
HAL Id: hal-00650086
https://hal.science/hal-00650086v1

Submitted on 9 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependability Evaluation of Cluster-based Distributed
Systems

Emmanuelle Anceaume, Francisco Brasiliero, Romaric Ludinard, Bruno
Sericola, Frédéric Tronel

To cite this version:
Emmanuelle Anceaume, Francisco Brasiliero, Romaric Ludinard, Bruno Sericola, Frédéric Tronel.
Dependability Evaluation of Cluster-based Distributed Systems. International Journal of Foundations
of Computer Science, 2011, 22 (5), pp.1123-1142. �10.1142/S0129054111008593�. �hal-00650086�

https://hal.science/hal-00650086v1
https://hal.archives-ouvertes.fr


September 30, 2010 8:41 WSPC/INSTRUCTION FILE IJFCS

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

DEPENDABILITY EVALUATION OF

CLUSTER-BASED DISTRIBUTED SYSTEMS∗

EMMANUELLE ANCEAUME

CNRS / IRISA, Campus Universitaire de Beaulieu, Rennes, France
emmanuelle.anceaume@irisa.fr

FRANCISCO BRASILEIRO

Universidade Federal de Campina Grande, LSD Laboratory, Campina Grande, Brazil
fubica@dsc.ufcg.edu.br

ROMARIC LUDINARD,† BRUNO SERICOLA

INRIA Rennes Bretagne-Atlantique, Rennes, France
{romaric.ludinard,bruno.sericola}@inria.fr
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Awerbuch and Scheideler have shown that peer-to-peer overlay networks can survive
Byzantine attacks only if malicious nodes are not able to predict what will be the topology
of the network for a given sequence of join and leave operations. In this paper we inves-

tigate adversarial strategies by following specific protocols. Our analysis demonstrates
first that an adversary can very quickly subvert overlays based on distributed hash tables
by simply never triggering leave operations. We then show that when all nodes (honest

and malicious ones) are imposed on a limited lifetime, the system eventually reaches a
stationary regime where the ratio of polluted clusters is bounded, independently from
the initial amount of corruption in the system.

1. Introduction

The adoption of peer-to-peer overlay networks as a building block for architecting

Internet scale systems has raised the attention of making these overlays resilient

not only to benign crashes, but also to malicious failure models [1, 2, 3]. As a result,

∗A shorter version of this paper appeared in the 2nd International Workshop on Reliability, Avail-
ability and Security (WRAS), February 2010.
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Byzantine-resilient overlays have been proposed (e.g., [4, 5, 6, 7]). Awerbuch and

Scheideler [8] have shown that peer-to-peer overlay networks can survive Byzantine

attacks only if malicious nodes are not able to predict what will be the topology

of the network for a given sequence of join and leave operations. A prerequisite for

this condition to hold is to guarantee that nodes identifiers randomness is continu-

ously preserved. However this is not sufficient as by holding a logarithmic number

of addresses the adversary can disconnect some target from the overlay in a linear

number of trials. Similarly, randomly placing data in the network, as operated in

unstructured overlay networks, guarantees that data are difficult to attack however

requires a linear number of queries to be retrieved which is not scalable [9]. In-

ducing churn has been shown to be the other fundamental ingredient to preserve

randomness. Churn is classically defined as the rate of turnover of peers in the

system [10], and thus induced churn refers to the general idea of forcing peers to

move within the system. Several strategies based on this principle have been pro-

posed. Most of them are based on locally induced churn. However either they have

been proven incorrect or they involve a level of complexity that is too high to be

practically acceptable [8]. The other ones, based on globally induced churn, enforce

limited lifetime for each node in the system. This keeps the system in an unnec-

essary hyper-activity, and thus needs to impose strict restrictions on nodes joining

rate which limits its applicability to open systems.

In this paper we propose to leverage the power of clustering to design a practi-

cally usable solution that preserves randomness under an adaptive adversary. Our

solution relies on the clusterized version of peer-to-peer overlays combined with

a mechanism that allows the enforcement of limited nodes lifetime. Cluster-based

overlays have revealed to be well adapted for reducing both the impact of churn

on the system and the damage caused by failures in the absence of targeted at-

tacks [6, 11, 4]. The contributions of this paper are two-fold. We first investigate

adversarial strategies by following specific protocols. Our analysis demonstrates

that an adversary can very quickly subvert cluster-based overlays by simply never

triggering leave operations. We then show that when all nodes are imposed on a

limited lifetime, the system eventually reaches a stationary regime where the ratio

of polluted clusters is bounded.

The remainder of this paper is organized as follows: In Section 2 we briefly

describe the main features of cluster-based overlays, and their dependability issues.

Section 3 presents the overlay operations. In Section 4 the adversarial behavior is

modeled and its impact at cluster level by using a Markovian analysis is studied. In

this section, we consider a non restricted adversary. Section 5 is devoted to the same

study in the case of a restricted adversary. Section 6 shows that by inducing churn

at all peers of the system, safety of the system is preserved. Section 7 demonstrates

the practicability of our solution. We conclude in Section 8.
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2. Overlay Networks

An overlay network is a virtual network built on top of a physical network. Nodes

of the overlay, usually called peers, communicate among each other along the edges

of the overlay by using the communication primitives provided by the underlying

network (e.g., IP network service). The algorithms that peers use to choose their

neighbors and to route messages define the overlay topology. The topology of un-

structured overlays conforms with random graphs, i.e., relationships among peers

are mostly set according to a random process which makes joining and leaving

operations constraint free. Data placement enjoy the same absence of constraints.

Any data can be placed on any peer thereby imposing flooding or random walk

techniques to retrieve them. Randomly placing data in the network guarantees that

data is difficult to attack but requires a linear number of queries to be retrieved

which is definitively not scalable [9]. This scalability issue can be circumvented at

the price of strong restrictions on churn [12]. Structured overlays (also called Dis-

tributed Hash Tables (DHTs)) build their topology according to structured graphs

(e.g., hypercube, torus). For most of them, the following principles hold: each peer

is assigned a unique random identifier from an m-bit identifiers space. Identifiers

(denoted IDs in the following) are derived by applying some standard cryptographic

one-way hash function on the peers network address. The value of m (128 for the

standard MD5 hash function) is large enough to make the probability of identi-

fiers collision negligible. The identifier space is partitioned among all the peers of

the overlay. Peers self-organize within the structured graph according to a distance

function D based on peers IDs (e.g., two peers are neighbors if their IDs share some

common prefix), plus possibly other criteria such as geographical distance. Each

application-specific object, or data-item, is assigned a unique identifier, called key,

selected from the same m-bit identifiers space. Each peer p owns a fraction of all the

data items of the overlay. The mapping derives from the distance function D. In the

following, we will use the term peer (or key) to refer to both the peer (or key) and

its m-bit representation. Following the seminal work of Plaxton et al [13], diverse

DHTs have been proposed (e.g., CAN [14], Chord [15], Pastry [16], Kademlia [17]).

All these DHTs have been proven to be highly satisfactory in terms of efficiency

and scalability (i.e., their key-based routing interface guarantees operations whose

complexity in messages and latency usually scale logarithmically with system size).

However, in presence of adversarial behavior, relying on single peers to ensure the

system connectivity and the correct retrieval of data is clearly not sufficient, as by

holding a logarithmic number of addresses the adversary can in a linear number of

trials disconnect some target from the overlay. On the contrary, by having peers

gathered into quorums or clusters, one can introduce the unpredictability required

to deal with Byzantine attacks through randomized algorithms. This has led to

cluster-based structured overlay networks.
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2.1. Cluster-based Structured Overlay Networks

Cluster-based structured overlay networks are such that clusters of peers substitute

for peers at the vertices of the structured graph. Each vertex of the structured graph

is composed of a set or cluster of peers. Peers join the clusters according to a given

distance metric D. For instance in PeerCube [6], peer p joins the (unique) cluster

whose label is a prefix of p’s identifier, while in eQuus [11], p joins the (unique)

cluster whose members are geographically the closest to p. Clusters in the overlay

are uniquely labelled. Size of each cluster is both lower and upper bounded. The

lower bound, named c in the following, usually satisfies some constraint based on

the assumed failure model. For instance c ≥ 4 allows Byzantine tolerant agreement

protocols to be run among these c peers despite the presence of one Byzantine

peer [18]. The upper bound, that we call Smax, is typically in O(logU) where U is

the current number of peers in the overlay, to meet scalability requirements. Once

a cluster size exceeds Smax, this cluster splits into two smaller clusters, each one

populated with the peers that are closer to each other according to distance D.

Once a cluster undershoots its minimal size c, this cluster merges with the closest

cluster in its neighborhood. For space reasons we do not give any detail regarding

localization of a cluster in the overlay nor the split/merge operations. None of

these processes are strictly necessary to understand our work. The interested reader

is invited to read their descriptions in the original papers (e.g. [4, 6, 11]).

In the present work we assume that at cluster level, peers are organized as core

and spare members. Members of the core set are primarily responsible for handling

messages routing and clusters operations. Management of the core set is such that

its size is maintained to constant c. Spare members are the complement number of

peers in the cluster. Size s of the spare set is such that s ≤ S where S = Smax − c.

In contrast to core members, spare members are not involved in any of the overlay

operations. Rationale of this classification is two-fold: first it allows to introduce the

unpredictability required to deal with Byzantine attacks through a randomized core

set generation algorithm as shown in the sequel. Second it limits the management

overhead caused by the natural churn present in typical overlay networks through

the spare set management. In the following we assume that join and leave events

have an equal chance to occur in any cluster.

2.2. Dependability Issues

A fundamental issue faced by any practical open system is the inevitable presence

of peers that try to manipulate the system by exhibiting undesirable behaviors [3].

Such peers are classically called malicious or Byzantine. Malicious peers can devise

complex strategies to prevent peers from discovering the correct mapping between

peers and data keys. They can mount Sybil attacks [19] (i.e., an attacker generates

numerous fake peers to pollute the system), they can do routing-table poisoning

(also called eclipse attacks [1, 3]) by having honest peers redirecting outgoing links

towards malicious ones, or they can simply drop or re-route messages towards other
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malicious peers. They can magnify their impact by colluding and coordinating their

behavior. We model these strategies through a strong adversary that controls these

malicious peers. We assume that the adversary has large but bounded resources in

that it cannot control more than a fraction µ (0 < µ < 1) of malicious peers in the

whole network. Note that in the following we make a difference between the whole

network and the overlay. The network encompasses all the peers that at some point

may participate to the overlay (i.e. 2m peers), while the overlay contains at any time

the subset U of participating peers. Thus, while µ represents the assumed fraction

of malicious peers in the network, the goal of the adversary is to populate some

parts of the overlay with a larger fraction of malicious peers in order to subvert the

correct functioning of the overlay. Finally, a peer which always follows the prescribed

protocols is said honest. Note that honest peers cannot a priori distinguish honest

peers from malicious ones.

2.3. Security Schemes

We assume the existence of a public key cryptography scheme that allows each peer

to verify the signature of each other peer. We also assume that correct peers never

reveal their private keys. Peers IDs and keys (private and public) are acquired via

a registration authority. When describing the protocols, we ignore the fact that

messages are signed, and recipients of a message ignore any message that is not

signed properly. We also use cryptographic techniques to prevent a malicious peer

from observing or unnoticeably modifying a message sent by a correct peer. However

a malicious peer has complete control over the messages it sends and receives.

3. Operations of the Overlay

When a peer joins a cluster or leaves it, corresponding operations are executed.

Design of these operations takes advantage of peers role separation. The leave

operation for peers in the core set introduces a certain amount of unpredictability

required to deal with Byzantine attacks through a randomized core set generation

algorithm. On the other hand both leave operations for peers in the spare set and

join operations have no impact on the overall topology (provided that the size of

the concerned cluster does not reach its lower or upper bounds) discouraging brute

force denial of service attacks. Specifically:

· join(p): when peer p joins the system, it joins the spare set of the closest

cluster G in the system (according to distance D). Core member of G update their

spare view to reflect p’s insertion (note that the spare view update does not need

to be tightly synchronized among all core members).

· leave(p): when peer p leaves its cluster G, either p belongs to G spare view

or to G core view. In the former case, core members of G simply update their spare

view to reflect p’s departure, while in the latter case the core view maintenance

procedure is triggered. Two maintenance procedures are analyzed. The first one,

called procedure1, simply consists in replacing the left core member by one randomly
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chosen among the spare members. The second one, called procedure2, consists in

renewing the whole core set by choosing c random peers among the whole cluster.

The join and leave operations make up the cluster protocol. In the following

Protocol1 refers to a leave(.) operation followed by a join(.) operation with proce-

dure1 as maintenance procedure. Similarly, Protocol2 refers to a leave(.) operation

followed by a join(.) operation using procedure2.

4. Modeling the Adversarial Strategy in a Cluster

In this section, we investigate to which extent the two previously described proto-

cols, i.e., Protocol1 and Protocol2, prevent the adversary from elaborating deter-

ministic strategies to compromise the correctness of a targeted cluster G. Correctness

of a cluster is compromised as soon as a quorum of core members are malicious.

Specifically, in both maintenance procedures, core members trigger a Byzantine-

resilient consensus algorithm to agree on the composition of the renewed core view.

It is well-known that a necessary and sufficient condition to prevent agreement

among a set of nodes is that strictly more than a third of these nodes are mali-

cious [18]. In our context, cluster G is said polluted if its core set is populated by

strictly more than ⌊(c− 1)/3⌋ malicious peers, with c the size of the core set. In the

following, we denote by c′ the value ⌊(c− 1)/3⌋.

Both Protocol1 and Protocol2 are modeled by using the ball and urn model

as presented in Figure 1. Specifically, the very large number of peers in the network

is depicted by a potentially infinite number of white and red balls in a bag. White

balls represent honest peers, while red ones represent malicious peers. There is a

proportion 1−µ of white balls and a proportion µ of red balls in the bag. In addition

to the bag, we consider two urns, referred to as C and S in the following, which

respectively represent the core set and the spare set of a cluster. Join and leave

operations are modeled through the throwing and withdrawing of balls into and

from the urns. For instance, drawing a ball from the bag and throwing this ball

into S models the insertion of a new peer into the overlay and its joining into the

spare set of a cluster. Drawing a ball from S ∪ C and throwing this ball into the

bag models the leaving of a peer from the overlay. In Figure 1, both protocols are

made of two indivisible tasks. Task 1 models the random choice of a peer within a

cluster while Task 2 is concerned with the leave and join operations. We consider a

succession of rounds r1, r2, . . . during which the rules of the protocols are applied.

Rules are oblivious to the color of the balls, meaning that they cannot distinguish

between the white and the red balls.

As previously said the goal of the adversary is to maximize the number of red

balls in both urns C and S so that the number of red balls in C is bound to always

exceed quorum c′ = ⌊(c − 1)/3⌋. By construction, the adversary has only access

to red balls. Thus an effective strategy for the adversary to gain this quorum is to

prevent red balls from being extracted from both urns. Specifically, in Task 1 of

both protocols (see Figure 1), if the drawn ball b0 is red then this ball is put back
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/* Protocol1*/
/* Task 1 */

draw a ball b0 from C ∪ S
/* Task 2 */
if b0 ∈ C then

draw a ball b1 from S
throw b1 into C

endif

throw b0 into the bag
draw a ball b2 from the bag
throw b2 into S

/* Protocol2*/
/* Task 1 */

draw a ball b0 from C ∪ S
/* Task 2 */
if b0 ∈ C then

throw all the balls of C into S
draw c balls from S
and throw these c balls into C

endif

throw b0 into the bag
draw a ball b2 from the bag

throw b2 into S

Fig. 1. Rules of Protocol1 and Protocol2.

into the urn it was drawn from (i.e., either C or S). In that case, Task 2 is not

applied, and a new round is triggered. This strategy ensures that the number of red

balls in C ∪ S is non decreasing.

We model the effects of rounds r1, r2, . . . using a homogeneous Markov chain

denoted by X = {Xn, n ≥ 0} representing the evolution of the number of red

balls in both urns C and S. More formally, the state space Ω of X is defined by

Ω = {(x, y) | 0 ≤ x ≤ c, 0 ≤ y ≤ s}, and for n ≥ 1 the event Xn = (x, y) means

that after the n-th transition or n-th round the number of red balls within urn C is

equal to x and the number of red balls within urn S is equal to y. The transition

probability matrix P of X depends on both the rules of the given protocol and the

adversarial behavior. This matrix is detailed in each of the following subsections.

We define a state as polluted if in this state urn C contains strictly more than

c′ = ⌊(c− 1)/3⌋ balls. Conversely, a state that is not polluted is said to be safe. In

the remaining of this paper, the initial probability distribution is denoted by α.

4.1. Protocol1

Regarding Protocol1, the subset of safe states A is defined as A = {(x, y) | 0 ≤

x ≤ c′, 0 ≤ y ≤ s}, while the set of polluted states B, is the subset Ω − A,

i.e., B = {(x, y) | c′ < x ≤ c, 0 ≤ y ≤ s}. By the rules of Protocol1, one can

never escape from the subset of states B to switch back to safe states A since the

number of red balls in C is non decreasing. Thus, the adversary wins the protocol

when process X reaches the closed subset B, as illustrated in Figure 2. Matrix P

and the initial probability vector α are partitioned in a manner that matches the

decomposition of Ω = A ∪B, that is

P =

(

PA PAB

0 PB

)

and α = (αA αB),

where PA (resp. PB) is the sub-matrix of dimension |A| × |A| (resp. |B| × |B|),

containing the transitions between states of A (resp. B); PAB is the sub-matrix of
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dimension |A| × |B|, containing the transitions from states of A to states of B; B

is an absorbing class thus PBA = 0. Finally, sub-vector αA (resp. αB) contains the

initial probabilities of states of A (resp. B).

A B

Fig. 2. Aggregated view of the Markov chains associated with Protocol1. Safe states are
represented by A, and polluted ones by B. B is an absorbing class.

The computation of the transition probabilities of matrix P is illustrated in

Figure 3. In this tree, each edge is labelled by a probability and its corresponding

event according to the rules of Protocol1. This figure can be interpreted as follows:

At round r, r ≥ 1, starting from state (x, y) (root of the tree), the Markov chain

can visit four different states, namely (x, y), (x, y+1), (x+1, y− 1), and (x+1, y)

(leaves of the tree). The probability associated with each one of these transitions is

obtained by summing the products of the probabilities discovered along each path

starting from the root to the leaf corresponding to the target state. Derivation of

the transition probability matrix P of Markov chain X associated with Protocol1
is as follows: for all x ∈ {0, . . . , c} and for all y ∈ {0, . . . , s}, we have

p(x,y),(x,y) =

(

1

c+ s

)(

x+
(c− x)(s− y)(1− µ)

s
+ y + (s− y)(1− µ)

)

p(x,y),(x,y+1) =
(c+ s− x)(s− y)µ

(c+ s)s
for y ≤ s− 1

p(x,y),(x+1,y−1) =
(c− x)y(1− µ)

(c+ s)s
for x ≤ c− 1 and y ≥ 1

p(x,y),(x+1,y) =
(c− x)yµ

(c+ s)s
for x ≤ c− 1.

In all other cases, transition probabilities are null.

4.2. Protocol2

For s = 1, it is easy to see that Protocol2 is equivalent to Protocol1. On the other

hand, in contrast to Protocol1, Protocol2 alternates between safe and polluted

states. After a random number of these alternations the process enters a set of

closed polluted states. Indeed, by the rules of the protocol, one can escape finitely

often from polluted states (x, y) to switch back to safe states as long as (x, y)

satisfies x + y < s + c′ (there are still sufficiently many white balls in both C and

S so as to successfully withdraw c balls such that C is safe). However, there always

exists a round such that a state (x, y) is entered, where x + y ≥ s + c′. From this

round onwards, going back to safe states is impossible: the adversary has won the

protocol. Formally, the subset of safe states A is defined, as for Protocol1, by

A = {(x, y) | 0 ≤ x ≤ c′, 0 ≤ y ≤ s}. On the other hand we need to decompose
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(x, y)

(x, y)

(b0 is red) x
c

(x + 1, y − 1)

(b2 is white) 1 − µ

(x + 1, y)

µ (b2 is red)

(b1 is red)
y
s

(x, y + 1)

µ

(x, y)

1 − µ (b2 is white)

s−y
s

(b1 is white)

c−x
c

(b0 is white)

(b0 ∈ C) c
c+s

(x, y)

(b0 is red)
y
s

(x, y)

1 − µ

(x, y + 1)

µ (b2 is red)

1

s−y
s

(b0 is white)

s
s+c

(b0 ∈ S)

Fig. 3. Transition diagram for the computation of matrix P of Protocol1.

the set B of polluted states into two subsets C and D defined by C = {(x, y) | x >

c′, x+ y < s+ c′, 0 ≤ y ≤ s}, and D = {(x, y) | x > c′, x+ y ≥ s+ c′, 0 ≤ y ≤ s}.

When s = 1, we have B = D and C = ∅. Subsets A and C are transient and subset

D is a closed subset as illustrated in Figure 4.

A C D

Fig. 4. Aggregated view of the Markov chains associated with Protocol2. Safe states are
represented by A, and polluted states by C and D. State D is an absorbing class.

Following the decomposition of Ω = A ∪ C ∪D, we partition matrix P and the

initial probability vector α by writing

P =





PA PAC PAD

PCA PC PCD

0 0 PD



 and α = (αA αC αD).

By proceeding similarly as in Section 4.1, we derive the transitions of process

X associated with Protocol2. Briefly, when the protocol starts in state (x, y) at

round r, it remains in state (x, y) during the round if either ball b0 is red or b0 is

white, it has been drawn from S, and b2 is white. It changes to state (x, y+1) if b0
is white, it has been drawn from S, and b2 is red. Finally the protocol switches to

state (k, x+ y− k+ ℓ), where k is an integer k = 0, . . . ,min(c, x+ y) and ℓ = 0, 1 if

b0 is white and it has been drawn from C, and the maintenance procedure leads to

the choice of k red balls. For all x ∈ {0, . . . , c}, y ∈ {0, . . . , s}, and s > 1, we have

p(x,y),(x,y) =
x

c+ s
+

y

c+ s
+

s− y

c+ s
(1− µ) +

c− x

c+ s
(1− µ)q(x, x+ y)

p(x,y),(x,y+1) =
s− y

c+ s
µ+

c− x

c+ s
µq(x, x+ y) for y ≤ s− 1

p(x,y),(k,x+y−k) =

(

c− x

c+ s

)

(1− µ) q(k, x+ y) for 0 ≤ k ≤ min(c, x+ y) and k 6= x
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p(x,y),(k,x+y−k+1) =

(

c− x

c+ s

)

µq(k, x+ y) for 0 ≤ k ≤ min(c, x+ y) and k 6= x

where

q(z, x+ y) =

(x+ y

z

)(c+ s− 1− (x+ y)

c− z

)

(c+ s− 1

c

)

1{0≤x+y−z≤s−1} (1)

is the probability of getting z red balls when c balls are drawn, without replacement,

in an urn containing x + y red balls and c + s − 1 − (x + y) white balls, referred

to as the hypergeometric distribution. 1{···} represents the indicator function. In all

other cases, transition probabilities are null.

4.3. Comparison of both Protocols in a Non Constrained

Adversarial Environment

As described in Section 4.1 the Markov chain X associated with Protocol1 is

reducible and the states of A are transient, which means that matrix I − PA is

invertible, where I is the identity matrix of dimension |A|. Recall that B is an

absorbing class, i.e. PBA = 0. Similarly, as described in Section 4.2, Markov chain

X associated with Protocol2 is reducible, the states of A and C are transient and

subset D is a closed subset.

4.3.1. Initial Distributions

In the experiments conducted for this work, we consider two initial distributions.

The first one, which we denote by β, consists in drawing c + s balls from the

bag such that c of them are thrown into urn C, and the other s ones are thrown

into urn S. This initial state X0 is defined by X0 = (Cr, Sr) where Cr (resp. Sr)

is the initial number of red balls in C (resp. S). Thus both Cr and Sr follow a

binomial distribution, and assuming they are independent, we get for x = 0, . . . , c

and y = 0, . . . , s

β(x, y) = P{Cr = x, Sr = y} =

(

c

x

)

µx(1− µ)c−x

(

s

y

)

µy(1− µ)s−y. (2)

The second one, that we denote δ, consists simply in starting from state (0, 0), that

is the state free from red balls, i.e.,

δ(x, y) = δ0xδ0y with δij the Kronecker delta. (3)

4.3.2. Sojourn Time of both Protocols in Safe States

We start our study by investigating for i = 1, 2 the distribution T
(i)
A which counts

the total number of rounds spent by Protocoli in the subset of safe states A before

absorption. Specifically T
(1)
A = inf{n ≥ 0 | Xn ∈ B}. The probability mass function

of T 1
A for k ≥ 0 is easily derived as

P{T
(1)
A = k} =

{

αB✶ if k = 0

αA(PA)
k−1(I − PA)✶ if k ≥ 1
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where ✶ is the column vector with all components equal to 1. The cumulative

distribution function and the expectation of T
(1)
A are respectively given by

P{T
(1)
A ≤ k} = 1− αA(PA)

k
✶, and E(T

(1)
A ) = αA(I − PA)

−1
✶. (5)

Following the results obtained in Sericola [20], for Protocol2, the probability mass

function of T
(2)
A =

∑∞
n=1 1{Xn∈A} is given by

P{T
(2)
A = k} =

{

1− v✶ if k = 0

vRk−1(I −R)✶ if k ≥ 1
(6)

where v = αA + αC(I − PC)
−1PCA and R = PA + PAC(I − PC)

−1PCA. The cumu-

lative distribution function and expectation of T
(2)
A are respectively given by

P{T
(2)
A ≤ k} = 1− vRk

✶, and E(T
(2)
A ) = v(I −R)−1

✶. (7)
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(a) α = β (see Relation (2))
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(b) α = δ (see Relation (3))

Fig. 5. E(T
(1)
A ) (see Relation (5)) represented by dark bars and E(T

(2)
A ) (see Relation (7))

represented by light grey bars as a function of s and the percentage µ of red balls. Notation
5, 10, . . . 25 denotes µ = 5%, 10%, . . . , 25%. In all these experiments c = 10.

Figure 5(a) and Figure 5(b) compare the expected number of rounds run in safe

states for both protocols according to the two initial distributions β and δ. In

accordance with the intuition, increasing the size of the urns augments both E(T
(1)
A )

and E(T
(2)
A ) independently from the ratio of red balls in the bag. Similarly, for

a given cluster size, augmenting the ratio of red balls in the bag decreases both

E(T
(1)
A ) and E(T

(2)
A ). Now Figure 5(b) shows that for small values of µ Protocol2

overpasses Protocol1, while for larger values of µ, we observe an inverse tendency.

Interpretation of this result is as follows. When the size s of S is equal to 1, both

protocols are equivalent as illustrated in Figures 5(a) and 5(b). Now, consider the

case where the size s of S gets larger compared to C’s one. The probability to draw

a ball from S tends to 1. Now as the adversary never withdraws its red balls from
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any urns, the number of red balls within S is non decreasing. Hence, the larger µ is

the faster the ratio of red balls in S tends to 1. With small probability, a ball from

C is drawn. In Protocol1 it is replaced with high probability by a red ball drawn

from S. Hence to reach a polluted state, c′ + 1 white balls have to be replaced by

red ones. While with Protocol2 the renewal of C reaches with high probability a

polluted state in a single step. Thus, even if Protocol2 continues to alternate for

a finite number of times between safe and polluted subset of states, the total time

spent in safe states is less than the one spent by Protocol1. Note that one cannot

observe such a behavior when the initial ratio of red balls in both urns is non null

(see Figure 5(a)) as it takes less steps for both protocols to switch to polluted states.

4.3.3. Alternation between Safe and Polluted States of Protocol2

A deeper investigation of Protocol2 allows to study the duration and frequency

of successive sojourn times in subsets A and C. For n ≥ 1, we denote by T
(2)
A,n

(respectively T
(2)
C,n) the distribution of the time spent by the Markov chain X during

its n-th sojourn in subset A (resp. C). The total time spent in subset A (resp. C)

before reaching subset D is given by

T
(2)
A =

∞
∑

n=1

T
(2)
A,n and T

(2)
C =

∞
∑

n=1

T
(2)
C,n.

From Sericola and Rubino [21], we have for n ≥ 1 and k ≥ 0

P{T
(2)
A,n ≤ k} = 1− vGn−1(PA)

k
✶, (9)

where v is defined in Relation (6) and G = (I − PA)
−1PAC(I − PC)

−1PCA. Sym-

metrically, we have

P{T
(2)
C,n ≤ k} = 1− wHn−1(PC)

k
✶, (10)

where w = αC + αA(I − PA)
−1PAC and H = (I − PC)

−1PCA(I − PA)
−1PAC .

The expectations of T
(2)
A,n and T

(2)
C,n are respectively given by

E(T
(2)
A,n) = vGn−1(I − PA)

−1
✶ and E(T

(2)
C,n) = wHn−1(I − PC)

−1
✶. (11)

Figure 6(a) shows the expected duration and frequency of successive sojourn times

in subsets A and C for Protocol2.
a Clearly, the protocol runs more rounds in C

than it does in A. Note that for n ≥ 7, the expected duration of the sojourn times

in both A and C is already close to 0. Figure 6(b) depicts the percentage of rounds

spent by Protocol2 in safe states before absorption as a function of the size s of S.

This percentage is described by

E(T
(2)
A )

E(T
(2)
A ) + E(T

(2)
C )

=
v(I −R)−1

✶

v(I −R)−1✶+ w(I − T )−1✶
(12)

aNote that if we consider the first sojourn time in the subset of safe states A of both protocols, then
Protocol1 always overpasses Protocol2 both in expectation and with respect to their cumulative
distribution functions [22])
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where v and R are given in Relation (6), w is given in Relation (10), and T =

PC+PCA(I−PA)
−1PAC . In accordance with the intuition, this percentage decreases

with larger values of µ, and stabilizes for increasing values of s.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150Rounds Number
 

Polluted

 

Safe E(T
(2)

A;1
)
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)

E(T
(2)

C;2
)

E(T
(2)

A;3
)

E(T
(2)

C;3
)

...

...

(a) Succession of E(T
(2)
A,n

) and E(T
(2)
C,n

) as a
function of the rounds number. We have α = β,
c = 10, s = 20 and µ = 25%.
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)/(E(T
(2)
A

) + E(T
(2)
C

)) as a function
of the size s of S. We have α = β, and c = 10.

Fig. 6. Sojourn Times in Transient States for Protocol2.

An aggregated view of the total

time spent in transient states, i.e.

A for Protocol1, and A ∪ C for

Protocol2, before absorption is de-

picted in Figure 7. The main ob-

servation drawn from this figure is

that the total time spent in transient

states linearly increases with the size

of S, and thus increases logarithmi-

cally with the size of the system. On

the other hand, this time is mainly

spent in C, and this tendency in-

creases with larger values of s which

is confirmed by Figure 6(b).
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Fig. 7. E(T
(1)
A

) (Relation (5)) represented by dark

colored bars, and E(T
(2)
A

)+E(T
(2)
C

) (Relation (12))

represented by light grey and grey colored bars as a
function of s and µ. In all these experiments c = 10.
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4.3.4. Lessons Learnt from this Comparison

The main lessons learnt from this preliminary study is that increasing the amount

of randomization of the protocol does make it necessarily more resilient to stronger

adversaries. From a practical point of view this result is interesting as handling the

renewal of a set of entities requires costly agreement protocols to be run among the

interested parties. Typically, complexity of these protocols is in O(n3) where n is

the number of parties. Unfortunately by allowing malicious peers to stay indefinitely

long at the same position in the overlay, both protocols are not sufficient to prevent

the adversary from progressively surrounding honest peers and gaining the quorum.

In the following section we show that by limiting the lifetime of malicious peers in

the same cluster, safety of the whole cluster is eventually guaranteed.

5. Constraining the Adversary by Limiting the Sojourn Time in a

Cluster

It has been shown [9] that structured overlays cannot survive targeted attacks if

the adversary may keep sufficiently long its malicious peers at the same position

in the overlay. Indeed, once malicious peers have succeeded in sitting in a focused

region of the overlay, they can progressively gain the quorum by simply waiting for

honest peers to leave their position, leading to the eventual isolation of honest peers.

The two fundamental properties that prevent peers isolation are the guarantee that

peers identifiers are random, and that peers cannot stay forever at the same position

in the system [8].

From a practical point of view, implementing limited peers lifetime and unpre-

dictable identifiers assignment, can be achieved by adding an incarnation number

to the fields that appear in the peer’s certificate (certificates are acquired at trust-

worthy Certification Authorities (CAs)), and by hashing this certificate to generate

the peer’s identifier. By the properties of hash functions, peers identifiers are un-

predictable. The incarnation number limits the lifetime of identifiers. The current

incarnation k of any peer p can be computed as k = ⌈(t − ivt)/L⌉, where ivt is

the initial validity time of the peer’s certificate, t is the current time, and L is the

length of the lifetime of each peer’s incarnation. Thus, the kth incarnation of peer

p expires when its local clock reads ivt+ kL. At this time p must rejoin the system

using its (k + 1)th incarnation. This is discussed in details in [22].

Coming back to our analysis, we model the constraint on the adversary by

preventing the adversary from keeping its red balls in both urns infinitely long, so

that randomness among red and white balls is continuously preserved. As previously,

we investigate both protocols presented in Figure 1. It is not difficult to see that

both protocols alternate between the subset of safe states A = {(x, y) | 0 ≤ x ≤

c′, 0 ≤ y ≤ s}, and the subset of polluted ones B = {(x, y) | c′ < x ≤ c, 0 ≤ y ≤ s}

for an infinite number of rounds. Both subsets A and B are transient, preventing the

adversary from ever winning any of the two protocols. Following the decomposition
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of Ω = A∪B, we partition matrix P and the initial probability vector α by writing

P =

(

PA PAB

PBA PB

)

and α = (αA αB).

5.1. Protocol1

By proceeding exactly as in Section 4, we derive the transition probability matrix

P for Protocol1. That is, for all x ∈ {0, . . . , c} and y ∈ {0, . . . , s}, we have

p(x,y),(x,y) =
xy + (c(s− y)− xs)(1− µ)

(c+ s)s
+

yµ+ (s− y)(1− µ)

c+ s

p(x,y),(x,y−1) =
(x+ s)y

(c+ s)s
(1− µ) for y ≥ 1

p(x,y),(x,y+1) =

(

c− x+ s

c+ s

)(

s− y

s

)

µ for y ≤ s− 1

p(x,y),(x+1,y−1) =
(c− x)y

(c+ s)s
(1− µ) for x ≤ c− 1 and y ≥ 1 (13)

p(x,y),(x+1,y) =
(c− x)y

(c+ s)s
µ for x ≤ c− 1

p(x,y),(x−1,y) =
x(s− y)

(c+ s)s
(1− µ) for x ≥ 1

p(x,y),(x−1,y+1) =
x(s− y)

(c+ s)s
µ for x ≥ 1 and y ≤ s− 1.

In all other cases, transition probabilities are null.

5.2. Protocol2

Similarly for all x ∈ {0, . . . , c} and y ∈ {0, . . . , s} the entries of P for Protocol2
are given by

p(x,y),(x,y) =
xq(x, x+ y − 1)µ

c+ s
+

(c− x)q(x, x+ y)(1− µ)

c+ s
+

yµ+ (s− y)(1− µ)

c+ s

p(x,y),(x,y−1) =
x

c+ s
q(x, x+ y − 1)(1− µ) +

y

c+ s
(1− µ) for y ≥ 1

p(x,y),(x,y+1) =
c− x

c+ s
q(x, x+ y)µ+

s− y

c+ s
µ for y ≤ s− 1

p(x,y),(k,x+y−k−1) =
x

c+ s
q(k, x+ y − 1)(1− µ)

for max(0, x+ y − 1− s) ≤ k ≤ min(c, x+ y − 1) and k 6= x (14)

p(x,y),(k,x+y−k) =
x

c+ s
q(k, x+ y − 1)µ+

c− x

c+ s
q(k, x+ y)(1− µ)

for max(0, x+ y − s) ≤ k ≤ min(c, x+ y − 1) and k 6= x

p(x,y),(k,x+y−k+1) =
c− x

c+ s
q(k, x+ y)µ

for max(0, x+ y + 1− s) ≤ k ≤ min(c, x+ y) and k 6= x,

where q(z, x+ y) is given by Relation (1). In all other cases, transition probabilities

are null.
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5.3. Comparison of both Protocols in a Constrained Adversarial

Environment

By proceeding as in Section 4.3.3, we investigate the behavior of both protocols

during their successive n-th sojourn time in A and B. Each Markov chain X is

irreducible and aperiodic since at least one state has a transition to itself. For

n ≥ 1, we denote by respectively T
(i)
A,n and T

(i)
B,n the time spent by Markov chain X

associated with Protocoli during its n-th sojourn in respectively subsets A and B.

Expectations of T
(i)
A,n and T

(i)
B,n are respectively given for i = 1, 2 by

E(T
(i)
A,n) = vGn−1(I − PA)

−1
✶ and E(T

(i)
B,n) = wHn−1(I − PB)

−1
✶ (15)

where v = αA + αB(I − PB)
−1PBA, G = (I − PA)

−1PAB(I − PB)
−1PBA, w =

αB + αA(I − PA)
−1PAB and H = (I − PB)

−1PBA(I − PA)
−1PAB .

For both protocols, the Markov chain X is finite, irreducible and aperiodic so

the stationary distribution exists and is unique. We denote by π the stationary

distribution of the Markov chain X. The row vector π is thus the unique solution

to the linear system πP = π and π✶ = 1. As we did for row vector α, we partition

vector π according to the partition Ω = A ∪ B by writing π = (πA πB), where

sub-vector πA (resp. πB) contains the stationary probabilities of states of A (resp.

B). The mean percentage of time spent in subset A during the j-th sojourn is equal

for Protocoli (i=1,2) to E(T
(i)
A,j)/(E(T

(i)
A,j) + E(T

(i)
B,j)). By Cesàro lemma,

lim
n→∞

∑n

j=1 E(T
(i)
A,j)

∑n

j=1(E(T
(i)
A,j) + E(T

(i)
B,j))

= lim
n→∞

E(T
(i)
A,n)

E(T
(i)
A,n) + E(T

(i)
B,n)

= πA✶ (16)

and the first hitting time to reach subset B is given, for every k ≥ 0, by

P{T
(i)
A,1 ≤ k} = 1− αA(PA)

k
✶.

Figures 8(a) and 8(b) show the behavior of the Markov chains associated with

both protocols during their first 11 sojourn times in both A and B. First, for

µ = 25% both protocols spend more than 3/4 of their time in safe states and their

convergence speed to πA✶ is very fast (convergence is reached in a single step for

Protocol1 and in 6 steps for Protocol2) as shown in Figure 8(a). Figure 8(b) shows

that the frequency at which safe and polluted states alternate is 3 times lower for

Protocol1 than for Protocol2. From a practical point of view this is interesting as

it makes Protocol1 more adapted to dynamic environment compared to Protocol2
(i.e., Protocol1 handles a higher number of connections and disconnections before

switching to a polluted state than Protocol2 does).

Theorem 1. For both protocols, the stationary distribution π is equal to β, i.e. for

all x = 0, . . . , c and y = 0, . . . , s, we have

lim
n−→∞

P{Xn = (x, y)} = β(x, y) with β(x, y) given by relation (2).
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Fig. 8. Comparison of sojourn times in safe and polluted states.

Proof. For space reason, the proof appears in [22].

Theorem 1 is quite interesting as it shows that the steady state of the system

which is described by the stationary distribution π is exactly the same for both

protocols, and that this distribution is equal to distribution β (independently from

the initial distribution). At a first glance, we could guess that this phenomenon is

due to the fact that the Markov chain X is the tensor product of two independent

Markov chains. However, this is clearly not the case as the behavior of red balls

in C depends on the behavior of red balls in S. This holds for both protocols. The

stationary availability of the system defined by the long run probability to be in

safe states is denoted by Psafe and is given by

Psafe = πA✶ =

c′
∑

x=0

(

c

x

)

µx(1− µ)c−x.

This probability can also be interpreted as the long run proportion of time spent in

safe states. Note that the stationary distribution does not depend on the size of S.

6. Robustness of the Overlay Network

We now show that by inducing global churn, we can preserve the safety of the

system. We consider that we have ℓ identical and independent Markov chains

X(1), . . . , X(ℓ) on the same state space Ω = A ∪ B, with initial probability dis-

tribution α and transition probability matrix P . Each Markov chain X(i) models a

particular cluster of peers and, for n ≥ 0, Nn represents the number of safe clusters

after the n-th round, i.e. the number of Markov chains being in subset A after the
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Fig. 9. Percentage of the expected number of safe clusters (relation (18)) as a function of
the rounds number n for both protocols, for two different initial states X0 (Section 4.3.1).
In these experiments, ℓ = 100, c = 10, s = 20, and µ = 25%.

n-th transition has been triggered, defined by Nn =
∑ℓ

i=1 1{X(i)
n ∈A}

. The ℓ Markov

chains being identical and independent, Nn has a binomial distribution, that is, for

k = 0, . . . , ℓ

P{Nn = k} =

(

ℓ

k

)

(αPn
✶)

k
(1− αPn

✶)
ℓ−k

and E(Nn) = ℓαPn
✶. (18)

If N denotes the stationary number of safe clusters, we have

E(N) =

{

ℓπA✶ for a constrained adversary

0 for a non constrained adversary
(19)

These results are illustrated in Figure 9. The main observation is that with a

constrained adversary, the expected number of safe clusters for both protocols tends

to the same limit ℓπA✶ whatever the amount of initial pollution, while with a non

constrained adversary all clusters get eventually polluted. This clearly shows that

by limiting the time spent by peers at the same position in the overlay, targeted

attacks are tolerated.

7. Practical Significance of the Results

In this section, we evaluate the practical significance of our results when instantiated

with real traces. Traces we are referring to have been collected in the Overnet file

sharing network and analyzed in [23]. The main reasons for using these traces is

that Overnet peers are identified by permanent IDs which allows to observe fine-

grained behavior of active peers in the overlay. Traces which were collected for a

period of 15 days have shown that every day between 70, 000 and 90, 000 peers IDs

are present in the overlay. It has been registered that each peer triggers in average
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6.4 join and leave events per day, that is in average each peer joins the overlay every

7.5 hours. Thus, for an average population of 80, 000 peers, this makes 512 970 join

and leave events per day. In our context, an average population of U = 80, 000 peers

leads to around ℓ = U/⌊log2 U⌋ = 5, 000 clusters each populated by ⌊log2 U⌋ = 16

peers, and thus to around U/ℓ × 3.2 = 52 leave-join rounds per day per cluster.

Thus, in a presence of a non-constrained adversary, extrapolation of Figure 7 shows

that for µ = 5%, c = 10 and for s = 6, it takes one day and a half (i.e., 85 rounds)

for the adversary to definitively pollute a targeted cluster when Protocol1 is run

while it takes 5 days (i.e., 260 rounds) when Protocol2 is used. Moreover, in the

presence of a constrained adversary, one can derive from our study the average

lifetime that must be imposed on malicious peers to prevent pollution. This comes

down to compute the average frequency at which a cluster becomes polluted which

is given by 1/(αAPAB✶). Coming back to the traces, for c = 10, s = 6 and µ = 5%,

peers must leave their cluster every 104 days (5455 rounds) when Protocol1 is run

and every 41 days (i.e., 2152 rounds) when Protocol2 is used to prevent pollution.

Now, when µ = 25%, malicious peers need to leave every 20 hours (i.e., 45 rounds)

with Protocol1 and every 7 hours (i.e., 2152 rounds) with Protocol2. Clearly these

frequencies remain fully compatible with the rate at which honest peers have been

observed to leave the system (i.e., every 24/3, 2 = 7.5 hours in average). This clearly

show the practicability of the induced churn approach in large scale systems.

8. Conclusion

In this paper, we have proposed a mechanism that enables the enforcement of

limited peers lifetime compliant with DHT-based overlays specificities. We have

investigated the long run behavior of several adversarial strategies. Our analysis

has demonstrated that an adversary can easily subvert a cluster-based overlay by

simply never triggering leave operations. We have shown that when peers have to

regularly leave the system, a stationary regime where the ratio of malicious peers

is bounded is eventually reached. Finally, we have shown that this induced churn

is fully compatible with the natural churn observed in peer-to-peer systems, which

makes our approach definitively adapted to large scale and open systems.
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