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EFFECTIVE WAVELET-BASED REGULARIZATION OF
DIVERGENCE-FREE FRACTIONAL BROWNIAN MOTION

P. HÉAS∗, S. KADRI-HAROUNA∗ AND P. DÉRIAN∗

Abstract. This paper presents a method for regularization of inverse problems. The vectorial
bi-dimensional unknown is assumed to be the realization of an isotropic divergence-free fractional
Brownian Motion (fBm). The method is based on fractional Laplacian and divergence-free wavelet
bases. The main advantage of these bases is to enable an easy formalization in a Bayesian framework
of fBm priors, by simply sampling wavelet coefficients according to Gaussian white noise. Fractional
Laplacians and the divergence-free projector can naturally be implemented in the Fourier domain.
An interesting alternative is to remain in the spatial domain. This is achieved by the analytical
computation of the connection coefficients of divergence-free fractional Laplacian wavelets, which en-
ables to easily rotate this simple prior in any sufficiently “regular” wavelet basis. Taking advantage
of the tensorial structure of a separable fractional wavelet basis approximation, isotropic regulariza-
tion is then computed in the spatial domain by low-dimensional matrix products. The method is
successfully applied to fractal image restoration and turbulent optic-flow estimation.

Key words. Bayesian modeling, fractional Brownian motion, divergence-free wavelets, frac-
tional Laplacian, wavelet connection coefficients, fast recursive filtering, optic-flow, image restora-
tion.

1. Introduction. Fractional Brownian motion (fBm) introduced by Mandelbrot
and Van Ness [23] constitute popular models for the study of self-similar stochastic
phenomena in a broad range of application domains such as statistical turbulence,
network traffic analysis, financial markets or image processing. The practical interest
of fBm models relies in their remarkable properties: Gaussianity, increments station-
arity and statistical self-similarity. The latter property goes hand-in-hand with the
empirical observation of inverse power-law power spectra in a wide range of applica-
tions, although the latter statement has to be made with caution as classical notion of
power spectrum are not applicable for non-stationary signals [13]. Extensions of fBm
have been proposed in the context of multidimensional signal analysis. In particular,
there has been a special focus on the isotropic case [27], since isotropy constitutes a
simple, yet relevant, assumption in numerous domain, including statistical turbulence
[25]. Finally, vectorial fBm models first proposed in [25] have been recently studied
systematically in [2, 30].

Interesting fBm decomposition can be designed by projection of fBm on wavelet
bases. Indeed, non-stationarity and self-similarity of fBm necessitate some appropriate
space-scale analysis brought by wavelet multiresolution analysis [14]. In particular,
bi-orthogonal fractional wavelets constitute whitening filters for these signals, which
are correlated both in space and scale [12, 24, 29, 30]. Moreover, in the context
of turbulence studies, bi-orthogonal wavelet bases can also be designed to represent
the space of divergence-free functions, which is a constraint of the incompressible
Navier-Stokes equations [21]. Another advantageous property is the existence of a
fast implementation of decomposition-reconstruction algorithms for those wavelets
using recursive filter banks [1, 11].

FBm models have intensively been studied in the context of signal synthesis
or analysis. In particular, many works deal with the synthesis of fBm (see e.g.,
[1, 2, 14, 12, 24, 30]) or with the characterization of Hurst exponent from experi-
mental data (see e.g., [14, 6, 29]). However, suprinsingly, very little studies concern
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Rennes, France (Patrick.Heas@inria.fr)

1
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Bayesian analysis and fBm models, i.e., employing fBm prior models in inverse or
ill-conditioned problems. The following works should nevertheless be mentioned, al-
though they consider prior properties of fBm, and in particular an empirical power-law
spectrum decay, rather than considering prior fBm models themselves. In the context
of restoration of remote sensing imagery [18] or of magnetic resonance imaging [32],
prior spectrum power-law decay have been used for the estimation of scalar fields from
noisy or incomplete observations. Several recent works have also been led in this di-
rection in the context of optic-flow estimation. In particular, prior power-law models
for power spectra [10] or for structure functions [16] have recently been proposed in
the context of turbulent motion estimation from image sequences.

This paper proposes a generic methodological framework for the regularization
of ill-posed or ill-conditioned inverse problems using a bi-dimensional, and possibly
divergence-free, fBm prior. The proposed model possesses a structure similar up to
some extent to the regularizer proposed very recently in [31]. However, the modeling
point of view adopted in this recent work is very different. Indeed, the authors do
not intend to provide some prior model for fBm but rather propose regularization
models satisfying invariance under coordinate transformations. Moreover, conversely
to this related work, the present framework exploits an advantageous wavelet rep-
resentation of fBm expressed in the spatial domain. Because of their advantageous
whitening properties, divergence-free fractional Laplacian wavelet bases are chosen,
yielding simple Gaussian white noise priors on wavelet coefficients. Furthermore, a
low-complexity optimization algorithm, avoiding spectral computation and relying
on mono-dimensional fast wavelet transforms, is proposed to maximize the posterior
model.

The reminder of the paper is the following. After defining the properties of
isotropic divergence-free fBm, we recall in the following section their spectral and
wavelet representations. In section 3, we introduce a generic Bayesian framework for
the regularization of inverse problems, based on the previous wavelet representation
of fBm. Optimization algorithms for the maximization of the posterior model are
then described in section 4. The modeling relevance and the algorithm efficiency are
finally discussed in section 5, in the context of fractal image restoration and turbulent
motion estimation.

2. Divergence-free isotropic fBm . For the clarity of the presentation, this
work is restricted to the bi-dimensional case although it is in principle possible to
extend the regularization to three dimensions. Moreover, in order to make the pre-
sentation as generic as possible, we focus on the more general case of divergence-free
vectorial fields, keeping in mind that scalar fields or divergent vector fields are par-
ticular cases.

2.1. Divergence-free isotropic fBm definition and properties. The unique
self-similar zero-mean Gaussian random process with stationary increments is frac-
tional Brownian Motion (fBm) [13]. The definition of one-dimensional scalar fBm
has been extended to the case of one-dimensional multivariate processes [2], to the
case of isotropic -i.e., multi-dimensional- scalar fields [27], or to the case of isotropic
multivariate signals [25, 30]. We first recall the properties of the latter isotropic fBm
model in the particular case of two-dimensional divergence-free vector fields.
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Let u denote a realization1 of the bi-dimensional divergence-free isotropic fBm
random variable u = (u1,u2)T . Let us consider the Sobolev space of vectorial func-
tions defined for ζ ∈ R by:

(Hζ(R2))2 = {f ∈ (L2(R))2 : (1−∆)ζ/2f ∈ (L2(R2))2}.

Realizations belong to the space of divergence-free functions:

u = (u1,u2)T ∈ Hζdiv(R
2) = {u ∈ (Hζ(R2))2 : divxu = 0},

where the divergence operator is defined in the sense of distribution. More precisely,
for any test function ψ ∈ C1(R2) with a fast decay at infinity and with vanishing
moments, we define the divergence operator by:

divxu , 〈divxu, ψ〉L2(R2)

= −〈u/∇xψ〉, (2.1)

where 〈., .〉 and 〈./.〉 denote the inner product of two scalar (resp. two vectorial)
functions in L2(R2) (resp. in (L2(R2))2). Definition (2.1) is necessary since fBm
realizations are not continuously differentiable [13]. Divergence-free isotropic fBm are

vectorial random fields in Hζdiv(R2) with the following properties [30]:
• zero-mean Gaussian variables,
• non-stationary vector fields with homogeneous increments,
• statistically invariant by rotation (isotropic),
• statistically self-similar with parameter H ∈ [0, 1].

Let us detail these properties. Statistical self-similarity and statistical rotation in-
variance are defined respectively by the following equality in probability law: for any
orthogonal matrix M , i.e., MMT = I, ∀x ∈ R2:

u(σx)
L
=σHu(x), ∀σ ∈ R+ (2.2)

u(x)
L
=Mu(MTx), (2.3)

where the real exponent H is known as the Hurst exponent.
The exponent has to be chosen as H ∈ [0, 1], since the Fourier integral defining the

fBm process diverges for H > 1. Nevertheless, we will see that expanding fBm with
wavelets with sufficiently vanishing moments enables the generalization to exponent
H ∈ R+/N [6].

Non-stationarity of the random vector field u is a direct consequence of its self-
similarity [13]. Let Eu[·] denote the expectation operator with respect to the probabil-
ity distribution of u. The isotropic divergence-free fBm increments are homogeneous
and characterized by the following auto-correlation function [30]:

Eu[(ui(x + τ )− ui(x− h + τ ))(uj(x)− uj(x− h))∗] ∝
[GH(h + τ )]ij − 2[GH(τ )]ij + [GH(h− τ )]ij , ∀H ∈ [0, 1], (2.4)

with ∝ representing the symbol equal up to a multiplicative constant and where
[GH(h)]ij is the (i, j)-th component of the 2 by 2 matrix GH(h) defined by:

GH(h) = ‖h‖2H
[
I− hhT

‖h‖2

]
. (2.5)

1Realizations of random variable are noted with calligraphic symbol. For example, a realization
of the random variable u is noted u.
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The auto-correlation taken at τ=0 gives the second order moment of the increments:

Eu[(ui(x)− ui(x− h))(uj(x)− uj(x− h))∗] ∝ [GH(h)]ij , ∀H ∈ [0, 1], (2.6)

For H > 1, one can show that the corresponding Gaussian fields have stationary
increments of order bHc+ 1 where bHc denotes the largest integer lower or equal to
H, see [30].

2.2. Spectral representation of fBm. Let dW (k) = (dW1(k), dW2(k))T be
the differential of a vectorial complex bi-dimensional Brownian motion satisfying the
following properties:

dWi(−k) = dW ∗i (k), (2.7)

EW [dWi(k)] = 0, (2.8)

EW [dWi(k)dW ∗j (k)] = δijdk. (2.9)

Isotropic divergence-free fBm components {uj |j = 1, 2} can be equivalently defined
in the Fourier domain by a Wiener integral.

Proposition 2.1. Any isotropic fBm u ∈ Hζdiv(R2) of parameter H with ζ =
−H − 1, can be constructed by means of the spectral representation:

u(x)− u(0) =
1

(2π)2

∫
R2

(eik·x − 1)

‖k‖
σG−

H
2 (k)dW (k) (2.10)

where matrix G−
H
2 is given by (2.5), where σ is a positive constant and dW (k) is the

differential of a vectorial complex bi-dimensional Brownian motion satisfying (2.7)-
(2.9).
That is to say, assuming a vanishing initial condition uj(0) = 0, the j-th component
writes:

uj(x) =
1

(2π)2

∫
R2

(eik·x − 1)σ‖k‖−H−1
∑
i

(δij −
kikj
‖k‖2

)dWi(k). (2.11)

Proof. The construction of the fBm in the spectral domain is derived in an analogous
manner as what has been done previously in the scalar isotropic case [27]. In order to
be consistent with previous work [27, 30], we first define the frequency representation
of an isotropic divergence-free fractional Gaussian noise by the Wiener integral:

1

(2π)2

∫
R2

eikσG−
H
2 (k)dW (k). (2.12)

where the so-called fractal frequency filter G−
H
2 (k) is given by (2.5). Then, using

the fact that fBm increment between two position-vector points x and y is given by
the integration of the fractional noise along the straight-line path, connecting x and
y (see [27]) we obtain:

u(x)− u(y) =
1

(2π)2

∫
R2

(eik·x − eik·y)

‖k‖
G−

H
2 (k)dW (k). (2.13)

�

2.3. Wavelet representations of fBm.
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2.3.1. Motivations. The benefits of decomposing fBms on wavelet bases are
listed below.

First, wavelets yield interesting fBm representations since non stationarity and
self-similarity of fBm necessitate some appropriate space-scale analysis. Wavelets
constitute whitening filters for these signals, which are correlated both in space and
scale. The simplest choice is to use orthonormal wavelet bases. In this context, it can
be shown that the variance of fBm wavelet coefficients decays through scales according
to some power-law related to H [14]. Nevertheless, with orthonormal basis, coefficients
remain correlated in space and scale, and only approximate fBm whitening filters can
be designed. A better choice is to use bi-orthogonal fractional wavelet bases. They
represent ideal whitening filters [12, 24, 29, 30]. Moreover, bi-orthogonal wavelet bases
can also be designed to represent the space of divergence-free functions, which is a
constraint of incompressible flows [21].

Second, choosing wavelets to expand fBm removes the singularity at the zero
frequency in (2.11) for any Hurst exponent H > 1 as long as we are considering
wavelets with sufficient vanishing moments [30]. Convergence of the Fourier integral
is therefore guaranteed, and the concept of fBm may be extended to “integrated”
forms.

The third argument is related to the special context of optimization in Bayesian
analysis: wavelet multiresolution analyses of unknowns proved experimentally to be
relevant optimization strategy for non-convex inverse problems [9]. Moreover, opti-
mization can be led with a low-complexity since divergence-free wavelet decomposition
[11] or the one-dimensional fractional wavelet decomposition [1] have an advantageous
fast implementation with recursive filter banks [22].

We postpone the latter point to section 4 and introduce in the following represen-
tations of isotropic bi-dimensional fBm with divergence-free and fractional Laplacian
wavelets.

2.3.2. Construction with divergence-free wavelets. To take into account
implicitly the incompressibility constraint, the vectorial fBm u is represented in terms
of divergence-free wavelet series [11]. The anisotropic2 divergence-free wavelet spaces
can be defined by:

Hζdiv(R
2) = span{Ψ`,s; `, s ∈ Z2} (2.14)

with:

Ψ`,s = ascurl[χ`,s] (2.15)

where curl , ( ∂
∂x2

,− ∂
∂x1

)t, as , 1√
4s1+4s2

and χ`,s = ψ`1,s1 ⊗ ψ`2,s2 represents

an orthonormal scalar basis of L2(R2), constructed using regular wavelets {ψ`,s =
2s/2ψ(2sx−`); `, s ∈ Z}. Wavelets3 Ψ`,s compose a primal vectorial basis of (L2(R2))2.
Precisely, this primal divergence-free basis is constituted by wavelets Ψ`,s = (Ψ1

`,s,Ψ
2
`,s)

T ,

where Ψ1
`,s = as(ψ`1,s1 ⊗ ∂

∂x2
ψ`2,s2) and Ψ2

`,s = −as( ∂
∂x1

ψ`1,s1 ⊗ ψ`2,s2). Let us

now consider measurements test functions constituted by the dual wavelets4 Ψ̃`,s =

(Ψ̃1
`,s, Ψ̃

2
`,s)

T , which are biorthogonal to the primal wavelets Ψ`,s. Using such test

2The anisotropy of the wavelet basis has not to be confused with the isotropy of the fBm model.
3with the L2 norm ‖Ψ`,s‖2 =

∫
R2

∑
i Ψi

`,sΨi
`,s(x)dx = 1

4with the L2 norm ‖Ψ̃`,s‖2 =
∫
R2

∑
i Ψ̃i

`,sΨ̃i
`,s(x)dx = 1
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functions, one can decompose uniquely any divergence-free vector field u ∈ Hζdiv(R2):

u =
∑

`, s ∈ Z2

〈u/Ψ̃`,s〉Ψ`,s(x). (2.16)

Given this biorthogonal wavelet basis, the Wiener integral can be decomposed as an
infinite sum of weighted independent standard Gaussian random variables, yielding
the following result.

Proposition 2.2. Let u ∈ Hζdiv(R2) be an isotropic fBm of parameter H, with

ζ=-H-1 and let Ψ̂`,s be the Fourier transform of Ψ`,s. fBm u can be constructed by
means of the divergence-free wavelet series:

u(x) = c
∑
`,s

ε`,s

∫
R2

(eik·x − 1)‖k‖ζΨ̂`,s(k)dk (2.17)

where c = σ/(2π)2 is a positive constant and where the set of coefficients {ε`,s, (`, s) ∈
Z2} are distributed according to independent and identically distributed (i.i.d) zero-
mean Gaussians of variance equal to the L2 norm of the dual wavelets, i.e., ε`,s ∼
N (0, ‖Ψ̃`,s‖2).

Proof. For any vectorial function v = (v1,v2)t ∈ span{Ψ̃`,s; `, s ∈ Z2}, since

the wavelets Ψ̃`,s form a basis of this functional space, we have:∫
R2

∑
i

v̂i(k)dWi(k) =

∫
R2

∑
`,s,i

〈v̂/Ψ̂`,s〉 ˆ̃Ψi
`,s(k)dWi(k) =

∑
`,s

〈v̂/Ψ̂`,s〉ε`,s (2.18)

with

ε`,s =
∑
i

∫
R2

ˆ̃Ψi∗
`,s(k)dWi(k), (2.19)

where ˆ̃Ψ`,s is the Fourier transform of Ψ̃`,s. This equality stands for any test function
v. Therefore one obtains that the differential of Brownian motion can be decomposed
as: ∑

i

dWi(k) =
∑
`,s,i

ε`,sΨ̂
i
`,s(k)dk. (2.20)

Since the L2 norm is conserved in the Fourier domain because of Plancherel’s theorem,
by definition of the Wiener integral (2.19) we get:

ε`,s ∼ N (0, ‖Ψ̃`,s‖2). (2.21)

Thus, using (2.16), (2.11) can be rewritten as:

uj(x) =
1

(2π)2

∑
`,s,i

ε`,s

∫
R2

(eik·x − 1)σ‖k‖−H−1

(
δji −

kjki
‖k‖2

)
Ψ̂i

`,s(k)dk. (2.22)

The term (δji − kjki
‖k‖2 ) represents the symbol of Leray orthogonal projector, from

(L2(R2))2 to the divergence-free function spaceHζdiv(R2). Since divergence-free wavelets
satisfy by construction ∑

i

ε`,s(δji −
kjki
‖k‖2

)Ψ̂i
`,s = ε`,sΨ̂

j
`,s,
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this operator can be removed, yielding the divergence-free wavelet representation of
isotropic fBm (2.17).

�
From proposition 2.2, we can derive the structure of the expected isotropic power
spectrum, which is in agreement with [27].

Corollary 2.1. Let S(κ) represent the sphere around wave number κ. The

mean expected two-dimensional power spectrum of u ∈ Hζdiv(R2), with ζ=-H-1 obeys
to the following power-law:

E2d(κ) ,
1

2π‖k‖

∫
S(κ=‖k‖)

Eε`,s [‖c
∑
`,s

ε`,s‖k‖−H−1Ψ̂`,s(k)‖2]dk

= c2
∑
`,s

Eε`,s [‖ε`,s‖2]‖k‖−2H−2 ∝ κ−2H−2, (2.23)

resulting in the following expected isotropic power spectrum,

E(κ) , 2πκE2d(κ) ∝ κ−2H−1

When mentioned in the following, we may consider an isotropic power spectrum
decay κ−2H−1 occurring on a bounded spectral interval Υ ⊂ R.

2.3.3. Construction with fractional Laplacian wavelets. The term ‖k‖ζΨ̂j
`,s(k)

in (2.17) represents in the Fourier domain the wavelet fractional Laplacian (−∆)
ζ
2 Ψj

`,s(x).
Thus, (2.17) can be rewritten as a linear combination of fractional Laplacian wavelets,
yielding a divergence-free fractional Laplacian representation:

uj(x) = c
∑
`,s

ε`,s(−∆)
ζ
2

(
Ψj

`,s(x)−Ψj
`,s(x)

∣∣∣
x=0

)
. (2.24)

Indeed, one can define the fractional differentiation operator Dζ in the Fourier domain
by [24]:

D̂ζ = (ik)ζ (2.25)

and thus obtain the divergence fractional wavelets:

̂
(−∆)

ζ
2 Ψj

`,s(k) = (−(i‖k‖)2)
ζ
2 Ψ̂j

`,s(k) = ‖k‖ζΨ̂j
`,s(k), (2.26)

where (∆)ζ = (D2
x +D2

y)ζ represents a fractional Laplacian differentation. Note that
the fractional differentiation preserves the divergence-free property:

k · ̂
(−∆)

ζ
2 Ψ`,s(k) = k · ‖k‖ζΨ̂`,s(k) = ‖k‖ζk · Ψ̂`,s(k) = 0, (2.27)

with the notation (−∆)
ζ
2 Ψ`,s = ascurl[(−∆)

ζ
2χ`,s].

Let us now introduce bi-dimensional vectorial functions of Hζdiv(R2): Φ`,si =
(Φ1

`,si
,Φ2

`,si
)T = 1√

2
curl[χ0

`,si
] with χ0

`,s1
= ψ`1,s1 ⊗ ϕ`2,0 and χ0

`,s2
= ϕ`1,0 ⊗ ψ`2,s2 ,

where ϕ`,0 denote scaling functions at scale 2−0 = 1 associated to the scalar orthono-
mal wavelets ψ`,s. According to the work of Meyer [24], the low frequency contribution
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in the fBm representation of (2.24) can be isolated, yielding the following corollary
to proposition 2.2:

Corollary 2.2. Let u ∈ Hζdiv(R2) be an isotropic fBm of parameter H, with ζ=-
H-1. fBm u can be constructed by means of the divergence-free fractional Laplacian
wavelet series:

uj(x) =
∑
si>0,`

ε′`,si [(−∆)
ζ
2 Φj`,si(x)] + c

∑
s1,s2>0,`

ε`,s[(−∆)
ζ
2 Ψj

`,s(x)], (2.28)

where we have low-frequency function coefficents ε′`,si , and where according to propo-
sition 2.2 wavelet coefficients ε`,s are i.i.d zero-mean Gaussian variables.

3. Bayesian estimation.

3.1. Likelihood models. We will consider in this paper two inverse-problems:
image restoration and divergence-free optic-flow estimation. Let us introduce likeli-
hood models. Minus their logarithms correspond to so-called data-terms noted Jl,
which give a relation between observations and the variable of interest. Let y com-
prise either the observed image {y0} to be enhanced or the image pair {y0, y1} used
for optic-flow estimation. In their simplest form, the restoration data-term writes:

Jl(u, y) =
1

2

∫
R2

(u(x)− y0(x))2dx, u ∈ L2(R2), (3.1)

and, for optic-flow estimation, the Displaced Frame Difference (DFD) data-term is
defined as:

Jl(u, y) =
1

2

∫
R2

(y1(x + u(x)δt)− y0(x))
2
dx, u ∈ (L2(R2))2 (3.2)

In order to simplify notations we will consider in the following the case δt = 1.
The maximum likelihood estimate can be defined as the functional minimum, i.e.,
arg minu Jl(u, y), subject to the divergence-free constraints divxu(x) = 0, ∀x ∈ R2

in the optic-flow case. However, it is well-known that both problems are ill-posed and
need to be regularized.

3.2. Prior models . Using (2.21), simple regularization models follows from de-
composition (2.28): an isotropic divergence-free fBm prior can simply be formalized
by independent, identically distributed, zero-mean and normalized Gaussian distribu-
tions for fractional wavelet coefficients:

uj(x) =
∑
si>0,`

ε′`,si [(−∆)
ζ
2 Φj`,si(x)] + c

∑
s1,s2>0,`

ε`,s[(−∆)
ζ
2 Ψj

`,s(x)],

Λε ∼ N (0,Λ), (3.3)

where ε denotes a vector composed by the set of coefficients {ε`,s, ε′`,s} and Λ is a
diagonal matrix with unitary entries for coefficients ε`,s whose scale ` are related
to the spectral range Υ, and with zero entries otherwhere. The zero entries on the
diagonal of Λ implies that the multivariate Gaussian prior has an infinite variance in
these directions. Note that the probabilistic model (3.3) implies the power-law decay
of power spectrum E(κ) ∝ κ−2H−1, ∀κ ∈ Υ.
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3.3. Posterior estimation. The computation of unknown u is now reduced to
the estimation of its fractional divergence-free wavelet coefficients, knowing that a
subset of the coefficients ε`,s are realization of independent one-dimensional reduced
and zero-mean normal distributions.

3.3.1. MAP estimate. An interesting estimate may be obtain solving the min-
imization problem:

ε∗ = arg min
ε

Jl(ε, y), where Λε ∼ N (0,Λ) (3.4)

with

Jl(ε, y) =
1

2

∫
R2

(g ◦ zε(x)− y0(x))
2
dx,

where in the case of an optic-flow problem we define (zε(x)− x) ∈ Hζdiv(R2):

zε(x) = x +
∑
si>0,`

ε′`,si [(−∆)
ζ
2 Φj`,si(x)] + c

∑
s1,s2>0,`

ε`,s[(−∆)
ζ
2 Ψ`,s(x)]

with g(x) = y1(x), or in the case of an image restoration problem zε ∈ Hζ(R2):

zε : (x)→
∑
si>0,`

ε′`,si [(−∆)
ζ
2χj`,si(x)] + c

∑
s1,s2>0,`

ε`,s[(−∆)
ζ
2χ`,s(x)]

with the identity function g(x) = x. From a Bayesian perspective, (3.4) corresponds
to the following Maximum A Posteriori (MAP) problem:

ε∗ =arg max
ε

p(y|ε)p(ε) (3.5)

where p(y|ε) =
1

Zy|ε
exp−βJl(ε,y), p(ε) =

1

Zε
exp−

1
2ε

TΛε

with parameter β ∈ R+∗, and where Zy|ε (resp. Zε) denote the partition function
(independent of ε) of the likelihood p(y|ε) (resp. of the centered, of identical variance
and uncorrelated Gaussian prior p(ε)) distribution.

3.3.2. Regularized functional. The solution of (3.5) can simply be obtained
by minimizing minus the logarithm of the posterior distribution:

p(ε|y) ∝ p(y|ε)p(ε),

yielding the MAP estimate:

ε∗ = arg min
ε
{βJl(ε, y) + Jp(ε)} (3.6)

where Jp, so-called regularization term, is defined as minus the logarithm of the prior,
i.e.,

Jp(ε) =
1

2
εTΛε. (3.7)

Note that by a change of variable, (3.5) is solved equivalently by minimization with
respect to independent and identically distributed Gaussian variables cε of constant
variance 1

βc2 .
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3.3.3. On equivalence with other regularizers. The following proposition
clarifies the equivalence of the regularizer (3.7) with the model proposed very recently
in [31]. Furthermore, it shows that a particular case of (3.7) is the vorticity derivative
penalization, which constitutes a popular approach in the context of fluid flow esti-
mation [7, 33]. Let the operator curl† denote the formal adjoint of the scalar curl
operator. It is given for any vectorial function v = (v1,v2)t ∈ (L2(R2))2, by the
vectorial product: curl†v = (∂x1

v2 − ∂x2
v1). The scalar quantity curl†v is called in

the following the vorticity of the vector field v.

Proposition 3.1. Let u ∈ Hζdiv(R2). For an identity matrix Λ, regulariza-
tion with (3.7) is equivalent to penalization of the L2 norm of the signal fractional
Laplacian derivative:

Jp(ε) =
1

2
‖(−∆)−

ζ
2u‖2 (3.8)

In the particular case ζ = −4, we have:

Jp(ε) =
1

2
‖∇curl†u‖2 = ‖∆(u)‖2. (3.9)

A consequence of this proposition is that, in two-dimension, an appropriate regular-
ization for an isotropic divergence-free (resp. scalar) fBm of parameter H = 2 (resp.
H = 1) is the penalization of the L2 norm of the vorticity gradient (resp. of the
Laplacian).

Proof. We have:

‖(−∆)−
ζ
2 u‖2 ,

∫
R2

∑
j

|(−∆)−
ζ
2 uj(x)|2dx

=

∫
R2

∑
j

|
∑

`, s ∈ Z2

〈u/(−∆)
ζ
2 Ψ̃`,s〉(−∆)−

ζ
2 Ψj

`,s(x)|2dx

=
∑

`, s ∈ Z2

〈u/(−∆)
ζ
2 Ψ̃`,s〉2 , εT ε,

which proves (3.8) and the equivalence with the regularizers proposed in [31]. Now,
let us highlight the fact that penalization of the L2 norm of the Laplacian or of the
vorticity gradient are equivalent in the two-dimensional divergence-free case. Indeed,
let χ be a stream function such as:

u = curl χ. (3.10)

From the definition of vorticity in 2D, one can prove that:

−∆χ = curl† (u), (3.11)

which implies that:

‖∇curl† (u)‖2 = ‖ − ∇∆χ‖2 = ‖∆(curl χ)‖2 = ‖∆(u)‖2. (3.12)

�
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4. Optimization. Optimization strategies analogous to the algorithm proposed
by [9] are used to solve the minimization problem (3.6). Optimization relies on a
wavelet multi-resolution analysis based at each level on a LBFGS procedure, i.e., on
a quasi-Newton gradient descent algorithm subject to the strong Wolf conditions [26].
The regularization term is quadratic. Thus, in theory, for Gaussian likelihood models
such as (3.1), the algorithm converges to the global minimum, while for non-Gaussian
models such as (3.2), it is only insured to converge to the nearest local minima.
Interesting wavelet-based multiresolution strategies dealing with these non-linearities
have been recently proposed in [9]. The gradient descent optimization requires at
each step the evaluation of the functional to be minimized and of its gradient.

We hereafter propose two alternative optimization strategies, which either imply
spectral or spatial computation. The spectral optimization method, relying on an
exact fractional Laplacian, is efficient for low order fractional derivatives. However
in practice, for high order derivatives (typically for ζ > −1), fractional wavelet bases
become poorly conditioned, resulting in inefficient optimization algorithms. Never-
theless, we propose for such situations (typically for ζ < −1) an efficient spatial opti-
mization method, relying on a fractional Laplacian approximation. For the clarity of
the presentation, we will restrict in the following to optic-flow functionals although it
is easy to derive analogous expressions in the case of image restoration problems.

4.1. Spectral optimization method.

4.1.1. Functional analytical gradient. The following proposition proves that
the functional gradient can simply be obtained by Fast Wavelet Transform (FWT).

Proposition 4.1. The gradient with respect to vector ε of the functional min-
imized in (3.6) is the vector composed of wavelet coefficients, given by FWT of the
two-dimensional scalar function

βascurl†[c (−∆)
ζ
2 (g ◦ zε − y0) (∇xg) ◦ zε](x)

using the orthonormal wavelet basis {χ`,s, (`, s) ∈ Z2}, supplemented by the additional
vector Λε.

Proof. The gradient of the data-term Jl(ε, y) is given (in the case of the divergence-
free optic-flow problem) by inner products with the fractional divergence-free wavelets:

∂ε`,sJl(ε, y) = c〈[(g ◦ zε − y0) (∇xg) ◦ zε](x)/ascurl[(−∆)
ζ
2χ`,s](x)〉

∂ε′`,si
Jl(ε, y) = c〈[(g ◦ zε − y0) (∇xg) ◦ zε](x)/ascurl[(−∆)

ζ
2χ`,si ](x)〉. (4.1)

Using Parseval’s theorem we get:

∂ε`,sJl(ε, y) = c〈[ ̂(g ◦ zε − y0) (∇xg) ◦ zε](k)/asi(k2,−k1)t|k|ζ χ̂`,s(k)]〉

= c〈|k|ζasi(−k2,k1)[ ̂(g ◦ zε − y0) (∇xg) ◦ zε](k), χ̂`,s](k)〉

= c〈ascurl†[(−∆)
ζ
2 (g ◦ zε − y0) (∇xg) ◦ zε](x), χ`,s](x)〉. (4.2)

The second inner product of (4.1) can be computed analogously. Moreover, it is
straightforward to show that the gradient of the regularization term is simply:

∂εJp(ε) = Λε. (4.3)

�
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4.1.2. Spectral domain computation. Based on (4.2), we derive a spectral
method for the computation of the gradient of functional minimized in (3.6). It is
based on Fast Fourier Transform (FFT) and FWT:

Algorithm 1. (functional gradient)

i) FFT of the components of [(g ◦ zε − y0) (∇xg) ◦ zε](x),
ii) compute in Fourier domain the fractional differentiation and apply the curl†

operator on ̂[(g ◦ zε − y0) (∇xg) ◦ zε](k)

iii) inverse FFT to get curl†[(−∆)
ζ
2 (g ◦ zε − y0) (∇xg) ◦ zε](x)

iv) decompose the result by FWT using the orthogonal wavelets asχ`,s and the
scaling functions χ0

`,si
/
√

2 to obtain the data-term gradient (4.2),

v) functional gradient obtained by adding vector (4.3)

In order to evaluate the functional or its gradient, one needs to reconstruct the un-
known u appearing in g ◦ zε or (∇xg) ◦ zε from the fractional divergence-free wavelet
coefficients ε. This can be done by spectral computation. Indeed, (2.28) can be
rewritten as:

u =
1

(2π)2

∫
(R2)2

(dk, dk)T eik·xi(k2,−k1)T |k|ζ (4.4)∫
R2

dx(
∑
si>0,`

ε′`,si√
2
χ0
`,s+c

∑
s1,s2>0,`

ε`,sasχ`,s)e
−ik·x,

yielding the following reconstruction algorithm:

Algorithm 2. (reconstruction of fBm)

i) inverse FWT of ε using the orthogonal wavelets asχ`,s and scaling functions
1√
2
χ0
`,s,

ii) FFT of this scalar function
iii) fractional differentiation and curl operator in Fourier domain,
iv) inverse FFT of the components to obtain u

Algorithms 1 and 2 yield the ingredients necessary to approach the MAP estimate
ε∗ with a gradient descent method.

4.2. Spatial optimization method. In order to avoid spectral computation
of fractional differentiation, i.e., preserve the low-order complexity, and by the same
way, prevent numerical instabilities for large negative decay ζ, we choose to rotate
the posterior in a standard divergence-free wavelet basis.

4.2.1. Rotation of the posterior. Let d denotes the set of divergence-free
wavelet coefficients {d`,s = 〈u/Ψ̃`,s〉 = a−1

s 〈χ, χ`,s〉; (`, s) ∈ Z2}. With these nota-
tions, the reconstruction formula (2.16) becomes for the vector field u and its potential
χ:

u =
∑

`, s ∈ Z2

d`,sΨ`,s(x); χ =
∑

`, s ∈ Z2

d`,sasχ`,s(x). (4.5)
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The MAP estimation problem (3.6) is therefore rewritten as a minimization problem
with respect to wavelet coefficients d:

d∗ = arg min
d
{βJl(d, y) + Jp(d)} (4.6)

with Jp(d) =
1

2
ε(d)TΛε(d), (4.7)

Therefore, fractional divergence-free wavelet coefficients ε need to be expressed in
terms of standard divergence-free wavelet coefficients d.

Proposition 4.2. Let R(α) = [r
(α)
`′,s′,`,s], α ∈ R/Z− denote the matrix of mono-

dimensional fractional Laplacian wavelet connection coefficients

r
(α)
`′,s′,`,s = 〈ψ`′,s′ ,

(
−∂2

∂x2

)α
ψ`,s〉

composed at line indices (`′, s′) and column indices (`, s) by the elements r
(α)
`′,s′,`,s.Two-

dimensional divergence-free fractional Laplacian wavelet coefficients are approached by
a linear combination of divergence-free wavelet coefficients, implying low-dimensional
matrices products :

[ε] =

im∑
i=0

(
−α
i

)
R(−α−i)T

[
da−1

s

]
R(i), im ∈ N∗ (4.8)

where [ε] and [dγs ] represent respectively the matrix of two-dimensional fractional co-
efficients and two-dimensional standard coefficients d`,s multiplied by factor γs.

Proof. Since the potential χ and fBm u have the same wavelet decomposition
coefficients up to the factor as , we can write that:

ε`,s = 〈u/(−∆̃)
ζ
2 Ψ`,s〉 = a−1

s

∑
`′,s′

d`′,s′〈χ`′,s′ , (−∆̃)
ζ
2χ`,s〉 (4.9)

where (−∆̃)
ζ
2χ`,s denotes one dual component of the fractional scalar wavelet basis.

Although operator (−∆̃)
ζ
2 is not separable, bi-dimensional connection coefficients

appearing in (4.9) can be approached by generalized Newton’s binomial expansion5:

〈χ`′,s′ , (−∆̃)
ζ
2χ`,s〉 =

∞∑
i=0

(−ζ
2
i

)
r

(− ζ2−i)
`′1,s
′
1,`1,s1

r
(i)
`′2,s
′
2,`2,s2

(4.10)

with the mono-dimensional connection coefficients:

r
(− ζ2−i)
`′1,s
′
1,`1,s1

= 〈ψ`′1,s′1 ,
(
−∂2

∂x2

)− ζ2−i
ψ`1,s1〉, (4.11)

r
(i)
`′2,s
′
2,`2,s2

= 〈ψ`′2,s′2 ,
(
−∂2

∂x2

)i
ψ`2,s2〉. (4.12)

5Generalized Newton’s binomial expansion stands for any non-negative integer: −ζ/2 /∈ Z−.
However, this is never the case since in (2.22) we have set −ζ/2 = H + 2, with H > 0.
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See appendix for details on wavelet connection coefficients computation. The infinite
sum in (4.10) needs in practice to be truncated. Let us choose connection coefficients
vanishing for large translation, i.e., for |`′1− `1| → ∞ (see appendix for more details),
corresponding to the following truncation order:

im = max{i ∈ N|(−ζ − 2i+ 1) ∈ R+}.

In practice, as illustrated in figures of appendix A, for sufficiently negative exponent ζ,
binomial coefficients with i > imax weighting the expansion (4.10) are negligible, i.e.,
the proposed truncation yields good approximations. Now, using the separable trun-
cated expansion (4.10), (4.9) can be rewritten as low-dimensional matrices products.
We have:

ε`,s ≈ a−1
s

im∑
i=0

(−ζ
2
i

) ∑
`′1,s
′
1

r
(− ζ2−i)
`′1,s
′
1,`1,s1

∑
`′2,s
′
2

d`′1,`′2,s′1,s′2r
(i)
`′2,s
′
2,`2,s2

(4.13)

[ε] ≈
im∑
i=0

(−ζ
2
i

)
R(− ζ2−i)

T
[
da−1

s

]
R(i).

�
Therefore, the MAP estimation problem (4.6)-(4.7) becomes:

d∗ = arg min
d
{βJl(d, y) + Jp(d)} (4.14)

with Jp(d) =
1

2
‖IΛ{

im∑
i=0

(−ζ
2
i

)
R(− ζ2−i)

T
[
da−1

s

]
R(i)}‖2F ,

where ‖A‖2F = trace(ATA) is the Frobenius norm of matrix A and with ‖IΛ{[ε]}‖2F =
εtΛε.

4.2.2. Functional analytical gradient. We derive hereafter a trackable ex-
pression of the gradient of functional minimized in (4.14).

Proposition 4.3. Let us define (in the case of optic-flow problems) the functions

zd(x) − x ∈ Hζdiv(R2) : x →
∑

`,s d`,sΨ`,s(x) and g(x) = y1(x). The gradient with
respect to vector d of the functional minimized in (4.14) is the vector composed of
wavelet coefficients, given by FWT of the two-dimensional vectorial function

βc
(
g ◦ zd − y0

)
(∇xg) ◦ zd

using the dual divergence-free wavelet basis {Ψ̃`,s, (`, s) ∈ Z2}, supplemented by the
additional vector whose (`, s)-th component writesim,jm∑

i,j=0

(−ζ
2
i

)(−ζ
2
j

)
R(− ζ2−i)IΛ{R(− ζ2−j)

T
[
da−2

s

]
R(j)}R(i)T


`,s

.

Proof. Analogously to results in [9], it is straightforward to see that the gradient
of the data-term Jl(d, y) is given by inner-products with divergence-free wavelets:

∂d`,s
Jl(d, y) = c〈[

(
g ◦ zd − y0

)
(∇xg) ◦ zd](x)/Ψ`,s(x)〉. (4.15)



Effective Wavelet-based Regularization of Divergence-Free Fractional Brownian Motion 15

As a matter of fact, inner products in (4.15), i.e., the data-term gradient, are simply
given by a FWT of c

(
g ◦ zd − y0

)
(∇xg) ◦ zd using the dual basis of divergence-free

wavelets. Note that an analogous expression can be obtained for image restoration
defining zd : (x) ∈ L(R2) → c

∑
`,s d`,sχ`,s(x) ∈ L(R2). Concerning the regulariza-

tion term, using the matrix equality:

∂
[d]

1

2
Trace(R(i)T [d]

T
R(− ζ2−i)R(− ζ2−j)

T

[d] R(j)T ) =

R(− ζ2−i)R(− ζ2−j)
T

[d]R(j)R(i)T , (4.16)

it follows from the linearity of the trace operator that the gradient of the regularization
term writes:

∂d`,s
Jp(d) =

im,jm∑
i,j=0

(−ζ
2
i

)(−ζ
2
j

)(
R(− ζ2−i)IΛ{R(− ζ2−j)

T

[da−2
s

]R(j)}R(i)T
)
`,s
, (4.17)

where (A)`,s denotes the (`, s)-th element of matrix A.
�

4.2.3. Spatial domain computation. Using proposition 4.3, a trackable com-
putation of the gradient of functional minimized in (4.14) is provided by means of
simple FWT and low-dimensional matrix products. Moreover, reconstruction (2.16)
by inverse FWT is straightforward for any values of coefficients d. We have therefore
provided the two ingredients, which are necessary to approach the MAP estimate d∗

with a gradient descent algorithm.

5. Experiments.

5.1. Divergence-free isotropic fBm generator. Realizations of isotropic fBm
were generated using the Fourier-based reconstruction formula (4.4), yielding scalar
or divergence-free vectorial fields. More precisely, in agreement with the fBm model
(3.3), the wavelets coefficients {ε`,s} were sampled according to centered and reduced
Gaussian white noise. Coefficents {ε′`,s}, corresponding to the low frequency contri-
bution, were neglected and arbitrarily fixed to zero. Nevertheless, in principle, they
should have been drawn according to a fractional ARIMA random walk , see [24].
Isotropic fBm were then synthesized from this Gaussian white noise by application of
algorithm 2.

The three following fBm realizations were synthesized in order to form an evalu-
ation benchmark for the regularization model:

fBm-1. An isotropic fBm scalar field of 128 × 128 pixels, synthesized using this
procedure, is displayed in figure 5.1. Pixel grey levels have been normalized. The
wavelet generator was constructed from orthogonal Daubechies with 4 vanishing mo-
ments (Daubechie-4) with periodic boundary conditions. The Hurst exponent was
fixed to the limit case of H = 0, implying in the fBm model (3.3) a fractional Lapla-

cian wavelets (−∆)
ζ
2 with ζ = −1. Consequently, it induces in (2.23) a power spec-

trum behavior E(κ) ∝ κ−1 in a scale range going from the pixel size to the image
dimension, i.e., Υ = [1/128, 1]. This power-law spectrum is visible in figure 5.2.
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fBm-2 and fBm-3. Two divergence-free vectorial fBm fields of 128×128 for fBm-2
(resp. 256 × 256 for fBm-3) pixels were also synthesized using this procedure. They
are displayed in figure 5.3 and figure 5.6. The wavelet generator was constructed
from divergence-free biorthogonal Coiflet with 10 vanishing moments (Coiflet-10) and
periodic boundary conditions. The Hurst exponent was fixed to H = 2 (resp. H =

1/3), implying in the fBm model a fractional Laplacian wavelets (−∆)
ζ
2 with ζ = −3

(resp. ζ = −4/3). Consequently, it induces in (2.23) a power spectrum behavior
E(κ) ∝ κ−5 (resp. E(κ) ∝ κ−5/3) in a scale range going from the pixel size to
the image dimension, i.e., Υ = [1/32, 1/16] (resp. Υ = [1/256, 1]). This power-
law spectrum is visible in figure 5.5 (resp. figure 5.8). These synthesized fields are
representative of self-similar incompressible turbulent motion in the 2D and 3D case,
as described by the Kolmogorov theory [20].

Fig. 5.1. Above: fBm-1 realization u(x) (left) and observed noisy fBm-1 y(x) (right). Below
from left to right: estimates obtain by penalizing Laplacian L2 norm, using BM3D algorithm and
penalizing fractional Laplacian L2 norm.

5.2. Fractal image restoration. An additive zero mean i.i.d Gaussian noise
was added to the synthesized scalar field fBm-1. It resulted in a Peak Signal to Noise
Ratio (PSNR) of 23.3957 dB. The scalar fBm was restored using the data-term (3.1)
combined with three different regularizers/algorithms :

• Block Matching 3D (BM3D). This algorithm is very popular in computer
vision. It has been recently proposed in [8]. It is based on nonlocal patch-
wise image modeling and achieves outstanding performance in the restoration
of natural scenes. The true noise variance was provided as an input to the
algorithm.

• Penalization of L2 norm of Laplacian. We used the Matlab implementation of
this well-known deblurring algorithm. The optimal regularization parameter
was chosen (using a brute-force approach).
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Fig. 5.2. Power spectrum of fBm-1 with H = 0 (pink dashed curve), spectrum of the noisy

observation (red crosses) and power law decay in E(κ) ∝ κ−1 (yellow dashed line). Estimated power
spectra using BM3D algorithm (turquoise squares), Laplacian L2 norm (green crosses) or fractional
Laplacian (blue stars).

• Penalization of L2 norm of fractional Laplacian (3.8) with ζ = −1. We
solved (3.6) using the proposed Fourier-based optimization (see algorithm 1
and algorithm 2), since it is efficient for such a low order fractional deriva-
tive (conversely to the spatial optimization procedure, see appendix A for
details). A wavelet generator identical to the one used for fBm-1 generation
was employed, i.e., Daubechie-4 wavelets with periodic boundary conditions.

Not surprisingly, the true prior achieved the best performances in terms of PSNR as
shown in the following table.

PSNR Obs. BM3D Laplacian Frac. Laplacian
fBm.1 23.3957 26.1707 26.4211 26.4846

Moreover, as illustrated in figure 5.1, the fractional Laplacian prior succeeded to
restitute the true regularity of fBm-1, while other methods seemed to fail. As shown
in figure 5.2, the diagnostic is confirmed in the Fourier domain: BM3D algorithm and
the Laplacian regularization over-estimate the isotropic power spectrum decay while
under-estimating energy at small scales. On the contrary, the fractional Laplacian
model reconstruct the true power spectrum with a good accuracy in the entire scale
range.

In summary, the previous experiments highlight the fact that, efficient image
restoration methods for computer vision scenes, are not necessarily adapted to fractal
image restoration. An appropriate modeling is required for these irregular stochastic
processes.
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Fig. 5.3. From left to right. Images y0(x) and y1(x), synthesized divergence-free isotropic
fBm-2, vorticity of fBm-2.

Fig. 5.4. fBm-2 vorticity MAP estimation using (from left to right) polynomial approximation,
velocity gradient penalization, vorticity gradient penalization and fractional Laplacian penalization.

5.3. Turbulent divergence-free optic-flow estimation. Images y1 in the
data-term (3.2) were generated by deformation of an image y0 with fBm-2 or fBm-3,
i.e., by the following interpolation y1(x) = y0(x − u(x)). We used cubic B-splines
for this effect. Pixel grey levels of each of the two image couple (y0, y1) were then
normalized. The input images y0 and y1 are displayed in figure 5.3 for fBm-2 (resp.
figure 5.6 for fBm-3), together with their associated ground truth motion and vorticity.

The vectorial divergence-free fields fBm-2 and fBm-3 were estimated solving the
minimization problem (4.6), combining the DFD data-term (3.2) with four different
regularizers. Therefore, for all of these experiments, estimation was carried out in
terms of coefficients of the reconstructed motion divergence-free wavelet series. The
wavelet generator was constructed from divergence-free biorthogonal Coiflet-10 with
periodic boundary conditions. A non negligible benefit of using wavelets is their
capability to provide an efficient multiresolution analysis framework, which enables
the recovery of large displacements, as shown in [9]. The four different regularization
models are listed hereafter:

• High-order polynomial approximation. An implicit regularization by polyno-
mial approximation is a well-known approach in computer vision. We used
here local approximations by polynomials of degree 10 based on coiflet van-
ishing moments, as proposed in [9].

• Penalization of L2 norm of velocity components gradients. The most com-
mon approach in optic-flow estimation is to penalize the velocity components
gradients L2 norm as first proposed in [17]. We used the wavelet-based imple-
mentation proposed in [19] with an optimally tuned regularization coefficient
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Fig. 5.5. Power spectrum of divergence-free isotropic fBm-2 (turquoise dashed curve) and power

law decay in E(κ) ∝ κ−5 (yellow dashed line). Estimated power spectra using polynomial approxi-
mation (red crosses), velocity gradient penalization (green crosses), vorticity gradient penalization
(blue stars), fractional Laplacian penalization (pink squares).

Fig. 5.6. From left to right. Images y0(x) and y1(x), synthesized divergence-free isotropic
fBm-3, vorticity of fBm-3.

(using a brute-force approach).
• Penalization of L2 norm of vorticity gradient. In fluid motion estimation a

popular approach is to penalize the L2 norm of the vorticity gradient, i.e.,
to use model (3.9) [7, 33]. However, as remarked previously, this prior is the
true regularization model for fBm only in the particular case when H = 0.
This is not the case neither for fBm-2 nor for fBm-3. We used the wavelet-
based implementation proposed in [19] with an optimally tuned regularization
coefficient (using a brute-force approach).

• Penalization of L2 norm of fractional Laplacian (3.8) with ζ = −3 for fBm-2
(resp. ζ = −4/3 for fBm-3). We used the spatial optimization method (see
proposition 4.3) since it is efficient for those high order Laplacian fractional
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Fig. 5.7. fBm-3 vorticity MAP estimation using (from left to right) polynomial approximation,
velocity gradient penalization, vorticity gradient penalization and fractional Laplacian penalization.
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Fig. 5.8. Power spectrum of divergence-free isotropic fBm-3 (turquoise dashed curve) and power
law decay in E(κ) ∝ κ−5/3 (yellow dashed line). Estimated power spectra using polynomial approx-
imation (red crosses), velocity gradient penalization (green crosses), vorticity gradient penalization
(blue stars), fractional Laplacian penalization (pink squares).

derivative (see appendix A for justifications).
Estimated fBm fields were evaluated based on the Root Mean Squared end-point Error
(RMSE) and the Mean Barron Angular Error (MBAE), see [3]. Results are reported
in the following table.

RMSE/MBAE Polynomial Gradient Vorticity gradient Frac. Laplacian.
fBm.2 0.706/19.543 0.563/14.759 0.530/14.314 0.454/11.859
fBm.3 0.213/ 7.159 0.195/7.266 0.212/7.234 0.156/5.305

Using appropriate fBm priors, that is to say fractional Laplacian regularizers,
yields clearly the best results in terms of RMSE or MBAE criteria. The enhancement
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in reconstruction accuracy brought by those priors is more striking than in the pre-
vious image restoration experiments. The choice of the regularization model is likely
to have here a greater influence, since optic-flow estimation is not a closed problem
conversely to image restoration. Consequently, if some physical knowledge about the
signal is available, e.g., if we know that the flow can be represented by Kolmogorov’s
turbulence model [20], it is crucial to design accordingly some appropriate fBm prior.
We now compare and focus on vorticity fields computed from estimated motion fields.
Indeed, the quality of the reconstruction of this quantity is an important matter in
turbulence. Figure 5.4 (resp. figure 5.7) shows that the vorticity regularity of fBm-2
(resp. of fBm-3) is better preserved using the proposed regularization. In particular,
these figures show the limitation of standard approaches: penalizing the gradient of
velocity or the gradient of vorticity yields coherent vorticity blobs with smooth edges,
which are not representative of fBm. As shown in figure 5.5 and figure 5.8, inspection
of power spectra computed with inappropriate priors reveals an over-estimation (resp.
an under-estimation) of the energy of fBm-2 (resp. of fBm-3) at intermediate scales
(resp. at small scales), i.e., a non respect of the spectrum power-law decay. Note
that for the estimation of fBm-2, the slight deviation induced by the proposed regu-
larization from the true spectrum at small scales has a negligible influence in terms
of RMSE and MBAE since the spectrum decay is very important in this case.

6. Conclusion. In this paper we introduce a prior model for regularization of
isotropic divergence-free fBm of parameter H. Realizations of these stochastic pro-
cesses belong to the Sobolev function space (Hζ(R2))2, with ζ=-H-1 and satisfy weak
divergence-free property. We show that these probabilistic models can be constructed
by means of divergence-free fractional Laplacian wavelet series and prove that a subset
of coefficients of the series are distributed according to Gaussian white noise. We then
propose to use these prior models for regularization of ill-conditioned problems in a
Bayesian framework. We point out some particular cases where the proposed model
corresponds to well-known or more recent regularizers. We design two optimization
strategies in order to access the MAP estimate by gradient descent algorithms. The
first method relies on the computation by FFT and FWT of fractional Laplacian
wavelets and is efficient for small values of H. It exploits the very simple expression
of fBm prior with fractional Laplacian wavelet series. We complement this Fourier-
based method by a low complexity optimization algorithm which is efficient for large
values of H. It only implies FWT computation and low-dimensional matrix products.
It exploits the expression of these fractional priors rotated in standard divergence-free
wavelet bases by the mean of fractional Laplacian wavelet connection coefficients. We
finally show weaknesses of state-of-the-art regularizers and the usefulness of these fBm
prior models in the context of fractal image restoration and estimation of turbulent
motion fields from image couples.

Acknowledgments. The authors would like to thank Frédéric Lavancier for his
helpful comments, which have helped to improve the paper.

Appendix A. Fractional Laplacian wavelet connection coefficients.

Note that by simple bi-dimensional wavelet transform, one can derive the matri-
ces of wavelet connection coefficients from the matrix of scaling function connection
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Fig. A.1. Above: binomial coefficients in (A.1) for ζ=-4 (red dots indicate non-neglected

coefficients, i.e., i ≤ im=3). Below: connection coefficients r
(− ζ

2
−i)

`,0 (left) and r
(−i)
`,0 (right) in

function of `, for i ≤ im (from top to bottom i=1, 2 and 3).

Fig. A.2. Above: binomial coefficients in (A.1) for ζ=-7/3 (red dots indicate non-neglected

coefficients, i.e., i ≤ im=2). Below: connection coefficients r
(− ζ

2
−i)

`,0 (left) and r
(−i)
`,0 (right) in

function of `, for i ≤ im (from top to bottom i=1 and 2).
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Fig. A.3. Above: binomial coefficients in (A.1) for ζ=-1 (red dots indicate non-neglected

coefficients, i.e., i ≤ im=1). Below: connection coefficients r
(− ζ

2
−i)

`,0 (left) and r
(−i)
`,0 (right) in

function of `, for i ≤ im (i = 1).

coefficients. Indeed, (4.13) can be rewritten as:

[ε] =

im∑
i=0

(−ζ
2
i

)
P−1R

(− ζ2−i)
T

0 P [d] P−1R
(i)
0 P, (A.1)

where PTR
(α2 )
0 P represents the wavelet transform of R

(α2 )
0 and where R

(α2 )
0 denotes

a matrix whose elements are connection coefficients between standard ϕ(x) and frac-
tional Laplacian scaling functions at the finest scale:

r
(α2 )

`,0 =

∫ +∞

−∞
ϕ(x− `)

(
−∂2

∂x2

)α
2

ϕ(x)dx. (A.2)

Let us note that the truncated series (A.1) constitutes a good approximation for
sufficiently large negative values of exponents ζ. Indeed as shown in figure A.1, A.2
and A.3, relation (A.1) is exact for ζ = −4 or almost exact for ζ = −7/3, while it
constitutes a poor approximation for ζ = −1. For α/2 ∈ N, fractional Laplacian
operator becomes a standard differentiation, up to factor (−1)α/2. In order to easily
compute (A.2) in a more general case, the fractional Laplacian operator is rewritten
as a convolution operator. Indeed, if (α + 1)/2 ∈ R/N, fractional Laplacian can also
be defined by Riesz potential6 [15]:(

−∂2

∂x2

)α
2

ϕ(x) =
1

cα

∫ +∞

−∞

ϕ(z)

|x− z|α+1
dz, (A.3)

with cα =
√
πΓ(−α/2)2−α

Γ((1+α)/2) . In the previous expression, the convolution kernel writes

k(x) =
1

cα|x|α+1
.

6This definition can be extend to the case (α+ 1)/2 ∈ N using some appropriate kernel, see e.g.,
[28]
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Using the framework proposed by Beylkin, we obtain with this kernel the recursion[4][5]:

r
(α2 )

`,0 = 2α
L−1∑
k=0

k−L−1∑
j=k

h[k]h[k − j]r(α2 )

j+2`,0, (A.4)

subject to the asymptotics of r
(α2 )

`,0 for large translation `:

r
(α2 )

`,0 =


1

cα`1+α
+O

(
1

`1+α+2n

)
for ` > 0,

1

cα(−`)1+α
+O

(
1

(−`)1+α+2n

)
for ` < 0.

(A.5)

By a direct inversion procedure, we solve linear system (A.4), which is of infinite di-
mension, but where coefficients have been approached by the asymptotic laws (A.5) for
sufficiently large translations. Note that, for large negative translations, the asymp-
totic of connection coefficients differs from the asymptotic of standard fractional dif-
ferentiation coefficients of [4].
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