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Abstract 

Prostate cancer cells can exist in a hypoxic microenvironment, causing 

radioresistance. Nitric oxide (NO) is a radiosensitiser of mammalian cells. NO-

NSAIDs are a potential means of delivering NO to prostate cancer cells. This study 

aimed to determine the effect and mechanism of action of NO-sulindac and radiation, 

on prostate cancer cells and stroma, under normoxia (21% oxygen) and chronic 

hypoxia (0.2% oxygen). Using clonogenic assays, at a surviving fraction of 10% the 

sensitisation enhancement ratios of radiation plus NO-sulindac over radiation alone on 

PC-3 cells were 1.22 and 1.42 under normoxia and hypoxia, respectively. 3D culture 

of PC-3 cells revealed significantly reduced sphere diameter in irradiated spheres 

treated with NO-sulindac. Neither NO-sulindac nor sulindac radiosensitised prostate 

stromal cells under normoxia or hypoxia. HIF-1α protein levels were reduced by NO-

sulindac exposure and radiation at 21% and 0.2% oxygen. Alkaline Comet assay 

analysis suggested an increased rate of single strand DNA breaks and slower repair of 

these lesions in PC-3 cells treated with NO-sulindac prior to irradiation. There was a 

higher level of -H2AX production and hence double strand DNA breaks following 

irradiation of NO-sulindac treated PC-3 cells. At all radiation doses and oxygen levels 

tested, treatment of 2D and 3D cultures of PC-3 cells with NO-sulindac prior to 

irradiation radiosensitised PC-3, with minimal effect on stromal cells. Hypoxia 

response inhibition and increased DNA double strand breaks are potential 

mechanisms of action. Neoadjuvent and concurrent use of NO-NSAIDs have the 

potential to improve radiotherapy treatment of prostate cancer under normoxia and 

hypoxia. 
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Key words: hypoxia; prostate cancer; nitric oxide donors; radiation; 

radiosensitisation. 
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1. Introduction 

Both localised and locally advanced prostate cancers are commonly treated by 

radiotherapeutic means; either external beam radiotherapy or brachytherapy. However 

better strategies are required to improve therapeutic gain of radiotherapy. This is 

especially the case in locally advanced prostate cancer, where the effectiveness of 

radiotherapy is limited by the bulk of disease being treated and dose delivery being 

limited by the normal-tissue tolerance of radiation. Additionally, hypoxia is a factor at 

play in the microenvironment of most solid tumours, including prostate cancer [1]. 

Amongst other effects, hypoxia causes radioresistance in prostate cancer hindering the 

optimal treatment of these tumours by radiotherapy [1]. 

 Nitric oxide donating non-steroidal anti-inflammatory drugs (NO-NSAIDs) 

are novel pharmaceutical agents which were developed to allow NSAIDs to be better 

tolerated due to their associated gastro-protection. The nitric oxide (NO) group of 

NO-NSAIDs confers a protective effect on gastric mucosa by increasing mucosal 

blood supply and mucous secretion. The increased mucous secretion protects patients 

from the most serious side effect of NSAIDs, namely gastric erosions [2]. NO-

NSAIDs combine the anti-proliferative effects of NSAIDs with the gastric protection 

and potential tumouricidal effects of NO [3]. We and others have demonstrated that 

NO-NSAIDs prevent the development of malignancy and are powerful agents against 

established cancer deposits in vitro and in vivo [4-6]. Recently we have determined 

the function of NO-sulindac under hypoxic conditions and shown that this agent 

inhibits the hypoxia response in the PC-3 prostate cancer cell line via the Akt pathway 

[7]. Independently, NO and NSAIDs have both been shown to behave as 

radiosensitising agents [8, 9]. Based on this evidence we hypothesised that NO-

sulindac would act as a radiosensitiser in prostate
 
cancer under normoxic and hypoxic 
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conditions. The results confirmed our hypothesis and mechanistic studies revealed 

that inhibition of the hypoxia response and DNA strand break was responsible for this 

phenomenon. 
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2. Materials and Methods 

2.1. Cell culture and reagents  

Human prostatic stroma cells were grown as previously described from the 

transurethral prostatectomy chippings of men with benign prostatic hyperplasia [10]. 

National Research Ethics Service approval (REC number 02/5/063) and informed 

consent was obtained for tissue donation. PC-3 cells (obtained from the European 

Collection of Cell Cultures, Salisbury, UK) were cultured in RPMI-1640 with 10% 

FCS (all from Invitrogen, Paisley, UK). PC-3 cells were seeded into 25cm
3
 flasks at 

2x10
6
cells/flask and stromal cells at 1x10

6
 cells/flask for all experiments. NO-

sulindac (NCX 1102) and sulindac were donated by NicOx (Sophia Antipolis, France) 

and prepared in dimethyl sulfoxide (DMSO; Sigma-Aldrich, Gillingham, UK) with 

final DMSO concentrations of 0.05%. Chronic hypoxia was induced by incubating 

PC-3 cells for 48 hours within a humidified hypoxia incubator at 0.2% oxygen using a 

PROOX 110 oxygen controller (BioSpherix Ltd, Redfield, NY).  

 

2.2. Radiation treatments 

A custom made Perspex jig was produced by the Edinburgh Cancer Centre 

Workshop (Western General Hospital, Edinburgh, UK) to allow standardised 

irradiation of cells in 25cm
3
 flasks. Following cell treatment as per experimental 

protocol, cells were irradiated using a Varian 2100C/D linear accelerator (Palo Alto, 

CA) at a dose rate of 0.527Gy/min at 15mV photons to a dose of 2-8Gy. 

Thermoluminescent dosimeters measurements were performed, and demonstrated that 

the radiation doses received by cells was homogeneous across the base of all the 

flasks.  
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2.3. Clonogenic assay 

To assess reproductive ability of cells following irradiation a clonogenic assay 

was employed as described previously [11]. PC-3 cells were incubated for 14-21 days 

and primary prostate stromal cells for 10-14 days until cell colonies were visible to 

the naked eye, but not coalescing. Plating efficiency and surviving fraction (SF) were 

calculated in the standard fashion [11] using the result of at least three independent 

experiments, each experiment including 3 to 6 dishes. Radiation survival curves were 

plotted after normalizing for the cytotoxicity induced by drug treatment alone. Linear-

quadratic curve equations were used to fit the SF curves shown in the figures using 

KaleidaGraph 4.0 (Synergy Software, PA). Radiation sensitiser enhancement ratio 

(SER) for NO-sulindac or sulindac treatment was calculated using the radiation dose 

required to reduce clonogenic survival to 10% (D10, given in Gy). The SERs reported 

are the D10 values for control curves divided by the values for treated curves in each 

instance [12]. Oxygen enhancement ratios (OER) were calculated by dividing the D10 

value under hypoxia by the D10 value under normoxic conditions. 

 

2.4. 3D cell culture 

PC-3 cells were treated as above before harvesting and counting for 3D culture. 

Single cell solutions were mixed at a ratio of 1:2 with a reconstituted basement 

membrane of growth factor reduced Matrigel (BD Biosciences, Oxford, UK) to a final 

density of 100,000 cells/ml. The mix was layered thinly on plastic and left to gel for 1 

hour at 37C. The gels were then covered with standard PC-3 medium for 5 days. 

Medium was replaced at 3 days. For acinar structure size calculations, diameters of 50 
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distinct structures were measured using a tissue culture microscope and a graticule at 

200x magnification. 

 

2.5. Single-cell gel electrophoresis (alkaline Comet assay) 

DNA damage was measured using the alkaline Comet assay and expressed as 

percentage of DNA in the tail of the comet (% tail DNA) as described previously [13]. 

Results were expressed as the mean and the standard deviation of at least three 

independent samples. 

 

2.6. -H2AX assay 

Radiation induced DNA double strand break (DSB) formation was determined by 

the γ-H2AX flow cytometry assay, with relative DSB levels being determined by γ-

H2AX fluorescence intensities as described previously [14]. Results were expressed 

as the mean and the standard deviation of three independent samples.  

 

2.7. HIF-1α western blot  

Western blots for hypoxia inducible factor (HIF)-1α were performed on nuclear 

protein extracts as described previously [7, 15].  

 

2.8. Statistical analysis  

Each experiment was repeated at least three times. All values are expressed as 

means ± standard deviation (SD). Student’s t-test was used for true pairwise 

comparisons and ANOVA with post-hoc Dunnett's multiple comparison test for many 

to one treatment to vehicle comparisons. Calculations were performed using SPSS 

13.0 (Chicago, IL); P<0.05 was considered significant.  
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3. Results  

3.1. Oxygen enhanced the effect of radiation on PC-3 cells and primary prostate 

stromal cells 

PC-3 and primary prostate stromal cells were incubated under normoxia or 

hypoxia for 48 hours in the presence of 0.05% DMSO (vehicle control for NO-

sulindac experiments). Following irradiation at 2, 4, 6 or 8Gy of ionizing radiation, 

cells were harvested and clonogenic assays conducted. The hypoxia survival curves 

for irradiated PC-3 (Fig. 1A) and stromal cells (Fig. 2A) both separate from the 

normoxic survival curves indicating a degree of radioresistance introduced by 

hypoxia. However, the only significant difference between the curves was for PC-3 

cells at 8Gy radiation. The OER for PC-3 cells was 1.13 and for stromal cells 1.19 

(see table 1 for D10 values).  

 

3.2. NO-sulindac radiosensitises PC-3 prostate cancer cells under both normoxia 

and hypoxia 

PC-3 cells were treated with 25μM NO-sulindac, 25μM sulindac or vehicle 

control for 48 hours under either 21% or 0.2% oxygen. Without irradiation, the 

relative survival of PC-3 cells (relative to control-treated cells) treated with 25μM 

NO-sulindac was 0.27 at 21% oxygen and 0.34 at 0.2% oxygen and following 25μM 

sulindac treatment 1.12 at 21% oxygen and 0.62 at 0.2% oxygen. Following drug 

treatment ± hypoxia, cells were irradiated with 2-8Gy of ionizing radiation, prior to 

undertaking clonogenic assays. From these experiments it was possible to determine 

the D10 values of individual drug treatments (table 1). These results reveal that whilst 

greater radiation doses were required to reduce clonogenic survival to 10% under 

hypoxic conditions, NO-sulindac treatment reduced the radiation dose required to 
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reach D10. The radiosensitising effects of NO-sulindac on PC-3 cells over the dose 

range 2-8Gy, under both normoxia and hypoxia, are shown in Fig. 1B and 1C. After 

normalising drug survival curves for the effects of NO-sulindac/sulindac/DMSO at 

0Gy there remained a significant separation of the radiation/NO-sulindac curves 

compared with radiation/DMSO control for both normoxia and hypoxia (P<0.04, 

ANOVA). The SER values were 1.22 and 1.42 for NO-sulindac under normoxia and 

hypoxia respectively. The SER for sulindac treatment of PC-3 cells were 0.93 and 

1.13, under normoxia and hypoxia, respectively.  

 

3.3. NO-sulindac does not radiosensitise primary prostate stromal cells at 2-6Gy 

The same experimental set-up was repeated with primary prostate stromal cells 

(Fig. 2). NO-sulindac and sulindac did not radiosensitise prostate stromal cells under 

normoxia or hypoxia following irradiation at 2, 4 or 6Gy (P>0.05, ANOVA). 

However, at 8Gy under normoxia (P=0.01, ANOVA), but not hypoxia (P=0.06, 

ANOVA), there was significant separation of the curves for NO-sulindac and control-

treated cells.  

Without irradiation, the relative survival of stromal cells (relative to control-

treated cells) treated with 25μM NO-sulindac was 0.56 at 21% oxygen and 0.37 at 

0.2% oxygen and following 25μM sulindac treatment 0.97 at 21% oxygen and 1.1 at 

0.2% oxygen. The SER values of stromal cells were 0.96 and 1.02 for NO-sulindac 

under normoxia and hypoxia respectively. The SER for sulindac treatment of stromal 

cells were 0.93 and 1.04, under normoxia and hypoxia respectively. Thus, NO-

sulindac had a non-interactive combined effect with radiation and it is not a 

radiosensitiser of stromal cells.  



Page 11 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 11 

3.4. Reduction in PC-3 3D sphere diameter was greatest following NO-sulindac 

treatment and irradiation of hypoxic PC-3 cells  

Cultures of glandular epithelial cells in reconstituted basement membrane (3D 

cultures) are an established method of examining tumourigenic potential [16, 17]. In 

these cultures, epithelial cells undergo subsequent steps of proliferation, polarisation 

and lumen formation through apoptosis of cells inside the acinar structure formed 

[18]. Exposure to 4Gy of radiation at 21% oxygen was sufficient to decrease the size 

of acinar structures by approximately 2-fold (Fig. 3A and 3C). While unexposed PC-3 

cells proliferated and created a mature lumen within 5 days (Fig. 3C), irradiated cells 

proliferated less, in agreement with the colony formation assays (Fig. 3A-D). Hypoxia 

on its own had a similar but smaller effect on proliferation, ~1.3 fold reduction in 

sphere size (Fig. 3B and 3D). NO-sulindac treatment of PC-3 cells exposed to both 

hypoxia and radiotherapy resulted in even smaller structures than DMSO or sulindac 

treatment with radiotherapy (Fig. 3B and 3D; P<0.01, ANOVA). Under hypoxic 

conditions exposure of PC-3 cells to NO-sulindac prior to irradiation resulted in a 

significant reduction in sphere diameter compared with control treatments (Fig. 3B 

and 3D). All treatments resulted in failure of the cells to generate acinar structures 

with mature lumens (data not shown). This evidence strongly suggests that the main 

effects observed are anti-proliferative and therefore will result in lower 

tumourigenicity in vivo [16, 19, 20]. Furthermore, these 3D culture results agree with 

the results from 2D culture.  

 

3.5. HIF-1α nuclear protein levels were reduced by NO-sulindac and radiation 

under normoxia and hypoxia 
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The level of HIF-1α present in the nuclear fraction of PC-3 cells was assessed 

using western blotting. As has been demonstrated previously, HIF-1α nuclear protein 

was present under normoxic conditions in PC-3 cells (Fig. 4A), in contrast to many 

other cell lines [21]. As expected HIF-1α levels were elevated by incubation of PC-3 

cells under hypoxic conditions for 48 hours (Fig. 4A). However, under both normoxia 

and hypoxia there was a serial reduction in HIF-1α levels following irradiation at 2Gy 

at 8, 24 and 48 hours (Fig. 4A). As we have shown previously, treatment of PC-3 cells 

with 25μM NO-sulindac under both normoxia and hypoxia reduces the levels of HIF-

1α [7]. Furthermore, HIF-1α levels were undetectable on western blotting following 

NO-sulindac and radiation treatment at 8, 24 or 48 hours post-irradiation (Fig. 4B).  

 The effect of increasing radiation dose combined with NO-sulindac treatment 

on HIF-1α expression was also assessed. Fig. 4C and 4D shows the effect of an 

increasing radiation dose (2 to 8Gy) on PC-3 cells under normoxia (Fig. 4C) or 

hypoxia (Fig. 4D) with each additive. Under both normoxia and hypoxia, increasing 

the radiation dose from 2 to 8Gy resulted in a reduction in HIF-1α expression (as seen 

in the nuclear protein of DMSO treated cells; Fig. 4C and 4D). Treatment of PC-3 

cells with 25μM NO-sulindac prior to irradiation resulted in a reduction in HIF-1α 

nuclear protein levels under both normoxia and hypoxia and at both 2 and 8Gy. 

Furthermore, there was a reduction in HIF-1α protein with 25μM sulindac under 

normoxia at 2 and 8Gy, this effect of sulindac was not noticeable under any other 

conditions. 

 

3.6. NO-sulindac stimulates the formation of radiation-induced single strand DNA 

breaks (SSB) and double strand breaks whilst reducing DNA repair in PC-3 

cells 
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PC-3 cells were irradiated at 2 and 4Gy under normoxia with each additive, 

following which an alkaline Comet assay was performed. Fig. 5A demonstrates that at 

4Gy, 48 hours of NO-sulindac treatment resulted in a significant increase in SSB 

formation compared with DMSO vehicle control or sulindac. There was no significant 

difference between the different treatments in SSB formation found at 0 or 2Gy.  

 As a surrogate for DSB formation, phosphorylation of the histone H2AX to γ-

H2AX was determined using immunohistochemical detection. At 4Gy, under 

normoxia there were significantly greater levels of DSBs in PC-3 cells 1 and 2 hours 

following irradiation in the presence of NO-sulindac than sulindac (Fig. 5B).   

Previous studies have demonstrated longer repair times for DSB (measured as 

-H2AX foci) for cells irradiated in the presence of nitric oxide [22]. To assess the 

effect of NO-sulindac on the DNA strand break repair, PC-3 cells were treated with 

NO-sulindac, sulindac or DMSO for 48 hours. The cells were then irradiated (8Gy) 

and incubated for up to 60 minutes to assess the extent of repair using the Comet 

assay. Fig. 5C illustrates the SSB repair process over a 60 minute period. PC-3 cell 

treatment with NO-sulindac significantly slows the extent of SSB repair compared 

with sulindac or DMSO treatment at 15, 30 and 45 minutes. PC-3 cell treatment with 

sulindac did not affect the rate or extent of SSB repair compared with the control 

treated cells. Additionally, longer repair times for DSBs were suggested by the lack of 

significant decrease in the extent of -H2AX formation 1 and 2 hours following 

irradiation of NO-sulindac treated cells compared with the significant decrease noted 

in the irradiated control cells. 
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4. Discussion 

The findings of this study demonstrate that NO-donors have the potential to 

act as radiosensitisers in prostate cancer. This work complements and expands our 

previous studies which demonstrated the cytotoxic effects of NO-NSAIDs on prostate 

cancer cells under normoxia and hypoxia [6, 7]. The use of both 2D and 3D models 

showed that NO-sulindac radiosensitised the PC-3 hormone insensitive prostate 

cancer cell line, not only under normoxia but particularly under chronic hypoxia. 

Conversely, prostate stromal cells were not radiosensitised by either NO-sulindac or 

sulindac. The reduction in nuclear HIF-1α expression by irradiated PC-3 cells pre-

treated with NO-sulindac suggests that dampening of the hypoxia response may have 

a role to play. Finally, a radiobiological mechanism for the radiosensitisation caused 

by NO-sulindac was determined to be an increase in the extent of single and double 

strand DNA breaks together with reduced speed of repair of these breaks. Taken 

together these findings suggest that NO-NSAIDs have potential as neoadjuvant and 

concurrent treatments for men undergoing radiotherapy for prostate cancer. 

We recognise the lack of an in vivo component of this study. However, in an 

attempt to mimic the in vivo situation, an in vitro 3D model has been utilised, which 

has previously been shown to behave similarly to a mouse xenograft model [20]. It is 

not possible to mimic the chaotic, oxygenation of a solid tumour deposit in the in vitro 

setting. As a result, the OERs obtained in this study were lower than expected. For 

most cells the OER following exposure to x-rays is ~3.0 [23], in the data presented 

here the OERs were 1.1 for PC-3 cells and 1.2 for stromal cells. However, previous 

detailed in vitro studies have demonstrated that the OER following exposure to acute 

hypoxia (3 hours) was ≥2.0; whereas, following chronic hypoxia (24 to 72 hours), the 

OER was reduced to 1.1 in the same cell lines [24]. The reduced OER under chronic 
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hypoxia was most common in p53 mutant cell lines such as PC-3, helping to explain 

the OERs in the study presented here [24, 25]. Furthermore, the upregulation of HIF-

1α confirmed that hypoxic conditions were achieved. 

The results presented here show that NO-sulindac provides a radiosensitising 

effect, which was maximal under hypoxia. This is a convenient finding as hypoxia is a 

tumour microenvironmental condition contributing to human prostate cancer 

radioresistance [1]. NO-sulindac was found to have a SER of 1.22 under normoxia 

and 1.45 under hypoxic conditions in PC-3 cells. Dose escalation trials in prostate 

cancer external beam ratiotherapy, such as RT01, have shown improved effectiveness 

of 74-79.2Gy dose range at 1.8-2Gy per fraction with respect to clinical outcomes 

compared with lower radiation dose regimens [26]. Crucially, at 2Gy, NO-sulindac 

resulted in a significant radiosensitising effect over control treated cells under both 

normoxia (up to 2.2 fold reduction in cell survival) and hypoxia (1.9 fold reduction in 

survival). These differences in survival would give a major therapeutic advantage in a 

multiple fraction treatment regimen. The radiosensitising effects of oxygen and 

misonidazole are reduced at low radiation doses [27, 28]. However, studies by 

Wardman and co-workers demonstrated that NO (1% v/v, ~19μM) was effective as a 

radiosensitiser at low, clinically relevant radiation doses (2Gy) in anoxic cells [22]. 

The results of the present study, which also showed radiosensitisation at similar low 

doses, concur with the findings of Wardman et al. 

In addition to the radiosensitising effect of NO-sulindac on prostate cancer 

cells, the studies presented here also assessed the effect this compound had on 

prostate stromal cells. Unlike prostate epithelial cells, treatment with NO-sulindac did 

not sensitise stromal cells to irradiation under either normoxia or hypoxia at the 

clinically relevant doses (1.8-2.0Gy/fraction). The difference in radiosensitising 
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ability of NO-sulindac between PC-3 epithelial cells and primary stromal cells may 

simply be a function of the increased resistance of stromal cells to radiation or NO-

sulindac (relative survival of stromal cells following treatment with 25μM NO-

sulindac, 0.56 at 21% oxygen and 0.37 at 0.2% oxygen, compared with 0.27 and 0.34 

respectively for PC-3 cells). However, an alternative message may be taken from the 

results of stromal cell irradiation with NO-sulindac. There is disagreement between 

studies, but there is evidence showing that skin fibroblasts act as surrogates for 

normal tissue in a radiobiological sense, and predict the severity of normal tissue 

damage [29]. A case report in prostate cancer showed that skin fibroblast 

radiosensitivity predicted a patient developing rectal toxicity following irradiation 

[30]. As prostate stromal cells have a predominance of fibroblasts it can be speculated 

that the effect of irradiation on prostate stromal cells will also predict the potential 

effects on normal tissues such as the bladder, rectum or skin [31]. Based on this 

assumption, NO-sulindac may not enhance normal tissue effects of radiotherapy, 

protecting these tissues from radiation damage. However, experimental proof of the 

combined effect of NO-sulindac and radiation on the rectal wall, bladder neck and 

prostatic urethra is required.    

 Hypoxia induces a more aggressive cancer cell phenotype, resistant to 

radiotherapy, by upregulation of the hypoxia response [1]. HIF-1 is the transcription 

factor acting as the master regulator of the hypoxia response; the HIF-1α component 

is most important in this regulatory process [1]. Previously we have shown that NO-

NSAIDs were cytotoxic to prostate cancer cell lines under both normoxia and hypoxia 

and causes a post-transcriptional reduction in HIF-1α nuclear protein [7]. The data 

presented in the current study demonstrates the effect that irradiation combined with 

NO-sulindac exposure inhibited the hypoxia response (using HIF-1α production as a 
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surrogate). PC-3 cells treated concomitantly with NO-sulindac and irradiation 

underwent a reduction in HIF-1α expression over-and-above that seen with irradiation 

or NO-sulindac alone. As such, under the conditions used in these experiments, 

radiation treatment ± NO-sulindac may be acting by inhibition of the hypoxia 

response, a mechanism which has been shown previously to have a synergistic cell 

killing effect with irradiation [32, 33].  

DNA is the most important cellular target for the lethal effects of ionising 

radiation, with DSBs proposed to be the principal lesions responsible for radiogenic 

cell killing [34]. Results from both the Comet assay and -H2AX experiments suggest 

that an increase in extent of strand break damage is a possible radiobiological 

mechanism by which NO-sulindac may mediate radiosensitisation. Further studies 

using the Comet assay showed a reduction in the extent of strand break repair when 

the PC-3 cells were irradiated in the presence of NO-sulindac. Additionally, there was 

no significant decrease in the extent of -H2AX between 1 and 2 hours post 

irradiation whilst there was a significant decrease noted in the irradiated control cells; 

this concurs with longer repair times for DSBs (measured as -H2AX foci) noted for 

V79 cells irradiated in the presence of nitric oxide [22]. Previous studies have shown 

that higher levels of strand break formation and/or poorer repair, assessed by both the 

alkaline Comet assay and -H2AX foci, correlate with radiosensitivity in a variety of 

cancer cells, both in vitro and in vivo [35-37].   

Being a relatively stable free radical species and reactive towards other free 

radicals, nitric oxide can be considered an ‘oxygen mimetic’.  Indeed, as a hypoxic 

sensitiser, NO seems to be significantly more efficient than oxygen [22]. However, 

compared to oxygen, NO has a relatively low electron affinity and the unpaired 

electron is able to pair up with other DNA radical species (i.e. DNA base radical 
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species) forming stable adducts (in combining with DNA base radical species this 

could render the latter incapable of undertaking hydrogen abstraction from a sugar 

which can lead to strand breaks [38]). In spite of these key differences, NO enhances 

the yields of radiation-induced SSBs and DSBs (this study & [22]), as do oxygen and 

nitroimidazoles [39]. The mechanism of the NO-mediated enhancement of strand 

break is not clear, but might involve the attempted repair processing/excision of the 

adducted base; indeed, this may account for the noted slower repair of both SSB (this 

study) and DSB [22] for cells irradiated in the presence of NO or NO-sulindac 

compared with cells irradiated in air (this study) or anoxia [22]. Overall, the 

radiobiological assay results presented above further support the discovery that NO-

sulindac radiosensitises PC-3 cells.  

 In summary, these 2D and 3D studies have shown that NO-sulindac 

radiosensitises prostate
 
cancer epithelial cells but not prostate stromal cells in vitro, 

under normoxia and to a greater extent chronic hypoxia. Plausible mechanisms for 

this effect being the enhanced formation and reduced repair of radiation-induced 

DNA strand breaks and inhibition of the radioresistant hypoxia response. These data 

and that from other studies [40] lend support to future clinical trials of NO-sulindac 

plus radiotherapy in men with prostate cancer. Ultimately, NO-NSAIDs and other 

NO-donors may be useful as neoadjuvant and concurrent treatments for men 

undergoing radiotherapy for prostate cancer.  
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Prostate cell type Oxygen conditions Additive D10 (Gy) 

PC-3 

Normoxia 

DMSO 3.9 

Sulindac 4.2 

NO-sulindac 3.2 

Hypoxia 

DMSO 4.4 

Sulindac 3.9 

NO-sulindac 3.1 

Stroma 

Normoxia 

DMSO 4.3 

Sulindac 4.6 

NO-sulindac 4.5 

Hypoxia 

DMSO 5.1 

Sulindac 4.9 

NO-sulindac 5.0 

Table 1. Radiation dose required to reduce clonogenic survival to 10% (D10 values) 

for PC-3 epithelial cells and primary stromal cells following incubation under 

normoxia or chronic hypoxia with different drug additives.   
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Figure legends 

Figure 1. Clonogenic assay derived survival curves for PC-3 cells following 

incubation under normoxic or hypoxic conditions and treatment with NO-sulindac, 

sulindac or DMSO control showing the radiosensitising effect of NO-sulindac. (A) 

PC-3 cells were incubated under normoxic or hypoxic conditions prior to irradiation, 

at 8Gy hypoxia induced radioresistance. PC-3 cells were incubated with NO-sulindac, 

sulindac or DMSO under normoxia (B) or hypoxia (C) prior to irradiation. NO-

sulindac radiosensitised PC-3 cells under both normoxia and hypoxia at all radiation 

doses. Bars, SD; *, P<0.05 compared with normoxia (A) (t-test) or DMSO treated 

controls (B&C) (ANOVA).  

Figure 2. Clonogenic assay derived survival curves for prostate stromal cells 

following incubation under normoxic or hypoxic conditions and treatment with NO-

sulindac, sulindac or DMSO control demonstrating resistance to radiosensitisation. 

(A) Incubation of stromal cells under normoxia prior to irradiation did not cause 

significant radiosensitisation compared with hypoxic incubation. Stromal cells were 

incubated under normoxia (B) or hypoxia (C) with NO-sulindac, sulindac or DMSO 

prior to irradiation. NO-sulindac only caused radiosensitisation at 8Gy under 

normoxia. Bars, SD; *, P<0.05 compared with DMSO treated controls (ANOVA). 

Figure 3. NO-sulindac and irradiation treatment caused a reduction in the diameter of 

3D sphere of PC-3 cells, this effect was maximal under hypoxia. PC-3 cells were 

treated with 0.05% DMSO vehicle control, 25μM sulindac or 25μM NO-sulindac and 

incubated under (A&C) normoxia or (B&D) hypoxia for 48 hours prior to irradiation. 

3D cultures were then established. The graph bars represent the median value. Scale 

bar, 60μm. Magnification x400.  

 

a 

a 
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Figure 4. HIF-1α protein levels were reduced by NO-sulindac and irradiation under 

normoxia and hypoxia. PC-3 cells were treated with (A) DMSO vehicle control or (B) 

NO-sulindac and incubated under normoxia or hypoxia for 48 hours prior to 

irradiation at 2Gy, the cells were incubated (at same oxygen level as pre-irradiation) 

for a further 8 to 48 hours prior to lysis. PC-3 cells were treated under (C) normoxia 

or (D) hypoxia in the presence of DMSO, NO-sulindac or sulindac for 48 hours prior 

to irradiation. Following irradiation the PC-3 cells were incubated (at same oxygen 

level as pre-irradiation) for a further 4 hours prior to lysis. There was a serial 

reduction in HIF-1α with time from radiation and radiation dose. HIF-1α production 

was completely abrogated by the addition of NO-sulindac. In absence of radiation 

there were no differences in HIF-1α levels from 0 to 48 hours (data not shown). 

DMSO, 0.05% DMSO; NO-sul, 25μM NO-sulindac; sul, 25μM sulindac; Gy; RTx, 

radiation treatment.  

Figure 5. NO-sulindac stimulates the formation of radiation-induced SSBs and DSBs 

and reduces DNA repair in PC-3 cells. (A) Irradiation of PC-3 cells to 4Gy in the 

presence of NO-sulindac significantly increases the extent of radiation-induced SSB 

formation compared to the control treated PC-3 cells, assessed by Comet assay. The 

extent of SSB formation noted upon irradiation (4Gy) of PC-3 cells in the presence of 

sulindac is not significantly different from the extent of SSB formation noted in the 

control PC-3 cells. There is no significant difference in the level of SSBs for PC-3 

cells in the presence of NO-sulindac or sulindac compared to control cells at 0Gy or 

2Gy irradiation. (B) Irradiation of PC-3 cells to 4Gy in the presence of NO-sulindac 

significantly increases the level of radiation-induced γ-H2AX foci measured 1 and 2 

hours post-irradiation compared to control treated PC-3 cells. The extent of γ-H2AX 

foci formation noted 1 hour after irradiation of PC-3 cells in the presence of sulindac 



Page 26 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 26 

is not significantly different from the extent of foci formation noted in the control PC-

3 cells. However, the extent of γ-H2AX foci formation noted 2 hours after irradiation 

of PC-3 cells in the presence of sulindac was significantly different from the extent of 

foci formation noted in the control PC-3 cells, this being due to a significant decrease 

in the extent of γ-H2AX foci between 1 and 2 hours noted in the control PC-3 cells 

irradiated in the presence of DMSO (P<0.001, ANOVA). There was no significant 

difference the extent of γ-H2AX foci noted at 1 and 2 hours after irradiation for PC-3 

cells irradiated in the presence of either NO-sulindac or sulindac. (C) Irradiation at 

8Gy and repair incubation in the presence of NO-sulindac significantly reduces the 

rate of radiation-induced SSB repair compared to DMSO and sulindac treated cells, 

except at 60 minutes. The rate of SSB repair following irradiation and repair 

incubation of PC-3 cells in the presence of sulindac is not significantly different from 

the rate of repair noted in the control PC-3 cells. ns, not significant; *, P<0.001 

(ANOVA); †, P<0.05 (ANOVA). 
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Figure 1

http://ees.elsevier.com/bcp/download.aspx?id=197423&guid=ee267c99-aa07-4bc4-9ef7-6a551112971a&scheme=1
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Figure 2
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Figure 3

http://ees.elsevier.com/bcp/download.aspx?id=197432&guid=68f77471-ae62-443b-80ce-b5bf19020c14&scheme=1


Page 30 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 4
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Figure 5
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*Graphical Abstract
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