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 I

When studying the expressive power of monadic second-order logic (MSO) often the question arises of whether one can define an order on a certain set of vertices. For instance, the property that a set has even cardinality can, in general, not be expressed in MSO. If, however, this set is linearly ordered, we can easily write down a corresponding MSO-formula. e same holds for every predicate Card q (X) expressing that the cardinality of the set X is a multiple of q. It follows that the extension of MSO by all these counting predicates Card q (X), called counting monadic second-order logic (CMSO), is no more powerful than MSO on every class of structures on which we can define an order.

Another example  of a situation where a linear order increases the expressive power of monadic second-order logic is the construction of graph decompositions like the modular decomposition of a graph. It is shown in [] that modular decompositions are definable in MSO if the graph is equipped with a linear order. Finally, although we will not address complexity questions in this article, let us recall that, over linearly ordered structures, the complexity class PTIME is captured by least fixed-point logic [, ].  Yet another example is the construction of (a combinatorial description of) a plane embedding of a connected planar graph. Such embeddings are definable in MSO if we can order the neighbours of each vertex (see []). For -connected graphs such an ordering is always definable, but for graphs that are not -connected this is not always the case.



Recall that a formula φ(x, y) with two free first-order variables x and y defines a (linear) order on a relational structure A if the binary relation consisting of all pairs (a, b) of elements of A satisfying A ⊧ φ(a, b) is a linear order on A. We say that φ(x, y) defines an order on a class of structures if it defines a (linear) order on each structure of that class. Our objective is to provide combinatorial characterisations of classes of finite graphs whose representing structures are MSO-orderable, i.e., on which one can define an order by an MSO-formula. ( e question of whether a partial order is definable is trivial since equality is a partial order. erefore, we only consider linear orders.)

As defined above the notion of an MSO-orderable class is too restrictive. To get interesting results, we allow in the above definitions formulae with parameters. at is, we take a formula φ(x, y; Z) with additional free set variables Z = ⟨Z  , . . . , Z n- ⟩ and, for each structure A in the given class, we choose values P  , . . . , P n- ⊆ A for these variables such that the binary relation { (a, b) A ⊧ φ(a, b; P) } is a linear order on A.

ere is no MSO-formula (even with parameters) that defines a linear order on all finite graphs. ( is is even the case for all finite sets, i.e., finite graphs without edges.) On the other hand, to take an easy example, the class of all finite connected graphs of degree at most d (for fixed d) is MSO-orderable.

If graphs are replaced by their incidence graphs, MSO-formulae become more powerful, because they can quantify over sets of edges. In this case we speak of MSO  -orderable classes. Otherwise, we call the class MSO  -orderable. Due to the greater expressive power, the MSO  -orderable classes properly include the MSO  -orderable ones. is means that, in the combinatorial characterisations below, the conditions for MSO  -orderability must be stronger than those for MSO orderability. A simple example of a class that is MSO  -orderable but not MSO orderable is the class of all cliques.

Our main results are the following ones. We first give a necessary condition for MSO  -orderability based on the number of connected components resulting from the removal of n vertices. We prove that this condition is sufficient for every proper minor closed class of graphs. We also show that it is sufficient for complete d-partite graphs. We then study the MSO  -orderability in a similar way and we exhibit a necessary condition that is stronger than the previous one. is condition is sufficient for classes where some variant of clique-width is bounded.



 P

Let us fix our notation and terminology. We write [n] ∶= {, . . . , n -}, for n ∈ N. We denote tuples ā = ⟨a  , . . . , a n- ⟩ with a bar. e empty tuple is ⟨⟩.

Trees will always be rooted and directed, i.e., every edge is oriented away from the root. e tree-order associated with a tree T is the partial order defined by

x ⪯ y : iff the path from the root to y contains x .

e n-th level of a tree T consists of all vertices at distance n from the root. e height of T is the maximal level of its vertices.

We consider purely relational structures A = ⟨A, R A  , . . . , R A n- ⟩ with finite signatures Σ = {R  , . . . , R n- }. e universe A will always be finite, and we allow it to be empty as this convention is common in graph theory. In some places we will also allow relational structures with constants, but when doing so it will always be mentioned explicitly. For a relation R and a set X, we write R ↾ X for the restriction of R to X. For a tuple R of relations, we denote by R ↾ X the corresponding tuple of restrictions.

For the most part, we will consider graphs instead of arbitrary relational structures. Graphs will always be simple, loop-free, and undirected. We will denote the edge between vertices u and v by (u, v). Note that the same edge can also be written as (v, u). ere are two ways to represent a graph G = ⟨V , E⟩ by a structure. Both of them will be used. We can use structures of the form ⌊G⌋ ∶= ⟨V , edg⟩ where the universe V consists of the set of vertices and we have a binary edge relation edg ⊆ V × V , or we can use structures of the form ⌈G⌉ ∶= ⟨V ∪ E, inc⟩ where the universe contains both, the vertices and the edges of the graph and we have a binary incidence relation inc ⊆ V × E telling us which vertices belong to which edges. If C is a class of graphs, we denote the corresponding classes of relational structures by, respectively, ⌊C⌋ and ⌈C⌉.

Definition .. A graph

G = ⟨V , E⟩ is r-sparse  if, for every subset X ⊆ V , E ↾ X ≤ r ⋅ X .
We denote by A ⊕ B the disjoint union of the structures A and B. For structures A and B encoding graphs, we also use a dual operation A ⊗ B that, a er forming the disjoint union of A and B, adds all possible edges connecting an element of A to an element of B. For a set S ⊆ A of elements, we write A -S for  In [] such graphs are called uniformly r-sparse.



the substructure of A with universe A -S. Similarly, for a graph G, we denote by G -S the subgraph of G induced by the complement of S.

Monadic second-order logic (MSO) is the extension of first-order logic by set variables and quantifiers over such variables. e quantifier-rank qr(φ) of an MSO-formula φ is the maximal number of nested quantifiers in φ, where we count both, first-order and second-order quantifiers. e monadic second-order theory of quantifier rank h of a structure A is the set of all MSO-formulae of quantifier rank h satisfied by A. We denote it by M h (A). Frequently, we are interested not in the theory of the structure A itself, but in the theory of an expansion ⟨A, P, ā⟩ by unary predicates P and constants ā. In this case we write M h (A, P, ā) omitting the brackets. Note that situations like this are the only time we allow constants in structures.

Let φ( x, Ȳ; Z) be an MSO-formula with free first-order variables x and free second-order variables Ȳ , Z. Given a structure A and sets P i ⊆ A, we can assign the values P to the variables Z. is way we obtain a formula φ( x, Ȳ; P) with partially assigned variables. e values P are called the parameters of this formula.

e relation defined by a formula φ( x; P) in a structure A is the set

φ( x; P) A ∶= { ā A ⊧ φ( ā; P) } .
In this article we will only make limited use of monadic second-order transductions. e following simple version suffices. Definition .. Let Σ and Γ be signatures. A quantifier-free transduction τ is an operation on structures that is specified by a list ⟨δ(x), (φ R ( x)) R∈Σ ⟩ of quantifier-free formulae over the signature Γ where δ has one free variable x and the numbers of free variables of the formulae φ R ( x) correspond to the arities of the relations R. A Γ-structure A is mapped by τ to the Σ-structure τ(A) ∶= ⟨δ A , (φ A R ) R∈Σ ⟩ where the universe is the set defined by δ and each relation R is defined by the corresponding formula φ R .

Lemma . (Backwards Translation).

Let τ be a quantifier-free transduction. For every MSO-sentence φ, there exists an MSO-sentence φ τ , of the same quantifierrank as φ, such that τ(A) ⊧ φ iff A ⊧ φ τ , for all structures A .  Corollary .. Let τ be a quantifier-free transduction and A and B structures.

M h (A) = M h (B) implies M h (τ(A)) = M h (τ(B)) .
One important tool to compute monadic theories is the so-called Composition eorem (see, e.g, [, , ]), which allows one to compute the theory of a structure composed from smaller parts from the theories of these parts. ere are several variants of the Composition eorem. For our needs the following version suffices. Let A  , . . . , A m- be structures and āi = ⟨a i  , . . . , a i n- ⟩ ∈ A n i ntuples, for i < m. e amalgamation of the structures A i over the parameters āi is the structure ⟨A ′ , ā′ ⟩ obtained from the disjoint union

A  ⊕ ⋅ ⋅ ⋅ ⊕ A m- by, for every k < n, merging the elements a  k , . . . , a m- k into a single element a ′ k . e tuple ā′ = ⟨a ′  , .
. . , a ′ n- ⟩ consists of the elements resulting from the merging. eorem . (Composition eorem). Let A  , . . . , A m- , B  , . . . , B m- be structures and, for i < m, let āi ∈ A n i and bi ∈ B n i be n-tuples, and ci ∈ A

l i i and di ∈ B l i i l i -tuples such that M h (A i , āi ci ) = M h (B i , bi di ) .
Let ⟨A ′ , ā′ ⟩ and ⟨B ′ , b′ ⟩ be the amalgamations of, respectively, the structures A i over āi and the structures B i over bi . en

M h (A ′ , ā′ c . . . cm- ) = M h (B ′ , b′ d . . . dm- )
, for all i < m .

 D 

roughout the article we use the term order for linear orders. Otherwise we will speak of a partial order. Definition .. Let Σ be a relational signature and C a class of Σ-structures.

(a) We say that an MSO-formula φ(x, y; Z) defines an order on C if, for every structure A ∈ C, there are sets P  , . . . , P n- ⊆ A such that the formula φ(x, y; P) defines a (linear) order on A.

( Proof. (a) Clearly, if φ defines an order on C ∪ K, it also defines orders on C and on K. Conversely, let φ(x, y; Z) and ψ(x, y; Z′ ) be MSO-formulae defining an order on, respectively, C and K. Let ord φ ( Z) be a formula stating that the relation defined by φ with parameters Z is an order. en we can order C ∪ K by the formula

(b) C ⊕ K ∶= { A ⊕ B A ∈ C, B ∈ K } is MSO-orderable if,
ϑ(x, y; Z, Z′ ) ∶= [ord φ ( Z) ∧ φ(x, y; Z)] ∨ [¬ord φ ( Z) ∧ ψ(x, y; Z′ )] .
(b) First, suppose that C and K are ordered by the formulae φ(x, y; Z) and ψ(x, y; Z′ ), respectively. We order C ⊕ K as follows. Consider A ⊕ B ∈ C ⊕ K and let P and Q be the parameters used by φ and ψ to order A and B, respectively. Using one additional set S ∶= B as parameter we can define the order x ≤ y : iff x, y ∈ A and A ⊧ φ(x, y; P) or x, y ∈ B and B ⊧ ψ(x, y; P) or x ∈ A and y ∈ B .

Conversely, suppose that there is a formula φ(x, y; Z) ordering C ⊕ K. We construct a formula ordering C. ( e orderability of K follows by symmetry.) Let A ∈ C and fix an arbitrary structure B ∈ K. Let P be the parameters used to order A ⊕ B. Using the Composition eorem, there exist two finite lists p  , . . . , p n- and q  , . . . , q n- of MSO-theories of quantifier-rank h ∶= qr(φ) such that, for a, b ∈ A, (b) For every MSO-formula φ(x, y; Z) there exists a largest class C φ of Σ-structures that is ordered by φ. is class can be defined by

A ⊕ B ⊧ φ(a, b; P) iff M h (A, P ↾ A, a, b) = p i and M h (B, P ↾ B) = q i , for some i < n . Let I ∶= { i < n M h (B, P ↾ B) = q i }. It
∃ Z ord φ ( Z) ,
where ord φ ( Z) is the formula from the proof of Lemma ..

Fixing an enumeration φ  (x, y; Z), . . . , φ n- (x, y; Z) of all MSO-formulae of quantifier-rank m with k parameters Z  , . . . , Z k- (up to logical equivalence, there are only finitely many such formulae, see Section . of [] for details), we obtain the class C m,k of all Σ-structures ordered by some of these formulae. C m,k is defined by

∃ Z ⋁ i<n ord φ i ( Z) .
is class can be ordered by the formula

ψ m,k (x, y; Z) ∶= ⋁ i<n ord φ i ( Z) ∧ ⋀ j<i ¬ord φ j ( Z) ∧ φ i (x, y; Z) .
It follows that any MSO-orderable class C can be ordered by ψ m,k for sufficiently large m and k. Remark .. Let C be a class of graphs and let φ(x, y; Z) be an MSO-formula defining an order on ⌈C⌉. e class C + of all graphs obtained from graphs in C by adding edges arbitrarily can be ordered by the formula φ + (x, y; Z, Z ′ ) obtained from φ(x, y; Z) by replacing every atomic formula of the form inc(u, v) by the formula inc(u, v) ∧ v ∈ Z ′ , and by relativising every quantifier to the set Z ′ . (If P are parameters such that φ(x, y; P) orders the graph G = ⟨V , E⟩, then φ + (x, y; P, E) orders every supergraph G + = ⟨V , E + ⟩ with E + ⊇ E.) Remark .. Definition . can be formulated in terms of monadic second-order transductions (for details and definitions, see, e.g.,Chapter  of []). A class C of Σ-structures is MSO-orderable if, and only if, there exists a noncopying, domainpreserving transduction mapping each structure A ∈ C to an expansion ⟨A, ≤⟩ by a linear order ≤. With respect to the transduction hierarchy (cf. []), it follows that, if C is infinite (up to isomorphism) and MSO-orderable, there exists an MSOtransduction mapping C to the class of all finite paths. e opposite of an orderable class is a class where no infinite subclass can be ordered. We call such classes hereditarily unorderable. 

 MSO  - 

In this section we derive characterisations for MSO  -orderable classes. MSO orderability will be considered in Section .

. N 

We start by providing a necessary condition for MSO  -orderability. Below we will then show that, for certain classes of graphs, this condition is also sufficient.

Definition ..

Let A = ⟨A, R⟩ be a relational structure.

(a) We call A connected if it cannot be written as a disjoint union A = B ⊕ C of two nonempty substructures. A connected component of A is a maximal substructure that is connected and nonempty.

(b) For a number k ∈ N, we denote by Sep(A, k) the maximal number of connected components of A-S, where S ⊆ A ranges over all sets of size at most k.

(c) For a function f ∶ N → N, we say that a class C of structures has property

SEP( f ) if Sep(A, k) ≤ f (k) , for all A ∈ C and all k ∈ N .
We say that C has property SEP, if it has property SEP( f ), for some function

f ∶ N → N. Example .. For complete bipartite graphs K n,m with n ≤ m we have Sep(K n,m , k) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  if k < n , m if k ≥ n .  For complete d-partite graphs K m  ,...,m d- with m  ≥ ⋅ ⋅ ⋅ ≥ m d- and d ≥ , we have Sep(K m  ,...,m d- , k) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  if k < m  + ⋅ ⋅ ⋅ + m d- , m  if k ≥ m  + ⋅ ⋅ ⋅ + m d- .
We leave the straightforward verification to the reader.

Example .. Let f ∶ N → N be a function and let n ∈ N. We construct a graph G n ( f ) such that Sep(G n ( f ), k) ≥ f (k) , for all k ≤ n .
Let T be the tree of height n, where every vertex v on level k has f (k) successors.

at is,

T ∶= { w ∈ N ≤n w(k) < f (k) for all k } .
e desired graph G n ( f ) is obtained from this tree by adding all edges (x, y) with x ≺ y.

Let us show that having property SEP is a necessary condition for a class to be

MSO  -orderable. Recall that a function f ∶ N → N is elementary if it is bounded by a function of the form exp k , for some k ∈ N, where exp  (n) ∶= n and exp k+ (n) ∶=  exp k (n) . Lemma .. ere exists a function f ∶ N  → N such that Sep(G, k) ≤ f (n, m, k)
for every graph G such that ⌈G⌉ can be ordered by an MSO-formula of the form φ(x, y; P) where qr(φ) ≤ m and P = P  . . . P n- are parameters. Furthermore, the function f (n, m, k) is effectively elementary in the argument k, that is, there exists a computable function

g such that f (n, m, k) ≤ exp g(n,m) (k). Proof. Fixing k, m, n ∈ N, we define f (n, m, k) ∶= d where d is the number of MSO-theories of the form M m (⌈H⌉, P  , . . . , P n- , v  , . . . , v k )
where H is a graph, P  , . . . , P n- are parameters, and v  , . . . , v k are vertices of H. Note that, for fixed n and m, the number of such theories is elementary in k (see Section . of [] for a detailed calculation).  Let φ(x, y; Z) be an MSO-formula of quantifier-rank at most m, let G be a graph with Sep(G, k) > f (n, m, k), and let P  , . . . , P n- parameters from G. We have to show that φ(x, y; P) does not order ⌈G⌉. Fix a set S = {s  , . . . , s k- } of vertices such that G -S has more than d connected components. Fix distinct connected components C  , . . . , C d of G -S and vertices a i ∈ C i . By choice of d, there are indices i < j such that

M m ⌈G[C i ∪ S]⌉, P ↾ C i ∪ S, s  , . . . , s k- , a i = M m ⌈G[C j ∪ S]⌉, P ↾ C j ∪ S, s  , . . . , s k- , a j .
As the structure ⟨⌈G⌉, P, s  , . . . , s k- , a i , a j ⟩ is the amalgamation of the structures

⟨⌈G[C i ∪ S]⌉, P ↾ C i ∪ S, s  , . . . , s k- , a i ⟩ , ⟨⌈G[C j ∪ S]⌉, P ↾ C j ∪ S, s  , . . . , s k- , a j ⟩ , and ⟨⌈G[C l ∪ S]⌉, P ↾ C l ∪ S, s  , . . . , s k- ⟩ , for l ≠ i, j , over the tuple ⟨s  , . . . , s k- ⟩, it therefore follows by eorem . that M m ⌈G⌉, P, s  , . . . , s k- , a i , a j = M m ⌈G⌉, P, s  , . . . , s k- , a j , a i .
In particular, G ⊧ φ(a i , a j ; P) iff G ⊧ φ(a j , a i ; P) .

Hence, φ(x, y; P) does not define an order.

Corollary .. An MSO  -orderable class of graphs C has property SEP( f ), for an elementary function f . e converse does not hold. For instance, according to eorem . below, the class of all bipartite graphs of the form K n,  n is not MSO  -orderable, while we have seen in Example . that it has property SEP( f ) for the elementary function f (n) =   n . Our objective therefore is to get converse results for particular classes of graphs satisfying certain combinatorial conditions. Remark .. We have noted in Remark . that, if an MSO  -orderable graph G is obtained from a graph H by deleting edges, then H is also MSO  -orderable. In this case, we further have Sep(H, k) ≤ Sep(G, k), for all k.



Remark .. All results of Section  also hold for directed graphs since every orientation of an undirected graph can be defined by an MSO  -formula with two parameters (see Proposition . of []). It follows that a class of directed graphs is MSO  -orderable if, and only if, the corresponding class of undirected graphs is. is is different for MSO  -orderability. As a simple introductory example let us consider classes of trees.

eorem .. Let T be a class of trees. e following statements are equivalent:

() T is MSO  -orderable. () T is MSO  -orderable.
() T has property SEP.

()

ere exists a number d ∈ N such that every tree in T has maximal degree at most d. () ⇒ () Let T be a tree with maximal degree at most d. We use d parameters P  , . . . , P d- to order T. Fixing a vertex r ∈ T as root, there exists an injective embedding g ∶ T → d <m , for some number m ∈ N. We set

P i ∶= { v ∈ T g(v) = w i for some w } .
Note that r is the only vertex of T that is not contained in any of these sets. Hence, using P, we can define the tree order ⪯ on T. We can also define the lexicographic ordering: (a) We denote by ⪯ F the tree-order associated with F and the set of predecessors by Proof. Let F be a normal spanning forest of G. Since G has Sep(G, ) ≤ d connected components, the forest F has at most d roots. We regard F as oriented  with edges pointing away from the root. Note that we can encode F by two parameters: its set of edges and its set of roots. (Since the first set consists of edges and the second one of vertices, we could take their union as a single parameter. For simplicity, we have refrained from doing so.) We shall use a lexicographic order on F to order G, based on orderings (i) of the roots of F and (ii) of the successors of every vertex of F.

u ≤ v : iff u ⪯ v , or u  ∈ P i , v  ∈ P k , for i < k, where u  , v  are
↓ F x ∶= { y y ≺ F x } . (b) For x ∈ G, we define B F (x) ∶= { v ≺ F x there is an edge (u, v) of G with x ⪯ F u } . Lemma .. Let G be a graph, F a normal spanning forest of G, x ∈ G, and B ⊆ ↓ F x.
Consider a vertex x ∈ F with successors y  , . . . , y m- . Since each set B F (y i ) is linearly ordered by ⪯ F , we can define a preorder on the successors by using the lexicographic ordering of the sets B F (y i ):

y i ⊑ y k : iff B F (y i ) ≤ lex B F (y k ) .
To prove that there is a definable order extending this preorder, it is sufficient to show that the equivalence classes of this preorder have bounded cardinality. Let k ∶= max {p, d}. For every set B ⊆ ↓ F x, there are at most k successors y i of x with B F (y i ) = B ∪ {x}: for B ≥ p, this follows from Lemma . (a); for B < p, it follows from Lemma .  (b).

e parameters needed to define the desired linear order are: the set of edges of the spanning forest F and k +  parameters to distinguish (i) the roots of F and (ii) the successors y of a vertex x with the same set B F (y). (b) Grohe has proved that every class of graphs excluding a minor is orderable in least fixed-point logic. It follows that least fixed-point logic captures PTIME on these classes [, ].

In contrast to Remark . (a), we have the following result for classes of graphs of bounded n-depth tree-width (where we only allow tree decompositions with index trees of height at most n). is graph complexity measure was introduced in [].

Proposition .. Let n, k ∈ N. e class of all graphs of n-depth tree-width at most k is hereditarily MSO  -unorderable.

Proof. Let C be an infinite class of graphs of n-depth tree-width at most k. If it were MSO  -orderable, we could define an MSO  -transduction mapping this class to the class of all finite paths. is is not possible by eorem . of [].

In the following we try to compute a better bound on the function f in eorem . ().

Lemma .. Let G be a graph with Sep(G, p) ≤ d such that K p, p is not a minor of G. Let F be a normal spanning forest of G and S a set of at most k vertices of G. For every vertex x ∈ S, at most k +  k ⋅ max {p, d} connected components of G -S contain an immediate successor of x (in F).

Proof. Let s  ≺ F ⋅ ⋅ ⋅ ≺ F s m- =
x be an enumeration of all elements s ∈ S with s ⪯ F x. For an immediate successor y of x, we define 

I(y) ∶= { i < m there is some z ∈ B F (y) such that z ≺ F s i , and i =  or s i- ≺ F z } .
(G, p) ≤ d such that K p, p is not a minor of G. en Sep(G, k) ≤ d + k  + k k ⋅ max {p, d} , for k ≥ p .
Proof. Let F be a normal spanning forest of G and S a set of at most k vertices of G. We have seen in Lemma . that, for every vertex x ∈ S, at most k +  k ⋅ max {p, d} connected components of G -S contain an immediate successor of x. Since every connected component of G -S contains a root of F or the immediate successor of some x ∈ S, there are at most

d + k(k +  k ⋅ max {p, d}) such components.
Corollary .. Let C be a class of graphs omitting a minor H and let p be some number such that H is a minor of K p, p . en C is MSO  -orderable if, and only if,

sup { Sep(G, p) G ∈ C } < ∞ .
Remark .. Graphs omitting a minor H are r-sparse, for some number r depending on H. Since, for r-sparse graphs, the expressive powers of MSO  and MSO  coincide, it follows that the criterion in Corollary . also characterises MSO  -orderability.

Remark ..

e proof technique of eorem . can be extended to order certain classes of graphs that do not exclude any graph as a minor. We give two examples.

(a) First, let us consider the class of all graphs H p , for p ≥ , defined as follows. e set of vertices of H p is

V ∶= { * } ∪ [p] ∪ [p] × S p ,
where S p is the set of all permutations of [p]. H p has the following edges: Clearly, H p contains K p, p! as a minor. Nevertheless, the class of all graphs H p is MSO  -orderable. Since each H p is -sparse (it has an orientation of indegree , see Chapter  of []), it follows that the class is even MSO  -orderable. (b) Another example is the class of all cliques. It is MSO  -orderable and does not omit a minor. If we replace each edge by a path of length , we obtain a class of -sparse graphs that is MSO  -orderable and that still does not omit a minor.

( * , ) ( * , (, σ)) for σ ∈ S p , (i, i + ) for i ∈ [p], i < p , ((i, σ), (i + , σ)) for i ∈ [p], σ ∈ S p , i < p - , (i, (σ(i), σ)) for i ∈ [p], σ ∈ S p , i < p - .
Remark .. It is not possible to extend eorem . to r-sparse graphs. A counterexample is given by the class C of all graphs obtained from some bipartite graph K n, f (n) by replacing every edge by a path of length , where f ∶ N → N is a fixed non-elementary function. is is a class of -sparse graphs with property SEP that is not MSO  -orderable.

. D MSO  -

We have presented above a combinatorial property characterising MSO  -orderability for classes of graphs omitting a minor. A natural question is whether this property is decidable. Of course, this question does only make sense for classes of graphs that can be described in a finite way. is is the case for equational classes of graphs that generalise context-free languages. Let us recall some of their basic properties. For a more detailed treatment we refer the reader to [].

An equational class is defined by a system of equations. Depending on the graph operations allowed in these equations we obtain an HR-equational class or a VR-equational one. Every HR-equational class has bounded tree-width and  a bound can be computed from a system of equations for the class. Furthermore, for every k ∈ N, the class of all graphs of tree-width at most k is HR-equational. Finally, every HR-equational class has a decidable MSO  -theory.

VR-equational classes enjoy similar properties with clique-width replacing treewidth, and MSO  replacing MSO  . Every HR-equational class is VR-equational (as we only consider simple graphs, this follows from eorem . of []). For an example of a VR-equational class we can take the class of cographs which we will consider below in more detail. A cograph is a graph that can be constructed from single vertices using the operations of disjoint union ⊕ and complete join ⊗. Each cograph can be denoted by a term over ⊕, ⊗, and a constant  that denotes an isolated vertex. For instance, (⊕)⊗(⊕⊕) is a term for K , , and ⊗⊗⋅ ⋅ ⋅⊗ is a term for a clique. Since ⊕ and ⊗ are associative and commutative we consider them of variable arity and we do ignore the order of the arguments. e class C of cographs is VR-equational. It can be defined by the equation

C = C ⊕ C ∪ C ⊗ C ∪ {} .
e following result is eorem . of [] (the fact that one can compute a representation of the semilinear set is not stated explicitly in [], but it follows from the proof since all of its steps are effective). eorem . (Semi-Linearity eorem). Let C be a VR-equational class of graphs and φ(X  , . . . , X n- ) an MSO-formula. e set M φ (C) ∶= ( P  , . . . , P n- ) ⌊G⌋ ⊧ φ( P) for some G = ⟨V , E⟩ ∈ C and P  , . . . , P n- ⊆ V is semilinear, and a finite representation of this set can be computed from φ and a system of equations for C. Proposition .. It is decidable whether a VR-equational class C has property SEP.

Proof. Let C be a VR-equational class and let φ(X, Y) be an MSO-formula expressing, for a graph G, that the set Y contains exactly one vertex of each connected component of G -X. e class C has property SEP if, and only if, there exists a function f such that, for all G = ⟨V , E⟩ ∈ C and P, Q ⊆ V ,

G ⊧ φ(P, Q) implies Q ≤ f ( P ) .



According to the Semi-Linearity eorem, the set M(C) ∶= ( P , Q ) G ⊧ φ(P, Q) for some G = ⟨V , E⟩ ∈ C and P, Q ⊆ V is semi-linear and an effective description of M(C) can be computed from a system of equations for C. Using this description, we can check whether or not, for every n ∈ N, the set of p ∈ N with (n, p) ∈ M(C) is bounded. is is the case if, and only if, C has property SEP.

Corollary .. For an HR-equational class C, it is decidable whether C is MSO orderable.

Proof. An HR-equational class C has bounded tree-width (Proposition . of []) and, hence, omits some K p, p as a minor. Since HR-equational classes are VRequational, it follows from eorem . that C is MSO  -orderable if, and only if, it has property SEP. e latter is decidable by the above proposition.

Remark .. An alternative decidability proof can be based on Corollary .. As the tree-width of K p, p is p, every class C of tree-width at most p - omits K p, p as a minor. Furthermore, an upper bound on the tree-width of an HR-equational class C can be computed from a system of equations for C (see Proposition . of []). By Corollary ., C is MSO  -orderable if, and only if, there is a number m such that Sep(G, p) ≤ m, for all G ∈ C. To check this condition, we consider the formula φ(X) expressing that there exists a set S of size S ≤ p such that X contains exactly one vertex of each connected component of G -S. By the Semi-Linearity eorem, we can compute a representation of the semi-linear set M(C) ∶= P G ⊧ φ(P) for some G = ⟨V , E⟩ ∈ C and P ⊆ V .

Using this representation we can check whether or not M(C) is finite.

For VR-equational classes we do not obtain decidability since we cannot apply eorem .. We conjecture that a corresponding statement holds for these classes.

Conjecture .. Every VR-equational class with SEP is MSO  -orderable.

Below we shall prove this conjecture for particular classes of cographs.



. D 

We have characterised MSO  -orderability in eorem . for classes excluding a minor. e graphs in such classes are sparse. In this section we consider the opposite extreme of certain dense graphs, in particular, cographs and chrodal graphs.

Lemma .. Let s, r ∈ N and let C be a class of graphs such that each G ∈ C is obtained from some K n,m with n ≤ m ≤  sn+r by possibly adding new edges. en C is MSO  -orderable.

Proof. Consider a graph G = ⟨V , E⟩ ∈ C obtained from K n,m with n ≤ m ≤  sn+r by adding some new edges (see also Remark .). Since every graph with at most  r vertices can be ordered using r parameters, we may assume that G has more than  r vertices. Hence, n > . Since m ≤  sn+r ≤  (s+r)n there exists an injective function µ ∶ [m] → ([(s + r)n]). Fix enumerations a  , . . . , a n- and b  , . . . , b m- of the two vertex classes of K n,m . We define an ordering of G using the following parameters.

A ∶= { a i i < n } ⊆ V , B ∶= { b i i < m } ⊆ V , S ∶= { (a i , b j ) i ≤ j } ⊆ E , R k ∶= { (a i , b j ) ki ∈ µ( j) } ⊆ E , for k < s + r .

First, we define an order <

A on A by u < A v : iff for all x ∈ B, (u, x) ∈ S ⇒ (v, x) ∈ S .
Note that, by definition of S, this order is linear. We extend this order to all of G by defining u < v if, and only if, one of the following conditions holds:

◆ u, v ∈ A and u < A v. ◆ u ∈ A and v ∈ B. ◆ u, v ∈ B and, if k is the minimal number such that, for some x ∈ A, (x, u) ∈ R k ⇔ (x, v) ∉ R k , and if x ∈ A is the < A -least element with this property, then (x, u) ∈ R k and (x, v) ∉ R k .
 e technique employed in this proof will be used several times in this article. Given an already defined order on a set A we order vertices not in A by considering the lexicographic ordering on their set of neighbours in A.

Lemma ..

A class C of complete bipartite graphs is MSO  -orderable if, and only if, there exists a constant s such that

K n,m ∈ C with n ≤ m implies m ≤  s(n+) .
Proof. (⇐) is a special case of Lemma ..

(⇒) Suppose that C is ordered by an MSO-formula φ(x, y; Z) with s set variables Z  , . . . , Z s- . We claim that there is no K n,m ∈ C with m >  s(n+) .

For a contradiction, suppose that there is such a graph K n,m ∈ C. Let P be the parameters such that φ(x, y; P) orders ⌈K n,m ⌉. We enumerate the two vertex classes of K n,m as a  , . . . , a n- and b  , . . . , b m- . Since m >  s(n+) there is a subset I ⊆ [m] of size I >  s(n+)  s =  sn such that b i ∈ P l ⇔ b j ∈ P l for all i, j ∈ I and all l < s .

Similarly, there is a subset

J ⊆ I of size J >  sn  sn =  such that (a k , b i ) ∈ P l ⇔ (a k , b j ) ∈ P l
for all i, j ∈ J and all l < s and k < n . 

 + ⋅ ⋅ ⋅ + m d- ≥ m  ≥ m  ≥ ⋅ ⋅ ⋅ ≥ m d- ≥  . en C is MSO  -orderable. Proof. Consider K m  ,...,m d- ∈ C with m  ≥ ⋅ ⋅ ⋅ ≥ m d- ≥ . Let A  , . . . , A d- be the classes of this graph and let a k  , . . . , a k m k - be an enumeration of A k . Using the parameter R ∶= { (a k  , a k+  )  ≤ k < d - }  we can define the preorder u ⊑ v : iff u ∈ A i and v ∈ A k for i ≤ k .
As usual, we write

u ≡ v : iff u ⊑ v and v ⊑ u , u ⊏ v : iff u ⊑ v and v ⋢ u .
Using the parameter

S ∶= { (a k i , a k+ j ) i ≤ j } ,
and ⊑, we can define a linear order

≤ B on B ∶= A  ∪ ⋅ ⋅ ⋅ ∪ A d- by setting u ≤ B v if, and only if, ◆ u ⊏ v or ◆ u ≡ v and, for all x ⊏ u, (x, u) ∈ S implies (x, v) ∈ S.
Hence, it remains to define a linear order

≤ A on A  . Since m  ≤ m  + ⋅ ⋅ ⋅ + m d- ,
we can fix an enumeration b  , . . . , b n- of B and use the parameter

S  ∶= { (a  i , b j ) i ≤ j }
to define such an order. eorem .. Let C be a class of graphs such that, every graph in C is complete d-partite for some d ∈ N. (We do not require the number d to be the same for every graph.) e following statements are equivalent:

() C is MSO  -orderable. ()
ere exists a constant s such that C has property SEP( f ) where f (k) =  s(k+) .

()

ere exists a constant s such that

K m  ,...,m d- ∈ C implies M ≤  s(N-M+)
where M ∶= max i<d m i and N ∶= ∑ i<d m i . () ⇒ () Suppose that ⌈C⌉ is ordered by an MSO-formula φ(x, y; Z) with s set variables Z  , . . . , Z s- . We claim that there is no



Proof. () ⇒ () Consider K m  ,...,m d- ∈ C with m  ≥ ⋅ ⋅ ⋅ ≥ m d- ≥ . We distinguish several cases. ◆ If d ≤ ,
K m  ,...,m d- ∈ C with M >  s(N-M)+s .
For a contradiction, suppose that there is such a graph K m  ,...,m d- ∈ C. Let P be the parameters such that φ(x, y; P) orders K m  ,...,m d- . Let A be a vertex class of K m  ,...,m d- of size M and let B be its complement. We enumerate A and B as a  , . . . , a M- and b  , . . . , b N-M- , respectively. Since M >  s(N-M)+s there is a subset I ⊆ [M] of size I >  s(N-M)+s  s =  s(N-M) such that a i ∈ P l ⇔ a j ∈ P l for all i, j ∈ I and all l < s .

Similarly, there is a subset

J ⊆ I of size J >  s(N-M)  s(N-M) =  such that (a i , b k ) ∈ P l ⇔ (a j , b k ) ∈ P l for all i, j ∈ J , l < s , and k < N -M .
Hence, there are at least two indices i < j in J. e mapping π ∶ K m  ,...,m d- → K m  ,...,m d- interchanging a i and a j and leaving every other vertex fixed is an automorphism of the structure ⟨⌈K m  ,...,m d- ⌉, P⟩. Hence,

⌈K m  ,...,m d- ⌉ ⊧ φ(a i , a j ; P) iff ⌈K m  ,...,m d- ⌉ ⊧ φ(a j , a i ; P) . A contradiction. () ⇒ () Let K m  ,...,m d- be a complete d-partite graph and set M ∶= max i<d m i  and N ∶= ∑ i<d m i . If M ≤  s(N-M+) , then Sep(K m  ,...,m d- , k) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  if k < N -M M if k ≥ N -M ≤ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  s(k+) if k < N -M  s(N-M+) if k ≥ N -M ≤ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  s(k+) if k < N -M  s(k+) if k ≥ N -M =  s(k+) . () ⇒ () Suppose that C has property SEP( f ) where f (k) =  s(k+) . Note that Sep(K m  ,...,m d- , k) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  if k < N -M , M if k ≥ N -M ,
where M and N are as above. It follows that

M = Sep(K m  ,...,m d- , N -M) ≤ f (N -M) =  s(N-M+) .
As a corollary we obtain a special case of Conjecture . for particular classes of cographs.

Corollary .. Let C be a VR-equational class of graphs that are complete dpartite for some d. en C is MSO  -orderable if, and only if, it has property SEP.

is property is decidable.

Proof. For every d ∈ N, there is an MSO-formula φ d (X  , . . . , X d- ) stating that X  , . . . , X d- are the vertex classes of a complete d-partite graph. By the Semi-Linearity eorem, it follows that the set

M d ∶= { (m  , . . . , m d- ) K m  ,...,m d- ∈ C } is semi-linear.
Suppose that C has property SEP. By Example ., it follows that, for every choice of m  , . . . , m d- , there are only finitely many

m d- with K m  ,...,m d- ,m d- ∈  C. Semi-linearity of M d therefore implies that there are numbers a, b ∈ N such that m d- ≤ a(m  + ⋅ ⋅ ⋅ + m d- ) + b , for all K m  ,...,m d- ∈ C . By eorem . it follows that C is MSO  -orderable.

. S    

As the next step towards the Conjecture ., the case of an VR-equational class of cographs suggests itself, but, so far, we were unable to find a proof. Instead, we consider split graphs and, more generally, chordal graphs. Definition .. Let G be a graph.

(a) G is a split graph if there exists a partition of its vertex set V into two parts A and B such that A induces a clique whereas B is independent.

(b) Let F be a rooted spanning forest of G with tree order ⪯ F . We call F a perfect spanning forest if it is normal (cf. Section .) and, for every vertex v ∈ F, the set of all neighbours u of v with u ≺ F v induces a clique in G.

(c) G is chordal if it has a perfect spanning forest.

Every split graph is chordal. ere are many equivalent definitions of chordal graphs. See Proposition . of [] for an overview and a proof of their equivalence. eorem .. A class C of split graphs is MSO  -orderable if, and only if, there is some s ∈ N such that C has property SEP( f ) for f (n) =  s(n+) .

Proof. (⇐) Given s, we construct an MSO  -formula φ(x, y; Z) with s +  parameters that orders every split graph G such that Sep(G, n) ≤  s(n+) , for all n. Let G = ⟨V , E⟩ be such a split graph and let V = A ∪ B be the partition of V into a clique A and an independent set B. We use one parameter P to define an order on A as follows. Fixing an enumeration a  , . . . , a n- of A we set

P ∶= {a  } ∪ { (a i , a i+ ) i < n - } .
en we can write down an MSO  -formula ψ(x, y; P) stating that every path that connects the unique vertex in P to y and that only uses edges in P contains the vertex x. is defines a linear order ≤ A on A.



We use this order to define an order on B as follows. For b ∈ B let

N(b) ∶= { a ∈ A (a, b) ∈ E } . We can define a preorder ⊑ on B by b ⊑ b ′ : iff N(b) = N(b ′ ) or the ≤ A -least element of N(b) ∆ N(b ′ ) belongs to N(b) .
Since this preorder is linear, it is sufficient to define an order on each of the equivalence classes of the equivalence relation associated with n+) .

⊑. Given b ∈ B, let b  , . . . , b m- be an enumeration of all vertices b i ∈ B with N(b i ) = N(b) and let a  , . . . , a n- be a ≤ A -increasing enumeration of N(b). en m ≤ Sep(G, n) ≤  s(

Fix an injective function

π ∶ [m] → ([s(n + )]) and, for k < s, set Q k ∶= { (b i , a l ) k(n + ) + l ∈ π(i) } ∪ { b i k(n + ) + n ∈ π(i) } . Using the parameters Q  , . . . , Q s- we can order b  , . . . , b m- by b i < B b j iff the least element of π(i) ∆ π( j) belongs to π(i) .
Finally, combining the (pre-)orders ≤ A , ⊑, and < B , we can define an order on all of G. (⇒) Suppose that a split graph G = ⟨V , E⟩ is ordered by a formula φ(x, y; P) with s parameters P  , . . . , P s- . We will prove that Sep(G, n) ≤  (s+) (n+) . Let V = A ∪ B be the partition of V into a clique A and an independent set B. For b ∈ B let

N(b) ∶= { a ∈ A (a, b) ∈ E } .
We start by showing that, for every b ∈ B, there are at most  A contradiction.

s( N(b) +) vertices b ′ ∈ B with N(b ′ ) = N(b). Let b  , . . . , b m- be a list of distinct vertices of B with N(b  ) = ⋅ ⋅ ⋅ = N(b m- ).
To compute Sep(G, n) consider a set S ⊆ V of size S ≤ n. We have seen above that, for every set X ⊆ S ∩ A, there are at most  s( X +) vertices b ∈ B with N(b) = X. Setting k ∶= S ∩ A , it follows that there are at most

 k ⋅  s(k+) vertices b ∈ B with N(b) ⊆ S ∩ A. Consequently, G -S has at most  +  k ⋅  s(k+) ≤  sk+s+k+ =  (s+)(k+) ≤  (s+)(n+)
connected components. Lemma .. For every increasing and unbounded function g ∶ N → N there exists a class of split graphs that is not MSO  -orderable and that has property

SEP( f ) for f (n) ∶=  g(n) . Proof. For k ∈ N let G k ∶= K k ⊗D  g(k)
where D n denotes the graph with n vertices and no edges. We claim that C ∶= { G k k ∈ N } has the desired properties. Note that

Sep(G k , n) ≤ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  if n < k ,  g(n) if n ≥ k .
Hence, C has property SEP, but it does not have property SEP( f ), for any function of the form f (n) =  s(n+) . By eorem ., it follows that C is not MSO orderable.

Remark .. e class in the preceding lemma is not VR-equational since it does not satisfy the Semi-Linearity eorem. Hence, it does not provide a counterexample to Conjecture ..

It would be interesting to extend eorem . to classes of chordal graphs. At this point, we are only able to present a sufficient condition for MSO  -orderability. But there are examples showing that it is not necessary. We start with a technical lemma.

Lemma .. Let F be a perfect spanning forest of a chordal graph G with tree order ⪯ F . If u ≺ F v ⪯ F w are vertices then

(u, w) ∈ E implies (u, v) ∈ E .  Proof. Let x n ≺ F ⋅ ⋅ ⋅ ≺ F x  be the path in F from v =
x n to w = x  . We show by induction on i, that (u, x i ) ∈ E. For i = , there is nothing to do. Hence, suppose that i >  and that we have already shown that (u, x i- ) ∈ E. en u and x i are both neighbours of x i- . Since u, x i ≺ F x i- , it follows by definition of a perfect spanning forest that (u, x i ) ∈ E. Proposition .. Let C be a class of chordal graphs with property SEP( f ) where f (n) =  s(n+) , for some s ∈ N. en C is MSO  -orderable.

Proof. Let G = ⟨V , E⟩ be a chordal graph with Sep(G, n) ≤  s(n+) . We order G as follows. Fix a perfect spanning forest F of G. It is sufficient to define, for every vertex v, an order on the immediate successors of v in F. en we can use the lexicographic ordering on F to order G. Fix a vertex v and let u  , . . . , u n- be the immediate successors of v in F. For i < n, we define

B i ∶= { w ⪯ F v (w, u i ) ∈ E } .
We start by showing that, for every set B ⊆ V , there are at most  s( B +) indices i such that B i = B. Given B, let I be the set of all i < n with B i = B. By Lemma ., it follows that, for each i ∈ I and every edge (x, y) ∈ E with x ≺ F u i ⪯ F y, we have x ∈ B i = B. Hence,

I ≤ Sep(G, B ) ≤  s( B +)
as desired. As in the proof of eorem ., we can use s+ parameters Q  , . . . , Q s to colour the edges of the subgraphs B i ⊗ u i such a way that we can define the ordering

u i < u k iff i < k , for i, k ∈ I .
Consequently, we can order all immediate successors of v by

u i ≤ u k : iff B i = B k and i ≤ k , or the ≺ F -least element of B i ∆ B k belongs to B i .
Corollary .. Let C be a VR-equational class of chordal graphs. e following statements are equivalent:

() C is MSO  -orderable.
() C has property SEP.

 ()

ere are constants r, s ∈ N such that C has property SEP( f ) where f (n) = rn + s.

ese properties are decidable.

Since we have already proved () ⇒ () and () ⇒ () in Proposition . and Corollary ., only the implication () ⇒ () remains to be proved. We leave this proof to the reader, it is similar to that of Corollary ..

 MSO  - 

. N 

During our investigation of MSO  -orderability we will employ tools related to the notion of clique-width. We consider graphs with ports in a finite set [k], that is, graphs G = ⟨V , E, χ⟩ equipped with a function χ ∶ V → [k]. We say that a vertex a ∈ V has port label a if χ(v) = a. e notion of clique-width is defined in terms of the following operations on graphs with ports:

◆ for each a ∈ [k], a constant a denoting the graph with a single vertex that has port label a ;

◆ the disjoint union ⊕ of two graphs with ports;

◆ the edge addition operation add a,b , for a, b ∈ [k], adding all edges between some vertex with port label a and some vertex with port label b that do not already exist;

◆ the port relabelling operation relab h , for h ∶ [k] → [k], changing each port label a to the port label h(a).

Each term using these operations defines a graph with ports in [k]. e cliquewidth of a graph G = ⟨V , E⟩ is the least number k such that, for some function χ ∶ V → [k], there exists a term denoting ⟨G, χ⟩ (for details cf. [, , ]). We denote the clique width of G by cwd(G). Below we will not use the operations defining clique-width, but some related operations that are more convenient in our context. 

⊗ R H = G ⊗ R ′ H where R ′ ∶= ([k] × [k]) ∖ R and G denotes the edge complement of G.
(d) We can express ⊗ R as a combination of the operations defining cliquewidth in the following way: To give a necessary condition for MSO  -orderability we introduce a combinatorial property similar to SEP, but based on the operation ⊗ R . Definition .. Let G be a graph and k ∈ N.

G ⊗ R H = relab h -(add a  ,b  (⋯ add a n ,b n (G ⊕ relab h + (H))⋯)) , for suitable functions h + ∶ [k] → [k] and h -∶ [k] → [k] and ports labels a  , b  , . . . , a n , b n ∈ [k].
C ⊗ R K ∶= { G ⊗ R H G ∈ C, H ∈ K } is MSO-orderable if,
(a) We denote by Cut(G, k) the maximal number n such that there exist nonempty graphs H  , . . . , H n- with ports in [k] and a relation R ⊆

[k] × [k] such that G ≅ Un(H  ⊗ R ⋅ ⋅ ⋅ ⊗ R H n- ) .  (b) We say that a class C of graphs has property CUT( f ), for a function f ∶ N → N, if Cut(G, k) ≤ f (k) , for all G ∈ C and all k ∈ N .
We say that C has property CUT, if it has property CUT( f ), for some f ∶ N → N.

Remark .. Note that Cut(G, k) = Cut(G, k).
For the proof that property CUT is necessary for MSO  -orderability, we use the following technical lemma. 

M m (⌊G⌋, P, C, ā) = M m (⌊G ′ ⌋, P′ , C′ , ā′ ) M m (⌊H⌋, Q, D, b) = M m (⌊H ′ ⌋, Q′ , D′ , b′ ) implies that M m ⌊G ⊗ R H⌋, S, āb = M m ⌊G ′ ⊗ R H ′ ⌋, S′ , ā′ b′ , where S i ∶= P i ∪ Q i and S ′ i = P ′ i ∪ Q ′ i . Proof.
Let σ be a quantifier-free transduction that maps a structure A to its expansion ⟨A, I⟩ where I ∶= A × A is the equivalence relation on A with a single class. Given R, we can write down a quantifier-free transduction τ such that

⟨⌊G ⊗ R H⌋, S, āb ⟩ = τ σ(⟨⌊G⌋, P, C, ā⟩) ⊕ σ(⟨⌊H⌋, Q, D, b⟩) and ⟨⌊G ′ ⊗ R H ′ ⌋, S′ , ā′ b′ ⟩ = τ σ(⟨⌊G ′ ⌋, P′ , C′ , ā′ ⟩) ⊕ σ(⟨⌊H ′ ⌋, Q′ , D′ , b′ ⟩) .
Consequently, the claim follows form the Composition eorem and the Backwards Translation Lemma.

Lemma .. ere exists a function

f ∶ N  → N such that Cut(G, k) ≤ f (n, m, k)
for every graph G such that ⌊G⌋ can be ordered by an MSO-formula of the form φ(x, y; P) where qr(φ) ≤ m and P = P  . . . P n- are parameters. Furthermore, the function f (n, m, k) is effectively elementary in the argument k, that is, there exists a computable function g such that f (n, m, k) ≤ exp g(n,m) (k).



Proof. Fixing k, m, n ∈ N, we define f (n, m, k) as the number of MSO-theories of the form M m (⌊H⌋, v, P  , . . . ,

P n- , Q  , . . . , Q k- )
where H is a graph, v is a vertex of H and P  , . . . , Q  , . . . are parameters. Note that, for fixed m, the number of such theories is elementary in k (see Section . of [] for a detailed calculation of an upper bound).

Let φ(x, y; Z) be an MSO-formula of quantifier-rank at most m, let G be a graph with Cut(G, k) > f (n, m, k), and P  , . . . , P n- parameters from G. We have to show that φ(x, y; P) does not order G. Fix graphs H  , . . . ,

H d- with d = Cut(G, k) and a relation R ⊆ [k] × [k] such that G = Un(H  ⊗ R ⋅ ⋅ ⋅ ⊗ R H d- ) . For c < k, let C c ∶= { x ∈ G x ∈ H i , for some i < d, and x has port label c in H i } . Since d > f (n, m, k), there are indices i < j such that M m (⌊H i ⌋, a i , P ↾ H i , C ↾ H i ) = M m (⌊H j ⌋, a j , P ↾ H j , C ↾ H j ) .
As there exists a graph F such that ⟨⌊G⌋, a i a j , P, Q⟩

= ⟨⌊H i ⌋, a i , P ↾ H i , C ↾ H i ⟩ ⊗ R ⟨⌊H j ⌋, a j , P ↾ H j , C ↾ H j ⟩ ⊗ R F and ⟨⌊G⌋, a j a i , P, Q⟩ = ⟨⌊H j ⌋, a j , P ↾ H j , C ↾ H j ⟩ ⊗ R ⟨⌊H i ⌋, a i , P ↾ H i , C ↾ H i ⟩ ⊗ R F ,
it follows by Lemma . that M m (⌊G⌋, a i a j , P, C) = M m (⌊G⌋, a j a i , P, C) .

In particular, we have ⌊G⌋ ⊧ φ(a i , a j ; P) iff ⌊G⌋ ⊧ φ(a j , a i ; P) .

Hence, φ(x, y; P) does not define an order on G. ◆ the class of all cliques K n ;



◆ the class of all complete bipartite graphs K n,m ;

◆ any class of graphs of the form G ⊗ (H  ⊕ ⋅ ⋅ ⋅ ⊕ H n ) where the number n is unbounded and each H i is nonempty.

As MSO  -orderability implies MSO  -orderability, we can expect that the property CUT implies SEP. e following lemma proves this fact. Proof. Let G = ⟨V , E⟩ ∈ C and consider a set S ⊆ V of size S ≤ n. Let C  , . . . , C d- be an enumeration of the connected components of G -S. We claim that d ≤ g(n).

We define colourings ρ ∶ S → D and χ i ∶ C i → D, for i < d as follows. e set of colours is D ∶= S ∪ (S). (To be formally correct, we have to take the set [k] where k ∶= S ∪ (S) . To simplify notation, we will use S ∪ (S) instead.) We set ρ(s) ∶= s and χ i (v) ∶= { s ∈ S (v, s) ∈ E } . 

It follows that

G = Un ⟨S, ρ⟩ ⊗ R ⟨C  , χ  ⟩ ⊗ R ⋅ ⋅ ⋅ ⊗ R ⟨C d- , χ d- ⟩ ,
d +  ≤ Cut(G, n +  n ) ≤ f (n +  n ) = g(n) +  .
e converse obviously does not hold. A special case, where it does hold is the case of r-sparse graphs (cf. Definition .). is case is of particular interest since, for r-sparse graphs, the expressive powers of MSO  and MSO  coincide (see eorem . of []). We claim that every connected component of G -S is contained in H i -S, for some i. For a contradiction, suppose that there is a connected component C of  G -S containing vertices from both H i -S and H j -S. en there exists an edge (x, y) of G with x ∈ H i -S and y ∈ H j -S. Let a ∶= χ i (x) and b ∶= χ j (y). en Definition .. A term t of the cograph-operations ⊕, ⊗,  (where we consider ⊕ and ⊗ as many-ary operations with unordered arguments) is a cotree if there is no node that is labelled by the same operation as one of its immediate successors. Note that every graph has a unique cotree. e depth of a cograph is the height of this cotree.



. C

Example .. e cograph G defined by the term

( ⊗ ( ⊕ ( ⊕ ( ⊗ )))) ⊗ (( ⊗ ( ⊗ )) ⊕ )
has the cotree

⊗  ⊕ ⊕ ⊗   ⊗      
Note that the leaves correspond to the vertices of G and that every subtree corresponds to an induced subgraph of G.

  Proof. () ⇒ () is trivial. () ⇒ () has been shown in Corollary .. () ⇒ () Suppose that T has property SEP( f ) and let T ∈ T . Every vertex v ∈ T has at most f () neighbours since T -{v} has at most f () connected components. Consequently, the maximal outdegree of T is bounded by f ().

  (a) If B ≥ p and there are p immediate successors y of x with B F (y) = B ∪ {x}, then K p, p ⪯ G. (b) If B < p and Sep(G, p) ≤ d, then there are at most d immediate successors y of x with B F (y) = B ∪ {x} . Proof. (a) Suppose that there are p distinct immediate successors y  , . . . , y p- of x with B(y i ) = B ∪ {x} and fix distinct vertices b  , . . . , b p- ∈ B. Let H be the minor of G obtained by contracting the subtrees below y  , . . . , y p- to single vertices ỹ , . . . , ỹp- and by removing all remaining vertices except for ỹ , . . . , ỹp- and b  , . . . , b p- . en H ≅ K p, p . (b) Set S ∶= B ∪ {x} and let y  , . . . , y n- be an enumeration of all immediate successors of x with B(y i ) = S. en y  , . . . , y n- lie in different connected components of G -S. Hence, n ≤ Sep(G, p) = d. eorem .. Let C p,d be the class of all graphs G such that Sep(G, p) ≤ d and G does not contain K p, p as a minor. en C p,d is MSO  -orderable, for every p, d.

  eorem .. Let C be a class of graphs omitting a minor H. e following statements are equivalent: () C is MSO  -orderable. () C has property SEP. () C has property SEP( f ) for some elementary function f . Furthermore, given H we can compute a number k such that we can choose the function f in () to be exp k . Proof. () ⇒ () follows by Corollary . and () ⇒ () is trivial.For () ⇒ (), suppose that C has property SEP( f ). By to eorem ., the classes C p,d are MSO  -orderable, for all p, d. Let p be large enough such that H is a minor of K p, p and set d ∶= f (p). en C ⊆ C p,d and it follows that C is also MSO  -orderable.Remark .. (a) For each k ∈ N, the class of all graphs of tree-width at most k excludes some planar graph as a minor and, hence, it satisfies the conditions of eorem ..

  If y and y ′ are immediate successors of x in different connected components of G -S, then I(y) ∩ I(y ′ ) = ∅. Consequently, there are at most m ≤ k connected components of G -S containing an immediate successor y of x with I(y) ≠ ∅. It remains to show that there are at most  k ⋅ max {p, d} components of G -S containing an immediate successor y with I(y) = ∅. Note that every such immediate successor y satisfies B(y) ⊆ S. Hence, B(y) can take at most  m ≤  k values and, according to Lemma ., for each such value B ⊆ S there are at most max {p, d} immediate successors y with B(y) = B.  Proposition .. Let G be a graph with Sep

Figure  :

  Figure : e graph H  .

  Hence, there are at least two indices i < j in J. e mapping π ∶ K n,m → K n,m that interchanges b i and b j and leaves every other vertex fixed is an automorphism of the structure ⟨⌈K n,m ⌉, P⟩. Hence, ⌈K n,m ⌉ ⊧ φ(b i , b j ; P) iff ⌈K n,m ⌉ ⊧ φ(b j , b i ; P) . A contradiction. Lemma .. Let C be a class of graphs such that every graph in C is of the form K m  ,...,m d- where d >  and m

  the claim follows by Lemma .. ◆ If d >  and M ≥ N -M, we have K N-M ,M ⊆ K m  ,...,m d- and the claim follows again by Lemma .. ◆ If d >  and M < N -M the claim follows by Lemma ..

  For a contradiction, suppose that m >  s N(b  ) +s . en there are indices i < j such thatb i ∈ P k iff b j ∈ P k , for all k < s , (b i , a) ∈ P k iff (b j , a) ∈ P k ,for all k < s and a ∈ N(b  ) .It follows that the mapping that interchanges b i and b j and that fixes every other vertex of ⟨G, P⟩ is an automorphism. Hence, ⌈G⌉ ⊧ φ(b i , b j ; P) iff ⌈G⌉ ⊧ φ(b j , b i ; P) .

Definition .  .

  Let k ∈ N and R ⊆ [k] × [k]. (a) For undirected graphs G and H with ports in [k], we construct the undirected graph G ⊗ R H by adding to the disjoint union G ⊕ H all edges (x, y) such that  ◆ either x ∈ G and y ∈ H, or x ∈ H and y ∈ G, ◆ x has port label a and y has port label b, for some (a, b) ∈ R. Similarly, we define G ⊗ R H for graphs G and H expanded by additional unary predicates and constants. (b) For a graph G with ports, we denote by Un(G) the graph obtained from G by forgetting all port labels. Remark .. (a) e operation ⊗ R is associative and commutative with the empty graph as neutral element. Furthermore, ⊗ R = ⊗ R∪R - . (b) With only  port label, there are two operations of the form ⊗ R : the operations ⊕ and ⊗ used to build cographs.(c) We have G

  (h + is needed to make the port labels appearing in H distinct from those appearing in G.) Remark .. (a) Similar to Lemma . (b), one can show that

Lemma .  .

  Let G, G ′ , H, H ′ be labelled graphs, P, P′ , Q, Q′ tuples of sets of vertices of the respective graphs, and ā, ā′ , b, b′ tuples of vertices. For each port label c, let C c , C ′ c , D c , D ′ c be the sets of all vertices of the respective graph labelled by c. en

  Lemma ..A class C of graphs with property CUT( f ) has property SEP(g) where g(n) ∶= f (n +  n ) -.

whereR

  ∶= { (s, X) ∈ S × (S) s ∈ X } . Consequently, Cut(G, D ) ≥ d + . Since D ≤ n +  n , it follows that

  K m,n is r-sparse if, and only if, r≥  m +  n - . Proof. Every induced subgraph of K m,n is of the form K m ′ ,n ′ with m ′ ≤ m and n ′ ≤ n. Such a subgraph has m ′ + n ′ vertices and m ′ n ′ edges. e ratio is m ′ n ′ m ′ + n ′ = . A class C of r-sparse graphs with property SEP( f ) has property CUT(g) where g(k) ∶= f (k  r(r + )). Proof. Let G ∈ C. Suppose that G = Un (H  , χ  ) ⊗ R ⋅ ⋅ ⋅ ⊗ R (H d- , χ d- ) , where R ⊆ [k] × [k]. W.l.o.g. we may assume that R is symmetric. We have to show that d ≤ g(k). Set I a ∶= { i < d χ - i (a) ≠ ∅ }.First, let us show thatI a ≤ r +  or I b ≤ r +  , for every (a, b) ∈ R .For a contradiction, suppose that there is some (a, b) ∈ R that I a ≥ r +  and I b ≥ r + . Choose subsets I ′ a ⊆ I a and I ′ b ⊆ I b of size m ∶= r +  and select vertices x i ∈ χ - i (a), for i ∈ I ′ a , and y i ∈ χ - i (b), for i ∈ I ′ b . e subgraph induced by these vertices has m  -I a ∩ I b ≥ m m edges and m vertices. Since m it follows that G is not r-sparse. A contradiction. For a, b ∈ [k], set S ab ∶= ⋃ χ - i (a) i ∈ I a , χ - i (a) ≤ r , S ∶= ⋃ S ab (a, b) ∈ R, I a ≤ r +  . Note that S ab ≤ r I a and S ≤ R ⋅ (r + ) ⋅ (r) ≤ k  r(r + ) .

  (a, b) ∈ R. We have shown above that I a ≤ r +  or I b ≤ r + . In the first case, we have x ∈ χ - i (a) ⊆ S ab ⊆ S, in the second case, we have y ∈ χ - i (b) ⊆ S ba ⊆ S. Hence, both cases lead to a contradiction. It follows that G -S has at least d connected components. Consequently, d ≤ Sep(G, S ) ≤ Sep(G, k  r(r + )) ≤ f (k  r(r + )) = g(k) .

  b) e class C is MSO-orderable if there is an MSO-formula φ defining an order on C. (c) We call a class C of graphs MSO  -orderable if the class ⌊C⌋ is MSO-orderable, and we call it MSO  -orderable if ⌈C⌉ is MSO-orderable. C ∪ K is MSO-orderable if, and only if, C and K are MSO-orderable.

	(a)
	Lemma .. Let C and K be classes of Σ-structures.
	

  and only if, C and K are MSO-orderable.

  By this lemma, it follows that all finite classes are MSO-orderable.

	Remark .. (a) Every class consisting of a single (finite) structure is obviously
	MSO-orderable.	
		follows that we can order A by the
	formula	
	ψ(x, y; Z) ∶= ⋁	ϑ i (x, y; Z) ,
	i∈I	
	where ϑ i is the conjunction of all formulae in p i .
		

 Definition .. A

  class C of structures is hereditarily MSO-unorderable, if it is infinite and no infinite subclass C  ⊆ C is MSO-orderable. For classes of graphs, we define the terms hereditarily MSO  -unorderable and hereditarily MSO  -unorderable analogously. Example .. (a) e class C = { K n n ∈ N } of all complete graphs is MSO orderable and hereditarily MSO  -unorderable. (b) e class T n of all trees of height at most n is both, hereditarily MSO unorderable and hereditarily MSO  -unorderable.

  the immediate successors of the longest common prefix of u and v with u  ⪯ u and v  ⪯ v . Let k ∈ N. e class of trees of depth at most k is hereditarily MSO unorderable.We start by presenting a characterisation for classes of graphs omitting a minor. Recall that we can orient a spanning forest F of a graph G by fixing a root in each connected component. is defines a tree-order ⪯ F on F. A spanning forest F is normal if the ends of every edge of G are comparable with respect to ⪯ F (see, e.g., Section . of[]).

	Corollary .. Proof. For any given depth k, there are only finitely many trees (up to isomorph-
	ism) satisfying condition () of the theorem.

 . O    Definition .. Let G be a graph and F ⊆ G a normal spanning forest of G.

  and only if, C and K are MSO-orderable.

(b) C ∶= { G G ∈ C } is MSO-orderable if, and only if, C is MSO-orderable.

  Corollary .. An MSO  -orderable class of graphs C has property CUT( f ), for an elementary function f . Example .. e following classes are not MSO  -orderable:

  Recall from Section . that cographs are constructed by the operations ⊕, ⊗, and . It follows that a cograph G with more than one vertex is either disconnected and of the form G = H  ⊕ ⋅ ⋅ ⋅ ⊕ H n for connected cographs H  , . . . , H n , or it is connected and of the form G = H  ⊗ ⋅ ⋅ ⋅ ⊗ H n for cographs H  , . . . , H n each of which is either disconnected or a single vertex. Furthermore, these decompositions of G are unique, up to the ordering of H  , . . . , H n . Using this observation, we can associate with every cograph a unique term as follows.

Recall (see, e.g., []) that a module of a graph G = ⟨V , E⟩ is a set M of vertices such that every vertex in V ∖ M is either adjacent to all elements of M, or to none of them. A module M is called strong if there is no module N such that M ∖ N and N ∖ M are both nonempty (cf. []). Clearly, being a module and being a strong module are expressible in MSO  . In a cograph we can distinguish between two types of strong modules: the connected and the disconnected ones. Definition .. A ⊕-module of a cograph G with cotree t is the value of a subterm s of t where the root of s is labelled with ⊕. Similarly, a ⊗-module is the value of a subterm whose root is labelled by ⊗. eorem .. Let C be a class of cographs. e following statements are equivalent.

() C is MSO  -orderable.

() C has property CUT. () ere exists a constant d ∈ N such that the cotree of every graph in C has outdegree at most d.

Proof. () ⇒ () is Corollary . from [] and () ⇒ () was shown in Corollary ..

For () ⇒ (), suppose that, for every d ∈ N, there exists a graph G d ∈ C with a cotree of maximal outdegree at least d. It is sufficient to show that Cut(G d , ) > d.

By assumption, there is a strong module A of G d containing strong submodules B  , . . . , B n- , for n > d, such that either (i) A = B  ⊕ ⋅ ⋅ ⋅ ⊕ B n- , or (ii) A = B  ⊗ ⋅ ⋅ ⋅ ⊗ B n- . Let C ∶= G -A be the graph induced by the complement of A. Every vertex v ∈ C is either connected to all vertices of A, or to none of them. We assign the port label  to the former vertices and the port label  to the latter ones. Each vertex of A gets port label . It follows that

Proof. For any given depth k, there are only finitely many cographs (up to isomorphism) satisfying condition () of eorem ..



Corollary .. For VR-equational classes of cographs, MSO  -orderability is decidable.

Proof. Let C be a VR-equational class of cographs. By eorem ., it is sufficient to decide whether there is a constant d such that every cotree of a graph in C has maximal outdegree at most d. Let φ(X) be an MSO  -formula stating that there exists a strong module Z such that ◆ X ⊆ Z and ◆ every strong module Y ⊂ Z contains at most one element of X.

Given a cograph G, it follows that the maximal outdegree of the cotree of G is equal to the maximal size of a set X satisfying φ in G. Using the Semi-Linearity eorem, we can decide whether this size is bounded.

Remark .. If a class C of cographs is MSO  -orderable, there exists an MSOtransduction (see [] or Chapter  of []) mapping each graph in C to its cotree. But, conversely, the existence of such an MSO-transduction is not enough to ensure MSO  -orderability: there exists an MSO-transduction from the class of all cographs of depth k to their respective cotrees (this is a routine construction).

But, as we have just seen, this class is hereditarily MSO  -unorderable.

. ⊗-

Cographs are precisely the graphs of clique-width . A natural aim is thus to extend the equivalence () ⇔ () of eorem . to classes of graphs of bounded clique-width. However, we must leave this as a conjecture. Instead we only consider the special case of graphs where the height of the decomposition (as defined below) is bounded. ese generalise the cographs of bounded depth, and we show that classes of such graphs are hereditarily MSO  -unorderable. We start by introducing a kind of decomposition associated with the notion of clique-width. Since we are only interested in decompositions of bounded height, a simplified version, called a ⊗-decomposition, suffices.

We call ⊗ R v the operation at v. Note that the port labels of

as the least number k such that G has a ⊗-decomposition of width at most k and height at most n. Similarly, we define swd ⊗ n (G) as the least number k such that G has a strong ⊗-decomposition of width at most k and height at most n. We call wd ⊗ n (G) the n-depth ⊗-width of G and swd ⊗ n (G) is its strong n-depth ⊗-width.

Remark .. (a) Note that, for every graph G and all n, m with m < n, we have

(b) Recall the definition of clique-width at the beginning of Section .. Since the operation ⊗ R can be expressed by the operations clique-width is based on, but using twice as many port labels, it follows that the clique-width of a graph is at most twice its strong n-depth ⊗-width (for any n). Since, conversely, for sufficiently large n, the strong n-depth ⊗-width of a graph G is at most its cliquewidth, it follows that, for every graph G and all sufficiently large n,



If we define swd ⊗ (G) as the minimal value of swd ⊗ n (G), for n ∈ N, we therefore obtain a nontrivial width measure that is equivalent to clique-width.

(c) Note that wd ⊗ n (G) ≤ , for every graph G with n vertices. Hence, the width wd ⊗ n (G) is only of interest if there is a bound on n.

Because of its relation to clique-width, the strong ⊗-width is of more interest than the ⊗-width (which becomes trivial for large depths). We have introduced the simpler notion of ⊗-width since, in the special case we consider, there exists a bound on the depth of ⊗-decompositions. In this case we can use the following lemma to transform a bound on the ⊗-width of a class into a bound on its strong ⊗-width.

Lemma .. For every graph G and every n ∈ N,

Proof. e first inequality being trivial, we only prove the second one. Given a

en

where the function ρ maps ⟨a  , . . . , a k , a k+ ⟩ to ⟨a  , . . . , a k ⟩.

Lemma .. Let G be a graph and (H v ) v∈T a ⊗-decomposition of G of width at most k. Every vertex of T has less than Cut(G, k +  k ) successors.

Proof. Suppose that

Hence,

where ⊗ R is the operation at v. Let C ∶= G -H v , i.e., the subgraph induced by the complement of the set of vertices of H v . We claim that

We obtain the following characterisation of MSO  -orderable classes of bounded n-depth ⊗-width. eorem .. Let C be a class of graphs such that, for some n, k ∈ N,

e following statements are equivalent: 

and I is the symmetric incidence relation from (a).

(c) For a class C of graphs we set

Note that IS(G) is a split graph. e proposition below suggests that a characterisation of MSO  -orderability for classes of split graphs is as hard as a characterisation of MSO  -orderability for arbitrary classes of graphs. We start with a technical lemma.  where e  , . . . , e n- are all edges of G between vertices in S and C ′ i is the graph obtained from Inc(C i ) by adding all edges of G connecting a vertex in S to some vertex of

For each edge e ∈ S ∩ E, we select one endpoint. Let X be the set of these end-points and set S ′ ∶= (S ∖ E) ∪ X. en Inc(G) -S ′ has at least as many connected components as Inc(G) -S. Since S ′ ⊆ V it follows by what we have seen above that Inc(G)-S ′ has at most m + k  connected components, where m is the number of connected components of G -S ′ . Consequently,

and let χ i be the labelling of H i . We set

where

(⇐) Suppose that IS(C) has property CUT( f ), for some f ∶ N → N. Let Inc(G) = ⟨V ∪ E, I, P⟩ be a graph in Inc(C) and let IS(G) = ⟨V ∪ E, J⟩. To compute Cut(Inc(G), k) suppose that

Suppose that H i = ⟨U i , I i , P i ⟩, for i < m, and let χ i be the labelling of H i . We define the graph

where

Consequently, Cut(Inc(G), k) ≤ Cut(IS(G), k) ≤ f (k). We also present a lemma suggesting that a characterisation of MSO  -orderability for classes of bipartite graphs is as hard as a characterisation of MSO orderability for arbitrary classes of graphs. We leave the proof -which is similar to the one above -to the reader.

For classes C of graphs, we define BP(C) in the usual way. 

 C

For arbitrary classes of graphs, it is difficult to obtain necessary and sufficient conditions for MSO i -orderability, as there are many different ways to construct MSOdefinable orderings depending on many different structural properties of the considered graphs. General conditions should thus cover simultaneously a large number of possibilities. It is therefore necessary to consider particular graph classes. We have obtained necessary and sufficient conditions in eorems ., ., ., and . with corresponding decidability results for VR-equational classes of graphs.

Concerning future work we think that the following questions can be fruitfully investigated:  (a) Does Conjecture . hold? We have already proved several special cases and more cases seem to be within reach. It remains to be seen whether the full conjecture can be resolved.

(b) Which condition must be added to the property SEP to yield a necessary and sufficient condition for MSO  -orderability of a class of cographs? And more generally, for graph classes of bounded clique-width? (c) What could be an extension of eorem ., say, for classes of 'bounded strong ⊗-width'?

(d) Which operations do preserve MSO i -orderability? Candidates include the operations defining tree-width or clique-width, graph substitutions, and monadic second-order transductions. We presented a few simple results in Lemma . and Remark ., but it should not be too hard to develop a more comprehensive theory.