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Abstract.3

Land water storage plays a fundamental role on the West African water4

cycle and has an important impact on climate and on the natural resources5

of this region. However, measurements of land water storage are scarce at6

regional and global scales and, especially, in poorly instrumented endhoreic7

regions, such as most of the Sahel, where little useful information can be de-8

rived from river flow measurements and basin water budgets.9

The GRACE satellite mission provides an accurate measurement of the10

terrestrial gravity field variations from which land water storage variations11

can be derived. However, their retrieval is not straightforward, and differ-12

ent methods are employed which result in different water storage GRACE13

products. On the other hand, water storage can be estimated by land sur-14

face modelling forced with observed or satellite-based boundary conditions,15

however such estimates can be highly model dependent.16
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In this study, land water storage by six GRACE products and soil mois-17

ture estimations by nine land surface models (run within the framework of18

the AMMA Land Surface Intercomparison Project, ALMIP) are evaluated19

over West Africa, with a particular focus on the Sahelian area. The water20

storage spatial distribution, including zonal transects, its seasonal cycle and21

its inter annual variability are analysed between 2003 and 2007. Despite the22

non-negligible differences among the various GRACE products and among23

the different models, a generally good agreement between satellite and model24

estimates is found over the West Africa study region. In particular, GRACE25

data are shown to reproduce well the water storage inter annual variability26

over the Sahel for the 5-year study period. The comparison between satel-27

lite estimates and ALMIP results lead to the identification of processes need-28

ing improvement in the land surface models. In particular, our results point29

out the importance of correctly simulating slow water reservoirs as well as30

evapotraspiration during the dry season for accurate soil moisture modelling31

over West Africa.32

D R A F T February 11, 2011, 4:35pm D R A F T



GRIPPA ET AL.: WATER STORAGE VARIABILITY OVER WEST AFRICA X - 5

1. Introduction

Land water storage plays a fundamental role within the global water cycle and on cli-33

mate, particularly in regions where the coupling between land surface and the atmosphere34

is theorized to be important such as West Africa [Koster et al. , 2004]. In this region, land35

processes related to soil moisture and vegetation have been shown to have an important36

impact on the development of the summer monsoon, by amplifying its response to oceanic37

forcing [Giannini et al. , 2003, 2008]. Monitoring water storage changes over this region38

is therefore fundamental for better understanding land-atmosphere processes as well as39

evapotranspiration related processes. In addition, given the possible link between soil40

moisture and the atmosphere, improved knowledge of water storage which is a relatively41

slow varying component in the climate system, could lead to improved long term pre-42

dictions [Philippon and Fontaine , 2002]. Moreover, in West Africa, and particularly in43

the Sahel, water storage changes directly affect the natural resource availability, therefore44

they have a significant environmental and socio-economic impact. Water storage is a key45

variable for evaluating the past and present state of natural resources such as water and46

fodder and to model their future development within the context of climate change.47

However, direct measurements of land water storage are not readily available at regional48

and global scales. This is true especially in the Sahel, where monitoring the water budget49

components is not easy due to the scarcity of in situ measurements especially in terms50

of precipitation. Even when local measurements are available, it remains difficult to51

extrapolate them over larger areas given the relatively large spatial heterogeneity of the52

main components of the terrestrial water cycle (see for example Lebel et al. [1997].)53
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Moreover, little useful information on water storage can be derived from river discharge54

measurements since this region is mostly endhoreic, i.e., the main West African water55

basins are not fed by Sahelian waters.56

The GRACE satellite mission provides an accurate measurement of terrestrial gravity57

field variations from which land water storage variations can be derived. As opposed to58

microwave passive and active spaceborne sensors that can be used to retrieve surface soil59

moisture in the uppermost few centimetres, GRACE data can be used to estimate water60

storage variations integrated over the entire water column, including the root zone as well61

as deeper groundwater reservoirs. The retrieval of the terrestrial water storage (TWS)62

from the satellite gravity measurements is not straightforward and requires solving an63

ill-posed inverse problem. Different methods are employed to do this by various research64

teams [Chambers , 2006; Rowlands et al. , 2005; Liu , 2008; Bruisma et al. , 2010;65

Ramillien et al. , 2005] that provide different GRACE water storage estimates [see for66

example, Klees et al. , 2008a] .67

Since the satellite launch in 2002, GRACE data have been increasingly used for different68

hydrological applications [among others, Ramillien et al. , 2008a; Schmidt et al. , 2008],69

for example the monitoring of extreme hydrological events [Chen et al. , 2009; Seitz et al. ,70

2008; Andersen et al. , 2005], for evaluating hydrological fluxes such as evapotranspiration71

[Rodell et al. , 2004; Ramillien et al. , 2006], to compute atmospheric water vapour72

convergence [Swenson and Wahr , 2006] and reiver discharge [Syed et al. , 2005], as well73

as for integrated water budget studies [Yirdaw et al. , 2008; Crowley et al. , 2006].74

Evaluation of the seasonal and interannual variability of the GRACE water storage75

estimates has been mainly carried out over well defined water basins at regional or global76
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scales. GRACE water storage products have been compared to in-situ measurements77

using soil moisture networks [Swenson et al , 2008], to well level data combined with78

hydrological models [Schmidt et al. , 2008] and to modelling results [e.g., Schmidt et al.79

, 2006; Papa et al. , 2008; Syed et al. , 2008; Schmidt et al. , 2008; Klees et al. , 2008a].80

GRACE data have also been used to provide useful information for calibrating and/or81

improving the water storage simulation in land surface models [Ngo-Duc et al. , 2007;82

Niu et al. , 2007; Güntner et al. , 2008; Syed et al. , 2008; Alkama et al. , 2009].83

Until recently, only a few GRACE studies have been carried out over west Africa, despite84

the fact that several global studies included the Niger river basin [e.g., Papa et al. , 2008;85

Schmidt et al. , 2008; Ramillien et al. , 2008b; Syed et al. , 2008; Ngo-Duc et al. , 2007].86

No extensive evaluation of GRACE water products has been performed for the Sahel, and87

more generally, for endhoreic areas. Moreover, the capability of GRACE to reproduce the88

interannual variability of water storage changes over West Africa has not been specifically89

addressed.90

The objective of this work is to better understand the intra seasonal and interannual91

variability of the water cycle over West Africa, and in particular, the Sahel. This is92

done by using GRACE TWS products as well as soil moisture derived by an ensemble of93

land surface models participating in the AMMA Land Surface Intercomparison Project94

[ALMIP, Boone et al. , 2009]. For the time period 2003-2007, satellite products and models95

outputs are analysed and compared considering different aspects of the continental water96

storage: the seasonal cycle (amplitude and phase), the interannual variability during the97

wet and dry season and the zonal distribution.98

D R A F T February 11, 2011, 4:35pm D R A F T



X - 8 GRIPPA ET AL.: WATER STORAGE VARIABILITY OVER WEST AFRICA

1.1. Study area

The study area is the West African region bordering the Guinean gulf to the South and99

the Sahara desert to the North (Fig. 1). The analysis is carried out over two arbitrary100

areas: the ”West Africa” box between 10◦W - 10◦E and 6◦N - 18◦N and the ”Sahel” box101

between 10◦W - 10◦E and 12◦N - 18◦N.102

West Africa is characterized to a good approximation by a zonal distribution of pre-103

cipitation and land cover. The annual precipitation gradient ranges from about 1000104

mm/year in the Guinean zone to 100 mm/year to the north of the Sahelian region. The105

precipitation annual cycle (Fig. 2) is driven by the West African monsoon, and it is106

related to the meridional displacement of the Inter tropical Convergence Zone [ITCZ,107

Sultan and Janicot , 2003]. It reaches 5◦N in April and stays in a quasi-stable position108

until the end of June, then it abruptly shifts during the first half of July to 10◦N, where109

it remains until the end of August. Over the Sahel, the rainy season peaks between July110

and September. The ITCZ gradually withdraws southward from September to November111

which is associated with a sharp precipitation decrease over this region.112

The West African hydrological systems are also roughly organised as a function of the113

latitudinal gradient, with significant water lateral transfers within deeper soil layers in114

the southern areas, and hortonian systems, characterised by superficial water flow, to the115

north [Peugeot et al. , 1997; Braud et al. , 1997]. Southern areas are mostly exohreic116

with considerable sheet run-off. The hydrological system become progressively endhoreic117

going northward, where, depending on the soil properties, endhoreic sandy soils alternate118

with smaller areas characterised by concentrated run-off. The Sahel is dominated by large119

old sedimentary basins consisting in either deep fossil aquifers or less deep, more or less120
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fragmented, actively recharged aquifers which are affected by minor seasonal fluctuations121

and decadal trends [Favreau et al., 2009]. The southern half of the West African box is122

dominated by the African Shield with shallow fragmented aquifers which have variations123

that follow the seasonal pattern of rainfall and river drainage.124

The vegetation gradient follows the precipitation pattern: going from south to north,125

the dominant vegetation consists of forest, savannah and parkland, grassland and open126

shrub lands. Crops and fallows are also present and they are scattered throughout the127

study region.128

The largest river in the Sahel is the Niger, but the majority of the Sahel box is endhoreic129

and does not feed the Niger River [Descroix et al. , 2009]. The run-off seasonal evolution130

is delayed compared to the precipitation seasonal cycle. The maximum run-off enters and131

exits the Sahel box in September and the river flow decreases after the rain season at a132

slower rate than precipitation. The Inner Niger delta, an area of swamps and small lakes133

in the Sahelian region in Mali, typically floods during the wet season and is subject to134

intense evaporation, further delaying the Niger discharge seasonal cycle.135

2. Data and methods

2.1. GRACE data

The Gravity Recovery and Climate Experiment (GRACE) satellite mission, managed by136

NASA and DLR, has been collecting data since mid-2002. Estimates of the Earth’s gravity137

field produced by GRACE can be used to infer changes in mass at and below the surface of138

the Earth, including the oceans, the polar ice sheets, the land water storage (surface water,139

soil moisture, snow and ground water) and the solid Earth. To extract land water storage140

changes on a given region of the Earth, two issues need to be addressed: 1- the contribution141
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of atmospheric, oceanic, and solid earth mass variations need to be separated from the142

hydrological signal, which generally requires the employment of background models ; 2-143

the TWS signal over a given region of the earth needs to be separated from contaminations144

coming from a different region, such as the water storage variability in a neighbouring area145

or ocean.146

In this study, six different GRACE products (table 1) are employed and briefly described147

below.148

• The three monthly land water solutions (RL04) provided by the GeoForschungsZen-149

trum, Potsdam (GFZ), the Jet Propulsion Laboratory, California Institute of Technology150

(JPL), and the Center for Space Research , University of Texas at Austin (CSR), with a151

spatial resolution of 400 km, available at ftp://podaac.jpl.nasa.gov/tellus/grace/monthly.152

These three datasets are processed as reported by Chambers [2006]. Each monthly grav-153

ity field is represented by a set of spherical harmonic (Stokes) coefficients, developed to154

degree and order 60. CSR, GFZ, and JPL use different algorithms to compute gravity155

field harmonic coefficients from the raw GRACE observations, although they have agreed156

to use similar background models for the ocean and the atmosphere. Spatial averaging,157

or smoothing, of GRACE data is commonly used to reduce the anisotropic noise, which158

manifests itself in strong north-south stripes. Systematic errors causing the longitudinal159

stripes, identified by correlations between spherical harmonic coefficients of like parity160

within a particular spectral order, are removed using the destriping method described by161

Swenson and Wahr [2006b]. After destriping, the signal can be further smoothed using a162

Gaussian filter of a certain radius. For the comparison to the ALMIP results, in this study163

we employ the destriped but unfiltered solutions. However, solutions smoothed with a164
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Gaussian filter of radius equal to 500 and 300 km are also analysed in section 2.1.1 in165

order to better investigate the effects of filtering.166

• The DEOS Mass Transport Model (DMT-1) monthly solutions by the University of167

Delft available at http://www.lr.tudelft.nl. The DMT-1 is also based on the decomposition168

into spherical harmonic Stokes coefficients to degree and order 120. The details of the169

computation of monthly solutions and corresponding covariance matrices are given by170

Liu [2008]. The series of monthly solutions is post-processed by applying statistically171

optimal Wiener filters based on full signal and noise covariance matrices instead of a172

Gaussian filter. The signal variances and solutions are computed iteratively, according to173

the scheme described by Klees et al. [2008b].174

• The Level-2 GRGS-EIGEN-GL04 10 day models derived from GRACE GPS175

and K-band range-rate data and from LAGEOS-1/2 SLR data [Bruisma et al. ,176

2010] available at http://grgs.obs-mip.fr/index.php/fre/Donnees-scientifiques/Champ-de-177

gravite/grace/release02. These gravity fields are expressed in terms of normalized spher-178

ical harmonic coefficients from degree 2 up to degree 50 using a stabilization approach179

without additional filtering. We use the TWS 10-day grids with a spatial resolution of 1◦180

x 1◦ from January 2003 to December 2007.181

• The 10 day land water solutions from GSFC, with a spatial resolution of 4◦x 4◦,182

available for the period April 2003- April 2007 at http://grace.sgt-inc.com/. The data are183

processed with an approach based on a local time-dependent mass recovery using mass184

concentrations blocks [Mascons, Rowlands et al. , 2005] rather than using global basis185

functions such as spherical harmonics. The formulation for Mascons solutions exploits186

the fact that a change in potential caused by adding a small uniform layer of mass over a187
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region at a time t, can be represented as a set of (differential) potential coefficients which188

can be added to the mean background field. Mascons can be located in space, and hence,189

short wavelength errors (e.g. due to ocean tides) should not leak into land areas, although190

spatial constraints are imposed on neighbouring 4◦x 4◦ pixels.191

In the following study, the water storage anomalies (reported in mm) have been re-192

centered for each solution by removing the mean over the 2003-2006 common period.193

2.1.1. Filtering and leakage194

Several recent studies have shown that GRACE data over the continents provide infor-195

mation on the total land water storage with an accuracy between 15 and 30 mm of liquid196

water thickness equivalent [Schmidt et al. , 2006; Llubes et al. , 2007; Klosko et al. ,197

2009], depending on the region considered.198

GRACE water storage estimates at a given location are affected by data processing199

which requires a compromise between maximising spatial resolution and reducing noise.200

This is done following different approaches, such as, for example:201

• truncating the harmonical series computation at a given degree (50, 60 or 120, the202

lower the degree, the greater the smoothing) as done for all the products considered here203

except the Mascons (CSR, JPL and GFZ truncating at degree 60, CNES at 2 to 50 and204

DMT at 120) ;205

• applying smoothing filters, such as the Gaussian filtering with the radius of 300 and206

500 km used by the CSR, JPL and GFZ post-processed solutions or the optimal Wiener207

filter used in the DMT-1 model;208

• employing stabilisation approaches such as that used for the CNES solution;209

• imposing spatial constraints as done for the Mascon solutions.210
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All of these approaches make the water storage estimates in a given region biased and211

sensitive to mass changes outside the region of interest (leakage). Leakage is comprised of212

to mechanisms: a) leakage of signal from the target area to the surroundings (leakage out),213

and b) leakage of signal from the surroundings into the target area (leakage in). In this214

paper, we employ the term leakage to mean both mechanisms (leakage in and out), even215

if sometimes this term is used to described the mechanism b) only. A survey of different216

methods employed to take into account leakage effects can be found in Longuevergne et217

al. [2010]. Chen et al. [2005] showed that if temporal water storage variations are218

homogeneous over a sufficiently large area, leakage in and out may partially cancel each219

other, minimising the overall leakage effect. On the contrary, leakage effects are expected220

to have the highest impact when mass changes inside the study region are in opposition of221

phase with mass changes outside it. For basins surrounded by areas with smaller storage222

variations (oceans, deserts) the effects of leakage should therefore make the effective water223

storage underestimated.224

Fig. 3 shows, for each product, the spatial distribution of water storage anomalies in225

September, the month of the maximum soil water over West Africa. To illustrate the226

impact of using a Gaussian filter in the post-processing, CSR, JPL and GFZ solutions227

smoothed by a Gaussian filter of 500 km radius are also shown. All GRACE estimates228

indicate a maximum, more or less pronounced, at the south-east corner of the study229

area and another maximum at a latitude of about 12◦ N but at different longitudes for230

different products. In addition, CSR, JPL and GFZ at 500 km appears much smoother231

than the same unfiltered solutions. However the latter solutions show the effects of residual232

longitudinal stripes not completely eliminated by the destriping process by Swenson and233
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Wahr [2006b]. Alternative destriping methods [Frappart et al., 2011; Klees et al. , 2008b;234

Kusche , 2007], which are more efficient for equatorial areas, may be applied. However,235

in this study, these effects are not a major problem given that we analyse water storage236

changes averaged over a sufficiently large longitudinal domain.237

Regarding the seasonal dynamics, Fig. 4 shows the comparison between the CSR, JPL238

and GFZ solutions (multi-product mean) post-processed by a Gaussian filter with a 500239

km radius and the corresponding solutions without any Gaussian filtering. Over the240

West African box, filtered data show a lower dynamic than the unfiltered data, which is241

consistent with the geographic configuration, West Africa being surrounded by areas with242

small seasonal dynamics (ocean, Sahara desert). Conversely, for the Sahel box, the 500 km243

Gaussian filter slightly increases the seasonal dynamics. This implies that contamination244

from the Soudanian area, located to the South of the Sahel box, more than compensates245

damping effect from the Sahara desert at the Northern border. Differences between the246

monthly TWS values of smoothed and unsmoothed solutions are no more than 10-15 mm247

for both regions but are more significant at about 10◦ where CSR, JPL and GFZ unfiltered248

solutions are more coherent with the other solutions analysed (CNES, DMT et GSFC)249

than the CSR, JPL and GFZ solutions post-processed using a Gaussian filter (not shown).250

Leakage resulting from the combined effects of Gaussian filtering, destrip-251

ing and truncating the harmonical series, can be estimated from hydrologi-252

cal models, as done for example by Klees et al. [2007] and by Swenson253

(ftp://podaac.jpl.nasa.gov/pub/tellus/grace monthly/swenson destripe/ss201008/) who254

propose correcting factors to account for this. This is estimated here for the CSR, JPL and255

GFZ solutions following the method by Swenson that calculates a correcting factor on a256
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one degree grid basis by using a global simulation of land hydrology. The simulated TWS257

field underwent the same processing as the RL04 data: spherical harmonical expansion,258

truncation to degree 60 and destriping. The data were then post processed using a 300259

km Gaussian filter, and then regressed against the original TWS. The regression slope can260

then be used as a correction factor for the GRACE data. This correction, accounting for261

leakage out and leakage in, is shown in Fig. 5 for the West Africa and the Sahel boxes. It262

has very similar effects to those attributed to the application of the Gaussian filter alone263

(Fig. 4), with the GRACE seasonal dynamics enhanced over West Africa and reduced264

for the Sahel box. A similar calculation with another hydrological model following the265

method by Ramillien et al. [2008b] (not shown) resulted in a slightly higher leakage over266

the Sahel box.267

In conclusion, the above estimates of leakage errors imply that, for global solutions,268

water storage changes are probably underestimated for the West Africa box, whereas they269

may be slightly overestimated for the Sahel box. A complete error budget should also270

address the data and inversion errors, which are not known precisely. In this analysis,271

we do not apply explicit corrections to account for leakage effects given that they are272

dependent on hydrological models and on the methodology followed to calculate them.273

Our approach is therefore to inter-compare the different GRACE solutions to have a rough274

idea of GRACE processing errors.275

The temporal evolution of the TWS by all the GRACE products considered, spatially276

averaged over the West African and the Sahelian boxes (given its coarser resolution the277

GSFC product has been averaged over slightly larger boxes, with latitudes between 4◦N278

- 20◦N for West Africa, and 12◦N - 20◦N for the Sahel, and longitudes between 12◦W -279
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12◦E) is shown in Fig. 6. The six products are quite consistent regarding their temporal280

evolutions, with water storage maxima generally found in September and minima in April281

(West Africa) and May (Sahel). A temporal shift is sometimes observed with respect to282

the date at which the maxima and minima are reached : this is not systematic for a given283

product and it is more important for the dates of the water storage minima for which284

the shift can be up to 2 months (as for example over the Sahel in 2007). In term of the285

amplitudes of the seasonal water storage changes (for each year, the difference between the286

maximum and minimum value), the 6 GRACE products show significant differences, with287

the CNES and CSR solutions generally higher and GFZ lower than the other solutions.288

Year to year variations are also observed among the different solutions.289

2.2. ALMIP models

The ALMIP model inter comparison [Boone et al. , 2009] was carried out by run-290

ning different state-of-the-art land surface models using the same forcing database, which291

consists in atmospheric state variables, precipitation and incoming radiative fluxes. The292

atmospheric state variables were derived form ECMWF short term forecast data, while293

downwell radiative fluxes were a mix of ECMWF and LANDSAF estimates.294

For the simulation of the different components of the water budget, the most crucial295

forcing variable is precipitation. In this study, we used the simulations forced by the Trop-296

ical Rainfall Measurement Mission (TRMM) precipitation product 3B-42 [Huffman et al. ,297

2007] (see Fig. 2). Nine different models which are made for climate or numerical weather298

prediction (such as for example SSIB, NOHA, HTESSEL, ISBA and ORCHIDEE), or299

more hydrologically based models (such as for example CLSM) participated in this inter300

comparison (table 2). These models have different degrees of complexity in terms of the301
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representation of the water budget variables, such as, for example, the number of verti-302

cal soil layers and the soil depth over which vertical water transfers are simulated (for303

more details see Boone et al. [2009]). Among the ALMIP models, CLSM is the only304

model including a representation of a saturated area following the TOPMODEL concept.305

Land surface parameters concerning soil and vegetation are taken form the ECOCLIMAP306

database for all models except for HTESSEL and SSIB.307

The time change in soil moisture, ∆S, vertically integrated over all of the soil layers,308

is the output variable considered in the following analysis for comparison with GRACE309

water storage change. It is related to the other water budget variables (input precipitation,310

P , evapotranspiration, E and total run-off, including surface run-off and drainage, R, in311

mm/hour) by the following equation:312

dS

dt
= P − E − R

∆S is calculated in the ALMIP experiment over a time interval of 3 hours. Mean an-313

nual values for the variables on the right hand side of the above equation are reported in314

Table 3. Simulated evapotranspiration is very significant over the Sahel, accounting for315

85% of input precipitation on average (multi models average for the whole study period).316

Total run-off is much less, with surface run-off accounting for 6 % and drainage for 8.5%317

of input precipitation. Total run-off is more significant in the Southern part of the study318

area, where it is 30% of input precipitation, while evapotranspiration accounts for 70 %319

of input precipitation between 6◦ N and 12◦ N. However, the partitioning between evap-320

otranspiration and total run-off is quite variable among different models: over the West321

Africa region, average yearly simulated evapotranspiration ranges from a minimum value322

of 482 mm/year for the SSIB1 model to a maximum of 677 mm/year for the HTESSEL323
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model. Total run-off ranges from a minimum value of 95 mm/year for the HTESSEL324

model to a maximum of 317 mm/year for the SSIB1 model.325

As done for the GRACE products, ∆S has been integrated over time to obtain monthly326

soil moisture and then transferred to anomalies by removing the mean over the 2003-2006327

period.328

The spatial distribution of soil moisture anomalies for the different ALMIP models in329

September is shown in Fig. 7. All models have a soil moisture maximum to the south-east330

corner of the study area and this is more evident for HTESSEL, ORCHIDEE and JULES331

than for the other models. Another area of high soil moisture, more or less pronounced,332

is found by the majority of models at about 12◦N and 5◦W. Fig. 8 shows the temporal333

variability of modelled water storage spatially averaged over the West Africa and the334

Sahel boxes for the nine land surface models considered. The temporal changes are very335

coherent among the different models and the dry and wet phases are well represented.336

This is perhaps not surprising since soil moisture changes are primarily determined by337

the precipitation events that are the same for all models. However, large differences338

among the model simulations can be observed during the drying phase following the rainy339

season. Differences in the parametrisations employed by different land surface models are340

indeed enhanced in this period compared to the wetting phase when the water storage341

simulation is more constrained by the input precipitation. Significant differences of soil342

moisture seasonal amplitudes among different models are also observed.343

3. Results

In the following section, the spatial and temporal distribution of water storage anomalies344

by GRACE and soil moisture anomalies by ALMIP are analysed.345
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Given the scatter among different GRACE water storage estimations as well as among346

different model results, the comparison between GRACE products and ALMIP results347

does not allow the determination of ’the best’ GRACE products or ’the best’ land sur-348

face model. Therefore, in the following analysis, results are first presented as mean and349

standard deviation values for the 6 GRACE products compared to mean and standard350

deviation values for the 9 ALMIP models considered.351

Fig. 9 shows the temporal evolution of the mean GRACE and the mean ALMIP water352

storage anomalies over the 2003-2007 period. A general agreement is found between satel-353

lite and model estimations: the wet and dry phases are distinguished well in both cases,354

and water storage mean amplitudes are quite similar. The overall agreement between355

GRACE and models is worse during the dry season: GRACE products show a strong356

interannual variability that is not observed for the ALMIP models in the dry season.357

Moreover, a water storage increase during the dry season (January to March) is some-358

times observed in the GRACE data, particularly in 2005, but also in 2007 and to a lesser359

extent in 2006. This increase, detected by all of the GRACE products (fig. 4), is unlikely360

related to the data processing methodology, but its causes remain unclear.361

The comparison between satellite and model outputs has to be carried out carefully since362

the two estimates are not completely equivalent. Water storage estimates by GRACE do363

take into account soil water integrated over the entire soil depth, therefore including364

aquifers as well as surface water contained within river beds and floodplains. In the land365

surface models employed here, the entire ”hydrologically active” soil depth is represented366

by a shallow soil reservoir. In addition there is no water transfer between adjacent cells367

and drainage through the deepest soil limit is lost. No explicit treatment of river water368
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and floodplains is taken into account in this study. The comparison is therefore valid if369

these effects are not significant over the study area.370

As detailed in the following subsection, for the Sahel box, we have calculated the con-371

tribution of water in the Niger River (the largest river of the Sahel box) and in the Niger372

delta to the seasonal variations of equivalent water height.373

The effects of aquifers and the water table are much more difficult to quantify given the374

scarcity of information of these variables at a regional scale and the large heterogeneity375

of underground systems in West Africa. In this sense, GRACE may provide missing376

information that is otherwise difficult to quantify. If all the other sources of discrepancies377

are accounted for, one can argue that the differences between GRACE and ALMIP gives378

an indication of water table variability.379

3.1. Niger River and Niger delta contribution

The Niger River looses water through evaporation when flowing in the Sahelian zone380

because of the large floodplain known as the Mali wetland or the Niger inner delta and381

also because a large part of the basin consists of endhoreic systems, which do not con-382

tribute water to the river [Descroix et al. , 2009]. Water mass variations have been383

estimated using satellite altimetry data for the Niger River and from literature for the384

Niger delta. As detailed in the appendix, records of 12 altimetry-derived water levels from385

the Hydroweb website (http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb) based386

on measurements from Topex/Poseidon, Jason-1, ERS-2, ENVISAT and GFO, have been387

combined to estimates of the river width to derive variations in the river water mass. For388

the inner delta, the mass of water has been estimated by the difference in river discharge389

at Dire (outlet) and Douna and Kirango (upstream) from the Global Runoff Data Center390
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(http://www.grdc.sr.unh.edu/), subtracting evaporation losses within the delta (see the391

appendix).392

Fig. 10 shows the Niger River and Niger delta TWS (mm) anomaly for the Sahel box.393

The main contribution is due to the delta, with a seasonal amplitude of -4 to 6 mm while394

the river water mass varies between -2 and 2 mm. Due to the delay caused by the slow395

water progression in the floodplain, the Niger flood peak shifts from August to December396

when flowing in the Sahel box, which attenuates the seasonal cycle of the total mass397

variation. The contribution of the other rivers in the Sahel box is expected to be, at398

most, of the same magnitude as the Niger river, with a seasonal cycle of a few millimetres399

or less.400

3.2. Seasonal cycle

The mean seasonal cycle , calculated as the mean over the period 2003-2007 for each401

month, is plotted in fig. 11. In general, a good agreement is found between GRACE and402

ALMIP seasonal water storage variations for both West Africa and the Sahel. To better403

compare GRACE estimates and ALMIP output over the Sahel, the water in the Niger404

River and Niger delta has been removed from the GRACE signal and also plotted (gray405

curve in fig. 11, right panel): GRACE water storage amplitudes are slightly reduced in406

September and October but the shape of the seasonal cycle is not substantially changed,407

in line with the conclusions by Kim et al. [2009] for semiarid areas. Correcting for408

leakage effects, as discussed in section 2.1.1, may further reduce GRACE amplitudes over409

the Sahel and make them more consistent with ALMIP amplitudes. Mean total run-off by410

ALMIP (also shown in fig. 11) is between 0 and 15 mm, so the effects of its redistribution411

on water storage amplitudes cannot be higher than 15 mm. Also ALMIP models do not412
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explicitly account for water table that could increase the water storage amplitudes. Given413

that, over the Sahel, seasonal water storage amplitudes by GRACE and ALMIP are of414

the same order, groundwater level variations, not represented in land surface models, do415

not seem to be the most significant factor affecting water stock variations in this region.416

Instead, for the West Africa box, GRACE amplitudes may be underestimated because of417

leakage effects which could therefore enhance the difference between GRACE and ALMIP.418

This suggests a more important role of slow reservoirs (rivers, dams, aquifers) in the419

southern part of the study region.420

Regarding the shape of the seasonal cycle, a steeper slope is observed for GRACE than421

for ALMIP during the drying-up phase (January to April) for both the West Africa and422

the Sahel boxes. Only two models ISBA and CLSM (fig. 12 top) show a depletion of423

available moisture comparable to GRACE results in the Sahel. As shown in Fig. 12424

(middle) this is mainly due to differences in the formulation of dry season evaporation425

Indeed for ISBA and CLSM, evapotranspiration during the dry season over the Sahel is426

about double than for the other ALMIP models (for example, average values between427

January and April are of 14mm/month for ISBA and 12 mm/month for CLSM). In the428

case of ISBA, the bare soil parametrisation includes water vapour transfer in addition to429

liquid water transfer allowing a more efficient drying of the surface layer that may therefore430

enhance evaporation during the dry season. For the CLSM model, the representation of431

a saturated zone and of sub grid heterogeneity, redistributing water within the pixel in432

ponds, shallow water table and temporary flooded areas, results in a longer water retention433

in the soil layer after the wet season, which allows a sustained evaporation during the dry434
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phases. This longer ”memory effect” in the water budget of the CLSM has already been435

reported by Mahanama and Koster [2003].436

As far as the wet season is concerned (see also fig. 7), soil moisture differences among437

different models are linked to differences in evapotranspiration for the majority of the438

models considered here (ISBA, JULES, SWAP, ORCHIDEE, CLSM, SETHYS) for which439

slightly higher soil moisture values in the wet season correspond to lower evapotranspira-440

tion, which is related to reduced net radiation (not shown). SSIB and NOAH soil moisture441

anomalies are less related to evapotraspiration: indeed these two models generate much442

more total run-off than the land surface model average. In contrast, HTESSEL generates443

a smaller amount of total run-off than the other models. For HTESSEL and SSIB, these444

differences can be due to the use of a different soil and vegetation parameters than the445

other ALMIP models (which used ECOCLIMAP: see Table 2). For NOAH, the high total446

run-off is likely due to the particular scheme developed by Decharme [2007]. Indeed,447

significant differences in the water budget components are found for models employing448

the same soil and vegetation parameters. These differences are therefore related to the449

intrinsic physics of each model and particularly the run-off scheme. CLSM stands apart450

from the other models, and shows a shift in the seasonal evolution of evapotranspiration451

that is more delayed into the season with a maximum arriving about one month after the452

other models which is related to the long memory effect discussed above. It should be453

noted that the inter-model scatter in the ALMIP models is consistent with other similar454

off-line model intercomparison projects (see a recent example by Dirmeyer et al. [2006])455

In terms of the seasonal cycle phase, GRACE wetting and drying up periods are gener-456

ally delayed in comparison to ALMIP results. A similar shift of about one month has been457
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also reported by Schmidt et al. [2008], who compared GRACE and models estimations458

over 18 drainage basins in the world, and was attributed to the incomplete description459

of water lateral transfers in the water storage modelling. The inclusion of a slow reser-460

voir, accounting for processes such as surface run-off routing and drainage into deeper461

soil layers, could change the shape of the seasonal cycle, with more water being retained462

after the wet season and being evacuated progressively during the dry season, instead of463

being immediately lost by run-off and drainage. However Winsemius et al. [2006] and464

Klokocnik [2008] also found temporal shifts and hypothesize that these could be caused465

by leakage or the irregular sampling of the GRACE satellites.466

3.3. Zonal distribution of land water storage

Fig. 13 shows the zonal distribution of soil water storage amplitudes which have been467

calculated as the difference between the maximum and the minimum values for each468

latitudinal band for the different GRACE products and the different ALMIP models in469

2006. The absolute values of the amplitudes vary among GRACE products, but the shape470

of their zonal distribution is quite similar for all the products with a well defined peak471

at about 10◦ N (except for the GFSC solution, which spatial resolution of 4◦x4◦ is not472

fine enough to determine the shape of the zonal curve). A more important spread in the473

absolute values of the amplitudes is observed for the ALMIP results, with CLSM much474

higher and SSIB much lower than the average. Moreover, model outputs do not agree475

on the shape of the latitudinal distribution with peaks scattered between 8◦ and 11◦ N.476

These differences seem to be at least partially explained by evapotranspiration differences477

during the dry season. As shown in Fig. 14, models with higher evapotranspiration478

between December and March correspond to models with the higher soil moisture seasonal479
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amplitudes and vice versa. CLSM exhibits again a distinct behaviour (fig. 13 and 14),480

which is consistent with its formulation as it is the only LSM including a water table and481

the effect of deep soil moisture memory. However Gascoin et al. (2009) showed that this482

water table may be insufficient to capture large regional aquifer dynamics.483

We already discussed the role of evapotranspiration during the dry season to explain484

the soil moisture seasonal curve over the Sahel (fig. 9 right panel). The results reported485

here show that dry season evapotranspiration plays an important role to the South of the486

study region also (figs. 13 and 14).487

3.4. Interannual variability

Interannual variability has been evaluated by subtracting the mean seasonal cycle488

(shown in Fig. 9) from the water storage temporal evolution in Fig. 7. The results489

are shown in Fig.15 for the Sahel box. For clarity, the wet season (August-November) and490

the rest of the year (December to July) are reported separately. From August to Novem-491

ber, a promising good agreement is found between GRACE and ALMIP: both clearly492

show, for example, the wet conditions at the end of the 2003 rainy season that was rather493

good in term of precipitation amount, the important and dramatic drought that affected494

the Sahel at the end of 2004, the early onset of the monsoon in 2005 and the delayed495

onset in 2007 and 2006. Similar results (not shown) have been found for the entire West496

African region. In the December to July period, ALMIP models do not show a significant497

interannual variability except for a small signature from the previous wet season evident498

at the end of 2003 and of 2004, which are the extreme wet and dry years. This is may499

be due to the fact that the ALMIP simulations, except for the CLSM model, do not have500

strong dynamics in the soil layer below the root zone. On the contrary GRACE estimates501
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indicate large interannual water storage variations for the December to July period also.502

This could be due to variability in slow water reservoirs that are not well accounted for503

by models. Even if noise in the GRACE water height solutions may affect the results, the504

GRACE interannual signature during the dry season is consistent with precipitation in505

the previous rainy season. GRACE data provide therefore a base to study memory effects506

and particularly the impact of the previous monsoon season on the following monsoon507

onset.508

4. Concluding discussion

The results of this study show that GRACE products provide useful detection of water509

storage changes over West Africa and the Sahel. An important outcome of this study is510

that GRACE data are able to reproduce the water storage interannual variability over511

the Sahel. This is encouraging for the evaluation of water storage monitoring and trend512

detection, which will be possible when satellite gravimetry data will be available over a513

sufficiently long time period.514

Substantial uncertainties remain in terms of the magnitudes estimated by the different515

GRACE products. The effects of leakage on the estimated water storage variations by516

GRACE could account for a part of the observed discrepancies, but they should not sub-517

stantially change the results presented here, at least over the Sahel. Indeed, for the large518

domains used in this study, the differences among different GRACE solutions, accounted519

for by the multi-product analysis carried out here, are higher than the estimated effects520

of leakage .521

The comparison between GRACE products and ALMIP soil moisture estimations al-522

lowed the identification of the most critical processes that need to be taken into account523
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to improve water storage modelling over the study area. In line with the findings of other524

studies comparing GRACE products and land surface model outputs over different areas525

[Ngo-Duc et al. , 2007; Niu et al. , 2007; Güntner et al. , 2008; Syed et al. , 2008; Kim526

et al. , 2009; Alkama et al. , 2009], the inclusion of slow water reservoirs and transfer527

schemes routing total run-off in the land surface models could improve the agreement528

between satellite and model estimates in West Africa. Moreover, we have shown that dry529

season processes, in particular evapotranspiration, play an important role in the modelling530

of soil moisture over the Sahel. This is also the case in the Southern part of the study531

region where vegetation effects are more important. Even when using the same soil and532

vegetation input data (soil type, soil depth, vegetation type and root depth), models differ533

in the soil moisture estimations. The simulation of the dynamics of the deepest soil layers534

is therefore a critical issue, particularly concerning processes related to vertical transfers535

upwards and downwards, horizontal heterogeneity, transpiration through deep roots and536

gas phase transfers for dry soil evaporation. This further points out the value of GRACE537

satellite data for water cycle related studies in this region where observations are quite538

scarce and modelling is difficult.539

5. Appendix

Monthly Niger height levels averaged over 2002-2007 have been derived from altimetry540

data at twelve locations in the Sahel box (Table 4). For each station, river width at the541

minimum and maximum river height has been derived from Landsat and Google Earth542

imagery and the River cross section for each monthly data has been estimated assuming543

a trapezoidal section. The length of the river corresponding to each location (which544

characteristics are summarised in Table 4) has been derived from Google Earth imagery,545
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excluding the delta (Kirango to Dire). The total length of the Niger river in the Sahel546

box is 1636 km (delta excluded).547

The water budget of the delta can be written as:

∆D

∆t
= Fin − Fout −ETRdelta + (Rlocal + Plocal + I)

where D is the mass of water, Fin is the water entering the delta measured at548

Kirango and Douna and exiting the delta at Dire (data obtained from from GRDC549

http://www.grdc.sr.unh.edu/), ETRdelta represents evaporation losses in the delta. The550

other terms are precipitation on the delta (Plocal), small range run-off contributing to551

the delta (Rlocal) and exchanges with water tables (I), which are neglected ([Mahé et al.552

, 2009]). ETRdelta is computed as the product of the flood surface Sdelta by monthly553

evaporation rate for open water E given by Quensière et al. [1994], table 5, as:554

ETRdelta = E · Sdelta

The flooded surface is estimated for 2003 using equations given by Zwart and Grigoras555

[2005] for expanding and receding periods, based on water height data at Akka and landsat556

images.557

To ensure consistency, monthly ETR for 2003 has been rescaled so that annual ETR558

corresponds to annual Fin − Fout which is measured over 1922-1992.559
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Table 1. GRACE products employed in this study.

Product name Spatial Spatial Temporal Time span

grid resolution frequency

GFZ -v 04 1◦x1◦ 400 km 1 month Oct 2002-Apr 2008

(missing Jan 2003, Jun 2003, Jan 2004, Sept 2004*)

JPL -v 04 1◦x1◦ 400 km 1 month Aug 2002-Apr 2008

(missing Jan 2003, Jun 2003, Jan 2004)

CSR -v 4.1 1◦x1◦ 400 km 1 month Sep 2002-Apr 2008

(missing Jun 2003, Jan 2004)

DEOSS DMT V 1 1◦x1◦ 400 km 1 month Feb 2003 - Dec 2007

(missing Jun. 2003)

CNES -GRGS v 2 1◦x1◦ 400 km 10 days Aug 2002-May 2008

GSFC -Mascons 4◦x4◦ 4◦x4◦ 10 days Apr 2003-Apr 2007

* removed because of aliasing problems
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Table 2. Land surface models participating to ALMIP-Exp3. The names of the people who

performed the simulations are in italic below the institute name. The model configuration used

for ALMIP is shown in the rightmost column where L represents the number of vertical soil layers,

E represents the number of energy budgets per tile, and SV corresponds to the soil-vegetation

parameters used. Tile refers to the maximum number of completely independent land surface

types permitted within each grid box.

Model Acronym Institute Recent Reference ALMIP configuration

HTESSEL ECMWF, Reading, UK Balsamo et al. [2008] 4L, 6 tiles, 1E,
G. Balsamo SV: ECMWF

ORCHIDEE IPSL, Paris, France d’Orgeval et al [2008]; 11L, 13 tiles, 1E,
-CWRR P. de Rosnay de Rosnay et al. [2002] SV: ECOCLIMAP

ISBA CNRM, Toulouse, France Noilhan and Mahfouf [1996] 3L, 1 tile, 1E,
A. Boone SV : ECOCLIMAP

JULES CEH, Wallingford, UK Essery et al. [2003] 4L, 9 tiles, 2E,
P. Harris SV: ECOCLIMAP

SETHYS CETP/LSCE, France Saux-Picart et al. [2009] 3L, 12 tiles, 2E,
S. Saux-Picart and C. Ottlé SV: ECOCLIMAP

NOAH CETP/LSCE (NCEP) Chen and Dudhia [2001]; 7L, 12 tiles, 1E,
B. Decharme and C. Ottlé Decharme [2007] SV: ECOCLIMAP

CLSM UPMC, Paris, France Koster et al. [2000] 3L, 5 tiles, 1E,
S. Gascoin and A. Ducharne Gascoin [2009] SV: ECOCLIMAP

SSiB LETG, Nantes, France; Xue et al. [1991] 3L, 1 tile, 2E,
UCLA, Los Angeles, USA SV: SSiB
I. Poccard-Leclercq

SWAP IWP, Moscow, Russia Gusev et al. [2006] 3L, 1 tile, 1E,
Y. Gusev and O. Nasonova SV: ECOCLIMAP
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Table 3. Water budget components by the ALMIP land surface models over West Africa and

the Sahel. For the ensemble of the ALMIP models considered, mean values are reported.

West Africa
2003 2004 2005 2006 2007

Precipitation (mm/year) 894 769 698 740 791
Evaporation (mm/year) 639 619 591 585 575
Surface runoff (mm/year) 67 52 44 49 61
Drainage (mm/year) 164 110 77 103 145

Sahel
2003 2004 2005 2006 2007

Precipitation (mm/year) 535 404 449 433 433
Evaporation (mm/year) 437 362 381 377 361
Surface runoff (mm/year) 35 24 26 23 28
Drainage (mm/year) 58 32 33 29 40

Table 4. Characteristics of the altimetry stations used to estimate water mass in the Niger

river in the Sahel box.

Station ID Lat Lon min width (m) max width (m) River length (km)

259 13.18 352.89 600 3090 295.0
173 13.72 354.20 300 2400 87.0
459 16.67 357.11 600 2100 23.5
388 16.73 357.44 1000 4000 43.5
917 16.83 357.80 400 1500 49.0
846 16.92 358.20 380 1500 45.5
373 17.01 358.47 500 4500 60.5
302 17.01 358.94 260 1550 58.0
831 17.00 359.19 400 2000 55.0
760 16.94 359.64 500 7000 102.5
287 15.96 0.15 370 2800 183.0
745 14.31 1.25 550 2900 633.5

Table 5. Monthly evaporation rate(mm) after Quensière et al. [1994]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
167 187 212 219 230 215 205 170 173 180 180 160
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Figure 1. Study area, with overlaid the West Africa and Sahel boxes employed in this study.
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Figure 2. Monthly precipitation (mm) over West Africa and the Sahel by the TRMM dataset

employed for the ALMIP simulations.

D R A F T February 11, 2011, 4:35pm D R A F T



X - 44 GRIPPA ET AL.: WATER STORAGE VARIABILITY OVER WEST AFRICA

Figure 3. Spatial distribution of water storage anomalies (mm) over the West Africa study

region for all the GRACE products. September 2006.
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Figure 4. Seasonal cycle (multi annual mean over the study period 2003-2007) for CSR, JPL

and GFZ solutions unsmoothed and smoothed by a Gaussian filter of 500 km.

Figure 5. Leakage correction for CSR solutions over West Africa and the Sahel
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Figure 6. Water storage changes for the 6 different GRACE solutions employed in this study,

spatially averaged over the West Africa and the Sahel boxes.
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Figure 7. Spatial distribution of water storage anomalies (mm) over the West Africa study

region for all the ALMIP models analysed. September 2006.
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Figure 8. Simulated water storage changes for the 9 different models employed in this study,

spatially averaged over the West Africa and the Sahel boxes.
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Figure 9. Temporal evolution of GRACE (multi-solutions mean and standard deviation) and

ALMIP (multi-models mean and standard deviation) water storage variations for the West Africa

and the Sahel.
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Figure 10. Water storage contribution from the Niger river (water in the river itself, in the

delta and total) in the Sahel box.

Figure 11. Water storage mean seasonal cycle over the period 2003-2007 for GRACE (multi-

solutions mean and standard deviation) and ALMIP (multi-models mean and standard devia-

tion). The mean total run-off by ALMIP is also shown in blue. The Gray curve on the right

hand plot represents the GRACE water storage without the Niger river contribution (fig. 10)
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Figure 12. Soil moisture, evaporation and total run-off (runoff+drainage) mean seasonal cycle

over the period 2003-2007 for the different ALMIP models.
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Figure 13. Latitudinal distribution (transects of 1◦ in latitude averaged over the full longitude

extent of the study area of the annual amplitudes (difference between maximum and minimum

values) in 2006 estimated by GRACE (left panel) and ALMIP models (right panel).

Figure 14. Latitudinal distribution of dry season (December to March) evaporation for the

different ALMIP models.
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Figure 15. Interannual variations (temporal evolution minus seasonal cycle) in the water stor-

age estimations by GRACE (multi-solutions mean and standard deviation) and ALMIP (multi-

models mean and standard deviation) during the August to November (top) and December to

July (bottom) periods.
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