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Abstract: We consider the behavior of a stochastic system composed of several
identically distributed, but non independent, discrete-time absorbing Markov
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in determining at each instant, using a given probability distribution, the only
Markov chain allowed to make a transition. We analyze the first time at which
one of the Markov chains reaches its absorbing state. We obtain its distribution
and its expectation and we propose an algorithm to compute these quantities.
We also exhibit the asymptotic behavior of the system when the number of
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Chaines de Markov en compétition pour les
transitions: application aux systémes distribués
grande échelle

Résumé : Nous considérons un systéme stochastique composé de plusieurs
chaines de Markov a temps discret, absorbantes, identiques mais non indépen-
dantes, et en compétition & chaque instant pour une transition. La compétition
consiste & déterminer & chaque instant la seule chaine de Markov autorisée &
faire une transition. On analyse le premier instant auquel une des chaines de
Markov est absorbée. On obtient sa distribution et sa moyenne et ’on propose
un algorithme pour calculer ces quantités. On exhibe de plus le comporte-
ment asympotique du systéme quand le nombre de chaines de Markov tend vers
Iinfini. En fait, ce probléme vient de ’analyse des systémes distribués grande
échelle et 'on montre comment nos résultats s’appliquent a ce domaine.

Mots-clés : Chaines de Markov, chaines de Markov en compétition, analyse
asymptotique, systémes distribués grande échelle
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1 Introduction

Competing Markov chains generally compete over a set of resources, see for
instance [5] and the references therein. The resulting process is then a multi-
dimensional Markov chain based on the Cartesian product of the states spaces
and on competition rules over resources. When a resource is owned by a chain
it affects the values of transition probabilities of the other components of the
process and the measure of interest is the stationary probability distribution.
In this paper, the Markov chains do not compete for resources but for a transi-
tion. More precisely, we consider a stochastic system composed of n identically
distributed, but non independent, discrete-time absorbing Markov chains com-
peting at each instant for a transition. The competition consists in determining
at each instant, using a given probability mass function of dimension n, the only
Markov chain allowed to make a transition.

For this system, we analyze the first time ©,, at which one of the n Markov
chains reaches its absorbing state. We study the distribution and the expec-
tation of this random variable and we propose an algorithm to compute these
quantities. We exhibit the asymptotic behavior when the number n of Markov
chains goes to infinity and we use this behavior to approximate the distribution
of ©,, for large values of n. Actually, this problem comes from the analysis
of large-scale distributed systems and we show how our results apply to this
domain.

The remainder part of the paper is organized as follows. In the next section,
we describe the model, the notation, we give the transition probability matrix
of the global Markov chain composed of the n joined identically distributed
local Markov chains and we obtain its transient state distribution. We then get
an expression for the distribution of the first instant ©,, at which one of the
n Markov chains reaches its absorbing state. In Section 3, we show how this
expression leads to a recurrence relation which allows us to easily compute the
distribution of ©,, and its expectation. In Section 4, we use a transform based
on generating functions to analyze the asymptotic behavior of the distribution
and the expectation of ©,, as n goes to infinity. We then show how this analysis
leads to an accurate approximation of the distribution of ©,, for large values
of n. Section 5 is devoted to an application from which the problem originally
stems: we study the behavior of a cluster-based large-scale distributed system.

2 Transient State Analysis

We consider a homogeneous discrete-time Markov chain X = {Xj, k > 0} with
finite state space S composed of a set of transient states denoted by B and an
absorbing state denoted by a. The transition probability matrix P of can thus

be decomposed as
_( Qv
P=(8 1)

where @ is the submatrix of dimension |B| x |B| containing the transitions
between states of B. In the same way, v is the column vector with |B| entries
representing the transitions from the transient states to the absorbing state. We
suppose that the initial state is in B, i.e. P{Xy € B} = 1, and we denote by «
the row vector of dimension |B| containing the initial probability distribution,

RR n°® 1953
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i.e. for every i € B,
Q; = ]P{XO = Z}

We denote by ©; the total time spent in B before reaching the absorbing state
or equivalently the first instant at which the absorbing state a is reached. We
have

O, =inf{k > 0| X, = a}.

The complementary cumulative distribution function of ©1 is easily derived as,
see for instance [12] or [7],

P{0; > k} = P{X}; € B} = aQ"1, (1)

where 1 is the column vector of dimension |B| with all components equal to 1
and [ is the identity matrix of the right dimension. Since all the states of B are
transient the matrix I — @ is invertible and the expectation of ©; is given by

B(©:) = a(l -Q) 'L (2)

Let us now consider, for n > 1, n Markov chains denoted by X(l), ceey X
identical to X, i.e. with the same state space .S, the same transition probability
matrix P and the same initial probability distribution o. These n Markov chains
compete at each instant to make a transition using the probability mass function
W(n) = (pl,n; e apn,n)-

From these n Markov chains, we construct a new Markov chain denoted
by Y = {Yi,k > 0} as follows. The state space of Y is equal to S™ and
Y. = (X,gl), .. .,X,in)). A transition in the Markov chain Y corresponds to a
transition in only one of the Markov chains XM, ..., X (™ all the others staying
in the same state. The Markov chain that makes the transition is chosen with
the probability mass function m(n), which means that Markov chain X (©) makes
the transition with probability p, ,. We suppose without any loss of generality
that, for every £ =1,...,n, we have 0 < p;, < 1.

The transition probability matrix of Y, which we denote by R, is thus given,
for every (i1,...,in) and (j1,...,Jn) € S™, by

n
> penPii, i (i1,- i) = (1,0 dn)
(=1

R((i1, .. yin), (J1,- -5 Jn)) =
(G ) ) DenPiy if 3! ¢ such that iy # j,

0 otherwise.

Indeed, in the Markov chain Y, the states that can be reached in one step
from state (i1,...,%,) are either state (i,...,i,) if the chosen Markov chain
X makes a loop over state i, (the others being static) or state (i1, ..., —
1,9e,3¢+ 1,...,4,) if the chosen Markov X makes a transition from state i,
to state jy (the others being static). This shows that the states of Markov chain
Y are all transient except state (a, ..., a) which is absorbing.

We denote by 3 the initial probability distribution of Y and we assume that
the X(gz)’s are independent, namely

B(jr, - dn) = [[ P{XE? =G}

(=1

INRIA
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This provides the value

ﬂjlv"'v]n H]P{XOZJZ}*HO‘M (3)

The following theorem gives an expression for the distribution of Yj. For every
k>0 and ¢ > 1, we introduce the set S ¢ defined by
Spe={k=(ki,....ke) € N | ky + -+ k¢ = k}.
Theorem 1 For every k>0, n > 1 and (j1,...,Jn) € S™, we have
P{Yi = (1, dn)} = D PR k , Hpran{Xk = jr}. (4)
keSk n

Proof. The proof is a recurrence over k. The result is immediate for £k = 0
from relation (3). Suppose relation (4) is true for integer £ — 1. We have

IP{Yk - (jlv e 7]n)}

= > Ry yin), (10 Jn))P{Ve1 = (i1, in) }

(i15000rin)ES™
n
= th,npjh,jh]P{qu = (1,5 Jn)}
h=1
n
+ Y phn > PPV = (s dnetyindnats -0 dn) }
h=1 ihES\{j;L}
- th n Z ch,thP{Yk 1 — (]1; e 7jh71;ih7jh+17 cee 7]n)}
i ES

Using the recurrence hypothesis, we get

IP{Yk - (jlv e 7]n)}

thnz i D H o P{ Xy, =in}

in €S kE€ESk_1,n
H P P{ Xk, = jr}
r=1,r#h
Z Z k' k.' Zhrj_l]P{thJrI*]h} H prnIP{Xk *]r}
h=1kESK_1,n r=1,r#h

For every h = 1,...,n, we introduce the subset Uj,  of S ,, defined by
Unx ={k € Skn | km <k —1 whenever m # h}.
The variable change kj, := kj — 1 leads to

PYi= Gy = Y MY HpMIP{Xk =i}

h=1k€Un i

RR n°® 1953
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Introducing the subset V}, of Sj ,, defined by
Vie={ke€Spn|bkm <k—1form=1,...,n},

we can write
Une = Vi U{up},

where u, = (0,...,0,k,0,...,0) is the row vector of dimension n with the h-th
entry equal to k£ and the others equal to 0. We thus get

P{Yi = (- »dn)} Zz’“h = HpmlP{Xk — )

keVy h=1
+Zp’z,nIP{Xk=jh} H P{Xo = j, }.
h=1 r=1,r#h

For every k € Vi, we have

so we obtain

P{Yk:(j17"'7]n Z kl k 'Hprn {Xk _.77"}

keVi
+ th nP{Xk = jn} H P{Xo=jr}
= r=1,r#h
= Z kl k? I HprnIP{Xk *‘77’}
k€Sk n
This is the desired relation. [ |

Using this result, we obtain the following corollary which gives the transient
state probabilities of each Markov chain X (") at the k-th transition of the global
process Y.

Corollary 2 For every h=1,...,n, k>0 and j € S, we have

k

P{x" = j) Z( )phn )P (X = ).

£=0
Proof. Clearly the distribution on X ,ih) depends on h only through the pa-

rameter pp ,, so to simplify the writing, we make the proof for h = n. Using
Theorem 1, we have

INRIA
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P{x;" = j}
= ]P{Ykequ-xSx{j}}
= D> D k S Hprn {Xk, = joyphn P{Xk, = j}
JIES  jn1€SkESpn L
n—1
= Z If' |pnnIP{Xk _j}Hprn
k€Sk,n r=1
"k
- Y, )pf;;nu ~ pon) T P{X, = )
kn= "
» Ky
> P ()
! _
EESk—r m—1 1 n 1. -~ 1 Pn,n
"k
- Y, )pf;;nu P T P{X, = ),
kn=0 N "
which completes the proof. |

The following corollary provides the distribution of the first instant ©,, at
which one of the n Markov chains XV, ..., X(") gets absorbed. More formally,

©,, is defined as
©,, = inf{k > 0| 3r such that X,ir) =a}.
Corollary 3 For every k > 0 and n > 1, we have

IP{@ >k?}— Z Ifl If 'Hprnan

kESk.n
Proof. For every kK > 0 and n > 1, we have
O, >k XxYeB, . . x"eB
We thus obtain from Theorem 1 and Relation (1).

P{O, >k} = P{XYeB, . .., x\"eB}
= > PYe=(hr--dn)}
(j17~~~7jn)eB"

k! "
= 2 Tl kol > IPiXe =i}

kESk n ! (j1,erjn)EB™ r=1

= Z Epl- leprnIP{X’“ € B}
k€Sk n

_ kr

- Y e
k€Sk,n

which completes the proof.

Clearly the complexity for the computation of P{©,, > k} using relation (5)
is exponential. A solution to this problem is obtained in the following section.

RR n°® 1953
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3 Computational Aspects

We consider the computation of the distribution and of the expectation of ©,,.
We have seen in Section 1 that the states of the global Markov chain Y are
all transient except state (a,...,a) which is absorbing. This means that the
expectation E(0,,) is finite and given, for every n > 1, by

= i P{O, > k}. (6)

k=0
The following theorem gives a recursive expression for the distribution ©,.

Theorem 4 For every k > 0, n > 2, we have

k
P{O, >k} =>_ ('z)pfw (1=pun) aQIP{O, 1 > k—1(}, (7)

£=0

where the probability mass distribution m(n — 1) = (P1.p—1,---,Pn—1,n—1) aSSO-
ciated with ©,_1 is defined, forr=1,....n—1, by

Prn
Prin—1= 77— -
1- Pn,n

Proof. For every k > 0 and n > 2, we have from Corollary 3

P{O, > k}
= Z kil k |H pV"n an
kESKn L
b b aQRn 1 2 e b
= > oan)" = > o e et
kn=0 n kE€Sk—ky,n—1 L n—1: r=1
k n—1
kn (k'_kn)! k. -
= > < ) Pan) 0@ 1 30 et [ () 0Q1
kn=0 kE€Sk _ky n—1 L n—1: r=1
k
= Z ( ) pnn (1_pn,n)kik" O‘an]l
kn=0
1 k
(k_kn)' q ( Prn )T k
<D [T({72—) @1
l... | _
kEE€ESK Ky n—1 k! fn—1! r=1 1 Pn,n
"k
= Z (k‘ ) (pn,n)kn (1 _pn,n)kik" CYQk"]l
En=0 N
k—kn) nt
X Z k(i H Prn— 1 OéQk
E€ESKk_ky,n—1 ! r=1

k
k _
= > < ) (D)™ (1= ) " aQ " 1P{O, 1 > k — ky,},

k
kn=0 N\

INRIA
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which completes the proof. |

This result shows that the computation of P{O,, > k} can be done using a
simple recurrence with a polynomial complexity.

We show in the following how to stop computation at a step K, to be de-
termined, in order to make sure that for every i = 1,...,n, P{0; > k} < ¢ for
every k > K where ¢ is a predetermined error tolerance.

Without any loss of generality, we suppose that the probabilities p;, are
ordered such that

Pin 2 P2.n Z e 2 Pn,n-
The following result holds true.

Lemma 5 For everyi=1,...,n—1 and k > 0, we have

(i@ + (1 = pi)D)* 1 < (Piv1,i11Q + (1 — pirr,is1)])* 1,
where the inequality between vectors is meant entrywise.
Proof. The result is clearly true for £k = 0. From Theorem 4, we have

2
Dii+1 Dii+1 = Pit1,i+1 T Pit1 41
— Pit1,i4+1 =

Pii — Pitli+l = > 0.

1 —piy1,iv1 1 —pigiit1

The matrix @ being substochastic, we have Q1 —1 < 0 with the strict inequality
for at least one entry, Here 0 is the null column vector having relevant dimension.
Introducing the notation Q; = p; ;Q + (1 — pi,i)I, we get

Qil — Qi11 = (pii — Pit1,i+1)(Q1L — 1) <0,

which means that the result is true for k¥ = 1. Suppose now that the result is
true for integer k — 1, with & > 2. Since matrices @; and Q;;1 commute, we
have

(Q)*1 =Qi(Q)" "1 < Qi(Qi+1) 1 = (Qi1)" Qi1 < (Qig1)" 1.

This completes the proof. |

Theorem 6 For every n > 1, for every € € (0, 1), we have

_Imax P{O; > k} < e for every k > K,
i=1,...,n

where

Kl—inf{k>0

k
> (];)Pﬁ,n(l — Pnn) Q1 < 6} :

£=0

RR n°® 1953
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Proof. For every i =1,...,n, we have
5k
P{O; >k} = Z (Z)pf,iu —pii) T aQIP{O, 1 > k—{}
£=0
Ny
< Y <£)pf,i(1 —pii)* faQ1
£=0
= aPuQ+(1-p)D"1
< a(punQ+ (1 —pun)D)F1 (from Lemma 5)

e
> () )1 =m0,

£=0

Note that matrix p, ,Q + (1 — pn.n)I is substochastic, i. e. (pn,Q + (1 —
Pn.n)l)1 < 1 with the strict inequality for at least one entry. This means in

particular that o (p,, @ + (1 — pmn)l)k 1 is decreasing with k£ and
khm « (pn,nQ + (]- _pn,n)I)k 1= Oa

So, for a fixed £ € (0,1) and by definition of integer K7 we have that for every
t=1,...,n,
P{O; > k} < ¢, for every k > K,

which completes the proof. |

The same kind of results holds for the evaluation of the expected values
E(©;) for which the truncation of the series (6) is needed.

Theorem 7 For every n > 1, for every ¢ € (0, 1),

0< _Iax <E(®i) - i P{O; > k;}) <e,

k=0

where

K2:inf{k:20

1 - k 4 k—¢ -1t
> ()t = ponalr - @ Q1 << .

o

Proof. We introduce the notation

Ky—1

e;=E(0;) - > P{O; >k}
k=0

INRIA
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We then have, for every i = 1,...,n,
e, = Z IP{@z > k}
k=K>
o0 k k
- > <€>pf7i(1 — i) aQ IP{O,_1 > k — 1}
k=K £=0
o0 k k
< D <€>Pf,¢(1 —pii) Q1
k=K =0
oo
= > apiQ+(1-pi)D'1
k=Ks
< Z & (Prn@+ (1 —pp)D) 1 ( from Lemma 5)
k=K>
= « (I - (pn,nQ + (1 - pn,n) I))_l (pn,nQ + (1 - pn,n) I)K2 1
1 _
= —a(l = Q) (PanQ+ (1= pun) N 1
Pn,n
K>
1 K _ _
= Z < €2>pr,n(1 _pn,n)Kz Ea(I -Q) le]l
Pn,n =0

< ¢ by definition of integer Ks.

which means that max;—; . ne; <e. [ |

The computation of the distribution of ©,, can thus be done recursively using
relations (1) and (7). If the probability mass function w(n) is uniform, i.e. if
Prn = 1/n for every r = 1,...,n, then it is easily checked that the probability
mass function 7(7) is also uniform for every ¢ < n. In this case, we obtain at the
same cost not only the distribution of ©,, but also the distribution of all ©,’s,
for i < n, using the stopping criterion given in Theorem 6. If the expectation of
O, is also needed then we may use the stopping criterion given in Theorem 7.

4 Asymptotic Analysis

This section is devoted to the analysis of the distribution on 6,, when n is large.
This is generally the case in practice for large-scale distributed systems which
are studied in the next section.

First of all, the following result can be deduced easily from Theorem 4.

Theorem 8 For every n > 1, we have

E(©, 1)
< —" -7
B©n) < T

and

E(©,) <

RR n°® 1953
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Proof. Using Theorem 4, we get

E©,) = ZIP{@ >k}

Z ( )pn n pn,n)k_é aQZ]lIP{@n—l > k - é}

=0

k=0
>
k=0
o k
= Z Z ( )pn n pn,n)e OéQk_Z]HP{@n_l > ﬁ}
k=0 ¢=0

>

(1= pun) P{On_1 > E}Z( )pnnaQ’“ ‘1
= S (1= pun) PO > e}z <’“:£> Pk aQ"1

(1~ pun) PO, 1>e}2<’“”> ,

Mg

- Z (1 _pmn)é P{O,_1 > ¢} (1 - pn,n)_(€+1)

Recursively, we get

B(O,) < E(©,_1) < E(©,_2) _ E(On_»)
1- Pn,n (1 - pn,n)(l - pn—l,n—l) 1- Pnn — Pn—1,n
and so
E
Pin
which completes the proof. |

When the distribution 7(n) is uniform, i.e. when p; , = 1/n, we obtain

nE(@n_l)

<
E(®n) < n—1

We consider the following transform. For every n > 1 and = € R, we
introduce the function F,,(z) defined by

e k
T
k=0

The function F,, is defined for every z € R and an explicit expression is given
in the following theorem.

Theorem 9 For every n > 1 and x € R, we have

z) = H ae@ePen (8)
(=1

INRIA
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and, for every k € IN,
P{O, > k} = F{P(0), 9)

where Fy(bk) is the k-th derivative of function F,, with respect to x.

Proof. From Relation (7), we get, using the fact that P{©; > ¢} = aQ‘1,
0 . k
k—t
Fu(z) = ZFZ( )pnn(l Do) P{O1 > }P{O,_1 >k —{}

= ix—” P{O >e}iﬂ(1— Y P{Oy_y >k — £}
- p €| pn,n 1 P (kj—f)' pn,n n—1

8

= Z 7 pn n]P{@l > g}z k' Pn,n)kIP{Gnq > k}

£=0
= Fi(apnn)Fn-1(z (1_pn,n))'

This leads by induction, for i =1,...,n, to

Fn(x) = F (xpn,n)Fl (xpn—l,n)Fn—Q(x(l — Pn,n — pn—l,n))
= H Fi(zpen) | Fa—i(@(1 = pop — .. = Pn—it1n),
l=n—i+1
where we used the relations
D _ Pron
r,n—1 1— P .

We deduce, for i = n,
n
x) = H Fi(xpen).
=1

Now, since
P
_ k
_g: o IP{®1>k}—kEO k_'on 1= e,

we obtain .
x) = H aeQrPen T,
=1

For the second part of the theorem, we simply write, by definition of the function
F,
< k—h

FM P = P
) () = Z(k Al {0, >k} = Zk' {0, >k +h},
which gives the result by taking = = 0. |

This result not only shows that P{©,, > 0} = 1 as expected, but also that,
for every n > 1, we have
P{O, > 1} = a@Q1.

RR n°® 1953
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4.1 Uniform distribution

We consider in this section the case where the probability mass function 7 (n) is
uniform. The following theorem gives, in that case, the asymptotic distribution

of ©,.

Theorem 10 If p;,, = 1/n for every L = 1,...,n, then for every x € R, we
have
lim F,(z) = el

n——:aoo

Proof. If py,, = 1/n for every £ = 1,...,n, we have from relation (8),
Fo(z) = (ale/"n)n

which can also be written as

nln <a6Qm/n]l>

Fn({E) —e n(aQlz/n+e(1/n)/n)) _ eaQ]l;c-i-e(l/n)’

=e
where ¢ is a function satisfying lim, ., e(1/n) = 0.
This completes the proof. |

This result suggests that the limit of P{©,, > k} when n goes to infinity
should be equal to (aQ1)*. Actually, if py,, = 1/n for every £ = 1,...,n, we
easily get from relations (8) and (9)

dk Q:c/n]]_ n
P{O, >k} = EM(0) = d* (ae®/"1)

dz*
=0
This gives for instance when n > 4,
n—1
FWV(z) = (aeQm/"]l) aQe®/m],
—1 n—2 2
FP(z) = i (aeQm/"]l) (aQeQw/”]l)
n
1 n—1
+ - (aeQw/”]l) aQQeQ””/”]I,
—1 -9 n—3 3
F,(lg) (x) = —(n )(2n ) (aeQx/"]l> (aQeQw/”]l)
n

1 —
L= 3(71 . ) (aeQa:/n]l) aQeQ:c/n]laQQGQx/n]l
n
+ — ( Qm/n]]_) N OéQB Qm/n]]_
1)

(n — 2)( 3) (aeQx/"]l>n74 (aQeQx/n]l>4

6(n—1)(n —2 n—3 2
+ (n )3(77‘ ) (aeQ;c/n]l> (aQeQx/n]_) aQQGQx/n]l
n

+ 202D (ae@ermy)" (aqeww/m1)’

e = 0o

An —1 n—2 ;
+ (nn3 )(aeQa:/n]l> aQeQx/n]laQJeQx/n]l

+ ig (aeQx/"]l>n71 aQe®r/"1,
n
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and so, for x = 0,

P{O, >1} = aQl,

P{O, >2} = ”; ! (aQ1)* + lacfn,
Plo, >3 = -Un=2) 17)1(2” =2 (aq@uy* + 22— 01001 + %anﬁn,
PO, >4y = U208 oy =102 (o0 0n

4(n—1 1
+ 2 (aQ?1) + Lg)ama@% + —aQ'l.
n n n

An explicit expression of F®) (x) can be obtained using the Faa Di Bruno for-
mula, see for instance [3] or [14].

Theorem 11 (Faa Di Bruno formula) When functions f and g are smooth
enough, we have

J* kPO (g(a 1 b (g O\
@f(g(x))—klzwz ml;.j..mk!ZHl<g e!( )> ’

where T j, is defined by

Tir= {m: (ma,...,my)

k k
ngzjand Zﬁmg:k}. (10)
=1 =1

Taking g(z) = ae®®/"1 and f(z) = 2", we get

f(j)(x) = " _j)!x I14j<ny and g(z)(x) = WaneQ / 1,

which leads, for every n > 1 and k > 1, to F,,(z) = f(g(x)) and to
kAn

k! n 2 _\n—j j! k a@lelr/n] e
Fr(lk)(x): EZ (j) (aeQﬂ]]_) Z R H < 7 ) .
=1

Jj=1 meT;

Thus, taking z = 0, we recover

kAn

P{@pk}:i—ié@) 3

J meT; k

. k Z ™my
4! aQl
m1!~'mk!zl_[1< 0 ) ' (1)

Note that by taking g(z) = e*/™ and f(z) = 2", we obtain f(g(z)) = ¢® and
so, for every n > 1, we also recover

nk (J) Z ma (1) mal (202 - <y (k)™ =1 (12)

Jj=1 meTj i

The limiting behavior of P{©,, > k} is given by the following theorem.
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Theorem 12 If py,, = 1/n for every { = 1,...,n, then for every k > 0, we
have
lim P{O, >k} = (aQ1)"
n——-mao

and,

1

. i aQl<1
lim E©,)={ 1—ag1 7 “QL<
e 00 if aQl =1.

Proof. We extend the definition of the function F}, to the whole complex plane
C. For z € C, we have

> k
z
k=0

and we consider the unit circle C = {z € C | |z| = 1}. The function F, (z) being
analytic on C, we have, for every p > 0,

F.(2) [ o
j{czzsrl d> = i ; F, (e "Pdp
[e%e] 27
= ZL{@">I€} it k=P gy
P
= 2iﬂ'7{@n>p},
p!

since )
T . i(kfp)n _ O lf ]{) # p
/0 e dn = { 2ir it k=p.

We thus have, for every p > 0,

p! F,(2)
PO > Pk =50z £, oo

We have shown in Theorem 10 that F,(z) converges pointwise in z to e*@?
when n goes to infinity. Moreover, we have

|| 2

e

F,(z Selzland}l{—dz:equ dz| =e dn = 2erm.
[Fn(2)] chlp“l [=e g ldzl=e |

So, from the dominated convergence theorem, we get

) p| eaQ]lz

P! o~ (aQ1)¥ /2”~ i(k—p)n
= _ g d
22'77];) B, g

= (aQ1)?,

which completes the first part of the proof.
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For the second part, we recall that
E(©,) =) P{6, > k}.
k=0

We first consider the case where a@Q1 = 1. From the previous part of the proof,
we have, for every k > 0,

lim P{O, >k} =1.

Using Fatou’s lemma for series, we get
liminf » P{O, >k} > Y lim P{O, >k} = o0,
k=0 k=0

so lim,,_ . F(©,) = oo, which completes the second part of the proof when
a@l = 1.

We now consider the case where aQ1 < 1. Using relations (11) and (12),
we have

P{O, > k}
- ES() © : [T (1o )™
- nk = J e T mal(1)mimal(2D)m2 -« omy 1 (k)™ el
k
< (e, fo@ )
< (sup<ac2£n>1/‘)k.
>1

If we show that sup,>;(aQ‘1)"/* < 1 then the result follows using the dom-
inated convergence theorem for series. Let us show that supzZI(aQE]l)l/z <1
First of all, since aQ1 < 1, we have aQ’l < 1 for any ¢ > 1, hence

(an]l)l/e < 1 for every £ > 1. (13)

We introduce the infinite norm for matrices, defined for every matrix M, not
necessarily square, by

|M|| = sup > [M 1.
b
We then have ||a|| =1, ||1|| = 1 and for every ¢ > 1,

1/¢

(@Q )Y < (llalllILNQ) " = QY. (14)

It is well-know, see for instance [11], that the spectral radius p(Q) of the
matrix @) is satisfies

p(Q) = lim [ <1 (15)
From relations (14) and (15) we obtain
lim sup(aQ1)/* < 1. (16)
{— 00
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From relations (13) and (16), we easily get that supZ21(aQ€]l)1/€ < 1. By the
dominated convergence theorem for series, we obtain

oo

1
nhm E Z aQ]l m

k=0
This completes the proof. |

In the sequel, we consider the last terms of relation (11). They can be easily
computed. They also lead to a new way of computing the distribution of ©,,
for large values of n, small values of £ and for any Markov chain X.

For every 1 < k < n, relation (11) can be written as

ﬂ%@n>k}=fgﬁj<)%k (17)

where

!
wr(Q) = 3 7n1K10m1an26"Q--4nkKkU"% (0Q"1)

meTj i (=

==

It is easily checked that the j-th term in the sum is asymptotically equal to
O(1/nk=9), ie.

k! (n .

(5 Jusn@ = o)
Nevertheless, the constant involved in this expansion depends on k and is very
large even for relatively small values of k. To see this, we explicitly compute
below the last 5 terms of relation (17). By definition of the set T ;,, we have for
every k > 1,

Tire = {(k,0,...,0)},

Ti1pe = {(k—2,1,0,...,0)},

Tpor = {(k—4,2,0,...,0),(k—3,0,1,...,0)},

Tosr = {(k—6,3,0,...,0),(k—51,1,0,...,0), (k —4,0,0,1,0...,0)},

Thoak {(k—8,4,0,...,0),(k—7,2,1,0,...,0), (k — 6,1,0,1,0,...,0),
(k —6,0,2,0,...,0), (k — 5,0,0,0,1,0...,0)},
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where each vector having a negative entry is withdrawn from the corresponding
set. We then have, for every k > 1,

uek(Q) = (aQL)",
ur—1,6(Q) = % (@Q1) 7 aQ?11 >0y,
up—21(Q) = W (0QL)** (aQ?1) 1350y
+ kT( Q1) % aQ? >3y,
(k—3)(k —4)(k —5)
48
(k=3)(k—4)
12
+ 2 (001) 0@ 11 iy,

ur-2k(Q) = (k= 4>(k 313(5 6k = 1) (0QD)"* (aQ*1)" 1jzs)
N (k — 4)(/(34—85)(k —6)

4 k= i( 5)

G ;( 5)

120 o

(aQ1)"° (aQ21)3 Lik>6)

(@Q1)*° aQ?*1aQ®11 (55

up—3,x(Q)

(@Q1)* 7 (aQ?1)? aQ®11 457y

(@Q1)"° aQ?*1aQ*11 (56

_ 312

(@QD)"* (aQ’1)" Lz

Q1" "’ 0@’ 1lik>5)-

Note that specifying the dependence on @ allows us to extract the sum of the

coefficients of the u;;(Q) by simply writing u; (1) since we have aQ‘l = 1
when @@ = I. This leads to

B n
P{On >k} = Z (J%k(@) + enk;
j=k—4
where e, ;; satisfies using relation (12),
k—5 k—5 k

k! <n> k! (n> k! (n)
enk = — CJuie(@) < — ujp(l) =1—— uge(I).

3 2 ()@ = e 3 (5 uset =12 55 3§ Jusntd

We denote by b, i this last bound, i.e.

We then have
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It can be easily shown that b, j is increasing with &, so for a fixed error tolerance
¢ and for every n, we can easily compute the maximum value k* of k£ such that
the error is less than or equal to €, i.e.

E* =sup{k € N | b, <c}.

Figure 1 gives some values of k* for different values of ¢ and n. It shows for
instance that, for every k < 53, we have

&

! 1000 _
j=k—4

| € 10210 ] 10" ]
n = 102 18 15 12
n = 103 53 41 32
n=10% || 162 | 124 97
n=10° || 508 | 387 | 301

Fig. 1: Values of k* for different values of ¢ and n.

The above upper bound might seem unnecessarily pessimistic, since all terms
aQ’1 have been upper bounded by 1 here, a crude upper-bound. For that
reason, one may argue a bit further, and investigate how the above estimate
might be improved.

The sequence aQ’1 being decreasing with ¢ from 1 to 0, we denote by u the
greatest integer such that Q%1 =1, i.e

u=sup{l>0|aQ’l=1}.

Besides, due to the fact that p(Q), the spectral radius of @, satisfies p(Q) <
1, taking an e such that p(Q) < p(Q) + ¢ < 1, it is clear that there exists
a constant C. > 0 such that for any ¢ > 0, we have aQ‘l < C.(p(Q) + ¢)*.
Therefore, gathering the results, it becomes now clear that, choosing a g such
that p(Q) < g < 1, there is an integer £y such that

aQK]I < 1 whenever 0 < ¢ < ¢,
aQ’1 < ¢° whenever ¢ > g + 1.

Let us now estimate IP{©,, > k} using these (close to optimal) bounds.
Using Corollary 3, we have for every £ > 0 and n > 1,

1 k! -

]P{@n>k}:ﬁ Z WHQQ ]lSAn,k;
k€Sk.n r=1

where

n

1 k!
Ak = 0% 2 mn(1{krseo}+qk"'1{krzeo+1})
Eeskm, r=1

q* k! - 1
— ) WH(El{kr<€o}+1{kr>fo+l})'
=1
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Let us now estimate A, .
On the one hand, we have the following lower bound

k !
q k! _k
Ank = 7 > Lkl L

kq!
kE€ESK,n !

On the other hand, and in the similar spirit, we may as well write the
following upper bound

n

(CLE PN 8 S
n ke kil - k! e
_ qk—néo Z k!
- k l... |
n EESk,n kl. kn
k*’ﬂ@o

= 4q
Thus, we have proved that A, ; anyhow satisfies the two bounds
qk: é An’k; S qkf’n/go.

For large values of n, i.e. when n — oo, the upper bound is compatible with
the information we otherwise have at hand, namely

P{O, > k} — aQ"1.

Needless to say, the obtained bound on A, j in this case does not improve on
our previous crude estimate. For large values of k at variance, we have proved
that

P{O, > k} < ¢- %,

which establishes that P{O,, > k} goes exponentially fast to zero as k — oc.
This constitutes a new piece of information.

4.2 Speeding-up the computation

The computation of the distribution and of the expectation of ©,, using Theorem
4 is useful if these quantities are needed for all the values of i from 1 to n. This
leads to an algorithm with a complexity in O(n) which makes the computation
prohibitive for very large values of n. In the following theorem, we generalize
the result of Theorem 4 to deal with very large values of n.

Theorem 13 For every k > 0, n > 2, we have
k
kY e k—¢ ’
P{O, >k} =>_ o )Sun(l = 5un) T P{OL > (3P{O,_, >k =} (18)
£=0

where the random variable ©),_,, is defined exactly as ©,,_,, but with the proba-
bility mass distribution

u
Pu+1,n Pn,n
<1—s T andsu,n:Zpr,n.
u,n r=1

u,n
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Proof. Let n > 2 and w such that 1 <u <n—1. For r = 1,...,u, we have
DProu = Pron/Sun- For every k > 0, we have from Corollary 3

P{O, > k}
k! - -~
= Z kil k IH(pTv")k' aQ""1
EE€Sk, 1T 2

: Ko
=2 2 E): ml_[l(pr,n)’“ Q"1
kn)eE r=

=0 k€Sr,u (Eut1,1kn)ESk—t,n—u
k-
- >0 = i H (prn)* 0 Q"
=0 kES,, kl k
k—20) i k.
<Y <—. [T (o) 0@
ky+t1! kn,
(Kut1seeskn)ESk—t,n—u r=u+l
k k /) u
_ ! ky .
= Z Sﬁ,n(l - Su,n)k ‘ Z P A H (Pr,u) aQ*r1
/ kil k!
£=0 EESZ,u r=1
n k.
(k—20)! Drom " &
X —_ —_— 1
Z Kug!--kp! H 1—5sun Q
(Kut1seeskn)ESk—t,n—u r=u+l ’

k
— Z <’;> st (1= 5u0)FP{O, > (}P{O),_, >k — (}

£=0

which completes the proof. |

Corollary 14 If p,, = 1/n for everyr =1,...,n, then for every k > 0 and u
such that 1 <u <n —1, we have

P{O, > k} = zk: <’z> (%)e (1 - %)k_zp{@u > OP{O6,_y >k — 0}

£=0

and, for every m > 1, we have

k
1
P{Ozn > k} = > < >1P{@2m1 > OP{Oym >k -0} (19)
=0

Proof. If the probability mass distribution is uniform then s, , = u/n and
©! _, = ©,_y. The second relation is simply obtained by taking n = 2™ and
w=2m"1 |

Relation (19) is interesting for very large values of n. Indeed, the complexity
for the computation of the distribution and of the expectation of ©,, is now
O(logy n).

Note also that this relation can be split into 2 identical sums plus the central
term corresponding to ¢ = k/2 when k is even.
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5 Application to Large-Scale Distributed Systems

Large-scale distributed systems are systems populated by thousand or millions
of heterogeneous nodes. These systems keep evolving according to nodes fail-
ures, departures, or the introduction of new nodes. To handle the scale and dy-
namics of these systems, peer-to-peer overlays, commonly abbreviated as P2P
overlays, have been proposed. P2P overlays are virtual networks built on top
of a physical network. Nodes of the overlay, usually called peers, communicate
among each other along the edges of the overlay by using the communication
primitives provided by the underlying network (e.g., IP network service). The
algorithms that peers use to choose their neighbors and to route messages define
the overlay topology. The topology of unstructured overlays conforms random
graphs, i.e., relationships among peers are mostly set according to a random pro-
cess, and routing is not constrained. Most popular P2P systems (e.g., Gnutella,
kaZaA) rely on unstructured overlays. On the other hand, structured overlays
(also called Distributed Hash Tables (DHTs)) are such that peers self-organize
in structured graphs (e.g., hypercube, torus). Typically, peers self-organize ac-
cording to a distance function based on their identifier, allowing to partition the
identifier space among all the peers of the system. Most proposed structured
overlays (e.g. [6, 9, 10, 13, 16, 15]) are highly satisfactory in terms of efficiency
and scalability when evolving in weakly dynamic environments (i.e., their key-
based routing interface guarantees operations whose complexity in messages and
latency usually scale logarithmically with system size). However, in the presence
of very frequent peers connections and/or disconnections, a very large number
of join and leave operations are locally triggered generating accordingly multiple
and concurrent maintenance traffic. Ensuring routing tables consistency quickly
becomes unbearable, leading to misrouting, and to possible partitioning of the
system as argued by Locher et al. [8].

A different approach to build a churn-resilient overlay network has been pro-
posed with cluster-based structured overlays (e.g. [1, 2, 4, 8]). In these overlays,
peers which are close to each other according to a given proximity metric group
together into clusters. These clusters form the vertices of the structured topol-
ogy. Clusters size is lower and upper bounded. The lower bound is usually tuned
to satisfy some constraint based on the assumed failure model (for instance, a
lower bound greater than or equal to 3f + 1 allows Byzantine tolerant agree-
ment protocols to be run despite up to f malicious peers). The upper bound is
typically in O(logN) to meet scalability requirements, where N is the current
number of peers in the system. Most of the maintenance traffic is captured
by clusters which severely limits both topology changes and communication
overhead imposed by the above solutions. On the other hand, to keep clusters
size bounded, these clusters have to split into smaller clusters or merge with
their closest clusters each time they become over populated or under populated.
Handling these operations requires high synchronization among involved peers.
Clearly this may tend to overwhelm the benefit of cluster-based DHTs if both
operations are too frequent with respect to join and leave events. The remaining
part of this section is devoted to this analysis.

The Markov chain X modelling the behavior of one cluster is depicted in
Figure 1 in which g =1—p and p € (0,1).

The transition probability p means that a new peer joins the cluster while
the transition probability ¢ means that a peer leaves the cluster. The transition
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Figure 1: Markov chain model of one cluster.

from state Spi, + 1 to the absorbing state expresses that the cluster has reached
its minimal size Sy, and that it has to merge with another cluster. In the same
way the transition from state Syax — 1 to the absorbing state means that the
cluster has reached its maximal size Sy,.x and that it must split into two smaller
clusters. The initial distributions « that we consider are the unit row vectors
ej for j = Smin +1,..., Smax — 1. So, the initial distribution o = e; means that
Xy = j with probability 1.

The matrix @ which gives the transitions between the transient states of
X is thus a tri-diagonal matrix where non-zero entries are Q;;+1 = p and
Qii—1 = ¢ = 1 —p. We suppose that the probability mass function 7(n) is
uniform, i.e. that p;, = 1/n, for every i = 1,...,n. With these values, the
limiting behavior of respectively the distribution and the expectation of ©,, are
given from Theorem 12 for every k > 0, by

p" if Xo= Smin+1
lim P{O, >k} = 1 if Xo=j, for Smin+2 < j < Smax — 2
e (1—p)* if Xo= Smax—1

and

1 .

—_— lf X() = Smin + 1

1-p

lim E(0,)= %) if Xo=14, for Spmin +2 <7 < Spmax — 2
n——-~oo 1

- if  Xo= Smax — 1.
p

For the numerical evaluations, we have chosen p = 1/2. With this value, we
easily get, when a = ej,

E(@l) = (] - Smin)(smax _])

We have also chosen Spin = 4 and Spax = 16 which implies that the number of
transient states is equal to 11.

Figure 2 shows the distribution of ©,, for different values of n when the
initial state Xg of each cluster is state Sy, + 1 = 5. It also shows the limiting
distribution given by

. 1
It is worthwhile noting that the limiting distribution is reached very quickly for

small values of n.
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0] 10 20 30 40 50

Figure 2: From top to the bottom: P{0©,, > k} when Xy = Spin +1 = 5, for
n=1,2,3,4,5,10, 15,20, 25, co, as functions of k.

In the same way, Figure 3 shows the distribution of ©,, for different values
of n when the initial state Xy is state (Smin + Smax)/2 = 10. In that case the
limiting distribution is given by

lim P{O, >k} = 1.

The figure shows that it is reached rather slowly. Note the scaling difference
between the k-axis in Figures 2 and 3.

Figure 4 shows the expected value of ©,, for different values of the initial
state and for n from 1 to 25. We can observe the limiting behavior of F(©,,)
which is equal to 2 when Xy = 5 and equal to co when Xg = 6,7,8,9,10. Here
again it is reached very quickly when Xy = 5.

Figure 5 shows the distribution of ©,, for different large values of n when
the initial state X of each cluster is state (Smin + Smax)/2 = 10. This figure
has been obtained using the recurrence described in Corollary 14.

Figure 6 shows the expected value of ©,, for different values of the initial
state and for n = 1,2,4,8,...,2'% = 32768. Here again, we can observe the
limiting behavior of E(©,,) which is equal to co when Xy = 5,6,7,8,9,10. The
value of E(0O,) when Xy = 5 is practically invisible because it is too close to
the z-axis. Indeed, in that case limiting behavior of E(©,) is equal to 2.
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Figure 3: From bottom to the top: P{0,, > k} when Xy = (Smax + Smin)/2 =
10, for n = 1,2, 3,4, 5, 10, 15, 20, 25, as functions of k.
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100 1
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Figure 4: From bottom to the top: F(0,,) for X; =5,6,7,8,9, 10, as functions
of n.
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Figure 5: From bottom to the top: P{0,, > k} when Xy = (Smax + Smin)/2 =
10, for n = 210 211 212 913 914 915 — 39768 as functions of k.
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10000
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Figure 6: From bottom to the top: F(©,) for X, = 5,6,7,8,9, 10, as functions
of n, forn=1,2,4,8,...,2'5.
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