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When studying the expressive power of monadic second-order logic (MSO) of-
ten the question arises of whether one can define an order on a certain set of
vertices. For instance, the property that a set has even cardinality can, in gen-
eral, not be expressed in MSO. If, however, this set is linearly ordered, we can
easily write down a correspondingMSO-formula. ¿e same holds for every pre-
dicate Cardq(X) expressing that the cardinality of the set X is a multiple of q.
It follows that the extension of MSO by all these counting predicates Cardq(X),
called counting monadic second-order logic (CMSO), is no more powerful than
MSO on every class of structures on which we can define an order.
Another example of a situation where a linear order increases the expressive

power of monadic second-order logic is the construction of graph decomposi-
tions like the modular decomposition of a graph. It is shown in [] that modular
decompositions are definable inMSO if the graph is equipped with a linear order.
Finally, althoughwewill not address complexity questions in this article, let us re-
call that, over linearly ordered structures, the complexity class PTIME is captured
by least fixed-point logic [, ].

Yet another example is the construction of (a combinatorial description of) a plane embedding
of a connected planar graph. Such embeddings are definable inMSO if we can order the neigh-
bours of each vertex (see []). For -connected graphs such an ordering is always definable, but
for graphs that are not -connected this is not always the case.





Recall that a formula φ(x , y)with two free first-order variables x and y defines
a (linear) order on a relational structure A if the binary relation consisting of all
pairs (a, b) of elements of A satisfying A ⊧ φ(a, b) is a linear order on A. We
say that φ(x , y) defines an order on a class of structures if it defines a (linear)
order on each structure of that class. Our objective is to provide combinator-
ial characterisations of classes of finite graphs whose representing structures are
MSO-orderable, i.e., on which one can define an order by anMSO-formula. (¿e
question of whether a partial order is definable is trivial since equality is a partial
order. ¿erefore, we only consider linear orders.)
As defined above the notion of an MSO-orderable class is too restrictive. To

get interesting results, we allow in the above definitions formulae with paramet-
ers. ¿at is, we take a formula φ(x , y; Z̄) with additional free set variables Z̄ =
⟨Z , . . . , Zn−⟩ and, for each structure A in the given class, we choose values
P , . . . , Pn− ⊆ A for these variables such that the binary relation

{ (a, b) ∣ A ⊧ φ(a, b; P̄) }

is a linear order on A.
¿ere is noMSO-formula (evenwith parameters) that defines a linear order on

all finite graphs. (¿is is even the case for all finite sets, i.e., finite graphs without
edges.) On the other hand, to take an easy example, the class of all finite connec-
ted graphs of degree at most d (for fixed d) isMSO-orderable.
If graphs are replaced by their incidence graphs,MSO-formulae become more

powerful, because they can quantify over sets of edges. In this case we speak
ofMSO-orderable classes. Otherwise, we call the class MSO-orderable. Due to
the greater expressive power, the MSO-orderable classes properly include the
MSO-orderable ones.¿ismeans that, in the combinatorial characterisations be-
low, the conditions forMSO-orderability must be stronger than those forMSO-
orderability. A simple example of a class that is MSO-orderable but not MSO-
orderable is the class of all cliques.
Our main results are the following ones. We first give a necessary condition

forMSO-orderability based on the number of connected components resulting
from the removal of n vertices.We prove that this condition is sufficient for every
properminor closed class of graphs.We also show that it is sufficient for complete
d-partite graphs.We then study theMSO-orderability in a similar way andwe ex-
hibit a necessary condition that is stronger than the previous one.¿is condition
is sufficient for classes where some variant of clique-width is bounded.





 P

Let us fix our notation and terminology.Wewrite [n] ∶= {, . . . , n−}, for n ∈ N.
We denote tuples ā = ⟨a , . . . , an−⟩ with a bar. ¿e empty tuple is ⟨⟩.
Trees will always be rooted and directed, i.e., every edge is oriented away from

the root. ¿e tree-order associated with a tree T is the partial order defined by

x ⪯ y : iff the path from the root to y contains x .

¿e n-th level of a tree T consists of all vertices at distance n from the root. ¿e
height of T is the maximal level of its vertices.
We consider purely relational structuresA = ⟨A, RA

 , . . . , R
A
n−⟩ with finite sig-

natures Σ = {R , . . . , Rn−}. ¿e universe A will always be finite, and we allow
it to be empty as this convention is common in graph theory. In some places
we will also allow relational structures with constants, but when doing so it will
always be mentioned explicitly. For a relation R and a set X, we write R ↾ X
for the restriction of R to X. For a tuple R̄ of relations, we denote by R̄ ↾ X the
corresponding tuple of restrictions.
For the most part, we will consider graphs instead of arbitrary relational struc-

tures. Graphswill always be simple, loop-free, and undirected.Wewill denote the
edge between vertices u and v by (u, v). Note that the same edge can also be writ-
ten as (v , u). ¿ere are two ways to represent a graph G = ⟨V , E⟩ by a structure.
Both of them will be used. We can use structures of the form ⌊G⌋ ∶= ⟨V , edg⟩
where the universe V consists of the set of vertices and we have a binary edge
relation edg ⊆ V × V , or we can use structures of the form ⌈G⌉ ∶= ⟨V ∪ E, inc⟩
where the universe contains both, the vertices and the edges of the graph and
we have a binary incidence relation inc ⊆ V × E telling us which vertices belong
to which edges. If C is a class of graphs, we denote the corresponding classes of
relational structures by, respectively, ⌊C⌋ and ⌈C⌉.

Definition .. A graph G = ⟨V , E⟩ is r-sparse if, for every subset X ⊆ V ,

∣E ↾ X∣ ≤ r ⋅ ∣X∣ .

We denote by A⊕B the disjoint union of the structures A andB. For struc-
tures A andB encoding graphs, we also use a dual operation A ⊗B that, a er
forming the disjoint union of A and B, adds all possible edges connecting an
element of A to an element ofB. For a set S ⊆ A of elements, we write A − S for

In [] such graphs are called uniformly r-sparse.





the substructure ofA with universe A− S. Similarly, for a graphG, we denote by
G − S the subgraph of G induced by the complement of S.
Monadic second-order logic (MSO) is the extension of first-order logic by set

variables and quantifiers over such variables. ¿e quantifier-rank qr(φ) of an
MSO-formula φ is the maximal number of nested quantifiers in φ, where we
count both, first-order and second-order quantifiers. ¿e monadic second-order
theory of quantifier rank h of a structure A is the set of all MSO-formulae of
quantifier rank h satisfied by A. We denote it by M¿h(A). Frequently, we are
interested not in the theory of the structure A itself, but in the theory of an ex-
pansion ⟨A, P̄, ā⟩ by unary predicates P̄ and constants ā. In this case we write
M¿h(A, P̄, ā) omitting the brackets. Note that situations like this are the only
time we allow constants in structures.
Let φ(x̄ , Ȳ ; Z̄) be an MSO-formula with free first-order variables x̄ and free

second-order variables Ȳ , Z̄. Given a structure A and sets Pi ⊆ A, we can assign
the values P̄ to the variables Z̄. ¿is way we obtain a formula φ(x̄ , Ȳ ; P̄) with
partially assigned variables.¿e values P̄ are called the parameters of this formula.
¿e relation defined by a formula φ(x̄; P̄) in a structure A is the set

φ(x̄; P̄)A ∶= { ā ∣ A ⊧ φ(ā; P̄) } .

In this article we will only make limited use of monadic second-order trans-
ductions. ¿e following simple version suffices.

Definition .. Let Σ and Γ be signatures. A quantifier-free transduction τ is an
operation on structures that is specified by a list

⟨δ(x), (φR(x̄))R∈Σ⟩

of quantifier-free formulae over the signature Γ where δ has one free variable x
and the numbers of free variables of the formulae φR(x̄) correspond to the arities
of the relations R. A Γ-structure A is mapped by τ to the Σ-structure

τ(A) ∶= ⟨δA, (φA

R )R∈Σ⟩

where the universe is the set defined by δ and each relation R is defined by the
corresponding formula φR .

Lemma . (Backwards Translation). Let τ be a quantifier-free transduction. For
every MSO-sentence φ, there exists an MSO-sentence φτ , of the same quantifier-
rank as φ, such that

τ(A) ⊧ φ iff A ⊧ φτ , for all structures A .





Corollary .. Let τ be a quantifier-free transduction and A andB structures.

M¿h(A) =M¿h(B) implies M¿h(τ(A)) =M¿h(τ(B)) .

One important tool to compute monadic theories is the so-called Composi-
tion ¿eorem (see, e.g, [, , ]), which allows one to compute the theory of a
structure composed from smaller parts from the theories of these parts. ¿ere
are several variants of the Composition ¿eorem. For our needs the following
version suffices. Let A , . . . ,Am− be structures and ā

i = ⟨a i , . . . , a in−⟩ ∈ An
i n-

tuples, for i < m. ¿e amalgamation of the structures Ai over the parameters ā
i

is the structure ⟨A′, ā′⟩ obtained from the disjoint unionA ⊕ ⋅ ⋅ ⋅ ⊕Am− by, for
every k < n, merging the elements ak , . . . , am−k into a single element a′k . ¿e
tuple ā′ = ⟨a′ , . . . , a′n−⟩ consists of the elements resulting from the merging.

¿eorem. (Composition¿eorem). LetA , . . . ,Am−,B , . . . ,Bm− be struc-
tures and, for i < m, let ā i ∈ An

i and b̄ i ∈ Bn
i be n-tuples, and c̄ i ∈ Al i

i and d̄ i ∈ B l i
i

l i -tuples such that

M¿h(Ai , ā i c̄ i) =M¿h(Bi , b̄ i d̄ i) .

Let ⟨A′ , ā′⟩ and ⟨B′, b̄′⟩ be the amalgamations of, respectively, the structures Ai

over ā i and the structuresBi over b̄ i . ¿en

M¿h(A′, ā′ c̄ . . . c̄m−) =M¿h(B′, b̄′d̄ . . . d̄m−) , for all i < m .

 D 

¿roughout the article we use the term order for linear orders. Otherwise we will
speak of a partial order.

Definition .. Let Σ be a relational signature and C a class of Σ-structures.
(a) We say that anMSO-formula φ(x , y; Z̄) defines an order on C if, for every

structure A ∈ C, there are sets P , . . . , Pn− ⊆ A such that the formula φ(x , y; P̄)
defines a (linear) order on A.
(b)¿e class C isMSO-orderable if there is anMSO-formula φ defining an order

on C.
(c)We call a class C of graphsMSO-orderable if the class ⌊C⌋ isMSO-orderable,

and we call itMSO-orderable if ⌈C⌉ isMSO-orderable.

Lemma .. Let C and K be classes of Σ-structures.





(a) C ∪K isMSO-orderable if, and only if, C and K areMSO-orderable.

(b) C ⊕K ∶= {A⊕B ∣ A ∈ C , B ∈ K} isMSO-orderable if, and only if, C and
K areMSO-orderable.

Proof. (a) Clearly, if φ defines an order on C ∪ K, it also defines orders on C
and on K. Conversely, let φ(x , y; Z̄) and ψ(x , y; Z̄′) be MSO-formulae defining
an order on, respectively, C and K. Let ordφ(Z̄) be a formula stating that the
relation defined by φ with parameters Z̄ is an order.¿en we can order C ∪K by
the formula

ϑ(x , y; Z̄ , Z̄′) ∶= [ordφ(Z̄) ∧ φ(x , y; Z̄)] ∨ [¬ordφ(Z̄) ∧ ψ(x , y; Z̄′)] .

(b) First, suppose that C and K are ordered by the formulae φ(x , y; Z̄) and
ψ(x , y; Z̄′), respectively. We order C ⊕ K as follows. Consider A ⊕B ∈ C ⊕ K
and let P̄ and Q̄ be the parameters used by φ andψ to orderA andB, respectively.
Using one additional set S ∶= B as parameter we can define the order

x ≤ y : iff x , y ∈ A and A ⊧ φ(x , y; P̄)
or x , y ∈ B andB ⊧ ψ(x , y; P̄)
or x ∈ A and y ∈ B .

Conversely, suppose that there is a formula φ(x , y; Z̄) ordering C ⊕ K. We
construct a formula ordering C. (¿e orderability ofK follows by symmetry.) Let
A ∈ C and fix an arbitrary structureB ∈ K. Let P̄ be the parameters used to order
A⊕B. Using the Composition¿eorem, there exist two finite lists p , . . . , pn−
and q , . . . , qn− of MSO-theories of quantifier-rank h ∶= qr(φ) such that, for
a, b ∈ A,

A⊕B ⊧ φ(a, b; P̄) iff M¿h(A, P̄ ↾ A, a, b) = p i and
M¿h(B, P̄ ↾ B) = q i , for some i < n .

Let I ∶= { i < n ∣ M¿h(B, P̄ ↾ B) = q i }. It follows that we can order A by the
formula

ψ(x , y; Z̄) ∶=⋁
i∈I

ϑ i(x , y; Z̄) ,

where ϑ i is the conjunction of all formulae in p i .





Remark .. (a) Every class consisting of a single (finite) structure is obviously
MSO-orderable. By this lemma, it follows that all finite classes areMSO-orderable.
(b) For everyMSO-formula φ(x , y; Z̄) there exists a largest class Cφ of Σ-struc-

tures that is ordered by φ. ¿is class can be defined by

∃Z̄ ordφ(Z̄) ,

where ordφ(Z̄) is the formula from the proof of Lemma ..
Fixing an enumeration φ(x , y; Z̄), . . . , φn−(x , y; Z̄) of allMSO-formulae of

quantifier-rank m with k parameters Z , . . . , Zk− (up to logical equivalence,
there are only finitely many such formulae, see Section . of [] for details), we
obtain the class Cm ,k of all Σ-structures ordered by some of these formulae. Cm ,k

is defined by

∃Z̄ ⋁
i<n

ordφ i
(Z̄) .

¿is class can be ordered by the formula

ψm ,k(x , y; Z̄) ∶= ⋁
i<n

[ordφ i
(Z̄) ∧⋀

j<i

¬ordφ j
(Z̄) ∧ φ i(x , y; Z̄)] .

It follows that anyMSO-orderable class C can be ordered by ψm ,k for sufficiently
large m and k.

Remark .. Let C be a class of graphs and let φ(x , y; Z̄) be an MSO-formula
defining an order on ⌈C⌉. ¿e class C+ of all graphs obtained from graphs in C
by adding edges arbitrarily can be ordered by the formula φ+(x , y; Z̄ , Z′) ob-
tained from φ(x , y; Z̄) by replacing every atomic formula of the form inc(u, v)
by the formula inc(u, v) ∧ v ∈ Z′, and by relativising every quantifier to the
set Z′. (If P̄ are parameters such that φ(x , y; P̄) orders the graph G = ⟨V , E⟩,
then φ+(x , y; P̄, E) orders every supergraph G+ = ⟨V , E+⟩ with E+ ⊇ E.)
Remark .. Definition . can be formulated in terms of monadic second-order
transductions (for details and definitions, see, e.g.,Chapter  of []). A class C of
Σ-structures isMSO-orderable if, and only if, there exists a noncopying, domain-
preserving transduction mapping each structure A ∈ C to an expansion ⟨A, ≤⟩
by a linear order ≤. With respect to the transduction hierarchy (cf. []), it follows
that, if C is infinite (up to isomorphism) andMSO-orderable, there exists anMSO-
transduction mapping C to the class of all finite paths.
¿e opposite of an orderable class is a class where no infinite subclass can be

ordered. We call such classes hereditarily unorderable.





Definition .. A class C of structures is hereditarilyMSO-unorderable, if it is in-
finite and no infinite subclass C ⊆ C isMSO-orderable. For classes of graphs, we
define the terms hereditarily MSO-unorderable and hereditarily MSO-unorder-
able analogously.

Example .. (a) ¿e class C = {Kn ∣ n ∈ N } of all complete graphs is MSO-
orderable and hereditarilyMSO-unorderable.
(b) ¿e class Tn of all trees of height at most n is both, hereditarily MSO-

unorderable and hereditarilyMSO-unorderable.

 MSO- 

In this section we derive characterisations for MSO-orderable classes. MSO-
orderability will be considered in Section .

. N 

We start by providing a necessary condition forMSO-orderability. Belowwewill
then show that, for certain classes of graphs, this condition is also sufficient.

Definition .. Let A = ⟨A, R̄⟩ be a relational structure.
(a) We call A connected if it cannot be written as a disjoint union A = B⊕ C

of two nonempty substructures. A connected component of A is a maximal sub-
structure that is connected and nonempty.
(b) For a number k ∈ N, we denote by Sep(A, k) the maximal number of

connected components ofA−S, where S ⊆ A ranges over all sets of size atmost k.
(c) For a function f ∶ N → N, we say that a class C of structures has property

SEP( f ) if

Sep(A, k) ≤ f (k) , for all A ∈ C and all k ∈ N .

We say that C has property SEP, if it has property SEP( f ), for some function
f ∶ N→ N.

Example .. For complete bipartite graphs Kn ,m with n ≤ m we have

Sep(Kn ,m , k) =
⎧⎪⎪⎨⎪⎪⎩
 if k < n ,
m if k ≥ n .





For complete d-partite graphs Km , . . . ,md−
with m ≥ ⋅ ⋅ ⋅ ≥ md− and d ≥ , we

have

Sep(Km , . . . ,md−
, k) =

⎧⎪⎪⎨⎪⎪⎩
 if k < m + ⋅ ⋅ ⋅ +md− ,

m if k ≥ m + ⋅ ⋅ ⋅ +md− .

We leave the straightforward verification to the reader.

Example .. Let f ∶ N → N be a function and let n ∈ N. We construct a graph
Gn( f ) such that

Sep(Gn( f ), k) ≥ f (k) , for all k ≤ n .

Let T be the tree of height n, where every vertex v on level k has f (k) successors.
¿at is,

T ∶= {w ∈ N≤n ∣ w(k) < f (k) for all k } .

¿e desired graph Gn( f ) is obtained from this tree by adding all edges (x , y)
with x ≺ y.
Let us show that having property SEP is a necessary condition for a class to be

MSO-orderable. Recall that a function f ∶ N → N is elementary if it is bounded
by a function of the form expk , for some k ∈ N, where

exp(n) ∶= n and expk+(n) ∶= expk(n).

Lemma .. ¿ere exists a function f ∶ N → N such that Sep(G , k) ≤ f (n,m, k)
for every graph G such that ⌈G⌉ can be ordered by an MSO-formula of the form
φ(x , y; P̄) where qr(φ) ≤ m and P̄ = P . . . Pn− are parameters. Furthermore,
the function f (n,m, k) is effectively elementary in the argument k, that is, there
exists a computable function g such that f (n,m, k) ≤ expg(n ,m)(k).
Proof. Fixing k,m, n ∈ N, we define f (n,m, k) ∶= d where d is the number of
MSO-theories of the form

M¿m(⌈H⌉, P , . . . , Pn− , v , . . . , vk)

whereH is a graph, P , . . . , Pn− are parameters, and v , . . . , vk are vertices of H.
Note that, for fixed n andm, the number of such theories is elementary in k (see
Section . of [] for a detailed calculation).





Let φ(x , y; Z̄) be an MSO-formula of quantifier-rank at most m, let G be a
graph with Sep(G , k) > f (n,m, k), and let P , . . . , Pn− parameters from G. We
have to show that φ(x , y; P̄) does not order ⌈G⌉. Fix a set S = {s , . . . , sk−} of
vertices such that G − S has more than d connected components. Fix distinct
connected components C , . . . ,Cd of G − S and vertices a i ∈ C i . By choice of d,
there are indices i < j such that

M¿m(⌈G[C i ∪ S]⌉, P̄ ↾ C i ∪ S, s , . . . , sk− , a i)

=M¿m(⌈G[C j ∪ S]⌉, P̄ ↾ C j ∪ S , s , . . . , sk− , a j) .

As the structure ⟨⌈G⌉, P̄, s , . . . , sk− , a i , a j⟩ is the amalgamation of the struc-
tures

⟨⌈G[C i ∪ S]⌉, P̄ ↾ C i ∪ S, s , . . . , sk− , a i⟩ ,

⟨⌈G[C j ∪ S]⌉, P̄ ↾ C j ∪ S, s , . . . , sk− , a j⟩ ,
and ⟨⌈G[C l ∪ S]⌉, P̄ ↾ C l ∪ S, s , . . . , sk−⟩ , for l ≠ i , j ,

over the tuple ⟨s , . . . , sk−⟩, it therefore follows by¿eorem . that

M¿m(⌈G⌉, P̄, s , . . . , sk− , a i , a j) =M¿m(⌈G⌉, P̄, s , . . . , sk− , a j , a i) .

In particular,

G ⊧ φ(a i , a j; P̄) iff G ⊧ φ(a j , a i ; P̄) .

Hence, φ(x , y; P̄) does not define an order.

Corollary .. AnMSO-orderable class of graphs C has property SEP( f ), for an
elementary function f .

¿e converse does not hold. For instance, according to ¿eorem . below,
the class of all bipartite graphs of the formKn ,

n is notMSO-orderable, while we
have seen in Example . that it has propertySEP( f ) for the elementary function
f (n) = n . Our objective therefore is to get converse results for particular classes
of graphs satisfying certain combinatorial conditions.

Remark .. We have noted in Remark . that, if an MSO-orderable graph G
is obtained from a graphH by deleting edges, thenH is alsoMSO-orderable. In
this case, we further have Sep(H, k) ≤ Sep(G , k), for all k.





Remark .. All results of Section  also hold for directed graphs since every
orientation of an undirected graph can be defined by anMSO-formula with two
parameters (see Proposition . of []). It follows that a class of directed graphs
is MSO-orderable if, and only if, the corresponding class of undirected graphs
is. ¿is is different forMSO-orderability.

As a simple introductory example let us consider classes of trees.

¿eorem .. Let T be a class of trees. ¿e following statements are equivalent:

() T isMSO-orderable.

() T isMSO-orderable.

() T has property SEP.

() ¿ere exists a number d ∈ N such that every tree in T has maximal degree
at most d.

Proof. ()⇒ () is trivial.
()⇒ () has been shown in Corollary ..
()⇒ () Suppose that T has property SEP( f ) and let T ∈ T . Every vertex

v ∈ T has at most f () neighbours since T − {v} has at most f () connected
components. Consequently, the maximal outdegree of T is bounded by f ().
()⇒ () Let T be a tree with maximal degree at most d. We use d parameters

P , . . . , Pd− to order T . Fixing a vertex r ∈ T as root, there exists an injective
embedding g ∶ T → d<m , for some number m ∈ N. We set

Pi ∶= { v ∈ T ∣ g(v) = wi for some w } .
Note that r is the only vertex of T that is not contained in any of these sets. Hence,
using P̄, we can define the tree order ⪯ on T .We can also define the lexicographic
ordering:

u ≤ v : iff u ⪯ v , or u ∈ Pi , v ∈ Pk , for i < k, where u , v are the
immediate successors of the longest common

prefix of u and v with u ⪯ u and v ⪯ v .
Corollary .. Let k ∈ N. ¿e class of trees of depth at most k is hereditarilyMSO-
unorderable.

Proof. For any given depth k, there are only finitely many trees (up to isomorph-
ism) satisfying condition () of the theorem.





. O  

We start by presenting a characterisation for classes of graphs omitting a minor.
Recall that we can orient a spanning forest F of a graphG by fixing a root in each
connected component. ¿is defines a tree-order ⪯F on F . A spanning forest F is
normal if the ends of every edge ofG are comparable with respect to ⪯F (see, e.g.,
Section . of []).

Definition .. Let G be a graph and F ⊆ G a normal spanning forest of G.
(a) We denote by ⪯F the tree-order associated with F and the set of prede-

cessors by

↓Fx ∶= { y ∣ y ≺F x } .

(b) For x ∈ G, we define

BF(x) ∶= { v ≺F x ∣ there is an edge (u, v) of G with x ⪯F u } .

Lemma .. Let G be a graph, F a normal spanning forest of G, x ∈ G, and
B ⊆ ↓Fx.
(a) If ∣B∣ ≥ p and there are p immediate successors y of x with BF(y) = B∪{x},

then Kp,p ⪯ G.
(b) If ∣B∣ < p and Sep(G , p) ≤ d, then there are at most d immediate suc-

cessors y of x with BF(y) = B ∪ {x} .
Proof. (a) Suppose that there are p distinct immediate successors y , . . . , yp−
of x with B(y i) = B∪ {x} and fix distinct vertices b , . . . , bp− ∈ B. Let H be the
minor ofG obtained by contracting the subtrees below y , . . . , yp− to single ver-
tices ỹ , . . . , ỹp− and by removing all remaining vertices except for ỹ , . . . , ỹp−
and b , . . . , bp− . ¿en H ≅ Kp,p.
(b) Set S ∶= B ∪ {x} and let y , . . . , yn− be an enumeration of all immedi-

ate successors of x with B(y i) = S. ¿en y , . . . , yn− lie in different connected
components of G − S. Hence, n ≤ Sep(G , p) = d.
¿eorem .. Let Cp,d be the class of all graphs G such that Sep(G , p) ≤ d and
G does not contain Kp,p as a minor. ¿en Cp,d isMSO-orderable, for every p, d.

Proof. Let F be a normal spanning forest of G. Since G has Sep(G , ) ≤ d con-
nected components, the forest F has at most d roots. We regard F as oriented





with edges pointing away from the root. Note that we can encode F by two para-
meters: its set of edges and its set of roots. (Since the first set consists of edges
and the second one of vertices, we could take their union as a single parameter.
For simplicity, we have refrained from doing so.) We shall use a lexicographic
order on F to order G, based on orderings (i) of the roots of F and (ii) of the
successors of every vertex of F .
Consider a vertex x ∈ F with successors y , . . . , ym−. Since each set BF(y i) is

linearly ordered by ⪯F , we can define a preorder on the successors by using the
lexicographic ordering of the sets BF(y i) :

y i ⊑ yk : iff BF(y i) ≤lex BF(yk) .

To prove that there is a definable order extending this preorder, it is sufficient to
show that the equivalence classes of this preorder have bounded cardinality. Let
k ∶= max{p, d}. For every set B ⊆ ↓Fx, there are at most k successors y i of x
with BF(y i) = B ∪ {x} : for ∣B∣ ≥ p, this follows from Lemma . (a); for ∣B∣ < p,
it follows from Lemma . (b).
¿e parameters needed to define the desired linear order are: the set of edges

of the spanning forest F and k+  parameters to distinguish (i) the roots of F and
(ii) the successors y of a vertex x with the same set BF(y).

¿eorem .. Let C be a class of graphs omitting a minor H. ¿e following state-
ments are equivalent:

() C isMSO-orderable.

() C has property SEP.

() C has property SEP( f ) for some elementary function f .

Furthermore, given H we can compute a number k such that we can choose the
function f in () to be expk .

Proof. ()⇒ () follows by Corollary . and ()⇒ () is trivial.
For ()⇒ (), suppose that C has property SEP( f ). By to ¿eorem ., the

classes Cp,d areMSO-orderable, for all p, d. Let p be large enough such thatH is
a minor of Kp,p and set d ∶= f (p). ¿en C ⊆ Cp,d and it follows that C is also
MSO-orderable.





Remark .. (a) For each k ∈ N, the class of all graphs of tree-width at most k
excludes some planar graph as a minor and, hence, it satisfies the conditions of
¿eorem ..
(b) Grohe has proved that every class of graphs excluding a minor is orderable

in least fixed-point logic. It follows that least fixed-point logic captures PTIME

on these classes [, ].

In contrast toRemark . (a), we have the following result for classes of graphs
of bounded n-depth tree-width (where we only allow tree decompositions with
index trees of height at most n). ¿is graph complexity measure was introduced
in [].

Proposition .. Let n, k ∈ N. ¿e class of all graphs of n-depth tree-width at
most k is hereditarily MSO-unorderable.

Proof. Let C be an infinite class of graphs of n-depth tree-width at most k. If it
wereMSO-orderable, we could define anMSO-transductionmapping this class
to the class of all finite paths. ¿is is not possible by¿eorem . of [].

In the following we try to compute a better bound on the function f in ¿e-
orem . ().

Lemma .. Let G be a graph with Sep(G , p) ≤ d such that Kp,p is not a minor
of G. Let F be a normal spanning forest of G and S a set of at most k vertices of G.
For every vertex x ∈ S, at most k + k ⋅max{p, d} connected components of G − S
contain an immediate successor of x (in F).

Proof. Let s ≺F ⋅ ⋅ ⋅ ≺F sm− = x be an enumeration of all elements s ∈ S with
s ⪯F x. For an immediate successor y of x, we define

I(y) ∶= { i < m ∣ there is some z ∈ BF(y) such that
z ≺F s i , and i =  or s i− ≺F z } .

If y and y′ are immediate successors of x in different connected components of
G − S, then I(y) ∩ I(y′) = ∅. Consequently, there are at most m ≤ k connected
components of G − S containing an immediate successor y of x with I(y) ≠ ∅.
It remains to show that there are at most k ⋅max{p, d} components of G − S

containing an immediate successor y with I(y) = ∅. Note that every such im-
mediate successor y satisfies B(y) ⊆ S. Hence, B(y) can take at most m ≤ k
values and, according to Lemma ., for each such value B ⊆ S there are at most
max{p, d} immediate successors y with B(y) = B.





Proposition .. Let G be a graph with Sep(G , p) ≤ d such that Kp,p is not a
minor of G. ¿en

Sep(G , k) ≤ d + k + kk ⋅max{p, d} , for k ≥ p .

Proof. Let F be a normal spanning forest of G and S a set of at most k ver-
tices of G. We have seen in Lemma . that, for every vertex x ∈ S, at most
k + k ⋅max{p, d} connected components of G − S contain an immediate suc-
cessor of x. Since every connected component ofG−S contains a root of F or the
immediate successor of some x ∈ S, there are at most d + k(k + k ⋅max{p, d})
such components.

Corollary .. Let C be a class of graphs omitting a minor H and let p be some
number such that H is a minor of Kp,p. ¿en C isMSO-orderable if, and only if,

sup{ Sep(G , p) ∣ G ∈ C } <∞ .

Remark .. Graphs omitting a minor H are r-sparse, for some number r de-
pending on H. Since, for r-sparse graphs, the expressive powers of MSO and
MSO coincide, it follows that the criterion in Corollary . also characterises
MSO-orderability.

Remark .. ¿e proof technique of ¿eorem . can be extended to order
certain classes of graphs that do not exclude any graph as a minor. We give two
examples.
(a) First, let us consider the class of all graphsHp, for p ≥ , defined as follows.

¿e set of vertices of Hp is

V ∶= {∗} ∪ [p] ∪ [p] × Sp ,

where Sp is the set of all permutations of [p]. Hp has the following edges:

(∗, )
(∗, (, σ)) for σ ∈ Sp ,
(i , i + ) for i ∈ [p], i < p ,
((i , σ), (i + , σ)) for i ∈ [p], σ ∈ Sp , i < p −  ,
(i , (σ(i), σ)) for i ∈ [p], σ ∈ Sp , i < p −  .

¿e graph H is shown in Figure . Note that the vertex ∗ has degree  + p!.





∗





(, e)

(, e)

(, τ)

(, τ)

Figure : ¿e graph H .

Clearly, Hp contains Kp,p! as a minor. Nevertheless, the class of all graphs Hp

isMSO-orderable. Since each Hp is -sparse (it has an orientation of indegree ,
see Chapter  of []), it follows that the class is evenMSO-orderable.
(b) Another example is the class of all cliques. It is MSO-orderable and does

not omit a minor. If we replace each edge by a path of length , we obtain a class
of -sparse graphs that isMSO-orderable and that still does not omit a minor.

Remark .. It is not possible to extend ¿eorem . to r-sparse graphs. A
counterexample is given by the class C of all graphs obtained from some bipartite
graph Kn , f (n) by replacing every edge by a path of length , where f ∶ N → N is
a fixed non-elementary function.¿is is a class of -sparse graphs with property
SEP that is notMSO-orderable.

. D MSO-

We have presented above a combinatorial property characterising MSO-order-
ability for classes of graphs omitting a minor. A natural question is whether this
property is decidable.Of course, this question does onlymake sense for classes of
graphs that can be described in a finite way.¿is is the case for equational classes
of graphs that generalise context-free languages. Let us recall some of their basic
properties. For a more detailed treatment we refer the reader to [].
An equational class is defined by a system of equations. Depending on the

graph operations allowed in these equations we obtain an HR-equational class
or a VR-equational one. Every HR-equational class has bounded tree-width and





a bound can be computed from a system of equations for the class. Furthermore,
for every k ∈ N, the class of all graphs of tree-width at most k is HR-equational.
Finally, every HR-equational class has a decidableMSO-theory.
VR-equational classes enjoy similar propertieswith clique-width replacing tree-

width, andMSO replacingMSO . EveryHR-equational class isVR-equational (as
we only consider simple graphs, this follows from ¿eorem . of []). For an
example of a VR-equational class we can take the class of cographs which we will
consider below inmore detail. A cograph is a graph that can be constructed from
single vertices using the operations of disjoint union⊕ and complete join⊗. Each
cograph can be denoted by a term over ⊕, ⊗, and a constant  that denotes an
isolated vertex. For instance, (⊕)⊗(⊕⊕) is a term forK,, and ⊗⊗⋅ ⋅ ⋅⊗
is a term for a clique. Since⊕ and⊗ are associative and commutative we consider
them of variable arity and we do ignore the order of the arguments. ¿e class C
of cographs is VR-equational. It can be defined by the equation

C = C ⊕ C ∪ C ⊗ C ∪ {} .

¿e following result is ¿eorem . of [] (the fact that one can compute a
representation of the semilinear set is not stated explicitly in [], but it follows
from the proof since all of its steps are effective).

¿eorem. (Semi-Linearity¿eorem). LetC be aVR-equational class of graphs
and φ(X , . . . , Xn−) anMSO-formula. ¿e set

Mφ(C) ∶= {(∣P∣, . . . , ∣Pn−∣) ∣ ⌊G⌋ ⊧ φ(P̄) for some G = ⟨V , E⟩ ∈ C
and P , . . . , Pn− ⊆ V }

is semilinear, and a finite representation of this set can be computed from φ and a
system of equations for C.

Proposition .. It is decidable whether a VR-equational class C has property
SEP.

Proof. Let C be a VR-equational class and let φ(X ,Y) be an MSO-formula ex-
pressing, for a graph G, that the set Y contains exactly one vertex of each con-
nected component of G − X. ¿e class C has property SEP if, and only if, there
exists a function f such that, for all G = ⟨V , E⟩ ∈ C and P,Q ⊆ V ,

G ⊧ φ(P,Q) implies ∣Q∣ ≤ f (∣P∣) .





According to the Semi-Linearity ¿eorem, the set

M(C) ∶= { (∣P∣, ∣Q∣) ∣ G ⊧ φ(P,Q) for some G = ⟨V , E⟩ ∈ C and
P,Q ⊆ V }

is semi-linear and an effective description ofM(C) can be computed from a sys-
tem of equations for C. Using this description, we can check whether or not, for
every n ∈ N, the set of p ∈ N with (n, p) ∈ M(C) is bounded. ¿is is the case if,
and only if, C has property SEP.

Corollary .. For an HR-equational class C, it is decidable whether C isMSO-
orderable.

Proof. AnHR-equational class C has bounded tree-width (Proposition . of [])
and, hence, omits some Kp,p as a minor. Since HR-equational classes are VR-
equational, it follows from¿eorem . that C isMSO-orderable if, and only if,
it has property SEP. ¿e latter is decidable by the above proposition.

Remark .. An alternative decidability proof can be based on Corollary ..
As the tree-width of Kp,p is p, every class C of tree-width at most p− omits Kp,p

as aminor. Furthermore, an upper bound on the tree-width of anHR-equational
class C can be computed from a system of equations for C (see Proposition . of
[]). By Corollary ., C is MSO-orderable if, and only if, there is a number m
such that Sep(G , p) ≤ m, for all G ∈ C. To check this condition, we consider
the formula φ(X) expressing that there exists a set S of size ∣S∣ ≤ p such that
X contains exactly one vertex of each connected component of G − S. By the
Semi-Linearity¿eorem, we can compute a representation of the semi-linear set

M(C) ∶= { ∣P∣ ∣ G ⊧ φ(P) for some G = ⟨V , E⟩ ∈ C and P ⊆ V } .

Using this representation we can check whether or notM(C) is finite.

For VR-equational classes we do not obtain decidability since we cannot ap-
ply ¿eorem .. We conjecture that a corresponding statement holds for these
classes.

Conjecture .. Every VR-equational class with SEP isMSO-orderable.

Below we shall prove this conjecture for particular classes of cographs.





. D 

We have characterisedMSO-orderability in ¿eorem . for classes excluding
a minor. ¿e graphs in such classes are sparse. In this section we consider the
opposite extreme of certain dense graphs, in particular, cographs and chrodal
graphs.

Lemma .. Let s, r ∈ N and let C be a class of graphs such that each G ∈ C is
obtained from some Kn ,m with n ≤ m ≤ sn+r by possibly adding new edges. ¿en
C isMSO-orderable.

Proof. Consider a graph G = ⟨V , E⟩ ∈ C obtained from Kn ,m with n ≤ m ≤
sn+r by adding some new edges (see also Remark .). Since every graph with at
most r vertices can be ordered using r parameters, we may assume that G has
more than r vertices. Hence, n > . Since m ≤ sn+r ≤ (s+r)n there exists an
injective function µ ∶ [m] → ℘([(s + r)n]). Fix enumerations a , . . . , an− and
b , . . . , bm− of the two vertex classes of Kn ,m . We define an ordering of G using
the following parameters.

A ∶= { a i ∣ i < n } ⊆ V ,

B ∶= { b i ∣ i < m } ⊆ V ,

S ∶= { (a i , b j) ∣ i ≤ j } ⊆ E ,

Rk ∶= { (a i , b j) ∣ ki ∈ µ( j) } ⊆ E , for k < s + r .

First, we define an order <A on A by

u <A v : iff for all x ∈ B, (u, x) ∈ S ⇒ (v , x) ∈ S .

Note that, by definition of S, this order is linear. We extend this order to all of G
by defining u < v if, and only if, one of the following conditions holds:

◆ u, v ∈ A and u <A v.
◆ u ∈ A and v ∈ B.
◆ u, v ∈ B and, if k is the minimal number such that, for some x ∈ A,

(x , u) ∈ Rk ⇔ (x , v) ∉ Rk ,

and if x ∈ A is the <A-least element with this property, then (x , u) ∈ Rk

and (x , v) ∉ Rk .





¿e technique employed in this proof will be used several times in this article.
Given an already defined order on a set A we order vertices not in A by consid-
ering the lexicographic ordering on their set of neighbours in A.

Lemma .. A class C of complete bipartite graphs isMSO-orderable if, and only
if, there exists a constant s such that

Kn ,m ∈ C with n ≤ m implies m ≤ s(n+).
Proof. (⇐) is a special case of Lemma ..
(⇒) Suppose that C is ordered by anMSO-formula φ(x , y; Z̄) with s set vari-

ables Z , . . . , Zs−. We claim that there is no Kn ,m ∈ C with m > s(n+).
For a contradiction, suppose that there is such a graph Kn ,m ∈ C. Let P̄ be

the parameters such that φ(x , y; P̄) orders ⌈Kn ,m⌉. We enumerate the two vertex
classes of Kn ,m as a , . . . , an− and b , . . . , bm− . Since m > s(n+) there is a
subset I ⊆ [m] of size ∣I∣ > s(n+)/s = sn such that

b i ∈ Pl ⇔ b j ∈ Pl for all i , j ∈ I and all l < s .
Similarly, there is a subset J ⊆ I of size ∣J∣ > sn/sn =  such that

(ak , b i) ∈ Pl ⇔ (ak , b j) ∈ Pl for all i , j ∈ J and all l < s and k < n .
Hence, there are at least two indices i < j in J.¿emapping π ∶ Kn ,m → Kn ,m that
interchanges b i and b j and leaves every other vertex fixed is an automorphism
of the structure ⟨⌈Kn ,m⌉, P̄⟩. Hence,

⌈Kn ,m⌉ ⊧ φ(b i , b j; P̄) iff ⌈Kn ,m⌉ ⊧ φ(b j , b i ; P̄) .

A contradiction.

Lemma .. Let C be a class of graphs such that every graph in C is of the form
Km , . . . ,md−

where

d >  and m + ⋅ ⋅ ⋅ +md− ≥ m ≥ m ≥ ⋅ ⋅ ⋅ ≥ md− ≥  .
¿en C isMSO-orderable.

Proof. Consider Km , . . . ,md−
∈ C with m ≥ ⋅ ⋅ ⋅ ≥ md− ≥ . Let A , . . . ,Ad− be

the classes of this graph and let ak , . . . , a
k
mk−

be an enumeration of Ak . Using
the parameter

R ∶= { (ak , ak+ ) ∣  ≤ k < d − }





we can define the preorder

u ⊑ v : iff u ∈ A i and v ∈ Ak for i ≤ k .

As usual, we write

u ≡ v : iff u ⊑ v and v ⊑ u ,
u ⊏ v : iff u ⊑ v and v ⋢ u .

Using the parameter

S ∶= { (aki , ak+j ) ∣ i ≤ j } ,

and ⊑, we can define a linear order ≤B on B ∶= A ∪ ⋅ ⋅ ⋅ ∪ Ad− by setting u ≤B v
if, and only if,

◆ u ⊏ v or
◆ u ≡ v and, for all x ⊏ u, (x , u) ∈ S implies (x , v) ∈ S.

Hence, it remains to define a linear order ≤A on A . Since m ≤ m + ⋅ ⋅ ⋅ +md− ,
we can fix an enumeration b , . . . , bn− of B and use the parameter

S ∶= { (ai , b j) ∣ i ≤ j }

to define such an order.

¿eorem .. Let C be a class of graphs such that, every graph in C is complete
d-partite for some d ∈ N. (We do not require the number d to be the same for every
graph.) ¿e following statements are equivalent:

() C isMSO-orderable.

() ¿ere exists a constant s such that C has property SEP( f ) where f (k) =
s(k+).

() ¿ere exists a constant s such that

Km , . . . ,md−
∈ C implies M ≤ s(N−M+)

whereM ∶=maxi<d m i and N ∶=∑i<d m i .





Proof. () ⇒ () Consider Km , . . . ,md−
∈ C with m ≥ ⋅ ⋅ ⋅ ≥ md− ≥ . We

distinguish several cases.

◆ If d ≤ , the claim follows by Lemma ..

◆ If d >  and M ≥ N − M, we have KN−M ,M ⊆ Km , . . . ,md−
and the claim

follows again by Lemma ..

◆ If d >  andM < N −M the claim follows by Lemma ..

() ⇒ () Suppose that ⌈C⌉ is ordered by an MSO-formula φ(x , y; Z̄) with
s set variables Z , . . . , Zs−. We claim that there is no Km , . . . ,md−

∈ C with M >
s(N−M)+s .
For a contradiction, suppose that there is such a graph Km , . . . ,md−

∈ C. Let
P̄ be the parameters such that φ(x , y; P̄) orders Km , . . . ,md−

. Let A be a vertex
class ofKm , . . . ,md−

of sizeM and let B be its complement.We enumerateA and B
as a , . . . , aM− and b , . . . , bN−M− , respectively. Since M > s(N−M)+s there is
a subset I ⊆ [M] of size ∣I∣ > s(N−M)+s/s = s(N−M) such that

a i ∈ Pl ⇔ a j ∈ Pl for all i , j ∈ I and all l < s .

Similarly, there is a subset J ⊆ I of size ∣J∣ > s(N−M)/s(N−M) =  such that

(a i , bk) ∈ Pl ⇔ (a j , bk) ∈ Pl for all i , j ∈ J , l < s , and k < N −M .

Hence, there are at least two indices i < j in J. ¿e mapping π ∶ Km , . . . ,md−
→

Km , . . . ,md−
interchanging a i and a j and leaving every other vertex fixed is an

automorphism of the structure ⟨⌈Km , . . . ,md−
⌉, P̄⟩. Hence,

⌈Km , . . . ,md−
⌉ ⊧ φ(a i , a j; P̄) iff ⌈Km , . . . ,md−

⌉ ⊧ φ(a j , a i ; P̄) .

A contradiction.
()⇒ ()LetKm , . . . ,md−

be a complete d-partite graph and setM ∶=maxi<d m i





and N ∶=∑i<d m i . IfM ≤ s(N−M+), then

Sep(Km , . . . ,md−
, k) =

⎧⎪⎪
⎨
⎪⎪⎩

 if k < N −M

M if k ≥ N −M

≤
⎧⎪⎪
⎨⎪⎪⎩

s(k+) if k < N −M

s(N−M+) if k ≥ N −M

≤
⎧⎪⎪⎨
⎪⎪⎩

s(k+) if k < N −M

s(k+) if k ≥ N −M

= s(k+) .

() ⇒ () Suppose that C has property SEP( f ) where f (k) = s(k+). Note
that

Sep(Km , . . . ,md−
, k) =

⎧⎪⎪
⎨
⎪⎪⎩

 if k < N −M ,

M if k ≥ N −M ,

whereM and N are as above. It follows that

M = Sep(Km , . . . ,md−
,N −M) ≤ f (N −M) = s(N−M+) .

As a corollary we obtain a special case of Conjecture . for particular classes
of cographs.

Corollary .. Let C be a VR-equational class of graphs that are complete d-
partite for some d. ¿en C is MSO-orderable if, and only if, it has property SEP.
¿is property is decidable.

Proof. For every d ∈ N, there is an MSO-formula φd(X , . . . , Xd−) stating that
X , . . . , Xd− are the vertex classes of a complete d-partite graph. By the Semi-
Linearity ¿eorem, it follows that the set

Md ∶= { (m , . . . ,md−) ∣ Km , . . . ,md−
∈ C }

is semi-linear.
Suppose that C has property SEP. By Example ., it follows that, for every

choice ofm , . . . ,md−, there are only finitelymanymd− withKm , . . . ,md− ,md−
∈





C. Semi-linearity of Md therefore implies that there are numbers a, b ∈ N such
that

md− ≤ a(m + ⋅ ⋅ ⋅ +md−) + b , for all Km , . . . ,md−
∈ C .

By¿eorem . it follows that C isMSO-orderable.

. S    

As the next step towards the Conjecture ., the case of an VR-equational class
of cographs suggests itself, but, so far, we were unable to find a proof. Instead, we
consider split graphs and, more generally, chordal graphs.

Definition .. Let G be a graph.
(a) G is a split graph if there exists a partition of its vertex set V into two parts

A and B such that A induces a clique whereas B is independent.
(b) Let F be a rooted spanning forest ofGwith tree order ⪯F .We call F a perfect

spanning forest if it is normal (cf. Section .) and, for every vertex v ∈ F , the set
of all neighbours u of v with u ≺F v induces a clique in G.
(c) G is chordal if it has a perfect spanning forest.

Every split graph is chordal. ¿ere are many equivalent definitions of chordal
graphs. See Proposition . of [] for an overview and a proof of their equival-
ence.

¿eorem .. A class C of split graphs is MSO-orderable if, and only if, there is
some s ∈ N such that C has property SEP( f ) for f (n) = s(n+).
Proof. (⇐) Given s, we construct an MSO-formula φ(x , y; Z̄) with s +  para-
meters that orders every split graph G such that Sep(G , n) ≤ s(n+), for all n.
Let G = ⟨V , E⟩ be such a split graph and let V = A∪ B be the partition of V into
a clique A and an independent set B. We use one parameter P to define an order
on A as follows. Fixing an enumeration a , . . . , an− of Awe set

P ∶= {a} ∪ { (a i , a i+) ∣ i < n − } .

¿enwe can write down anMSO-formulaψ(x , y; P) stating that every path that
connects the unique vertex in P to y and that only uses edges in P contains the
vertex x. ¿is defines a linear order ≤A on A.





We use this order to define an order on B as follows. For b ∈ B let

N(b) ∶= { a ∈ A ∣ (a, b) ∈ E } .

We can define a preorder ⊑ on B by

b ⊑ b′ : iff N(b) = N(b′) or the ≤A-least element of N(b) ∆ N(b′)
belongs to N(b) .

Since this preorder is linear, it is sufficient to define an order on each of the equi-
valence classes of the equivalence relation associated with ⊑. Given b ∈ B, let
b , . . . , bm− be an enumeration of all vertices b i ∈ B with N(b i) = N(b) and let
a , . . . , an− be a ≤A-increasing enumeration of N(b). ¿en

m ≤ Sep(G , n) ≤ s(n+) .

Fix an injective function π ∶ [m]→ ℘([s(n + )]) and, for k < s, set

Qk ∶= { (b i , a l) ∣ k(n + ) + l ∈ π(i) } ∪ { b i ∣ k(n + ) + n ∈ π(i) } .

Using the parameters Q , . . . ,Qs− we can order b , . . . , bm− by

b i <B b j iff the least element of π(i) ∆ π( j) belongs to π(i) .

Finally, combining the (pre-)orders ≤A, ⊑, and <B , we can define an order on all
of G.
(⇒) Suppose that a split graph G = ⟨V , E⟩ is ordered by a formula φ(x , y; P̄)

with s parameters P , . . . , Ps−. We will prove that Sep(G , n) ≤ (s+)(n+). Let
V = A ∪ B be the partition of V into a clique A and an independent set B. For
b ∈ B let

N(b) ∶= { a ∈ A ∣ (a, b) ∈ E } .

We start by showing that, for every b ∈ B, there are at most s(∣N(b)∣+) vertices
b′ ∈ B with N(b′) = N(b). Let b , . . . , bm− be a list of distinct vertices of B with
N(b) = ⋅ ⋅ ⋅ = N(bm−). For a contradiction, suppose that m > s∣N(b)∣+s . ¿en
there are indices i < j such that

b i ∈ Pk iff b j ∈ Pk , for all k < s ,
(b i , a) ∈ Pk iff (b j , a) ∈ Pk , for all k < s and a ∈ N(b) .





It follows that the mapping that interchanges b i and b j and that fixes every other
vertex of ⟨G , P̄⟩ is an automorphism. Hence,

⌈G⌉ ⊧ φ(b i , b j; P̄) iff ⌈G⌉ ⊧ φ(b j , b i ; P̄) .

A contradiction.
To compute Sep(G , n) consider a set S ⊆ V of size ∣S∣ ≤ n. We have seen

above that, for every set X ⊆ S ∩A, there are at most s(∣X∣+) vertices b ∈ B with
N(b) = X. Setting k ∶= ∣S∩A∣, it follows that there are at most k ⋅s(k+) vertices
b ∈ B with N(b) ⊆ S ∩ A. Consequently, G − S has at most

 + k ⋅ s(k+) ≤ sk+s+k+ = (s+)(k+) ≤ (s+)(n+)

connected components.

Lemma.. For every increasing and unbounded function g ∶ N→ N there exists
a class of split graphs that is not MSO-orderable and that has property SEP( f )
for f (n) ∶= g(n).
Proof. For k ∈ N letGk ∶= Kk⊗Dg(k) whereDn denotes the graphwith n vertices
and no edges. We claim that C ∶= {Gk ∣ k ∈ N } has the desired properties. Note
that

Sep(Gk , n) ≤
⎧⎪⎪
⎨
⎪⎪⎩

 if n < k ,
g(n) if n ≥ k .

Hence, C has property SEP, but it does not have property SEP( f ), for any func-
tion of the form f (n) = s(n+). By ¿eorem ., it follows that C is not MSO-
orderable.

Remark .. ¿eclass in the preceding lemma is notVR-equational since it does
not satisfy the Semi-Linearity ¿eorem. Hence, it does not provide a counter-
example to Conjecture ..

It would be interesting to extend¿eorem . to classes of chordal graphs. At
this point, we are only able to present a sufficient condition forMSO-orderability.
But there are examples showing that it is not necessary.We start with a technical
lemma.

Lemma .. Let F be a perfect spanning forest of a chordal graph G with tree
order ⪯F . If u ≺F v ⪯F w are vertices then

(u,w) ∈ E implies (u, v) ∈ E .





Proof. Let xn ≺F ⋅ ⋅ ⋅ ≺F x be the path in F from v = xn to w = x . We show by
induction on i, that (u, x i) ∈ E. For i = , there is nothing to do. Hence, suppose
that i >  and that we have already shown that (u, x i−) ∈ E. ¿en u and x i are
both neighbours of x i− . Since u, x i ≺F x i− , it follows by definition of a perfect
spanning forest that (u, x i) ∈ E.
Proposition .. Let C be a class of chordal graphs with property SEP( f ) where
f (n) = s(n+), for some s ∈ N. ¿en C isMSO-orderable.

Proof. Let G = ⟨V , E⟩ be a chordal graph with Sep(G , n) ≤ s(n+). We order G
as follows. Fix a perfect spanning forest F ofG. It is sufficient to define, for every
vertex v, an order on the immediate successors of v in F . ¿en we can use the
lexicographic ordering on F to orderG. Fix a vertex v and let u , . . . , un− be the
immediate successors of v in F . For i < n, we define

B i ∶= {w ⪯F v ∣ (w , u i) ∈ E } .

We start by showing that, for every set B ⊆ V , there are at most s(∣B∣+) indices i
such that B i = B. Given B, let I be the set of all i < n with B i = B. By Lemma .,
it follows that, for each i ∈ I and every edge (x , y) ∈ E with x ≺F u i ⪯F y, we
have x ∈ B i = B. Hence,

∣I∣ ≤ Sep(G , ∣B∣) ≤ s(∣B∣+)

as desired. As in the proof of¿eorem., we can use s+ parametersQ, . . . ,Qs

to colour the edges of the subgraphs B i ⊗ u i such a way that we can define the
ordering

u i < uk iff i < k , for i , k ∈ I .

Consequently, we can order all immediate successors of v by

u i ≤ uk : iff B i = Bk and i ≤ k , or
the ≺F-least element of B i ∆ Bk belongs to B i .

Corollary .. Let C be a VR-equational class of chordal graphs. ¿e following
statements are equivalent:

() C isMSO-orderable.

() C has property SEP.





() ¿ere are constants r, s ∈ N such that C has property SEP( f ) where f (n) =
rn + s.

¿ese properties are decidable.

Since we have already proved ()⇒ () and ()⇒ () in Proposition . and
Corollary ., only the implication ()⇒ () remains to be proved.We leave this
proof to the reader, it is similar to that of Corollary ..

 MSO- 

. N 

During our investigation ofMSO-orderability wewill employ tools related to the
notion of clique-width. We consider graphs with ports in a finite set [k], that is,
graphsG = ⟨V , E, χ⟩ equipped with a function χ ∶ V → [k]. We say that a vertex
a ∈ V has port label a if χ(v) = a. ¿e notion of clique-width is defined in terms
of the following operations on graphs with ports:

◆ for each a ∈ [k], a constant a denoting the graph with a single vertex that
has port label a ;

◆ the disjoint union ⊕ of two graphs with ports;

◆ the edge addition operation adda ,b , for a, b ∈ [k], adding all edges between
some vertexwith port label a and some vertexwith port label b that do not
already exist;

◆ the port relabelling operation relabh , for h ∶ [k]→ [k], changing each port
label a to the port label h(a).

Each term using these operations defines a graph with ports in [k]. ¿e clique-
width of a graph G = ⟨V , E⟩ is the least number k such that, for some function
χ ∶ V → [k], there exists a term denoting ⟨G , χ⟩ (for details cf. [, , ]). We
denote the clique width of G by cwd(G).
Below we will not use the operations defining clique-width, but some related

operations that are more convenient in our context.

Definition .. Let k ∈ N and R ⊆ [k] × [k].
(a) For undirected graphs G and H with ports in [k], we construct the undir-

ected graph G ⊗R H by adding to the disjoint union G ⊕H all edges (x , y) such
that





◆ either x ∈ G and y ∈ H, or x ∈ H and y ∈ G,
◆ x has port label a and y has port label b, for some (a, b) ∈ R.

Similarly, we define G ⊗R H for graphs G and H expanded by additional unary
predicates and constants.
(b) For a graphG with ports, we denote by Un(G) the graph obtained fromG

by forgetting all port labels.

Remark .. (a)¿e operation⊗R is associative and commutative with the empty
graph as neutral element. Furthermore,⊗R = ⊗R∪R− .
(b) With only  port label, there are two operations of the form ⊗R : the opera-

tions ⊕ and ⊗ used to build cographs.
(c) We have G ⊗R H = G ⊗R′ H where R′ ∶= ([k] × [k]) ∖ R and G denotes

the edge complement of G.
(d) We can express ⊗R as a combination of the operations defining clique-

width in the following way:

G ⊗R H = relabh−(adda ,b(⋯ addan ,bn(G ⊕ relabh+(H))⋯)) ,

for suitable functions h+ ∶ [k] → [k] and h− ∶ [k] → [k] and ports labels
a , b , . . . , an , bn ∈ [k]. (h+ is needed to make the port labels appearing in H
distinct from those appearing in G.)

Remark .. (a) Similar to Lemma . (b), one can show that

C ⊗R K ∶= {G ⊗R H ∣ G ∈ C , H ∈ K }

isMSO-orderable if, and only if, C andK areMSO-orderable.
(b) C ∶= {G ∣ G ∈ C } isMSO-orderable if, and only if, C isMSO-orderable.

To give a necessary condition forMSO-orderability we introduce a combinat-
orial property similar to SEP, but based on the operation ⊗R .

Definition .. Let G be a graph and k ∈ N.
(a) We denote by Cut(G , k) the maximal number n such that there exist non-

empty graphs H , . . . ,Hn− with ports in [k] and a relation R ⊆ [k] × [k] such
that

G ≅ Un(H ⊗R ⋅ ⋅ ⋅ ⊗R Hn−) .





(b) We say that a class C of graphs has property CUT( f ), for a function f ∶
N→ N, if

Cut(G , k) ≤ f (k) , for all G ∈ C and all k ∈ N .

We say that C has propertyCUT, if it has propertyCUT( f ), for some f ∶ N→ N.

Remark .. Note that Cut(G , k) = Cut(G, k).
For the proof that property CUT is necessary for MSO-orderability, we use

the following technical lemma.

Lemma .. Let G ,G′,H,H′ be labelled graphs, P̄, P̄′, Q̄ , Q̄′ tuples of sets of ver-
tices of the respective graphs, and ā, ā′, b̄, b̄′ tuples of vertices. For each port label c,
letCc ,C

′
c ,Dc ,D

′
c be the sets of all vertices of the respective graph labelled by c.¿en

M¿m(⌊G⌋, P̄, C̄ , ā) =M¿m(⌊G′⌋, P̄′, C̄′ , ā′)

M¿m(⌊H⌋, Q̄ , D̄, b̄) =M¿m(⌊H′⌋, Q̄′, D̄′, b̄′)

implies that

M¿m(⌊G ⊗R H⌋, S̄, āb̄) =M¿m(⌊G′ ⊗R H
′⌋, S̄′, ā′b̄′) ,

where S i ∶= Pi ∪Q i and S
′
i = P′i ∪ Q′i .

Proof. Let σ be a quantifier-free transduction that maps a structure A to its ex-
pansion ⟨A, I⟩ where I ∶= A × A is the equivalence relation on A with a single
class. Given R, we can write down a quantifier-free transduction τ such that

⟨⌊G ⊗R H⌋, S̄, āb̄⟩ = τ(σ(⟨⌊G⌋, P̄, C̄ , ā⟩)⊕ σ(⟨⌊H⌋, Q̄, D̄, b̄⟩))
and ⟨⌊G′ ⊗R H

′⌋, S̄′ , ā′b̄′⟩ = τ(σ(⟨⌊G′⌋, P̄′ , C̄′ , ā′⟩)⊕ σ(⟨⌊H′⌋, Q̄′ , D̄′, b̄′⟩)) .

Consequently, the claim follows form the Composition ¿eorem and the Back-
wards Translation Lemma.

Lemma .. ¿ere exists a function f ∶ N → N such thatCut(G , k) ≤ f (n,m, k)
for every graph G such that ⌊G⌋ can be ordered by an MSO-formula of the form
φ(x , y; P̄) where qr(φ) ≤ m and P̄ = P . . . Pn− are parameters. Furthermore,
the function f (n,m, k) is effectively elementary in the argument k, that is, there
exists a computable function g such that f (n,m, k) ≤ expg(n ,m)(k).





Proof. Fixing k,m, n ∈ N, we define f (n,m, k) as the number ofMSO-theories
of the form

M¿m(⌊H⌋, v , P , . . . , Pn− ,Q , . . . ,Qk−)

where H is a graph, v is a vertex of H and P , . . . ,Q , . . . are parameters. Note
that, for fixedm, the number of such theories is elementary in k (see Section .
of [] for a detailed calculation of an upper bound).
Let φ(x , y; Z̄) be an MSO-formula of quantifier-rank at most m, let G be a

graph with Cut(G , k) > f (n,m, k), and P , . . . , Pn− parameters from G. We
have to show that φ(x , y; P̄) does not order G. Fix graphs H , . . . ,Hd− with
d = Cut(G , k) and a relation R ⊆ [k] × [k] such that

G = Un(H ⊗R ⋅ ⋅ ⋅ ⊗R Hd−) .

For c < k, let

Cc ∶= { x ∈ G ∣ x ∈ H i , for some i < d , and x has port label c in H i } .

Since d > f (n,m, k), there are indices i < j such that

M¿m(⌊H i⌋, a i , P̄ ↾ H i , C̄ ↾ H i)
=M¿m(⌊H j⌋, a j , P̄ ↾ H j , C̄ ↾ H j) .

As there exists a graph F such that

⟨⌊G⌋, a ia j , P̄, Q̄⟩
= ⟨⌊H i⌋, a i , P̄ ↾ H i , C̄ ↾ H i⟩⊗R ⟨⌊H j⌋, a j , P̄ ↾ H j , C̄ ↾ H j⟩⊗R F

and ⟨⌊G⌋, a ja i , P̄, Q̄⟩
= ⟨⌊H j⌋, a j , P̄ ↾ H j , C̄ ↾ H j⟩⊗R ⟨⌊H i⌋, a i , P̄ ↾ H i , C̄ ↾ H i⟩⊗R F ,

it follows by Lemma . that

M¿m(⌊G⌋, a ia j , P̄, C̄) =M¿m(⌊G⌋, a ja i , P̄, C̄) .

In particular, we have

⌊G⌋ ⊧ φ(a i , a j; P̄) iff ⌊G⌋ ⊧ φ(a j , a i ; P̄) .

Hence, φ(x , y; P̄) does not define an order on G.





Corollary .. AnMSO-orderable class of graphs C has property CUT( f ), for an
elementary function f .

Example .. ¿e following classes are notMSO-orderable:

◆ the class of all cliques Kn ;

◆ the class of all complete bipartite graphs Kn ,m ;

◆ any class of graphs of the form G ⊗ (H ⊕ ⋅ ⋅ ⋅ ⊕Hn) where the number n
is unbounded and each H i is nonempty.

AsMSO-orderability impliesMSO-orderability, we can expect that the prop-
erty CUT implies SEP. ¿e following lemma proves this fact.

Lemma .. A class C of graphs with property CUT( f ) has property SEP(g)
where g(n) ∶= f (n + n) − .
Proof. LetG = ⟨V , E⟩ ∈ C and consider a set S ⊆ V of size ∣S∣ ≤ n. LetC , . . . ,Cd−

be an enumeration of the connected components of G − S. We claim that d ≤
g(n).
We define colourings ρ ∶ S → D and χ i ∶ C i → D, for i < d as follows. ¿e set

of colours is D ∶= S ∪ ℘(S). (To be formally correct, we have to take the set [k]
where k ∶= ∣S ∪℘(S)∣. To simplify notation, we will use S ∪℘(S) instead.)We set

ρ(s) ∶= s and χ i(v) ∶= { s ∈ S ∣ (v , s) ∈ E } .

It follows that

G = Un(⟨S, ρ⟩⊗R ⟨C , χ⟩⊗R ⋅ ⋅ ⋅ ⊗R ⟨Cd− , χd−⟩) ,

where

R ∶= { (s, X) ∈ S × ℘(S) ∣ s ∈ X } .

Consequently, Cut(G , ∣D∣) ≥ d + . Since ∣D∣ ≤ n + n , it follows that

d +  ≤ Cut(G , n + n) ≤ f (n + n) = g(n) +  .
¿e converse obviously does not hold. A special case, where it does hold is

the case of r-sparse graphs (cf. Definition .). ¿is case is of particular interest
since, for r-sparse graphs, the expressive powers ofMSO andMSO coincide (see
¿eorem . of []).





Lemma .. ¿e graph Km ,n is r-sparse if, and only if, r ≥ ( 
m
+ 

n
)
−
.

Proof. Every induced subgraph of Km ,n is of the form Km′ ,n′ with m
′ ≤ m and

n′ ≤ n. Such a subgraph has m′ + n′ vertices and m′n′ edges. ¿e ratio is

m′n′

m′ + n′
= 


m′
+ 

n′

≤ 

m
+ 

n

.

Lemma .. A class C of r-sparse graphs with property SEP( f ) has property
CUT(g) where g(k) ∶= f (kr(r + )).
Proof. Let G ∈ C. Suppose that

G = Un((H , χ)⊗R ⋅ ⋅ ⋅ ⊗R (Hd− , χd−)) ,

where R ⊆ [k] × [k]. W.l.o.g. we may assume that R is symmetric. We have to
show that d ≤ g(k).
Set Ia ∶= { i < d ∣ χ−i (a) ≠ ∅}. First, let us show that

∣Ia ∣ ≤ r +  or ∣Ib ∣ ≤ r +  , for every (a, b) ∈ R .

For a contradiction, suppose that there is some (a, b) ∈ R that ∣Ia ∣ ≥ r +  and
∣Ib ∣ ≥ r + . Choose subsets I′a ⊆ Ia and I′b ⊆ Ib of size m ∶= r +  and select
vertices x i ∈ χ−i (a), for i ∈ I′a , and y i ∈ χ−i (b), for i ∈ I′b . ¿e subgraph induced
by these vertices has m − ∣Ia ∩ Ib ∣ ≥ m −m edges and m vertices. Since

m −m

m
= m − 


= r + 


> r ,

it follows that G is not r-sparse. A contradiction.
For a, b ∈ [k], set

Sab ∶=⋃{ χ−i (a) ∣ i ∈ Ia , ∣χ−i (a)∣ ≤ r } ,
S ∶=⋃{ Sab ∣ (a, b) ∈ R, ∣Ia ∣ ≤ r + } .

Note that

∣Sab ∣ ≤ r∣Ia ∣ and ∣S∣ ≤ ∣R∣ ⋅ (r + ) ⋅ (r) ≤ kr(r + ) .

We claim that every connected component ofG − S is contained in H i − S, for
some i. For a contradiction, suppose that there is a connected component C of





G− S containing vertices from bothH i − S andH j − S. ¿en there exists an edge
(x , y) of G with x ∈ H i − S and y ∈ H j − S. Let a ∶= χ i(x) and b ∶= χ j(y). ¿en
(a, b) ∈ R. We have shown above that ∣Ia ∣ ≤ r+  or ∣Ib ∣ ≤ r+ . In the first case,
we have x ∈ χ−i (a) ⊆ Sab ⊆ S, in the second case, we have y ∈ χ−i (b) ⊆ Sba ⊆ S.
Hence, both cases lead to a contradiction.
It follows that G − S has at least d connected components. Consequently,

d ≤ Sep(G , ∣S∣) ≤ Sep(G , kr(r + )) ≤ f (kr(r + )) = g(k) .

. C

Recall from Section . that cographs are constructed by the operations ⊕, ⊗,
and . It follows that a cograph G with more than one vertex is either disconnec-
ted and of the form G = H ⊕ ⋅ ⋅ ⋅ ⊕Hn for connected cographs H , . . . ,Hn , or it
is connected and of the form G = H ⊗ ⋅ ⋅ ⋅ ⊗ Hn for cographs H , . . . ,Hn each
of which is either disconnected or a single vertex. Furthermore, these decompos-
itions of G are unique, up to the ordering of H , . . . ,Hn . Using this observation,
we can associate with every cograph a unique term as follows.

Definition .. A term t of the cograph-operations ⊕, ⊗,  (where we consider
⊕ and⊗ as many-ary operations with unordered arguments) is a cotree if there is
no node that is labelled by the same operation as one of its immediate successors.
Note that every graph has a unique cotree. ¿e depth of a cograph is the height
of this cotree.

Example .. ¿e cograph G defined by the term

(⊗ (⊕ (⊕ (⊗ ))))⊗ ((⊗ (⊗ ))⊕ )

has the cotree

⊗

 ⊕ ⊕

⊗   ⊗ 

    

Note that the leaves correspond to the vertices of G and that every subtree cor-
responds to an induced subgraph of G.





Recall (see, e.g., []) that amodule of a graph G = ⟨V , E⟩ is a setM of vertices
such that every vertex inV ∖M is either adjacent to all elements ofM, or to none
of them. A module M is called strong if there is no module N such that M ∖ N
and N ∖ M are both nonempty (cf. []). Clearly, being a module and being a
strongmodule are expressible inMSO . In a cograph we can distinguish between
two types of strong modules: the connected and the disconnected ones.

Definition .. A ⊕-module of a cograph G with cotree t is the value of a sub-
term s of t where the root of s is labelled with ⊕. Similarly, a ⊗-module is the
value of a subterm whose root is labelled by ⊗.

¿eorem.. Let C be a class of cographs.¿e following statements are equivalent.

() C isMSO-orderable.

() C has property CUT.

() ¿ere exists a constant d ∈ N such that the cotree of every graph in C has
outdegree at most d.

Proof. ()⇒ () is Corollary . from [] and ()⇒ () was shown in Corol-
lary ..
For ()⇒ (), suppose that, for every d ∈ N, there exists a graphGd ∈ C with a

cotree ofmaximal outdegree at least d. It is sufficient to show that Cut(Gd , ) > d.
By assumption, there is a strong module A of Gd containing strong submod-

ules B , . . . , Bn−, for n > d, such that either (i) A = B ⊕ ⋅ ⋅ ⋅ ⊕ Bn−, or (ii)
A = B ⊗ ⋅ ⋅ ⋅ ⊗ Bn−. Let C ∶= G − A be the graph induced by the complement
of A. Every vertex v ∈ C is either connected to all vertices of A, or to none of
them.We assign the port label  to the former vertices and the port label  to the
latter ones. Each vertex of A gets port label . It follows that

Gd = C ⊗R B ⊗R ⋅ ⋅ ⋅ ⊗ Bn−

where R = {(, ), (, )} or R = {(, ), (, ), (, )}.
Corollary .. Let k ∈ N. ¿e class of cographs of depth at most k is hereditarily
MSO-unorderable.

Proof. For any given depth k, there are only finitely many cographs (up to iso-
morphism) satisfying condition () of ¿eorem ..





Corollary .. ForVR-equational classes of cographs,MSO-orderability is decid-
able.

Proof. Let C be aVR-equational class of cographs. By¿eorem ., it is sufficient
to decide whether there is a constant d such that every cotree of a graph in C has
maximal outdegree at most d. Let φ(X) be an MSO-formula stating that there
exists a strong module Z such that

◆ X ⊆ Z and
◆ every strong module Y ⊂ Z contains at most one element of X.

Given a cograph G, it follows that the maximal outdegree of the cotree of G is
equal to the maximal size of a set X satisfying φ in G. Using the Semi-Linearity
¿eorem, we can decide whether this size is bounded.

Remark .. If a class C of cographs is MSO-orderable, there exists an MSO-
transduction (see [] or Chapter  of []) mapping each graph in C to its cotree.
But, conversely, the existence of such anMSO-transduction is not enough to en-
sure MSO-orderability: there exists an MSO-transduction from the class of all
cographs of depth k to their respective cotrees (this is a routine construction).
But, as we have just seen, this class is hereditarilyMSO-unorderable.

. ⊗-

Cographs are precisely the graphs of clique-width . A natural aim is thus to ex-
tend the equivalence ()⇔ () of ¿eorem . to classes of graphs of bounded
clique-width. However, we must leave this as a conjecture. Instead we only con-
sider the special case of graphswhere the height of the decomposition (as defined
below) is bounded. ¿ese generalise the cographs of bounded depth, and we
show that classes of such graphs are hereditarilyMSO-unorderable.
We start by introducing a kind of decomposition associated with the notion of

clique-width. Since we are only interested in decompositions of bounded height,
a simplified version, called a ⊗-decomposition, suffices.

Definition .. Let G = ⟨V , E⟩ be a graph.
(a) A ⊗-decomposition of G of width k is a family (Hv)v∈T of labelled graphs

Hv = ⟨Uv , Fv , χv⟩ with χv ∶ Uv → [k] such that

◆ the index set T is a rooted tree,





◆ H⟨⟩ = ⟨V , E, χ⟨⟩⟩, for some labelling χ⟨⟩,

◆ ∣Uv ∣ = , for every leaf v ∈ T ,

◆ for every internal vertex v ∈ T with successors u , . . . , ud−, there is some
Rv ⊆ [k] × [k] such that

Un(Hv) = Un(Hu
⊗Rv

⋅ ⋅ ⋅ ⊗Rv
Hud−

) .

We call⊗Rv
the operation at v. Note that the port labels ofHv andHu

, . . . ,Hud−

are unrelated.
(b) A strong ⊗-decomposition of G is a ⊗-decomposition (Hv)v∈T with Hv =

⟨Uv , Fv , χv⟩ such that, for each internal vertex v ∈ T with successors u , . . . , ud−,
there is some Rv ⊆ [k] × [k] and some function ρ ∶ [k]→ [k] such that

Hv = relabρ(Hu
⊗Rv

⋅ ⋅ ⋅ ⊗Rv
Hud−

) .

(c) ¿e height of a ⊗-decomposition (Hv)v∈T is the height of the tree T .
(d) We define wd⊗n (G) as the least number k such that G has a ⊗-decompos-

ition of width at most k and height at most n. Similarly, we define swd⊗n (G) as
the least number k such thatG has a strong⊗-decomposition of width at most k
and height at most n. We call wd⊗n (G) the n-depth ⊗-width of G and swd⊗n (G)
is its strong n-depth ⊗-width.

Remark .. (a) Note that, for every graph G and all n, m with m < n, we have

wd⊗n (G) ≤ swd
⊗
n (G) ≤ ∣V ∣ ,

wd⊗n (G) ≤ wd
⊗
m(G) ,

swd⊗n (G) ≤ swd
⊗
m(G) .

(b) Recall the definition of clique-width at the beginning of Section .. Since
the operation ⊗R can be expressed by the operations clique-width is based on,
but using twice as many port labels, it follows that the clique-width of a graph
is at most twice its strong n-depth ⊗-width (for any n). Since, conversely, for
sufficiently large n, the strong n-depth⊗-width of a graphG is at most its clique-
width, it follows that, for every graph G and all sufficiently large n,

swd⊗n (G) ≤ cwd(G) ≤  ⋅ swd
⊗
n (G) .





If we define swd⊗(G) as the minimal value of swd⊗n (G), for n ∈ N, we therefore
obtain a nontrivial width measure that is equivalent to clique-width.
(c) Note that wd⊗n (G) ≤ , for every graphG with n vertices. Hence, the width

wd⊗n (G) is only of interest if there is a bound on n.
Because of its relation to clique-width, the strong ⊗-width is of more interest

than the ⊗-width (which becomes trivial for large depths). We have introduced
the simpler notion of ⊗-width since, in the special case we consider, there exists
a bound on the depth of⊗-decompositions. In this case we can use the following
lemma to transform a bound on the⊗-width of a class into a bound on its strong
⊗-width.

Lemma .. For every graph G and every n ∈ N,

wd⊗n (G) ≤ swd
⊗
n (G) ≤ [wd

⊗
n (G)]

n
.

Proof. ¿e first inequality being trivial, we only prove the second one. Given a
⊗-decomposition (Hv)v∈T of G of height n and width k ∶= wd⊗n (G), we con-
struct a strong⊗-decomposition (H′v)v∈T of G of the same height and width kn .
Consider v ∈ T and let v , . . . , vk be the path in T from the root ⟨⟩ = v to v = vk .
Suppose that Hv = ⟨Uv , Fv , χv⟩. We set H′v ∶= ⟨Uv , Fv , χ

′
v⟩ where

χ′v(x) ∶= ⟨χv(x), . . . , χvk(x)⟩ .

¿en

H′v = relabρ(H
′
u
⊗Rv

⋅ ⋅ ⋅ ⊗Rv
H′ud−

) ,

where the function ρ maps ⟨a , . . . , ak , ak+⟩ to ⟨a , . . . , ak⟩.

Lemma .. Let G be a graph and (Hv)v∈T a ⊗-decomposition of G of width at
most k. Every vertex of T has less than Cut(G , k + k) successors.

Proof. Suppose that Hv = ⟨Uv , Fv , χv⟩. Let v ∈ T be a vertex with successors
u , . . . , um−. Hence,

Hv = Hu
⊗R ⋅ ⋅ ⋅ ⊗R Hum−

,

where ⊗R is the operation at v. Let C ∶= G − Hv , i.e., the subgraph induced by
the complement of the set of vertices of Hv . We claim that

G = C ⊗R′ Hu
⊗R′ ⋅ ⋅ ⋅ ⊗R′ Hum−

,





for a suitable labelling ρ ∶ C → [k + k] of C and a suitable relation R′ ⊆
[k + k] × [k + k]. ¿is implies that m +  ≤ Cut(G , k + k), as desired.
It remains to define ρ and R′. Fix a bijection π ∶ ℘([k]) → [k] and set

π(B) ∶= π(B) + k, for B ⊆ [k]. We define

ρ(x) ∶= π({ χv(y) ∣ y ∈ Uv , (x , y) ∈ E }) , for x ∈ C ,

and R′ ∶= R ∪ { (a, π(B)) ∣ a ∈ [k], B ⊆ [k], a ∈ B } .

Weobtain the following characterisation ofMSO-orderable classes of bounded
n-depth ⊗-width.

¿eorem .. Let C be a class of graphs such that, for some n, k ∈ N,

wd⊗n (G) ≤ k , for all G ∈ C .

¿e following statements are equivalent:

() C isMSO-orderable.

() C has property CUT.

() ¿ere is a constant d ∈ N such that every G ∈ C has a ⊗-decomposition
(Hv)v∈T of height at most n and width at most k where every vertex of T
has at most d successors.

() C is finite.

Proof. ()⇒ () is trivial and ()⇒ () follows from Corollary ..
() ⇒ () Suppose that C has property CUT( f ). Let G ∈ C and let (Hv)v∈T

be a reduced ⊗-decomposition of G of height at most n and width at most k.
¿en it follows by Lemma . that every vertex of T has less than d ∶= f (k+k)
successors.
() ⇒ () Since every tree of height at most n with degree at most d has at

most  + d + d + ⋅ ⋅ ⋅ + dn− < dn vertices, it follows that every graph in C has at
most that many elements.

We obtain the following extension of Corollary ..

Corollary .. Let n, k ∈ N.¿e class of all graphsG of n-depth⊗-width atmost k
is hereditarilyMSO-unorderable.





 R   

In this section we consider classes of graphs where the question of orderability
is as hard as in the general case.

Definition .. Let G = ⟨V , E⟩ be a graph.
(a) ¿e incidence graph of G is the graph Inc(G) ∶= ⟨V ∪ E, I, P⟩ where the

edge relation

I ∶= inc ∪ inc−

= { (x , y) ∣ x is an end-point of y or y is an end-point of x }

is the symmetric version of the incidence relation and P ∶= V is a unary relation
identifying the vertices of G.
(b) ¿e incidence split graph of G is the graph IS(G) ∶= ⟨V ∪ E, J⟩ where

J ∶= I ∪ { (x , y) ∈ V ×V ∣ x ≠ y }

and I is the symmetric incidence relation from (a).
(c) For a class C of graphs we set

Inc(C) ∶= { Inc(G) ∣ G ∈ C } ,
IS(C) ∶= { IS(G) ∣ G ∈ C } .

Note that IS(G) is a split graph. ¿e proposition below suggests that a char-
acterisation of MSO-orderability for classes of split graphs is as hard as a char-
acterisation ofMSO-orderability for arbitrary classes of graphs. We start with a
technical lemma.

Lemma .. Let C be a class of graphs.

(a) C has property SEP if, and only if, Inc(C) has property SEP.

(b) Inc(C) has property CUT if, and only if, IS(C) has property CUT.

Proof. (a) (⇐) Suppose that Inc(C) has property SEP( f ), for some f ∶ N → N.
We claim that C also has property SEP( f ). Let G = ⟨V , E⟩ be a graph in C. To
compute Sep(G , k) consider a set S ⊆ V of size ∣S∣ ≤ k. Let C , . . . ,Cm− be the
connected components of G − S. ¿en the connected components of Inc(G)− S
are

C′ , . . . ,C
′
m− , e , . . . , en−





where e , . . . , en− are all edges of G between vertices in S and C′i is the graph
obtained from Inc(C i) by adding all edges ofG connecting a vertex in S to some
vertex of C i . It follows that

Sep(G , k) ≤ Sep(Inc(G), k) ≤ f (k) .

(⇒) Suppose that C has propertySEP( f ), for some f ∶ N→ N. LetG = ⟨V , E⟩
be a graph in C with Inc(G) = ⟨V∪E, I, P⟩. To compute Sep(Inc(G), k) consider
a set S ⊆ V ∪ E of size ∣S∣ ≤ k. For each edge e ∈ S ∩ E, we select one end-
point. Let X be the set of these end-points and set S′ ∶= (S ∖ E) ∪ X. ¿en
Inc(G) − S′ has at least as many connected components as Inc(G) − S. Since
S′ ⊆ V it follows by what we have seen above that Inc(G)−S′ has at mostm+(k


)

connected components, where m is the number of connected components of
G − S′. Consequently,

Sep(Inc(G), k) ≤ Sep(G , k) +
k


(k − ) .

It follows that Inc(C) has property SEP( f ′) where f ′(k) = f (k) + k

(k − ).

(b) (⇒) Suppose that Inc(C) has property CUT( f ), for some f ∶ N → N.
Let Inc(G) = ⟨V ∪ E, I, P⟩ be a graph in Inc(C) and let IS(G) = ⟨V ∪ E, J⟩. To
compute Cut(IS(G), k) suppose that

IS(G) = Un(H ⊗R ⋅ ⋅ ⋅ ⊗R Hm−) ,

for k-labelled graphs H , . . . ,Hm− and a relation R ⊆ [k] × [k]. Suppose that
H i = ⟨U i , Ji⟩, for i < m, and let χ i be the labelling ofH i . We setH′i ∶= ⟨U i , I i , Pi⟩
where I i ∶= Ji ∖ (V ×V) and Pi ∶= U i ∩V . We label H′i by

χ′i(v) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

χ i(v) if v ∉ V ,

χ i(v) + k if v ∈ V .

¿en

Inc(G) = Un(H′ ⊗R′ ⋅ ⋅ ⋅ ⊗R′ H
′
m−) ,

where

R′ ∶= { (x , y), (x + k, y), (x , y + k) ∣ (x , y) ∈ R } .





Consequently, Cut(IS(G), k) ≤ Cut(Inc(G), k) ≤ f (k).
(⇐) Suppose that IS(C) has property CUT( f ), for some f ∶ N → N. Let

Inc(G) = ⟨V ∪ E, I, P⟩ be a graph in Inc(C) and let IS(G) = ⟨V ∪ E, J⟩. To
compute Cut(Inc(G), k) suppose that

Inc(G) = Un(H ⊗R ⋅ ⋅ ⋅ ⊗R Hm−) ,

for k-labelled graphs H , . . . ,Hm− and a relation R ⊆ [k] × [k]. Suppose that
H i = ⟨U i , I i , Pi⟩, for i < m, and let χ i be the labelling ofH i . We define the graph
H′i ∶= ⟨U i , Ji⟩ where Ji ∶= I i ∪ { (x , y) ∣ x , y ∈ Pi , x ≠ y } with labelling

χ′i(v) ∶=
⎧⎪⎪⎨
⎪⎪⎩

χ i(v) if v ∈ V ,

χ i(v) + k if v ∉ V .

¿en

IS(G) = Un(H′ ⊗R′ ⋅ ⋅ ⋅ ⊗R′ H
′
m−) ,

where

R′ ∶= { (x , y), (x + k, y), (x , y + k), (x + k, y + k) ∣ (x , y) ∈ R }
∪ [k] × [k] .

Consequently, Cut(Inc(G), k) ≤ Cut(IS(G), k) ≤ f (k).

Proposition .. Let C be a class of graphs.

(a) C isMSO-orderable if, and only if, IS(C) isMSO-orderable.

(b) C has property SEP if, and only if, IS(C) has property CUT.

Proof. (a) is a routine construction. (b) follows by the preceding lemma since
Inc(C) is -sparse and, by Lemmas . and ., such a class has property SEP
if, and only if, it has property CUT.

Corollary .. Let P be a graph property such that a class of split graphs isMSO-
orderable if, and only if, it has properties CUT and P . ¿en a class of arbitrary
graphs isMSO-orderable if, and only if, it has properties SEP and IS−(P).





Remark .. (a) Characterising MSO-orderable classes therefore amounts to a
characterisation ofMSO-orderable classes of split graphs contained in the image
of the function IS.
(b) If C is a class of graphs with property SEP that is notMSO-orderable, then

IS(C) is a class of split graphs with property CUT that is notMSO-orderable.

We also present a lemma suggesting that a characterisation of MSO-order-
ability for classes of bipartite graphs is as hard as a characterisation of MSO-
orderability for arbitrary classes of graphs. We leave the proof – which is similar
to the one above – to the reader.

Definition .. For a graph G = ⟨V , E⟩ we define

BP(G) ∶= ⟨V × [], E′⟩

where

E′ ∶= { ((x , ), (y, )) ∣ (x , y) ∈ E }

∪ { ((x , i), (x , i + )) ∣ x ∈ V ,  ≤ i < } .

For classes C of graphs, we define BP(C) in the usual way.

Lemma .. Let C be a class of graphs.

(a) C isMSO-orderable if, and only if, BP(C) isMSO-orderable.

(b) C has property CUT if, and only if, BP(C) has property CUT.

 C

For arbitrary classes of graphs, it is difficult to obtain necessary and sufficient con-
ditions forMSOi-orderability, as there aremany different ways to constructMSO-
definable orderings depending on many different structural properties of the
considered graphs. General conditions should thus cover simultaneously a large
number of possibilities. It is therefore necessary to consider particular graph
classes. We have obtained necessary and sufficient conditions in ¿eorems .,
., ., and . with corresponding decidability results for VR-equational
classes of graphs.
Concerning futureworkwe think that the following questions can be fruitfully

investigated:





(a) Does Conjecture . hold? We have already proved several special cases
and more cases seem to be within reach. It remains to be seen whether the full
conjecture can be resolved.
(b) Which condition must be added to the property SEP to yield a necessary

and sufficient condition forMSO-orderability of a class of cographs? And more
generally, for graph classes of bounded clique-width?
(c) What could be an extension of ¿eorem ., say, for classes of ‘bounded

strong ⊗-width’?
(d)Which operations do preserveMSOi-orderability? Candidates include the

operations defining tree-width or clique-width, graph substitutions, and mon-
adic second-order transductions.We presented a few simple results in Lemma .
and Remark ., but it should not be too hard to develop a more comprehensive
theory.
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