probabilities

Clusters eventually either split into two smaller clusters

or merge with another cluster. An important question to

be answered is whether or not split operations are more

frequent than merge ones (for safe clusters), and whether

or not polluted clusters merge more frequently than safe

9



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

Absorption Probabilities in the Safe Merge, Safe Split and Polluted Merge Absorption States

p(safe-merge)
p(safe-split)

p(polluted-merge)

d=90%d=80%d=30%d=0%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

m
u=0

m
u=5

m
u=10

m
u=15

m
u=20

m
u=25

m
u=30

Absorption Probabilities in the Safe Merge, Safe Split and Polluted Merge Absorption States

p(safe-merge)
p(safe-split)

p(polluted-merge)

d=90%d=80%d=30%d=0%

Figure 4: p(Am
S ), p(Aℓ

S) and p(Am
P ) (cf. Relation (9)) respectively represented by red hatched, plain and blue hatched bars

as a function of µ and d. In these experiments k = 1, C = 7, and ∆ = 7. We have α = δ for the left figure and α = β for

the right one.

ones. Rewriting matrix M as

M =

(

T Rm
S Rℓ

S Rm
P

0 ∗ ∗ ∗

)

with T =

(

MS MSP

MPS MP

)

with Rv
U =

(

MSAv

U

MPAv

U

)

with U ∈ {S, P} and v ∈ {m, ℓ},

then starting from an initial distribution α = (αT 0 0 0),
with αT = (αS αP ) then the probability p(Aℓ

S) for Markov

chain X to be absorbed in states Aℓ
S is

p(Aℓ
S) = αT (I − T )−1

R
ℓ
S✶. (9)

A similar computation gives the probabilities p(Am
S ) and

p(Am
P ) to be respectively absorbed in states Am

S and Am
P .

Figure 4 shows these different probabilities of absorption

for protocol1 with the initial distribution α = δ (on the left

graph) and α = β (on the right graph). Clearly in absence of

adversarial behavior (µ = 0), the cluster remains safe until it

splits or merge, and both operations are equiprobable.

Actually, we see that p(Am
S ) = 0.57 and p(Aℓ

S) = 0.43.

This comes from the fact that the initial size s0 of the spare

set is equal to ⌊∆/2⌋ = ⌊7/2⌋ = 3 (cf. Section VII-A),

and thus the probability to reach a merge safe state equals

1 − 3/7 ≃ 0.57, and thus a split safe state equals 0.43.

Thus after some initial period of growth, the topology of

the overlay is stable. Let us now observe the influence of

the adversary on the probabilities of absorption. For a given

µ, the probability for a safe cluster to split increases

with larger values of d. This confirms the results described

above: the population of the cluster increases as malicious

peers trigger less leave operations than join operations.

However, despite the fact that malicious peers stay longer

in the cluster, for α = δ, the probability for the cluster to

merge in a polluted state is very small (strictly less than

8%) even for very large values of both µ (e.g., µ = 30%) and

d (e.g., d = 90%). These results are of utmost importance

as they show that it is very improbable that polluted clusters

manage to contaminate the other clusters of the system. As

a consequence this fault-containment feature makes unlikely

the probability for a cluster to start in a state in which

the population of malicious peers is non negligible, that is

from the initial distribution β. This is confirmed in the next

Section.

VIII. MODELING THE ADVERSARIAL STRATEGY IN THE

OVERLAY NETWORK

We now analyze the impact of the adversary on the

whole overlay, and in particular the long run proportion of

polluted clusters. We consider an overlay populated with n
clusters D1, . . . ,Dn, and subject to join and leave events.

Each cluster Di implements the same protocol protocolk.

We assume that join and leave events are uniformly dis-

tributed throughout the overlay. Specifically, when a join

or leave event occurs in the overlay it affects cluster Di

with probability pi = 1/n. Thus we consider, for n ≥ 1, n
Markov chains X(1), . . . , X(n) identical to X , i.e. with the

same state space Ω, the same transition probability matrix

M and the same initial probability distribution α. However

these chains are not independent since, at each instant, only

one Markov chain is allowed to make a transition, this

Markov chain being chosen with probability 1/n. We denote

by N
(n)
S (m) and N

(n)
P (m) the respective number of safe and

polluted clusters just after the mth join or leave event, i.e.

the respective number of Markov chains that are in set S and

in set P at instant m. More formally, these random variables

are defined, for m ≥ 0, by

N
(n)
S (m) =

n
∑

h=1

1
{X

(h)
m ∈S}

and N
(n)
P (m) =

n
∑

h=1

1
{X

(h)
m ∈P}

.

10



It has been proved in [25] that the transient state probabilities

of each Markov chain X(h), h = 1, . . . , n at instant m ≥ 0
is given by the following theorem.

Theorem 1: For every h = 1, . . . , n, m ≥ 0 and j ∈ Ω,

we have

P{X(h)
m = j} =

m
∑

ℓ=0

(

m

ℓ

)

(

1

n

)ℓ (

1−
1

n

)m−ℓ

P{Xℓ = j}

(10)

Note that this probability is independent of h since, even

though the Markov chains are dependent, they behave iden-

tically and each of them is chosen with probability 1/n.

The expectations of random variables E(N
(n)
S (m)) and

E(N
(n)
P (m)) are then obtained in the following theorem.

We denote by ✶S (resp. ✶P ) the column vector of dimension

|S ∪ P | which ith entry is equal to 1 (resp. 0) if i ∈ S and

0 (resp. 1) if i ∈ P .

Theorem 2: For every n ≥ 1 and m ≥ 0, we have

E(N
(n)
S (m))

n
= α

(

1

n
T +

(

1−
1

n

)

I

)m

✶S .

E(N
(n)
P (m))

n
= α

(

1

n
T +

(

1−
1

n

)

I

)m

✶P .

Proof: From the definition of N
(n)
S (m) and using

Theorem 1, we have

E(N
(n)
S (m)) =

n
∑

h=1

P{X(h)
m ∈ S} =

n
∑

h=1

∑

j∈S

P{X(h)
m = j}

= n

m
∑

ℓ=0

(

m

ℓ

)(

1

n

)ℓ (

1−
1

n

)m−ℓ

P{Xℓ ∈ S}

It is well-known that the transient state probabilities of

generic Markov chain X are given by

P{Xℓ ∈ S} = αT ℓ
✶S .

We thus get

E(N
(n)
S (m)) = n

m
∑

ℓ=0

(

m

ℓ

)(

1

n

)ℓ (

1−
1

n

)m−ℓ

αT ℓ
✶S

= nα

(

1

n
T +

(

1−
1

n

)

I

)m

✶S .

Expectation E(N
(n)
P (m)) is obtained using the same lines.

The states of S ∪ P being transient, matrix T is sub-

stochastic and so is matrix T/n + (1 − 1/n)I , for every

n ≥ 1. We then have, for every n ≥ 1,

lim
m−→∞

E(N
(n)
S (m))

n
= lim

m−→∞

E(N
(n)
P (m))

n
= 0.

Figure 5 depicts the expected proportion of safe (left

figure) and polluted (right figure) clusters after the mth

transition, i.e., that is the mth join or leave operation,

for realistic values of n and d. The main observation is that

the expected proportion of polluted (right figure) clusters

is very low even for large values of d (less that 2.2%).

Let us then observe that the expected proportion of safe

clusters is almost independent of d value. The same remark

holds for the expected proportion of polluted clusters (even

though because of the different y-axis scale used for this

figure the phenomenon is not visually straightforward). This

independence can be explained by the fact that the real churn

dominates the induced churn (represented by parameter d).

IX. CONCLUSION

The main lessons learnt from this study is that (i) shuffling

a single peer at a time (protocol1) performs better than

shuffling several peers (protocolk with k > 1). This is an

interesting property because when k = 1, the implemen-

tation is reduced to a single Byzantine tolerant agreement

algorithm run amongst spare members, compared to two

such runs for k > 1 (an additional one is needed in the

core set). (ii) By choosing an adequate value of L, i.e., the

length of the lifetime of peers incarnation, it is possible to

noticeably reduce the propagation of attacks in the whole

system, and remarkably decrease the overhead of the induced

churn at cluster level. This is another interesting result as

it demonstrates that there is no need to keep the system

in an hyper-activity to be resilient against targeted attacks.

Pushing peers smoothly but to unpredictable regions of the

system is sufficient.

REFERENCES

[1] N. Naoumov and K. W. Ross, “Exploiting p2p systems for
ddos attacks,” in Proceedings of the International Conference
on Scalable Information Systems (Infoscale), 2006.

[2] A. Fiat, J. Saia, and M. Young, “Making chord robust to
byzantine attacks,” in Proceedings of the Annual European
Symposium on Algorithms (AESA), 2005.

[3] I. Baumgart and S. Mies, “S/kademlia: A practicable approach
towards secure key-based routing,” in Proceedings of the
International Conference on Parallel and Distributed Systems
(ICPADS), 2007.

[4] E. Anceaume, F. Brasileiro, R. Ludinard, and A. Ravoaja,
“PeerCube: an hypercube-based p2p overlay robust against
collusion and churn,” in Proceedings of the International
Conference on Self-Adaptive and Self-Organizing Systems
(SASO), 2008.

[5] B. Awerbuch and C. Scheideler, “Towards scalable and ro-
bust overay networks,” in Proceedings of the International
Workshop on Peer-to-Peer Systems (IPTPS), 2007.

[6] P. B. Godfrey, S. Shenker, and I. Stoica, “Minimizing churn in
distributed systems,” in Proceedings of the ACM SIGCOMM,
2006.

11



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20000  40000  60000  80000  100000

m=Number of Events 

n=500 and d=30% (i.e., L=6.58)

n=500 and d=90% (i.e., L=46.05)

n=1500 and d=30% (i.e., L=6.58)

n=1500 and d=90% (i.e., L=46.05)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  20000  40000  60000  80000  100000

m=Number of Events 

n=500 and d=30% (i.e., L=6.58)

n=500 and d=90% (i.e., L=46.05)

n=1500 and d=30% (i.e., L=6.58)

n=1500 and d=90% (i.e., L=46.05)

Figure 5:
E(N

(n)
S

(m))

n and
E(N

(n)
P

(m))

n as a function of m for different values of n and d.

[7] E. Anceaume, F. Brasileiro, R. Ludinard, B. Sericola, and
F. Tronel, “Analytical study of adversarial strategies in cluster-
based overlays,” in Proceedings of the 2nd International
Workshop on Reliability, Availability, and Security (WRAS),
2009.

[8] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach, “Secure routing for structured peer-to-peer overlay
networks,” in Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,” in
Proceedings of the ACM SIGCOMM, 2001.

[10] I. Stoica, D. Liben-Nowell, R. Morris, D. Karger, F. Dabek,
M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” in Pro-
ceedings of the ACM SIGCOMM, 2001.

[11] P. Druschel and A. Rowstron, “Past: A large-scale, persistent
peer-to-peer storage utility,” in Proceedings of the Workshop
on Hot Topics in Operating Systems (HotOS), 2001.

[12] A. Singh, T. Ngan, P. Drushel, and D. Wallach, “Eclipse
attacks on overlay networks: Threats and defenses,” in Pro-
ceedings of the Conference on Computer Communications
(INFOCOM), 2006.

[13] E. Sit and R. Morris, “Security considerations for peer-to-peer
distributed hash tables,” in Proceedings of the International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[14] K. Hildrum and J. Kubiatowicz, “Asymptotically efficient
approaches to fault-tolerance in peer-to-peer networks,” in
Proceedings of theInternational Symposium on Distributed
Computing (DISC), 2003.

[15] T. Condie, V. Kacholia, S. Sankararaman, J. M. Hellerstein,
and P. Maniatis, “Induced churn as shelter from routing-table
poisoning,” in Procs of the 13th thirteenth Annual Symposium
on Network and Distributed System Security (NDSS’06),
2006.

[16] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing
nearby copies of replicated objects in a distributed environ-
ment,” in Proceedings of the 9th Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), 1997.

[17] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the XOR metric,” in Proceed-
ings for the International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[18] T. Locher, S. Schmid, and R. Wattenhofer, “eQuus: A
provably robust and locality-aware peer-to-peer system,” in
Proceedings of the International Conference on Peer-to-Peer
Computing (P2P), 2006.

[19] J. Douceur, “The sybil attack,” in Proceedings of the Inter-
national Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[20] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet x.509
public key infrastructure certificate and crl profile,” 1999.

[21] L. Lamport, R. Shostak, and M. Pease, “The byzantine gener-
als problem,” ACM Transactions on Programming Languages
and Systems, vol. 4, 1982.

[22] E. Anceaume, R. Ludinard, B. Sericola, and F. Tronel, “Per-
formance analysis of large scale peer-to-peer overlays using
markov chains,” IRISA, http://hal.inria.fr/inria-00546039/en/,
Tech. Rep. 1963, 2010.

[23] B. Sericola, “Closed form solution for the distribution of
the total time spent in a subset of states of a Markov
process during a finite observation period,” Journal of Applied
Probability, vol. 27, no. 3, pp. 713–719, 1990.

[24] B. Sericola and G. Rubino, “Sojourn times in Markov pro-
cesses,” Journal of Applied Probability, vol. 26, no. 4, pp.
744–756, 1989.

[25] E. Anceaume, F. Castella, R. Ludinard, and B. Seri-
cola, “Markov chains competing for transitions: Ap-
plication to large scale distributed systems,” INRIA,
http://hal.inria.fr/inria-00485667/en/, Tech. Rep., 2011.

12


