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Abstract

We present a novel class of particle methods with deformable shapes that achieve high-
order convergence rates in the supremum norm. These methods do not require remappings
or extended overlapping or vanishing moments for the particles. Unlike classical convergence
analysis, our estimates do not rely on a smoothing kernel argument but rather on the uni-
formly bounded overlapping of the particles supports and on the smoothness of the charac-
teristic flow. In particular, they also apply to heterogeneous “particle approximations” such
as piecewise polynomial bases on unstructured meshes. In the first-order case which simply
consists of pushing forward linearly transformed particles (LTP) along the flow, we provide an
explicit scheme and establish rigorous error estimates that demonstrate its L∞ convergence
and the uniform boundedness of the particle overlapping. To illustrate the flexibility of the
method we also develop an adaptive multilevel version that includes a local correction filter
for positivity-preserving hierarchical approximations. Numerical studies demonstrate the con-
vergence properties of this new particle scheme in both its uniform and adaptive versions, and
compare it with traditional fixed-shape particle methods with or without remappings.

1 Introduction

Efficient and simple particle methods are extremely popular for the numerical simulation of trans-
port equations involved in many physical problems ranging from fluid dynamics [8, 12] to kinetic
(e.g., Vlasov) equations [7, 18]. However, particle methods also suffer from weak convergence prop-
erties that lead to important disadvantages in many practical cases. Specifically, it is known that
they only converge in a strong sense when the particles present an extended overlapping, that is,
when the number of overlapping particles tends to infinity as the mesh size h of their initialization
grid tends to 0, see e.g., Refs. [3, 25]. Moreover, convergence rates are known to be suboptimal
and for high orders they require additional constraints (namely, vanishing moments) that are not
satisfied by positive shape functions. In practice, extended particle overlapping can be expensive
and it involves an additional parameter to be optimized, such as the overlapping exponent q < 1
for which the particles radius behaves like hq � h. In Particle-In-Cell (PIC) codes for instance,
this amounts to increasing the number of particles per cell together with the number of cells, as
the latter determine the effective radius of the particles [7]. In Smoothed Particle Hydrodynamics
(SPH) schemes it amounts to increasing the number of interacting particles [24]. Because of these
issues, many particle simulation methods do not meet the conditions of convergence which can re-
sult in numerically intensive simulations for acceptable accuracy. Also, limited numerical resources
often produce strong oscillations seen as a statistical noise that hamper interpretation of results
and can further cause large scale errors.

To suppress noise, many methods (like the Denavit redeposition scheme [16], recently revisited
as a Forward Semi-Lagrangian scheme (FSL), see e.g., Refs. [23, 11, 14]) use periodic remappings,
i.e., particle re-initializations that smooth out the evolution. However, frequent remappings can
introduce unwanted numerical diffusion which leads some authors to introduce high-order adaptive
remappings, see, e.g. Refs. [6, 28], and in many cases contradicts the benefit of using low-diffusion
particle schemes.
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In this article, we present a new class of particle methods with deformable shapes that converge
in the supremum norm without requiring remappings or extended overlapping or vanishing mo-
ments for the particles. Unlike classical error estimates based on a smoothing kernel argument, our
analysis applies to general particle collections with Lipschitz smoothness and bounded overlapping
properties. In particular our estimates easily extend to the transport of heterogeneous particle
approximations, such as standard finite elements bases.

Our results are threefold. On a formal level first, we establish high-order convergence rates in
L∞ for a class of transport operators where the particle shapes are deformed with polynomial map-
pings, the coefficients of which involve spatial derivatives of the backward flow. In particular, the
first-order case is a linearly-transformed particle method (LTP) where the particles are deformed
with the Jacobian matrices of the backward flow. It corresponds to a method already studied by
Cohen and Perthame [10] who established its first-order convergence in L1 but did not provide
a numerical scheme for the deformation matrices. It can also be viewed as a modified version of
Hou’s method [20] where instead of using a global deformation mapping, each particle is trans-
formed by the linearized flow around its trajectory. On a numerical level, we provide an explicit
scheme for the LTP method that is based solely on pointwise evaluations of the forward flow, and
we establish rigorous a priori estimates for both the transport error and the particle overlapping.
To illustrate the flexibility of our approach we also present an adaptive multilevel LTP scheme
where local estimates for the single-particle transport errors are used to decide which particles are
dynamically refined, and a local correction filter for high-order positivity-preserving hierarchical
approximations is presented. On a practical level we eventually present some academic test cases
and show that the LTP scheme converges faster than the traditional “smoothed” particle method
with extended overlapping (TSP). Here the convergence is significantly improved by introducing
periodic remappings, but compared with the FSL scheme we also show that optimal remapping
frequencies are much lower with LTP, leading to lower numerical diffusion and computational cost.
Finally we verify that our adaptive LTP scheme enhances the convergence of solutions with sharp
edges by equi-distributing the transport error.

As we have pointed out, deforming the particles is not a new idea. Dynamic adaptation,
i.e., refinement and coarsening of particles, also has a substantial history. In vortex methods for
instance, Cottet, Koumoutsakos and others have introduced a variety of algorithms to handle
particles with spatially varying sizes based on global or local mappings, see e.g. [13, 5]. In kinetic
(PIC) schemes, Lapenta, Assous and others developed “rezoning” algorithms to increase or lower
the number of particles per grid cell, while preserving grid moments such as charge, current or
energy density, see e.g. [21, 1]. For pure transport problems, Bergdorf and Koumoutsakos [6] have
studied a wavelet-based FSL scheme with adaptive, high-order remappings. However, although the
list is not exhaustive we observe that these methods only adapt the size of the particles, and not
their shape. A noteworthy exception is the Complex Particle Kinetic method developed by Bateson
and Hewett for the simulation of plasmas [2, 19] where in addition to having their Gaussian shape
transformed by the local shearing of the flow, the particles can be fragmented to probe for emerging
features, and merged where fine particles are no longer needed. When mature, our adaptive scheme
will naturally have to be compared with the above methods.

The outline of the article is as follows. In Section 2 we begin with a brief overview of the main
particle methods, we introduce some notations and state our main results. In Section 3 we present
our class of high-order particle methods with polynomial deformations, and provide a fully discrete
LTP scheme with a priori estimates. Section 4 is then devoted to the description of an adaptive
multilevel LTP scheme based on refinable B-splines, and our numerical studies are presented in
Section 5.

Readers mostly interested in the practical aspects of the LTP scheme may prefer to first read
Sections 2.3, 3.1, 3.3 and 3.4. Its main properties are stated in Theorem 3.2, and its adaptive
multilevel version is summarized in Algorithms 4.1, 4.2 and 4.4.

2 A brief overview of particle methods

To introduce some notations and state our main results we begin with a rapid overview of some
important particle methods. Following [25, 10] we consider the linear d-dimensional transport
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equation
∂tf(t, x) + u(t, x) · ∇f(t, x) = 0, t ∈ [0, τ ], x ∈ Rd (1)

associated with an initial data f in : Rd → R, a final time τ and a velocity field u : [0, τ ]×Rd → Rd.
In fluid problems for instance, we have d = 2, 3, while in kinetic formulations Rd is a phase space
with d ≤ 6, and u is a generalized velocity field with components of velocity and acceleration. In
any case, we assume that u is smooth enough for the characteristic trajectories X(t) = X(t, t0, x0),
solutions to

X ′(t) = u(t,X(t)), X(t0) = x0, (2)

to be defined on [0, τ ], for all x0 ∈ Rd and t0 ∈ [0, τ ], see, e.g., [25]. In particular, the corresponding
characteristic flow Ft0,t : x0 7→ X(t) is invertible and satisfies Ft,t0 = (Ft0,t)

−1. Hence solutions to
(1) read

f(t, x) = f(t0, (Ft0,t)
−1(x)) for all t0, t ∈ [0, τ ] and x ∈ Rd.

For simplicity, we restrict ourselves to the incompressible case where div u = 0. In particular, the
flow is measure preserving in the sense that its Jacobian matrix JFt0,t(x) =

(
∂j(Ft0,t)i

)
1≤i,j≤d has

a constant determinant equal to 1,

det
(
JFt0,t(x)

)
= 1 for all t0, t ∈ [0, τ ] and x ∈ Rd.

2.1 The traditional smoothed particle method (TSP)

In the standard “academic” particle method [25], numerical solutions are typically computed as
follows: considering deterministic initializations for simplicity, the initial data is first approximated
by a collection of particles on a regular (say, cartesian) grid of step h > 0, i.e., we set

f0
h,ε(x) :=

∑
k∈Zd

wk(f in)ϕε(x− xk) ≈ f in(x), x ∈ Rd,

with xk = hk and weights defined by

wk(f in) :=

∫
xk+[−h2 ,

h
2 ]
d
f in(x) dx or wk(f in) := hdf in(xk). (3)

Here ϕε = ε−dϕ(·/ε) is the particle shape function with radius proportional to ε, usually seen as a
smooth approximation of the Dirac measure obtained by scaling a compactly supported “cut-off”
function ϕ for which a common choice is a B-spline. Particle centers are then updated at each
time step tn = n∆t by following the flow Fn = Ftn,tn+1 or its numerical approximation, and the
weights are kept constant, leading to

fn+1
h,ε (x) :=

∑
k∈Zd

wk(f in)ϕε(x− xn+1
k ) ≈ f(tn+1, x) with xn+1

k := Fn(xnk ), k ∈ Zd,

and where we have set x0
k = xk. In the classical error analysis [3, 25], the above process is seen as (i)

an approximation – in the distribution sense – of the initial data by a weighted collection of Dirac
measures, (ii) the exact transport of the Dirac particles along the flow, and (iii) the smoothing
of the resulting distribution

∑
k wk(f in)δxnk with the convolution kernel ϕε. The classical error

estimate reads then as follows: if for some prescribed integers m > 0 and r > 0, the cut-off
ϕ has m-th order smoothness and satisfies a moments condition of order r, namely if

∫
ϕ = 1,∫

|x|r|ϕ(x)|dx <∞ and∫
xs11 . . . xsdd ϕ(x1, . . . , xd) dx = 0 for s ∈ Nd with 1 ≤ s1 + · · ·+ sd ≤ r − 1,

then there exists a constant C independent of f in, h or ε, such that for all n ≤ τ/∆t we have

‖f(tn)− fnh,ε‖Lµ ≤ C
(
εr‖f in‖W r,µ + (h/ε)m‖f in‖Wm,µ

)
(4)
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with 1 ≤ µ ≤ ∞. More recently, Cohen and Perthame [10] observed that defining the weights as

wk(f in) =

∫
Rd
f in(x)ϕ̃h(x− xk) dx (5)

with weighting function ϕ̃h = ϕ̃(·/h) derived from a compactly supported ϕ̃ ∈ C0(Rd) such that∑
k∈Zd

ks11 . . . ksdd ϕ̃(x− k) = xs11 . . . xsdd for s ∈ Nd with 0 ≤ s1 + · · ·+ sd ≤ m− 1,

one has the improved estimate

‖f(tn)− fnh,ε‖Lµ ≤ C
(
εr‖f in‖W r,µ + (h/ε)m‖f in‖Lµ

)
(6)

with a new constant that is again independent of f in, h or ε. Note that (6) is better than (4)
in that m is not constrained by the smoothness of f in, which allows to reach higher convergence
rates. Indeed balancing the error terms in the above estimates suggests to take ε ∼ hq with
q = m

m+r , yielding a convergence in h
rm
m+r . In particular, if f in ∈ W s,µ for some integer s then

the best possible rate with standard weights is only hs/2‖f in‖W s,µ , obtained with m = r = s.
With the improved weights instead, one can take a higher value for m and obtain estimates close
to hs‖f in‖W s,µ . Moreover, the latter approach also allows to improve (i.e., reduce) the particle
overlapping, since the corresponding exponents are q = 1

2 and m
m+r ≈ 1, respectively. In either

case indeed, we see from the term hqr‖f in‖W r,µ in the estimates that extended particle overlapping
does not only make the simulations more expensive, it also deteriorates their convergence order.

2.2 The forward semi-lagrangian scheme (FSL)

In Forward Semi-Lagrangian schemes (the new name for the periodically remapped particle method
introduced by Denavit [16]), extended overlapping is usually not required and particles have the
same scale than their initialization grid, i.e., ε = h. Instead, their weights and centers are re-
initialized on a regular grid once every Nr time steps. Thus, denoting by

Ah : g 7→
∑
k∈Zd

wk(g)ϕh(x− xk)

the particle approximation operator with xk = hk and weights computed, e.g., as in (3), and by

Tn : ϕh(· − xnk ) 7→ ϕh(· − Fn(xnk ))

the fixed-shape particle transport operator, the FSL scheme takes the form

fn+1
h :=

∑
k∈Zd

wn+1
k ϕh(· − xn+1

k ) := Tnf̃nh with f̃nh :=

{
Ahf

n
h if mod (n,Nr) = 0

fnh otherwise,
(7)

where Tn has been extended to collections of particles by linearity.

2.3 The linearly-transformed particle method (LTP)

In this article we shall develop a lesser-known approach already studied by Cohen and Perthame [10]
who observed that by deforming the particles with the linearized flow around their trajectories,
one obtains a convergent method (in L1) with particles scaled with their initialization grid, and
no remappings. On a formal level this amounts to defining linearly-transformed particles as

ϕh,k(t, x) := ϕh
(
Jk(t)(x− xk(t))

)
with xk(t) = F0,t(xk) and Jk(t) := JFt,0(xk(t)). (8)

In practice, we have seen that occasional remappings are needed for accurate solutions. We may
then rewrite the numerical LTP scheme in a form similar to (7), but particles are now associated
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with invertible d × d deformation matrices Dn
k representing backward Jacobian matrices at xnk .

Thus, numerical solutions read

fnh (x) =
∑
k∈Zd

wnkϕ
n
h,k(x) :=

∑
k∈Zd

wnkϕh(Dn
k (x− xnk )) (9)

and transporting the particles consists in updating the deformation matrices Dn
k together with the

particle centers xnk . In section 3.3 we will describe a numerical method for doing so, that is solely
based on pointwise evaluations of the (approximated) forward flow Fn. We may then summarize
our findings as follows.

Main results. The formal LTP method (8) converges with order 1 in L∞, and arbitrary orders
can be reached with proper polynomial deformations which coefficients involve the derivatives of
the backward flow (see Theorem 3.1). On the numerical side, an explicit implementation of the
LTP transport operator based on finite-difference approximations of the forward Jacobian is also
shown to converge with order 1 in L∞ with no remappings required (see Theorem 3.2). In practice
this leads to improved convergence compared to both TSP and FSL schemes, with lower remapping
frequencies than the latter (see Section 5.1). Moreover, local error estimates for the single-particle
transport errors are established (see Theorem 3.2 again) that can be used for dynamic refinements
in a hierarchical particle framework (see Section 5.2).

In the sequel it will be convenient to use the maximum norm ‖x‖∞ := maxi|xi| for vectors and
the associated ‖A‖∞ := maxi

∑
j |Ai,j | for matrices. For functions in Sobolev spaces Wm,∞(ω)

with integer index m > 0 we will use semi-norms defined as

|v|m,ω := max
i

{ d∑
l1=1

· · ·
d∑

lm=1

‖∂l1 · · · ∂lmvi‖L∞(ω)

}
,

and for conciseness we shall drop the domain ω ⊂ Rd when it is the whole space.

3 Particle methods without smoothing

In this section we develop particle methods that deviate from the existing “smoothed” approaches
described in Sections 2.1 and 2.2 in the following sense.

• Convergence (including high-order) is proved without resorting to a smoothing kernel argu-
ment as with TSP schemes. Instead particles have their radius proportional to the meshsize
h of their initialization grid, which

(i) permits using not only one single particle shape but also heterogeneous collections such
as standard finite element bases, as no vanishing moments or high-order smoothness is
required ;

(ii) allows to compute their weights with standard approximation schemes, including hier-
archical ones ;

(iii) yields uniformly bounded numbers of overlapping particles.

• Remappings are not required for convergence as in FSL schemes, although they may improve
the results in practice.

To simplify the presentation we shall focus on homogeneous spline particles, although het-
erogeneous bases could be used, see Remark 3.2 below. Thus, in Section 3.1 we first recall one
local approximation scheme with B-splines, then in Section 3.2 we introduce the particle transport
operators with polynomial shape transformations that converge without smoothing arguments.
In Section 3.3 we next describe one explicit implementation of the first-order transport operator
T1, and after giving one practical tool for localizing arbitrary particles with linearly transformed
supports in Section 3.4, we establish rigorous error estimates in Section 3.5, that prove both the
uniform convergence and the uniformly bounded overlapping of the deformed particles.

5

ha
l-0

06
49

82
1,

 v
er

si
on

 1
 - 

8 
D

ec
 2

01
1



3.1 High-order quasi-interpolations with B-spline particles

For simplicity, we shall consider homogeneous particles based on tensorized B-splines. Specifically,
the univariate (centered) cardinal B-spline Bp is a piecewise polynomial of degree p, globally Cp−1

and supported on [−p+1
2 , p+1

2 ]. It can be defined recursively by

B0 = χ
[− 1

2 ,
1
2 ]

and Bp(x) = (Bp−1 ∗ B0)(x) =

∫ x+
1
2

x− 1
2

Bp−1, for p ≥ 1,

and its integer translations span the space of cardinal splines of degree p, see, e.g., [15]. Thus
B1(x) = max{1 − |x|, 0} is the traditional hat-function, B3 is the centered cubic B-spline, and so
on. Specifically, our reference particle shape function will be the tensorized, centered B-spline of
odd degree p,

ϕ(x) =

d∏
i=1

Bp(xi) supported on supp(ϕ) = [−cp, cp]d with cp := p+1
2 . (10)

Note that B-splines of odd degree are refinable, which will later allow us to reformulate our particle
method in a hierarchical, multilevel framework.

Since our particles are scaled with their initialization (or remapping) grid, we can use standard
approximation schemes that rely on the fact that the span of their integer translates

ϕh,k(x) = ϕh(x− xk) = h−dϕ(h−1x− k), k ∈ Zd, (11)

contains the space Pp of polynomials with coordinate degree less or equal to p. Specifically,
we shall consider quasi-interpolation schemes described by [9] and [27], where high-order B-spline
approximants are locally obtained by pointwise evaluations of the target function. In the univariate
case they take the form

A
(1d)
h : g 7→

∑
k∈Z

wk(g)ϕh,k with normalized weights wk(g) := h
∑
|l|≤mp

al g(h(k + l))

and symmetric coefficients al = a−l defined in such a way that A
(1d)
h reproducts the space P(1d)

p .
They can be computed with the iterative algorithm in [9, Section 6]: for the first orders we obtain

• mp = 0 and a0 = 1 for p = 1,

• mp = 1 and (a0, a1) = (8
6 ,−

1
6 ) for p = 3,

• mp = 4 and (a0, a1, a2, a3, a4) = (503
288 ,−

1469
3600 ,

7
225 ,

13
3600 ,

1
14400 ) for p = 5.

In the multivariate case we can tensorize the above, as it is easily checked that the operator

Ah : g 7→
∑
k∈Zd

wk(g)ϕh,k with wk(g) := hd
∑

‖l‖∞≤mp

al g(h(k + l)) and al :=
∏

1≤i≤d

ali (12)

reproducts any polynomial π ∈ Pp. Moreover, we have

‖Ahg‖L∞ ≤ (2cp)
d‖ϕh‖L∞ sup

k∈Zd
|wk(g)| ≤ (2cp)

d‖ϕ‖L∞‖a‖`1‖g‖L∞ (13)

with ‖a‖`1 =
∑
‖l‖∞≤mp |al|, by using the fact that no more than (2cp)

d B-splines can overlap. It
follows that Ah is uniformly bounded in L∞, with

‖Ah‖L(L∞) := sup
g 6=0

‖Ahg‖L∞
‖g‖L∞

≤ (2cp)
d‖ϕ‖L∞‖a‖`1 .

In particular, we can localize the above bounds and write, with an integer q ≤ p, that

‖Ahg − g‖L∞(B∞(xk,h)) ≤ infπ∈Pq
{
‖Ah(g − π)‖L∞(B∞(xk,h)) + ‖g − π‖L∞(B∞(xk,h))

}
≤ infπ∈Pq

{
(‖Ah‖L(L∞) + 1)‖g − π‖L∞(B∞(xk,h(mp+cp)))

}
≤ hq+1(‖Ah‖L(L∞) + 1)

(mp+cp)q+1

(q+1)! |g|q+1,B∞(xk,h(mp+cp))

6

ha
l-0

06
49

82
1,

 v
er

si
on

 1
 - 

8 
D

ec
 2

01
1



where B∞(x, ρ) denotes the open cube of center x and radius ρ, and where the last inequality is
obtained by choosing for π the q-th Taylor expansion of g around xk, namely π(x) =

∑q
r=0

1
r!φ

(r)(0)
with φ(s) = g(xk + s(x− xk)). Hence the high-order global accuracy

‖Ahg − g‖L∞ ≤ hq+1cA|g|q+1, q ≤ p (14)

with cA = (‖Ah‖L(L∞) + 1)
(mp+cp)q+1

(q+1)! .

3.2 High-order particle transport with polynomial shape transforma-
tions

We now address the problem of transporting a collection of particles

f0
h =

∑
k∈Zd

wkϕh,k ≈ f in

along the flow F = F0,τ associated with the whole time domain, with no remappings. Here we
consider particles initially centered on the cartesian grid (11), with weights satisfying

|wk| ≤ cwhd‖f in‖L∞ , k ∈ Zd (15)

with a fixed cw > 0, as it should be with any standard approximation scheme – if f0
h = Ahf

in this
is clearly the case, with cw = ‖a‖`1 . Moreover, to simplify the analysis we begin by forgetting the
time discretization (when studying a discrete particle scheme we will take into account the time
approximation errors, see Section 3.3 and following) and consider that F is known and can applied
exactly. Thus, in the traditional method particles keep their shape and are simply translated with

T = T(0) : ϕh,k 7→ ϕh(· − x̄k), with x̄k = F (xk). (16)

Note that the exact transport operator reads

Tex : g 7→ g(F−1(·)) (17)

so that (16) is exact for point (Dirac) particles. For finite-size particles however, the method does
not converge: consider the two dimensional case where p = 1, i.e., ϕ is the standard hat function,
and the infinitely smooth problem consisting of f in = 1 and u(t, x) = (−x2, x1) over the time
interval [0, π4 ]. Then any reasonnable initialization will give wk = h2, hence, f0

h(x) = 1, and clearly
the exact final solution is f(π4 , x) = 1. Now, since at the final time the particle centers will have
rotated of τ = π

4 , every particle ϕh,k with |k1|+ |k2| = 1 will be centered on (cos(θ+ π
4 ), sin(θ+ π

4 ))
with θ ∈ π

2N, and hence contributes to x = 0 with T(0)ϕh,k(0) = h−2(1− 1√
2
)2, in addition to ϕh,0

which does not move. Since other particles do not contribute to x = 0, the final error satisfies

‖(T(0) − Tex)f0
h‖L∞ ≥ |T(0)f

0
h(0)− f(π4 , 0)| = 2(

√
2− 1)2, regardless of h.

Now, to improve the accuracy of the transport operator let us analyze its error based on the
main property that the transported particles are localized by the relation

supp(Tϕh,k) ⊂ B̄h,k := B∞(x̄k, hρ̄h,k), (18)

with radius parameters uniformly bounded by ρ̄ := suph>0,k∈Zd ρ̄h,k < ∞ (which is clearly the
case for T(0), with ρ̄h,k = cp = ρ̄). Thus, we first observe that if T is such that (18) holds,
then the particles overlap in a bounded way. Indeed for all x, k such that Tϕh,k(x) 6= 0 we have
‖k − h−1F−1(x)‖∞ ≤ h−1|F−1|1‖x̄k − x‖∞ < ρ̄h,k|F−1|1, hence

sup
x∈Rd

#
(
{k ∈ Zd : Tϕh,k(x) 6= 0}

)
≤ Θ := (2ρ̄|F−1|1)d. (19)

Moreover, it is easily seen that the particles transported with the exact operator (17) also satisfy
a bounded overlapping: if k is such that Texϕh,k(x) 6= 0 then ‖k − h−1F−1(x)‖∞ < cp, hence

sup
x∈Rd

#
(
{k ∈ Zd : Texϕh,k(x) 6= 0}

)
≤ Θex := (2cp)

d.

7
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In particular, we can decompose the global error (T − Tex)f0
h in terms of particle transport errors

eh,k = (T − Tex)ϕh,k, as

‖(T − Tex)f0
h‖L∞ ≤ Θe sup

k∈Zd
‖wk(f in)eh,k‖L∞ ≤ hdcw‖f in‖L∞Θe sup

k∈Zd
‖eh,k‖L∞

holds with Θe := Θ + Θex, where we have used (15). Next we observe that the support of Texϕh,k
is localized with

Texϕh,k(x) 6= 0 =⇒ F−1(x) ∈ Σh,k := supp(ϕh,k) = B∞(xk, hcp)

=⇒ ‖x− x̄k‖∞ ≤ |F |1,Σh,k‖F−1(x)− xk‖∞ < hcp|F |1,Σh,k ,

i.e., we have

supp(Texϕh,k) = F (Σh,k) = F (B∞(xk, hcp)) ⊂ B∞(x̄k, hcp|F |1,Σh,k). (20)

Hence the localization supp(eh,k) ⊂ B̄eh,k := B∞(x̄k, hρ̄
e
h,k) for the error terms, with a new constant

ρ̄eh,k := max(ρ̄h,k, cp|F |1,Σh,k) ≤ ρ̄e := max(ρ̄, cp|F |1). In the case of particle translations, i.e., for
T = T(0), it follows that

‖eh,k‖L∞ = supx∈B̄eγ |ϕh(x− x̄k)− ϕh(F−1(x)− F−1(x̄k))|
≤ |ϕh|1 supx∈B̄eγ‖

(
F−1(x)− x

)
−
(
F−1(x̄k)− x̄k

)
‖∞

≤ h−dρ̄eh,k|ϕ|1|F−1 − I|1,B̄eh,k

(21)

where we have used the scaling |ϕh|1 ≤ h−(d+1)|ϕ|1 derived from (11). Thus, by gathering the
above steps one finds

‖(T(0) − Tex)f0
h‖L∞ ≤ CΘeρ̄

e|F−1 − I|1‖f in‖L∞ (22)

with a constant C depending only on d, p. Note that since det(JF±1(x)) = 1 is valid for all x, we
have 1 ≤ ‖JF±1(x)‖∞ ≤ |F±1|1 and hence (22) holds with Θe = 2(2|F−1|1cp)d and ρ̄e = cp|F |1.

Not surprisingly, the above analysis fails short of proving the convergence of particle transla-
tions. It also suggests one way to improve their accuracy: setting indeed

φk(s) := (F−1 − I)(x̄k + s(x− x̄k)) (23)

we may see the approximation (F−1(x)− x) ≈ (F−1(x̄j,k)− x̄k) involved in (21) as the zero-order
Taylor expansion φk(1) ≈ φk(0), and hence consider replacing ϕh(x− x̄k) by ϕh

(
Φk,(r)(x)

)
, r ≥ 1,

where

Φk,(r)(x) := x− x̄k + φ′k(0) + · · ·+ 1

r!
φ

(r)
k (0) ≈ F−1(x)− xk (24)

is formally an r-th order approximation. Note that one could also consider expansions of the
alternate φ̃k(s) := (I − F )(xk + s(F−1(x) − xk)) since φ̃k(1) − φ̃k(0) = φk(1) − φk(0), but the
particular form of (23) gives

φ
(r)
k (s) =

d∑
l1=1

· · ·
d∑

lr=1

[
∂l1 · · · ∂lr (F−1 − I)(x̄k + s(x− x̄k))

r∏
i=1

(x− x̄k)li

]
, (25)

so that Φk,(r) is a polynomial mapping which coefficients involve evaluations of space derivatives
of F−1 at x̄k. Also, (25) allows to specify the accuracy of the Taylor expansions (24) as follows:
for all r ≥ 1 and every x in a localized domain ω ⊂ B∞(x̄k, hρω) with ρω > 0, we have

‖Φk,(r)(x)− (F−1(x)− xk)‖∞ =
∥∥∥ ∫ 1

0

(1− s)r

r!
φ

(r+1)
k (s) ds

∥∥∥
∞
≤ hr+1 (ρω)r+1

(r + 1)!
|F−1|r+1,〈ω〉 (26)

where 〈ω〉 denotes the convex hull of ω.
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Thus, for r = 1 we find Φk,(r)(x) = JF−1(x̄k)(x − x̄k) where JF−1(x̄k) = JF (xk)−1 is the in-
vertible Jacobian matrix of the backward flow. In particular, Φk,(r) is invertible and the resulting
linearly-transformed particles given by

T(1)ϕh,k(x) := ϕh
(
Φk,(1)(x)

)
= ϕh

(
Jk(x− x̄k)

)
with x̄k = F (xk), Jk = JF−1(x̄k) = JF (xk)−1

(27)
have a localized parallelogram support,

supp(T(1)ϕh,k) = x̄k + J−1
k (B∞(0, hcp)) ⊂ B∞(ρ̄h,k, hcp‖J−1

k ‖∞),

i.e., (18) now holds with ρ̄h,k := cp‖J−1
h,k‖∞ ≤ ρ̄ = cp|F |1. It follows that the above analysis applies

readily to T(1), the only noticeable change being that instead of (21) we now write

‖eh,k‖L∞ = supx∈B̄eh,k

∣∣ϕh(Φk,(1)(x)
)
− ϕh

(
F−1(x)− F−1(x̄k)

)∣∣
≤ |ϕh|1 supx∈B̄eh,k‖Φk,(1)(x)− (F−1(x)− xk)‖∞
≤ h−(d−1) 1

2 (ρ̄eh,k)2|ϕ|1|F−1|2,B̄eh,k

(28)

with ρ̄eh,k = cp max(‖J−1
k ‖∞, |F |1,Σh,k) = cp|F |1,Σh,k , leading to

‖(Tex − T(1))f
0
h‖L∞ ≤ hCΘe(ρ̄

e)2|F−1|2‖f in‖L∞ (29)

with ρ̄e = cp|F |1 = supk∈Zd ρ̄
e
h,k, Θe = (2cp)

d(1 + |F−1|d1|F |d1), and where as above, C depends
only on d, p.

For larger values of r, care must be taken when defining T(r). Indeed, as Φk,(r) may not be
invertible, there is no guarantee that ‖x − x̄k‖∞ . h in the support of ϕj(Φk,(r)). To overcome

this difficulty we can define the transported particle as a restriction of the latter to a domain Σ̄λh,k
that is a priori close to F (Σh,k), namely

T(r)ϕh,k(x) = ϕh(Φk,(r)(x))χΣ̄λh,k
(x), (30)

where again Φk,(r) is the polynomial mapping defined by Equations (24)-(25), χ denotes the set
characteristic function, and where we have set

Σ̄λh,k := (Φk,(1))
−1
(
B∞(0, hcp(1 + λ))

)
= x̄k + J−1

k

(
B∞(0, hcp(1 + λ))

)
. (31)

Here λ is a free (and possibly local) parameter to be set in such a way that F (Σh,k) = supp(Texϕh,k)
is contained in Σ̄λh,k, which will allow us to restrict the particle error term to the latter domain, and
carry on the error estimates as in (28). In the remaining part of this section it will be convenient
to let

ρ̄h,k(λ) := cp(1 + λ)|F |1,Σh,k and B̄h,k(λ) := B∞(x̄k, hρ̄h,k(λ)).

Indeed we can check that T(r) satisfies (18) with ρ̄h,k = ρ̄h,k(λ), hence the corresponding particle
transport errors eh,k := (T(r) − Tex)ϕh,k satisfy a bounded overlapping property similar to (19)

with Θe = (2cp)
d(1 + (1 + λ)d|F |d1|F−1|d1). Moreover, we infer from (20) that

supp(eh,k) ⊂
(

supp(T(r)ϕh,k)∪supp(Texϕh,k)
)
⊂
(
F (Σh,k)∪Σ̄λh,k

)
⊂
(
B̄h,k(0)∪B̄h,k(λ)

)
= B̄h,k(λ).

Our estimate for the error amplitude is given by the following Lemma.

Lemma 3.1. Given h > 0 and k ∈ Zd, the domains introduced in (20), (31) satisfy

F (Σh,k) ⊂ Σ̄λh,k provided that λ ≥ λmin
h,k := 1

2hcp|F |
2
1,Σh,k

|F−1|2,B̄h,k(0). (32)

In particular, the particle transport error ēh,k has its support in Σ̄λh,k, and satisfies

‖eh,k‖L∞ ≤ hr−d|ϕ|1
(ρ̄h,k(λ))r+1

(r + 1)!
|F−1|r+1,B̄h,k(λ). (33)
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Proof. Based on the above discussion, for any y ∈ Σh,k we know that x := F (y) is in B̄h,k(0).
Hence using (26) we write

‖Φk,(1)(x)‖∞ ≤ ‖y − xk‖∞ + ‖Φk,(1)(x)− (F−1(x)− xk)‖∞
≤ hcp + 1

2h
2(ρ̄h,k(0))2|F−1|2,B̄h,k(0)

≤ hcp(1 + λ),

which shows (32). Turning to the error estimate, we then have

‖eh,k‖L∞ = supx∈Σ̄λh,k
|eh,k(x)|

≤ supx∈Σ̄λh,k

∣∣ϕj(Φk,(r)(x)
)
− ϕj(F−1(x)− xk)

∣∣
≤ |ϕh|1 supx∈B̄h,k(λ)‖Φk,(r)(x)− (F−1(x)− xk)‖∞

≤ hr−d|ϕ|1 (ρ̄h,k(λ))r+1

(r+1)! |F−1|r+1,B̄h,k(λ),

(34)

which completes the proof.

A global estimate is then easily derived from the above results.

Theorem 3.1. As above we consider B-spline particles ϕh,k of degree p, initially centered on the
regular nodes xk = kh, k ∈ Zd and supported on the cubes Σh,k = B∞(xk, hcp) with cp = p+1

2 , see
(10)-(11), and we denote by F = F0,τ the exact characteristic flow associated with Equation (1)
on the time domain [0, τ ]. We let T(r) be the r-th order particle transport operator defined by (27)
for r = 1, or by (30)-(31) for r ≥ 2. In the latter case we consider for simplicity a uniform
localization parameter λ ≥ 1

2hcp|F |
2
1|F−1|2 and if r = 1 we take λ = 0. Then the transported

particles are localized by (18) with ρ̄h,k(λ) = cp(1 + λ)|F |1,Σh,k , and in particular they satisfy a
uniformly bounded overlapping property

sup
x∈Rd

#
(
{k ∈ Zd : T(r)ϕh,k(x) 6= 0}

)
≤
(
(p+ 1)(1 + λ)|F |1|F−1|1

)d
.

Moreover, for any particle approximation f0
h for which (15) holds, the global transport error satisfies

‖(T(r) − Tex)f0
h‖L∞ ≤ ChrΘe

(cp(1 + λ)|F |1)r+1

(r + 1)!
|F−1|r+1‖f in‖L∞

with Θe = (2cp)
d(1 + (1 + λ)d|F |d1|F−1|d1) and a constant C that only depends on d, p.

Remark 3.2 (heterogeneous “particle” approximations). As previously pointed out, our arguments
do not rely on a smoothing kernel unlike classical analysis of particle methods [3], [25], and it is a
simple exercise to extend the estimates stated in Theorem 3.1 to the heterogenenous case where the
“particles” ϕh,k are not derived from a reference ϕ but instead are defined as piecewise polynomials
with global continuity constraints (e.g., standard finite element bases) on unstructured meshes of
Rd, under the usual shape regularity and quasi-uniformity assumptions.

3.3 A finite difference implementation of the LTP method

We now describe and analyze a finite difference implementation of the particle transport operator
T(1), that will only make use of the numerical flow

Fn ≈ Fnex := Ftn,tn+1 (35)

given by some explicit solver for the ODE (2) over the time step [tn, tn+1]. Specifically, we consider
the following approximations. First, the exact transport operator

Tnex = Tex[Fnex] : ϕnh,k 7→ ϕnh,k ◦ (Fnex)−1, (36)

when applied to a linearly transformed particle ϕnh,k = ϕh(Dn
k (· − xnk )) as in (9), is approached by

the first-order operator (27) defined in the previous section, namely

T(1)[F
n
ex] : ϕnh,k 7→ ϕh

(
Dn
kJ

n
k,ex(· − Fnex(xnk ))

)
with Jnk,ex = (JFnex

(xnk ))−1.
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The Jacobian matrices involved in the latter are then approached by a finite difference scheme,
and finally the values of Fnex are replaced by those of the numerical flow Fn. Thus, we set

Tnh = Tnh [Fn] : ϕnh,k 7→ ϕn+1
h,k = ϕh(Dn+1

k (· − xn+1
k )) (37)

with xn+1
k := Fn(xnk ) and Dn+1

k := Dn
kJ

n
k . Here Jnk ≈ (JFnex

(xnk ))−1 is a numerical approximation of
the backward Jacobian matrix obtained by first approximating the forward Jacobian by a centered
finite difference scheme,

(J̃nk )i,j := (2h)−1
(
(Fn)i(x

n
k + hej)− (Fn)i(x

n
k − hej)

)
≈ ∂j(Fnex)i(x

n
k ), i, j = 1, . . . , d, (38)

and then letting
Jnk := det(J̃nk )

1
d (J̃nk )−1 or simply Jnk := (J̃nk )−1, (39)

whether one desires a conservative transport operator (i.e., such that
∫
Tnh ϕ

n
h,k =

∫
ϕnh,k), or not.

Note that det(JFnex
) = 1 on Rd, therefore it is reasonnable to assume that the d×d matrix J̃nk is

invertible. In the following Lemma we establish a sufficient condition for this, together with some
a priori estimates for the resulting approximations.

Lemma 3.3. Let en∆t := ‖Fn−Fnex‖L∞ denote the error associated with the ODE solver. We have

det(J̃nk ) ≥ θnk := 1− dh(µn1,k)d−1µn2,k (40)

with µn1,k := |Fnex|1,Bnh,k + dh−1en∆t, µ
n
2,k := 1

2 |F
n
ex|2,Bnh,k + dh−2en∆t and Bnh,k := B∞(xnk , h). More-

over, the approximated Jacobian matrix Jnk satisfies

‖Jnk − J(Fnex)−1(Fnex(xnk ))‖∞ ≤ hd2(θnk )−2(µn1,k)2(d−1)µn2,k (41)

and
‖(Jnk )−1 − (J(Fnex)−1(Fnex(xnk )))−1‖∞ ≤ h

(
1 + (θnk )−

d+1
d (µn1,k)d

)
µn2,k (42)

provided θnk > 0. In particular, for all x ∈ ω ⊂ B∞(xn+1
k , hρω) with ρω > 0, we have

‖Jnk (x− xn+1
k )−

(
(Fnex)−1(x)− xnk

)
‖∞ ≤ h2ρω

(
d2(θnk )−2(µn1,k)2(d−1)µn2,k + ρω|(Fnex)−1|2,〈ω〉

)
where again, 〈ω〉 is the convex hull of ω.

Proof. For conciseness, we drop the superscripts n and denote Jex
k := J(Fex)−1(F (xk)), J̃ex

k :=

(Jex
k )−1 = JFex

(xk) and let J̃ ′k ≈ J̃ex
k be the finite difference approximation obtained by substituting

F by Fex in (38), so that ‖J̃ ′k − J̃k‖∞ ≤ h−1de∆t. We first observe that by construction, and with
our particular choice of norms, we have

‖J̃ex
k ‖∞, ‖J̃ ′k‖∞ ≤ |Fex|1,Bh,k and ‖J̃k‖∞ ≤ ‖J̃ ′k‖∞ + ‖J̃k − J̃ ′k‖∞ ≤ |Fex|1,Bh,k + h−1de∆t︸ ︷︷ ︸

= µ1,k

.

(43)
Next we write two Taylor formulas for s 7→ Fex(xk + sel) with l = 1, . . . , d, namely

Fex(xk + σhel) = Fex(xk) + σh∂lFex(xk) +

∫ σh

0

(σh− s)∂2
l Fex(xk + sel) ds, σ = ±1,

which lead to

(2h)−1[Fex]xk+hel
xk−hel = ∂lFex(xk) + (2h)−1

∫ h

0

(h− s)
(
∂2
l Fex(xk + sel)− ∂2

l Fex(xk − sel)
)

ds,

hence the finite difference approximations of J̃ex
k satisfy

‖J̃ ′k − J̃ex
k ‖∞ ≤ 1

2h|Fex|2,Bh,k and ‖J̃k − J̃ex
k ‖∞ ≤ h ( 1

2 |Fex|2,Bh,k + h−2de∆t)︸ ︷︷ ︸
= µ2,k

(44)

11

ha
l-0

06
49

82
1,

 v
er

si
on

 1
 - 

8 
D

ec
 2

01
1



(note that one could gain one order in the estimate here, but we will not need it for the convergence
order). We then derive from the multilinearity of the determinant that

|det(J̃k)− 1| = |det(J̃k)− det(J̃ex
k )| ≤ d‖J̃k − J̃ex

k ‖∞max(‖J̃k‖∞, ‖J̃ex
k ‖∞)d−1 ≤ hdµ2,k(µ1,k)d−1

(45)
which shows (40). Next if θk > 0, by using the cofactors formula for the inverse matrices we find
that

‖Jex
k ‖∞ ≤ d

‖J̃ex
k ‖d−1
∞

det(J̃ex
k )
≤ d|Fex|d−1

1,Bh,k
≤ d(µ1,k)d−1 and ‖J̃−1

k ‖∞ ≤ d
‖J̃k‖d−1

∞

det(J̃k)
≤ dθ−1

k (µ1,k)d−1

hence the non-conservative approximated Jacobian Jk := J̃−1
k satisfies

‖Jk − Jex
k ‖∞ ≤ ‖Jex

k ‖∞‖J̃k − J̃ex
k ‖∞‖Jk‖∞ ≤ hd2θ−1

k (µ1,k)2(d−1)µ2,k.

Turning to the conservative case, we next infer from θk ≤ min{1,det(J̃k)} that

|1− det(J̃k)α| =
∣∣∣ ∫ det(J̃k)

1

αzα−1 dz
∣∣∣ ≤ |α|(θk)α−1|1− det(J̃k)|, for α ≤ 1. (46)

Using (46) with α = 1
d , we then obtain

‖Jk − Jex
k ‖ = ‖det(J̃k)

1
d (J̃k)−1− (J̃ex

k )−1‖ ≤ |det(J̃k)
1
d − 1|‖(J̃k)−1‖+ ‖(J̃k)−1‖‖J̃k − J̃ex

k ‖‖Jex
k ‖

≤ hd2θ−2
k (µ1,k)2(d−1)µ2,k

which proves (41). Next we note that (44) gives ‖J−1
k −(Jex

k )−1‖∞ ≤ hµ2,k in the non-conservative
case, while in the conservative case we write

‖J−1
k − (Jex

k )−1‖∞ = ‖det(J̃k)−
1
d J̃k − J̃ex

k ‖∞ ≤ |det(J̃k)−
1
d − 1|‖J̃k‖∞ + ‖J̃k − J̃ex

k ‖∞
≤ h(1 + (θk)−

1
d−1µd1,k)µ2,k

where we have used (46) with α = − 1
d , together with (45), (43). This shows that (42) is valid in

both cases. We finally invoke (26) with r = 1 to complete the proof.

3.4 Intermission: localization of particles with deformed shape

For practical purposes, such as the computation of pointwise density values fnh (x) =
∑
k wkϕ

n
k (x),

it is important to access in a reasonnable amount of time the particles which support contain any
given x ∈ Rd. This can be done with a localization pre-processing that subdivides the phase space
into simple domains such as dyadic cells Ωm = 2−j

(∏d
i=1[mi,mi+ 1]

)
, m ∈ Zd, with 2−j ≈ h, and

then writes in the scope of every such cell the indices of the overlapping particles, namely

Kn
m = {k ∈ Zd : ϕnh,k(Ωm) 6= 0}, m ∈ Zd. (47)

In practice, one can run a cell marking algorithm for each newly transported particle ϕnj,k, starting

with the (left) cell Ωm containing xnk , i.e. m = b2jxnkc, and recursively testing the adjacent cells to
see whether they overlap the parallelogram support of ϕnh,k. To perform this test we can use the

following result with A = (Dn
k )−1, B = B∞(0, hcp) and B′ = B∞(2−j(m+ 1

2 )− xnk , 2−j−1).

Lemma 3.4. Let B =
∏d
i=1[xi − ri, xi + ri] and B′ =

∏d
i=1[x′i − r′i, x′i + r′i] be two orthotopes

aligned with the coordinate axes, and A an invertible d× d matrix. We have

AB ∩B′ 6= ∅ ⇐⇒ |(Ax− x′)i| ≤ r̃i + r′i and |(x−A−1x′)i| ≤ ri + r̃′i for i = 1 . . . d

with r̃i :=
∑d
j=1|Ai,j |rj and r̃′i :=

∑d
j=1|A

−1
i,j |r′j.
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Proof. Observe that B̃ :=
∏d
i=1[(Ax)i−r̃i, (Ax)i+r̃i] and B̃′ :=

∏d
i=1[(A−1x)i−r̃′i, (A−1x)i+r̃

′
i] are

the smallest orthotopes aligned with the coordinate axes that contain AB and A−1B′, respectively.
Since the above two sets of inequalities hold iff B̃ and B intersect B′ and B̃′ respectively, the ⇒
direction is easily checked. In order to prove the ⇐ direction we make use of the fact that two
disjoint convex polytopes can always be separated by the hyperplane supported by one d − 1
dimentional face of one polytope. Thus, if AB and B′ are disjoint, we can choose a face of B′ or a
face of AB. This respectively implies that B̃∩B′ = ∅ or B∩ B̃′ = ∅, and hence ends the proof.

3.5 A priori estimates for a fully discrete LTP scheme

In this section we establish a priori estimates for the fully discrete particle scheme consisting of
an initialization step using the B-spline quasi-interpolation (12), and of a series of transport steps
using the LTP transport operator (37)-(39), and no remappings. Thus, we consider

f0
h := Ahf

in and fn+1
h := Tnh f

n
h for n = 0, . . . , N − 1, (48)

with ∆t = τ/N . L∞ convergence of this scheme will be established in Theorem 3.2, together with
uniform bounds for the particle overlapping. A local (single particle) error estimate will be shown
as well, that will be of practical use in the adaptive multilevel LTP scheme described in Section 4.

To express our estimates in terms of the smoothness of the velocity field u, we begin with local
bounds for the characteristic flow.

Lemma 3.5. Given a domain ω ⊂ Rd, an integer m and two instants s, t ∈ [0, τ ], we denote

|u|m,(s,t,ω) := sup
t′∈[s,t]

|u(t′, ·)|m,Fs,t′ (ω) = sup
t′∈[s,t]

max
i=1,...,d

{ d∑
l1=1

· · ·
d∑

lm=1

sup
x∈ω

∣∣∂l1 · · · ∂lmui(t′, Fs,t′(x))
∣∣}

where Fs,t′ is the flow of u between s and t′, as above. Then we have

|Fs,t − I|1,ω ≤ c1,u exp(c1,u) and |Fs,t|2,ω ≤ c2,u exp(c1,u)(1 + c1,u exp(c1,u)) (49)

with cm,u = |t− s||u|m,(s,t,ω), m = 1, 2.

Proof. Rewriting (2) as ∂tFs,t(x) = u(t, Fs,t(x)), we obtain that for i, l = 1, . . . , d,

∂t∂l(Fs,t − I)i(x) = ∂l∂t(Fs,t)i(x)

=
∑d
l′=1 ∂l′ui(t, Fs,t(x))∂l(Fs,t)l′(x)

=
∑d
l′=1 ∂l′ui(t, Fs,t(x))∂l(Fs,t − I)l′(x) + ∂lui(t, Fs,t(x)).

In particular, using Fs,s = I we find

∂l(Fs,t − I)i(x) =

∫ t

s

[ d∑
l′=1

∂l′ui(t
′, Fs,t′(x))∂l(Fs,t′ − I)l′(x) + ∂lui(t

′, Fs,t′(x))
]

dt′,

so that taking the supremum over x ∈ ω, summing over l = 1, . . . , d and taking the maximum over
i = 1, . . . , d yields

|Fs,t − I|1,ω ≤ |u|1,(s,t,ω)

(
|t− s|+

∫ t
s
|Fs,t′ − I|1,ω dt′

)
≤ |t− s||u|1,(s,t,ω) exp

(
|t− s||u|1,(s,t,ω)

)
where the second inequality follows from the Gronwall Lemma in integral form [4]. This shows the
first part of (49). In particular, using |I|1,ω = 1 this shows that

|Fs,t|1,ω ≤ 1 + |t− s||u|1,(s,t,ω) exp
(
|t− s||u|1,(s,t,ω)

)
. (50)
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Turning to the second derivatives, using again Fs,s = I we write

∂l1∂l2(Fs,t)i(x) =
∫ t
s

[∑d
l′1=1

∑d
l′2=1 ∂l′1∂l′2ui(t

′, Fs,t′(x))∂l1(Fs,t′)l′1(x)∂l2(Fs,t′)l′2(x)

+
∑d
l′=1 ∂l′ui(t

′, Fs,t′(x))∂l1∂l2(Fs,t′)l′(x)
]

dt′

so that taking the supremum over x ∈ ω, summing over l1, l2 = 1, . . . , d and taking the maximum
over i = 1, . . . , d now gives

|Fs,t|2,ω ≤ |u|2,(s,t,ω)

∫ t
s
|Fs,t′ |21,ω dt′ + |u|1,(s,t,ω)

∫ t
s
|Fs,t′ |2,ω dt′

≤ |u|2,(s,t,ω)

( ∫ t
s
|Fs,t′ |21,ω dt′

)
exp

(
|t− s||u|1,(s,t,ω)

)
≤ |t− s||u|2,(s,t,ω)

(
1 + |t− s||u|1,(s,t,ω) exp(|t− s||u|1,(s,t,ω))

)2
exp(|t− s||u|1,(s,t,ω))

where we have used again the Gronwall Lemma, and (50). This shows the second part of (49).

Corollary 3.6. Let νn1,ω := |u|1,ξ exp
(
∆t|u|1,ξ

)
and νn2,ω := |u|2,ξ exp

(
∆t|u|1,ξ

)
(1 + ∆tνn1,ω) with

ξ = (tn, tn+1, ω). Then we have

|(Fnex)−1|1,Fnex(ω) = |Fnex|1,ω ≤ 1 + ∆t νn1,ω and |(Fnex)−1|2,Fnex(ω) = |Fnex|2,ω ≤ ∆t νn2,ω. (51)

In particular, denoting νni := νni,Rd yields

|(Fnex)±1|1 ≤ 1 + ∆t νn1 and |(Fnex)±1|2 ≤ ∆t νn2 . (52)

Proof. The first estimate is obtained with Lemma 3.5, observing that Ftn+1,t(F
n
ex(x)) = Ftn,t(x).

The second one follows from the fact that Fnex is a diffeomorphism.

Assumption 3.7. In view of Corollary 3.6, one can expect to derive from Lemma 3.3 that the
error resulting from the linearization of the flow around xn+1

k behaves like

‖Jnk (x− xn+1
k )−

(
(Fnex)−1(x)− xnk

)
‖ . ∆t‖x− xn+1

k ‖2(1 + ∆tνn1 + h−1en∆t)
2(d−1)(νn2 +

h−2en∆t
∆t )

so that it seems natural to ask that h−2en∆t ∼ ∆t. Therefore we will assume in the sequel that h
and ∆t are such that

h−2en∆t ≤ α∆t, (53)

where α > 0 is a fixed constant. Note that if an r-th order ODE solver is used to compute
the numerical flow, the above condition reads ∆t ≤ Cαh

2
r with a constant C depending on the

smoothness of u, typically through |u|r+1,(tn,tn+1,Rd).

For the subsequent analysis it will be convenient to introduce the following measures of the
velocity smoothness,

κn1,(h,k) := νn1,Bnh,k
+ hdα, κn3,(h,k) := 2d(1 + ∆tκn1,(h,k))

d−1κn2,(h,k),

κn2,(h,k) := 1
2ν

n
2,Bnh,k

+ dα, κn4,(h,k) := d2(1 + h∆tκn3,(h,k))
2(1 + ∆tκn1,(h,k))

2(d−1)κn2,(h,k)

(54)

and their global-in-space versions,

κn1,h := νn1 + hdα, κn3,h := 2d(1 + ∆tκn1,h)d−1κn2,h,

κn2,h := 1
2ν

n
2 + dα, κn4,h := d2(1 + h∆tκn3,h)2(1 + ∆tκn1,h)2(d−1)κn2,h,

(55)

and finally their global-in-time counterparts κi,h, i = 1, . . . , 4, defined using

ν1 = |u|1,ξ exp
(
∆t|u|1,ξ

)
and ν2 := |u|2,ξ exp

(
∆t|u|1,ξ

)
(1 + ∆tν1) with ξ = (0, τ,Rd). (56)

Equipped with the local measures (54), we now derive the following estimates from Lemma 3.3.
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Corollary 3.8. Provided h and ∆t satisfy (53) and the additional mild condition

h∆tκn3,(h,k) ≤ 1 (57)

the finite-difference approximation (38) of the forward Jacobian yields an invertible matrix J̃nk
satisfying

det(J̃nk )−1 ≤ (θnk )−1 ≤ 1 + h∆tκn3,(h,k). (58)

In particular, the operator Tnh is well defined by (37)-(39). Moreover, given ω ⊂ B∞(xn+1
k , hρω)

with ρω > 0, the linearized flow based on the approximated backward Jacobian Jnk satisfies

sup
x∈ω
‖Jnk (x− xn+1

k )−
(
(Fnex)−1(x)− xnk

)
‖∞ ≤ h2

(
∆tρωκ

n
4,(h,k) + (ρω)2|(Fnex)−1|2,〈ω〉

)
, (59)

where 〈ω〉 is the convex hull of ω.

Proof. According to (51), we have

µn1,(h,k) ≤ 1 + ∆tκn1,(h,k) and µn2,(h,k) ≤ ∆tκn2,(h,k). (60)

For h∆tκn3,(h,k) ≤ 1, we then infer from (40) that

det(J̃nk ) ≥ θnk ≥ 1− hd(1 + ∆tκn1,(h,k))
d−1∆tκn2,(h,k) ≥ 1− 1

2h∆tκn3,(h,k) ≥ 1
2h∆tκn3,(h,k) > 0.

This shows the invertibility of J̃nk and also gives (58), hence the first claim. Estimate (59) follows
then from Lemma 3.3, without difficulty.

We are now in position to state a priori estimates for the local (single particle) transport error,
the particle overlapping and the global convergence of the fully discrete LTP scheme. Again, let
us emphasize that although the following result is established for B-spline particles, the same
arguments would easily apply to more general approximation settings such as continuous finite
element basis functions, see Remark 3.2.

Theorem 3.2. Let f be the solution of Equation (1), and h,∆t = τ/N be such that conditions (57)
and (53) hold with a fixed α > 0. Then the numerical solutions computed by the scheme (48) satisfy

‖fnh − f(tn)‖L∞ ≤ h(cT ‖f in‖L∞ + cA|f in|1) for n = 0, . . . , N, (61)

and with constants cT , cA independent of h and ∆t. Moreover, the particles ϕnh,k = ϕh(Dn
k (·−xnk ))

composing fnh have uniformly bounded supports Σnh,k := supp(ϕnh,k) and overlapping constants.
Specifically, we have

Σnh,k ⊂ B∞
(
xnk , hcp exp(τ(

κ3,h

d + κ1,h))
)

(62)

and

sup
x∈Rd

#
(
{k ∈ Zd : x ∈ Σnh,k}

)
≤ Θh :=

(
2 exp(τν1)(cp exp(τ(

κ3,h

d + κ1,h)) + hτα)
)d

(63)

for n = 0, . . . , N , with cp = p+1
2 and velocity smoothness measures νi, κi,h defined in Corollary 3.6

and Equations (55)-(56). Finally, the single particle transport errors en+1
h,k := (Tnh − Tnex)ϕnh,k can

be estimated by

‖en+1
h,k ‖L∞ ≤ h

1−d|ϕ|1‖Dn
k‖∞

(
∆tρe,n+1

h,k κn4,(h,k) + (ρe,n+1
h,k )2|(Fnex)−1|2,〈Σn+1

h,k ∪Fnex(Σnh,k)〉
)

(64)

with

ρe,n+1
h,k := hα+ cp‖(Dn

k )−1‖∞max
{

(1 + h∆tκn3,(h,k))
1
d

(
1 + ∆tκn1,(h,k)), 1 + ∆tνn1,Σnh,k

}
(65)

and local smoothess measures defined in Corollary 3.6 and Equation (54).
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Proof. We first observe that the particles supports satisfy

Σnh,k := supp(ϕnh,k) = xnk + (Dn
k )−1(B∞(0, hcp)) ⊂ B∞(xnk , hcp‖(Dn

k )−1‖∞), (66)

hence particles transported along the exact flow Fnex are supported on

supp(Tnexϕ
n
h,k) = Fnex(Σnh,k) ⊂ B∞(xn+1

k , en∆t + hcp‖(Dn
k )−1‖∞|Fnex|1,Σnh,k).

Turning to the single-particle transport errors en+1
h,k = (Tnh − Tnex)ϕnh,k = ϕn+1

h,k − Tnexϕ
n
h,k, we next

derive from (43), (60) that
‖J̃nk ‖∞ ≤ 1 + ∆tκn1,(h,k), (67)

and using (Jnk )−1 = J̃nk or (39), (58) in the conservative case, we write

‖(Jnk )−1‖∞ ≤ max
(
1,det(J̃nk )−

1
d

)
‖J̃nk ‖∞ ≤ (1 + h∆tκn3,(h,k))

1
d (1 + ∆tκn1,(h,k)).

It then follows from Dn+1
k = Dn

kJ
n
k that

supp(en+1
h,k ) ⊂ Σn+1

h,k ∪ Fnex(Σnh,k)

⊂ B∞
(
xn+1
k , en∆t + hcp‖(Dn

k )−1‖∞max{‖(Jnk )−1‖∞, |Fnex|1,Σnh,k}
)

⊂ B∞(xn+1
k , hρe,n+1

h,k )

(68)

with ρe,n+1
h,k defined as in (65). According to (59), this gives

‖en+1
h,k ‖L∞ = supx∈Σn+1

h,k ∪Fnex(Σnh,k)

∣∣ϕh(Dn
kJ

n
k (x− xn+1

k ))− ϕh
(
Dn
k ((Fnex)−1(x)− xnk )

)∣∣
≤ |ϕh|1‖Dn

k‖∞ supx∈Σn+1
h,k ∪Fnex(Σnh,k)‖Jnk (x− xn+1

k )− ((Fnex)−1(x)− xnk )‖∞

≤ h1−d|ϕ|1‖Dn
k‖∞

(
∆tρe,n+1

h,k κn4,(h,k) + (ρe,n+1
h,k )2|(Fnex)−1|2,〈Σn+1

h,k ∪Fnex(Σnh,k)〉
) (69)

which is (64). To establish global estimates, we next let Θh,e denote an upper bound for the
overlapping constant of the transport errors, i.e.,

max
n≤N

sup
x∈Rd

#
(
{k ∈ Zd : enh,k(x) 6= 0}

)
≤ Θh,e

and use the bound |wk(f in)| ≤ ‖a‖`1‖f in‖L∞ satisfied by the weights obtained with (12) to write

‖(Tnh − Tnex)fnh ‖L∞ = ‖
∑
k∈Zd wk(f in)en+1

h,k ‖L∞ ≤ Θh,e supk∈Zd‖wk(f in)en+1
h,k ‖L∞

≤ h∆tΘh,e|ϕ|1cn+1
h,e (κn4,h + cn+1

h,e ν
n
2 )
(

supk∈Zd‖Dn
k‖∞

)
‖a‖`1‖f in‖L∞

(70)

with cn+1
h,e := hα+ cp

(
supk∈Zd‖(Dn

k )−1‖∞
)
(1 + h∆tκn3,h)

1
d (1 + ∆tκn1,h). We next observe that

‖(Dn
k )−1‖∞ ≤

n−1∏
m=0

|θmk |−
1
d ‖J̃mk ‖∞ ≤ (1 + ∆tκ3,h)

n
d (1 + ∆tκ1,h)n ≤ exp(τ(

κ3,h

d + κ1,h)) (71)

holds for all n ≤ N in both the conservative and the non-conservative cases, since θmk ≤ 1. Using
(66), this yields uniform bounds for the both the particles and the transport error supports: we
indeed obtain (62) in the one hand, and in the other hand we can bound the localization constant
in (68) with

cn+1
h,e ≤ hα+ cp(1 + ∆tκ3,h)

n+1
d (1 + ∆tκ1,h)n+1 ≤ hα+ cp exp(τ(

κ3,h

d + κ1,h)) =: ch,e,

where we have used that νn1 ≤ ν1 ≤ κ1,h. We observe that (71) also allows to bound the overlapping
of both the particles and the transport errors. Indeed, considering an arbitrary xn ∈ supp(ϕnh,k)

and letting xm := (Fmex )−1(xm+1) for m = n− 1, . . . , 0, we first derive from (52) that

‖xm − xmk ‖∞ ≤ |(Fmex )−1|1‖xm+1 − Fmex (xmk )‖∞ ≤ (1 + ∆tν1)
(
‖xm+1 − xm+1

k ‖∞ + em∆t
)
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where em∆t := ‖Fm − Fmex‖L∞ is the ODE solver error introduced in Lemma 3.3. Using (53) and
(71) we then write

‖x0 − xk‖∞ ≤ (1 + ∆tν1)n
(
‖xn − xnk‖∞ + nh2∆tα

)
< h(1 + ∆tν1)n

(
cp‖(Dn

k )−1‖∞ + hτα
)

< h exp(τν1)(cp exp(τ(
κ3,h

d + κ1,h)) + hτα).

Since the initial particles are centered on the structured nodes xk = hk, k ∈ Zd, this shows that
the number of overlapping particles is bounded uniformly with (63), and as for the errors terms
we have

Θh,e ≤ 2Θh,

given that the particle overlapping is not increased by the exact transport operator. To finally
prove the global error estimate, we next derive from Corollary 3.8 that

det(Dn
k ) ≤

n−1∏
m=0

(θmk )−1 ≤ (1 + ∆tκ3,h)n ≤ exp(τκ3,h)

in the nonconservative case, whereas det(Dn
k ) = 1 by construction in the conservative case. Noting

that (71) becomes ‖(Dn
k )−1‖∞ ≤ (1 + ∆tκ1,h)n in this latter case, and using the cofactor formula

A−1 = det(A)−1Ct that involves the transposed cofactor matrix, with a little algebra we find in
both cases that

‖Dn
k‖∞ ≤ ddet(Dn

k )‖(Dn
k )−1‖d−1

∞ ≤ d exp
(
τ(κ3,h + κ1,h(d− 1))

)
. (72)

Gathering the above estimates yields then an a priori estimate for the transport error (70),

‖(Tnh − Tnex)fnh ‖L∞ ≤ ch,τh∆t‖f in‖L∞

with
ch,τ := 2Θh|ϕ|1ch,e(κ4,h + ch,eν2)d exp

(
τ(κ3,h + κ1,h(d− 1))

)
‖a‖`1 .

In particular, for the global error en+1
h := fn+1

h − f(tn+1) = Tnh f
n
h − Tnexf(tn) we obtain

‖en+1
h ‖L∞ ≤ ‖(Tnh − Tnex)fnh ‖L∞ + ‖Tnexe

n
h‖L∞

≤ ‖(Tnh − Tnex)fnh ‖L∞ + ‖enh‖L∞
≤
∑n
m=0‖(Tmh − Tmex )fmh ‖L∞ + ‖f0

h − f in‖L∞
≤ h(τch,τ‖f in‖L∞ + cA|f in|1)

where we have used Estimate (14) with q = 1, i.e. cA only depends on p, d and ‖ϕ‖L∞ . The
final convergence result follows then by observing that ch,τ increases with h, and is bounded by a
constant that only depends on hmax, d, α, τ and on the velocity smoothness through u |u|i,(0,τ,Rd),
i = 1, 2.

4 Adaptive transport with multilevel particles

To illustrate the flexibility of our approach, we now describe one adaptive version of the LTP
scheme. Here the goal is to save computational time where low resolution approximations do
not deteriorate the global accuracy of the simulations, and to implement that principle we use a
hierarchy of particles with dyadic scales h = 2−j , corresponding to integer levels j = j0, . . . , jmax.

In Section 4.1 we first propose one B-spline version of the common hierarchical approach for
building adaptive approximations of a given data with prescribed error tolerance ε, and in Sec-
tion 4.2 we suggest a local filter that makes the resulting adaptive approximations positivity-
preserving, without noticeable loss of accuracy. In Section 4.3 we then describe a dynamic strategy
to refine the particles in the course of their transport, so that the associated transport error is on
the order of a (possibly different) prescribed tolerance ε′.
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For notational simplicity we now label with j the objects that were previously labelled with
their resolution h = 2−j . For instance, we shall denote by

ϕnj,k = ϕj(D
n
j,k(· − xnj,k)),

the deformed particles from Equation (9) with resolution h = 2−j , and so on.

4.1 Adaptive approximations with multilevel B-splines

To build adaptive B-spline approximations of a given function g, we can apply the quasi-interpolation
operator (12) in a hierarchical setting where significant approximations errors are corrected by lo-
calized layers of finer particles. Thus, starting from the coarse approximation gj0 := Aj0g we
consider its successive corrections

∑
k∈Zd wj+1,kϕj+1,k := Aj+1(g − gj), j = j0, . . . , jmax, where

gj :=

j∑
j′=j0

∑
k∈Zd

wj′,kϕj′,k (73)

denote the resulting approximations. Adaptivity is then classically obtained by selecting “signif-
icant” particles in this process. For instance, we may see small weights as negligible corrections,
indeed discarding every particle ϕj,k for which

|wj,k| ≤ ζj(ε) := 2−djε((2cp)
d‖ϕ‖L∞)−1 (74)

yields an error ‖
∑
k:|wj,k|≤ζj(ε) wj,kϕj,k‖L∞ that is bounded by ζj(ε)2

dj(2cp)
d‖ϕ‖L∞ = ε. Moreover,

we can restrict the above test to regions where the residual g− gj−1 has a chance to be significant.
Specifically, we shall procede as follows (see Algorithm 4.1 below for a summary). Assume that for
some j we have determined a domain Ωj−1,+ where the residual has a chance to satisfy |g−gj−1| > ε,
and that we have gathered in a set Kj,+ the indices of the level-j particles needed for the correction
on that domain, namely the k’s for which Σj,k := supp(ϕj,k) overlaps Ωj−1,+. Then we can restrict
the test (74) to those particles, and let Kj denote the resulting set of significant, i.e., selected
particles. To find candidates Kj+1,+ for the next level we only need to consider a domain Ωj,+
that consists of (i) the supports of selected particles with k ∈ Kj (where the residual remains
to be estimated), and (ii) the (possibly overlapping) part of Ωj−1,+ where the residual g − gj−1

is actually measured above ε. Note that to determine this later part we can consider the cubes
B∞(xj,k, 2

−j−1) with k ∈ Kj,+ (which cover Ωj−1,+), and estimate the approximation errors
eAj,k = ‖g− gj−1‖L∞(B∞(xj,k,2−j−1)) while computing the weights wj,k involved in (74). Since level-

j B-splines are supported on cubes of radius 2−jcp, see (10), this amounts in building Kj+1,+ with
respectively, every k′ = 2k+ l such that k ∈ Kj and ‖l‖∞ ≤ 3cp−1, and every k′ = 2k+ l such that
k ∈ Kj,+ with eAj,k > ε and ‖l‖∞ ≤ cp. Let us summarize the resulting adaptive approximation
operator Aε as follows.

Algorithm 4.1 (Adaptive particle approximation, Aε : g 7→ gjmax =
∑jmax

j=j0
wj,kϕj,k).

1. At the coarsest level j0, preactivate every particle (i.e., make it a candidate for a possible
selection) by letting Kj0,+ := Zd.

2. Then for j = j0, . . . , jmax, compute and select the active particles as follows:

(a) for all k ∈ Kj,+, compute approximation weights wAj,k = wAj,k(g−gj−1) according to (12),

and evaluate the local errors eAj,k = ‖g−gj−1‖L∞(B∞(xj,k,2−j−1)). Then select significant

particles according to (74), i.e., let Kj := {k ∈ Kj,+ : |wAj,k| > ζj(ε)} and set

wj,k :=

{
wAj,k if k ∈ Kj ,

0 otherwise ;

(b) if j < jmax, preactivate particles at the finer level for possible selection by letting

Kj+1,+ := {2k + l : k ∈ Kj , ‖l‖∞ ≤ 3cp − 1} ∪ {2k + l : k ∈ Kj,+, e
A
j,k > ε, ‖l‖∞ ≤ cp}

(thus, adaptive regions at a given level are candidates for selection at the next level) ;

(c) if the option is set, apply the positive correction filter (see Algorithm 4.2 below).
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4.2 Positivity preserving hierarchical approximations

If the target function g is nonnegative, one may ask that its particle approximation is nonnegative
as well. However, it is easily seen that the above scheme is likely to yield some negative weights. A
first reason for this is that the single-level scheme (12) is not positive for p > 1. A second reason is
due to the hierarchical framework: wherever gj−1 is below the target, the residual takes negative
values which are likely to be approximated by negative level-j particles.

The latter issue can be addressed by locally decreasing gj−1 in the neighborhood of a negative
weight wj,k, so as to increase the residual and hopefully correct the negativity of wj,k. Since
B-spline particles satisfy a scaling relation

ϕj′,k′ =
∑

‖l‖∞≤ p+1
2

σlϕj′+1,2k′+l, (75)

it is possible to do so by refining coarse particles which contributions to ϕj,k will increase its weight.
An attractive feature of such corrections is that they do not require new evaluations of the target
function, or iterative approximations of updated residuals. Let us specify one such algorithm.
Because it may be necessary to refine particles over several levels, it is useful to consider the
multi-level scaling relations that one easily derives from (75),

ϕj′,k′ =
∑

‖l‖∞≤sδ

σ
(δ)
l ϕj′+δ,2δk′+l (76)

with multi-level refinement coefficients satisfying σ
(δ)
l :=

∑
‖l‖∞≤sδ−1

σ
(δ−1)
m σ

(1)
l−2m, sδ := 2sδ−1+1,

and initialized with σ(1) = σ, s1 = p+1
2 . Indeed, we can observe that if all the particles at the level

j − δ, δ ≥ 1, were to be refined up to level j, the resulting increase to wj,k would be

Cj−δ(j, k) =
∑
k′∈Zd

σ
(δ)

k−2δk′
wj−δ,k′ .

Therefore, we define the correction level associated to some given negative particle as

jcor(j, k) :=

{
max

{
j′ < j : wj,k +

∑j−1
j′′=j′ Cj′′(j, k) =: Sj′(j, k) ≥ 0

}
if Sj0(j, k) ≥ 0,

j0 otherwise.
(77)

It corresponds to the coarser level from which neighboring particles should be refined in order to
correct the weight wj,k. Obviously, it is not necessary to refine every such coarse particle, since
only those satisfying ‖k − 2δk′‖∞ ≤ sδ do contribute to (j, k). Moreover, we do not need to fully
refine them up to level j. Instead, the same increase to wj,k can be obtained by refining them
one level at a time, and only considering those contributing to (j, k) in the process, namely those
(j′, k′) with ‖2j−j′k′ − k‖∞ ≤ sj−j′ .

We note that these corrections are indeed local. However, we also observe that for p > 1, it may
happen that some weights wj,k remain negative after performing the above corrections. In this case
we suggest to simply discard such weights wj,k. Clearly, this can deteriorate the approximation
accuracy, but in a hierarchical framework one can hope that finer layers of details will essentially
correct the resulting errors. In practice we have indeed observed such a behavior, see Section 5.2.
Let us now summarize the above correction filter, to be applied to the weights wj′,k, j′ = j0, . . . , j,
computed on step 2a of Algorithm 4.1. Note that here we compute the correction levels before
refining the contributing particles so as not to break the possible symmetries in the particle grid.

Algorithm 4.2 (Positive correction filter). Let K−j := {k ∈ Kj : wj,k < 0} denote the indices of
the active particles to correct at level j. Then,

1. if j > j0,

(a) set jcor(j, k) < j as in (77), for all k ∈ K−j ;
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(b) then, refine every contributing particle. Namely, for all k ∈ K−j and all j′ = jcor(j, k), . . . , j−
1, refine every particle (j′, k′) such that ‖2j−j′k′ − k‖∞ ≤ sj−j′ by setting

wj′+1,2k′+l := wj′+1,2k′+l + σlwj′,k′ for all ‖l‖∞ ≤ s1, and wj′,k′ := 0 ;

2. for all k ∈ K−j , set wj,k := max(0, wj,k).

Remark 4.3. We observe that there is no need to preactivate further patches of finer particles
for the next approximation level. Indeed the correction refinements on step (ii) do not change the
approximation gj, hence the residual. The only change to gj occurs when discarding a negative
weight wj,k. There a significant error may be introduced, but since k ∈ Kj a finer patch is already
preactivated, see step 2b of Algorithm 4.1.

4.3 Dynamic particle refinement without remapping

In order to achieve some prescribed accuracy ε′ when transporting the multilevel particles

fnjmax
=

jmax∑
j=j0

∑
k∈Zd

wnj,kϕj(D
n
j,k(· − xnj,k)),

it is in general necessary to refine some of them over time. Indeed, the errors induced by the
discrete transport operator will essentially depend on both their resolution level and the local
smoothness of the flow, however at the initialization step their resolution only depends on the local
smoothness of f in. Furthermore, the flow may become suddenly less smooth in some regions, and
finer particles will be needed there to maintain a constant accuracy. Therefore, rather than follow a
conservative approach and automatically refine patches of particles to resolve the emerging features
that may appear in the solutions, we decided to use the local error estimates from our previous
error analysis to determine which particles are admissible for discrete transport, and which need
to be refined. Given that both the number of levels and the number of overlapping particles per
level are uniformly bounded, we have indeed ‖(Tn − Tnex)fnjmax

‖L∞ . supj,k‖wnj,ke
n+1
j,k ‖L∞ hence a

particle wnj,kϕ
n
j,k will be said admissible for transport if it satisfies

|wnj,k|ηnj,k ≤ CT ε′, (78)

where ηnj,k is a computable estimate for the single-particle transport error ‖en+1
j,k ‖L∞ (see Appendix)

and CT is an ad-hoc constant, see Section 5.2.
We next observe that, although it is possible to represent exactly a deformed level-j particle in

terms of the finer ones with

ϕj(D
n
j,k(x− xnj,k)) =

∑
‖l‖∞≤cp

σlϕj+1(Dn
j,k(x− xnj,k,l)) with xnj,k,l = xnj,k + 2−j−1(Dn

j,k)−1l,

refining unadmissible particles in such a way can result in a dramatic increase of their total number.
Assume indeed that every level-j particle needs be refined in fn. Since there is no reason why we
should have Dn

j,k = Dn
j,k′ and xnj,k,l = xnj,k′,l′ for k′ and l′ such that 2k+ l = 2k′+ l′, replacing every

ϕnj,k by its exact finer representation is likely to add ∼ 2dj(2cp + 1)d new level-(j + 1) particles,
which is much more than the particles involved by a uniform discretization at level j + 1, and
similar phenomena may happen on further time steps as well.

For that reason we propose instead to refine unadmissible particles ϕnj,k in a “retroactive”
fashion, by representing them in terms of the level-(j + 1) particles that would have been present
in fn if the original (structured) ϕ0

j,k had been refined from the start. Note that some of those
fine particles may already be present in fn, and in such a case it suffices to update their weight.
In particular, this approach allows to refer to any particle by its multivelel space-time indices
without ambiguity: for all j, k, n we indeed have ϕnj,k = ϕj(D

n
j,k(· − xnj,k)) with particle center and

deformation matrix given by

xnj,k = Fn−1(xn−1
j,k ) = Fn−1(· · ·F 0(x0

j,k) · · · ) and Dn
j,k = Dn−1

j,k Jn−1
j,k =

n−1∏
m=0

Jmj,k (79)
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where x0
j,k = 2−jk, and where Jmj,k is computed as described in Section 3.3, see (38)-(39). Let us

summarize our adaptive transport algorithm for multilevel particles as follows.

Algorithm 4.4 (Tnε : fnjmax
7→ fn+1

jmax
). For j = j0, . . . , jmax, and then for k ∈ Zd such that wnj,k 6= 0,

1. if j = jmax or if the admissibility condition (78) is met, then the particle is transported by
setting wn+1

j,k = wnj,k, xn+1
j,k = Fn(xnj,k) and Dn+1

j,k = Dn
j,kJ

n
j,k according to (37)-(39) ;

2. otherwise, it is dynamically refined by adding σlw
n
j,k to wnj+1,2k+l for ‖l‖∞ ≤ p+1

2 – which
may involve the activation of new particles according to (79) – and finally setting wnj,k = 0.

Remark 4.5. A major drawback of the above strategy is the need to apply past numerical flows
F 0, . . . , Fn−1, when refining particles at time step n. Alternative procedures involving local ap-
proximations of the flow Fn are currently being tested and will addressed in a forthcoming article.

5 Numerical experiments

In this section we compare the numerical performances of the different particle methods in a
computational domain Ω = [0, 1]2, using Leveque’s swirling velocity field [22]

u0(t, x) = − sin2(πx0) sin(2πx1)g(t), u1(t, x) = sin2(πx1) sin(2πx0)g(t) (80)

with g(t) = cos(πt/τ), t ∈ [0, τ ]. The corresponding flow is easily pictured from the space pattern
of u shown in Figure 1, and from the symmetry of g with respect to τ/2 which reverts the solutions
to their initial state at t = τ . We will take τ = 2.5 which corresponds to a moderate stretching at
t = τ/2 (see Figures 2 and 4 below) and a fixed time step ∆t = 0.025.

-0 0.2 0.4 0.6 0.8

-0

0.2

0.4

0.6

0.8

Figure 1: Leveque’s swirling velocity field (80) at time t = 0.

Although the time symmetry may simplify the measure of the numerical errors, we note that
by considering only the final accuracy one misses the intermediate errors resulting from the inac-
curate transport of the particle shapes, which yields biased estimates for particle methods with
no remappings. Therefore, we shall only make use of that feature in Section 5.2 when comparing
the performances of the uniform and adaptive versions of the linearly transformed particle (LTP)
scheme, with one remapping at least. In Section 5.1, where the traditional smoothed particle
method (TSP) is compared to the forward semi-lagrangian (FSL) and the LTP schemes, we will
only solve the equation on the half time interval [0, τ/2], and hence measure the numerical errors at
the instant of maximal stretching, using a reference numerical solution obtained with substancially
higher space and time resolution.

5.1 Numerical comparison of the TSP, FSL and LTP schemes

To compare the LTP scheme with the classical TSP and FSL methods reviewed in Section 2, we
consider the two following cases.
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Figure 2: Solution profile at t = 0 or τ (left) and τ/2 (right) for the smooth hump (81).
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Figure 3: Convergence curves (relative L∞ errors at t = τ/2 vs. average number of active particles)
for the smooth hump test case shown in Figure 2, using the TSP, FSL and LTP schemes with B-
spline particles of degree 1 and 3. Triangles represent slopes of 0.5 and 1, q is the overlapping
exponent and Nr is the number of time steps between two remappings.
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Figure 4: Solution profile at t = 0 or τ (left) and τ/2 (right) for the Zalesak’s slotted disk (82).
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Figure 5: Convergence curves (relative L1 errors at t = τ/2 vs. average number of active particles)
for the Zalesak’s test case shown in Figure 4, using the TSP, FSL and LTP schemes with B-spline
particles of degree 1 and 3. Triangles represent slopes of 0.5 and 1, q is the overlapping exponent
and Nr is the number of time steps between two remappings.
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• First, a smooth hump centered on (0.5, 0.75) given by

f in(x) = 1
2

(
1 + erf

(
a+ b

√
(x0 − 0.5)2 + (x1 − 0.75)2

))
(81)

with a = 3.43 and b = 21.43. Here erf(s) = 2√
π

∫ s
0
e−y

2

dy is the standard “error function”

that smoothly spans [−1, 1], see Figure 2.

• Second, a discontinuous Zalesak’s slotted disk of radius 0.15 centered on (0.5, 0.7)

f in(x) = H
(
0.15−

√
(x0 − 0.5)2 + (x1 − 0.7)2

)(
1−(1−H(|x0−0.5|−0.02))(1−H(x1−0.8))

)
(82)

where H(s) = χ{s≥0} denotes the Heaviside step function, see Figure 4.

In Figures 3 and 5 the relative errors are plotted versus the average number of active particles
at t = τ/2, in order to avoid a biased measure for the TSP method as explained above. For
the smooth hump case we measure the errors in L∞, and for the discontinuous Zalesak disk we
use the L1 norm. Here all three method have been run with B-spline particles with degree 1
or 3, initialized (and remapped, in the FSL and LTP cases) with the quasi-interpolation scheme
(12) of corresponding order. For the TSP method we show the effect of varying the overlapping
exponent q such that ε = hq, see Section 2.1, and for the FSL and LTP schemes we plot the runs
corresponding to decreasing remapping frequencies, i.e., increasing values of the number Nr of time
steps between two remappings. Observe that the higher q or Nr, the cheaper the simulations. In
every set of curves we have used a thick line to emphasize the cheapest run: for the TSP scheme
that corresponds to the case q = 1 (particles radii are proportional to the initial meshsize) and
for the FSL an LTP schemes that corresponds to the case with no remappings. In particular, we
note that the FSL and TSP method coincide with such parameters. From these plots we make the
following observations.

• First, we see that a necessary condition for the TSP method to converge is indeed that
particles present an extended overlapping, i.e., the ratio ε/h must go to ∞ as h goes to 0.
Moreover, the convergence is relatively slow, and it is not much improved by the use of third-
order B-splines (although that helps in the cases of moderate particle overlapping, q & 0.8).
This is not surprising since the theoretical convergence analysis requires vanishing moments
for high-order accuracy, which the B-splines do not have.

• Again, our numerical tests confirm the announced necessary condition for the FSL scheme
to converge: remapping frequency must be high. On the plus side, we note that on the
smooth test case (81), the FSL scheme exhibits significantly higher convergence rates than
the TSP method when B3 particles are used. However, to our view the method is severly
hampered by the following dilemma: for values of Nr close to 1, problems with sharp edges
such as the discontinuous Zalesak disk give rise to a strong numerical diffusion that can be
seen (especially with B3 particles) from the increase of active particles and the deterioration
of the accuracy ; decreasing the remapping frequencies helps reducing that effect, but doing
so always leads to a loss of convergence (the lower the frequency, the sooner the stagnation).

• As expected from our analysis, the LTP scheme always converges including in the cheap,
non-remapped runs. Moreover in the smooth case shown in Figure 3 the convergence rates
are significantly higher than with the TSP method, and there the benefit of using B3 splines
is obvious, just as in the FSL method. The striking result is that the loss of convergence
observed in the FSL runs with low remapping frequencies is completely suppressed by the
linear deformation of the particles.

5.2 Numerical study of an adaptive LTP scheme

To assess the ability of our adaptive particle strategy to improve the computational efficiency, we
compare its convergence curves to those of the uniform LTP scheme, using the two following cases.

• First, the smooth hump (81) shown in Figure 2.
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• Second, a smoothed version of the discontinuous Zalesak’s slotted disk shown in Figure 4, de-
signed so as to get solutions of highly non uniform smoothness that still can be approximated
in the supremum norm. Indeed our adaptive refinement strategies are aimed at balancing the
local errors in the L∞ norm, hence they have no reason to exhibit better convergence when
the error is measured in another norm. The initial data f in is then obtained by substituting
the discontinuous Heaviside step function H(s) = χ{s≥0} in Equation (82) with its smooth

approximation Hε(s) = 1
2 (1 + erf(s/ε)) corresponding to a transition zone with approximate

diameter of 4ε. In the numerical tests we take ε = 0.01.

In both cases, we thus plot the L∞ convergence curves corresponding to the uniform LTP
scheme using various values of Nr as above, and those obtained with our adaptive particle method
using the optimal value observed in the uniform runs, namely Nr = 25. Since we now consider
particle methods with at least one remapping step, numerical accuracy can be measured on the
final time t = τ where the exact solutions revert to their initial state. Here we have set the
prescribed tolerances with ε′ = ε (whose value varies along the curve) and fixed the constant CT
from Condition (78) to 2 to optimize the numerical performances. However we note that a proper
study of how these parameters should be set in the general case remains to be done. As for the
numerical estimate ηnj,k involved in (78), after trying the various options described in the Appendix
we have chosen to compute it with the first strategy, i.e., (86), with the simplification mentioned
in Remark 5.1.

From Figure 6 we see that using adaptive particles with dynamic refinements yield a clear gain
in terms of active particles. Moreover, in the Zalesak case where the numerical solutions are likely
to strongly oscillate in the vicinity of the sharp edges, we also plot a series of runs obtained with
our multilevel correction Algorithm 4.2 that enforces positive weights, hence positive particles.
The resulting observation is that the numerical efficiency does not seem to suffer much from this
local (and somewhat crude) positivity-preserving filter. To illustrate the behavior of the adaptive
particle method, we also show on Figures 7 and 9 the distribution of active particle centers and
associated level maps

jnmap : x 7→ max
{
j :
∑
k∈Zd
|wnj,kϕnj,k| 6= 0

}
(83)

at t = τ/2, corresponding to the adaptive runs that give the final error distributions displayed on
Figures 8 and 10 for the hump and smoothed Zalesak initial data, respectively.
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 1

 100  1000  10000  100000

uniform vs adaptive LTP runs
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 100  1000  10000  100000

uniform vs adaptive LTP runs
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Nr=10
Nr=25
adapt

adapt +

Figure 6: L∞ convergence curves for the smooth hump (left) and the smoothed Zalesak’s slotted
disk (right) cases in Leveque’s swirling flow. The relative L∞ errors are plotted vs. the average
number of particles. Triangles represent slopes of 0.5 and 1 and Nr is the number of time steps
between two remappings.

Finally, we present one relevant feature of our adaptive particle scheme on Figures 8 and 10,
showing the final error distributions obtained with uniform and adaptive runs using similar numbers
of active particles for the hump and smoothed Zalesak initial data, respectively. In both cases we
indeed observe that resorting to adaptive particles does not only reduce the maximum error, but
it also balances its distribution over the computational domain, as it should be.
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Figure 7: Particle centers (left) and level maps (right) at t = τ/2 for the smooth hump test case
shown in Figure 2, before (top) and after (bottom) being remapped on a cartesian grid at t = τ/2.
Here we have used the same simulation parameters as in the adaptive runs shown in Figure 6, left,
and a prescribed tolerance parameter ε set so as to get an average number of particles corresponding
to a uniform run of level j = 7, see Figure 8 below.

Figure 8: Final error distributions obtained for the smooth hump test case with a uniform run of
level j = 7 using about 10164 particles in average (left), and the adaptive run shown on Figure 7,
using about 10498 particles in average (right).
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Figure 9: Particle centers (left) and level maps (right) for the smoothed Zalesak’s slooted disk
(see Figure 4), before (top) and after (bottom) being remapped on a cartesian grid at t = τ/2.
Here we have used the same simulation parameters as in the nonpositive adaptive runs shown in
Figure 6, right, and a prescribed tolerance parameter ε set so as to get an average number of
particles corresponding to a uniform run of level j = 7, see Figure 10 below.

Figure 10: Final error distributions obtained for the smooth Zalesak’s slooted disk with a uniform
run of level j = 7 using about 11864 particles in average (left), and the adaptive run shown on
Figure 9, using about 11964 particles in average (right).
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Appendix: estimating the single particle transport error

To compute a practical estimate ηnj,k for the local transport error involved in the admissibility
condition (78), one can think of various approaches derived from our error analysis in Section 3.5.

• Inspired by the a priori bound (64), a first strategy consists of local estimates for the space
derivatives of the velocity field u(tn).

• Based on the approximated Jacobian matrix Jnj,k, a second strategy computes a direct esti-
mate of the second line in (69).

Let us first describe the second strategy which is simpler. It consists in (i) replacing the supremum
in (69) by a maximum over the stencil

Fn(xnj,k,[σ,l]) := Fn(xnj,k + (Dn
j,k)−1(2−jcpσel)), σ ∈ {−1, 1}, l = 1, . . . , d (84)

that spans approximatively Fn(Σnj,k) ≈ Fnex(Σnj,k) ∪ Σn+1
j,k (see Corollary 5.3 for an assessment of

that claim), and (ii) using the numerical flow in place of the exact one. Thus, we set

η̃nj,k := maxσ,l‖Jnj,k(Fn(xnj,k,[σ,l])− x
n+1
j,k )− (Dn

j,k)−1(2−jσel)‖∞
≈ maxσ,l‖Jnj,k(Fn(xnj,k,[σ,l])− x

n+1
j,k )− ((Fnex)−1(Fn(xnj,k,[σ,l]))− x

n
j,k)‖∞

≈ supx∈(Σn+1
j,k ∪Fnex(Σnj,k))‖Jnj,k(x− xn+1

j,k )− ((Fnex)−1(x)− xnj,k)‖∞

so that ηnj,k := 2(d+1)j |ϕ|1‖Dn
j,k‖∞η̃nj,k is a reasonnable indicator for the local transport error.

The first strategy relies on finite difference approximations for the space derivatives

∆j
lu(t)(x) = 2j(u(t, x+ 2−j−1el)− u(t, x− 2−j−1el)) ≈ ∂lu(t, x), ∆j

l1,l2
u(t) = ∆j

l1
(∆j

l2
u(t)).

Thus, we mimic the local smoothness measures introduced in Lemma 3.5 and Corollary 3.6 with
|u|∗1,Bnj,k := max

i

∑
l

|∆j
lui(t

n)(xnj,k)|

|u|∗2,Bnj,k := max
i

∑
l1,l2

|∆j
l1,l2

ui(t
n)(xnj,k)|


|u|∗1,Σnj,k := max

i

∑
l

max
σ,l
|∆j

lui(t
n)(xnj,k,[σ,l])|

|u|∗2,Σnj,k := max
i

∑
l1,l2

max
σ,l
|∆j

l1,l2
ui(t

n)(xnj,k,[σ,l])|

(where the auxiliary nodes xnj,k,[σ,l] spanning Σnj,k are given in (84)), and

νn,∗1,ω := |u|∗1,ω exp(∆t|u|∗1,ω), νn,∗2,ω := |u|∗2,ω exp(∆t|u|∗1,ω)(1 + ∆tνn,∗1,ω) with ω = Bnj,k or Σnj,k.

The auxiliary κ coefficients are then set accordingly, with{
κn,∗1,(j,k) := νn,∗1,Bnj,k

+ 2−jdα

κn,∗2,(j,k) := 1
2ν

n,∗
2,Bnj,k

+ dα

{
κn,∗3,(j,k) := 2d(1 + ∆tκn,∗1,(j,k))

d−1κn,∗2,(j,k)

κn,∗4,(j,k) := d2(1 + 2−j∆tκn,∗3,(j,k))
2(1 + ∆tκn,∗1,(j,k))

2(d−1)κn,∗2,(j,k)

and following (65) we let

ce,n+1,∗
j,k := 2−jα+cp‖(Dn

j,k)−1‖∞max
{

(1+2−j∆tκn,∗3,(j,k))
1
d

(
1+∆tκn,∗1,(j,k)), 1+∆tνn,∗1,Σnj,k

}
≈ ce,n+1

j,k .

In order to compute an estimate for rhs in (64), it thus remains to find a numerical approximation
for the backward flow term. One practical option is to see the domain Fnex(Σnj,k) as a reasonnable

approximation of 〈Σn+1
j,k ∪ Fnex(Σnj,k)〉, and estimate in view of (51)

|(Fnex)−1|2,〈Σn+1
j,k ∪Fnex(Σnj,k)〉 ≈ |(F

n
ex)−1|2,Fnex(Σnj,k) ≤ ∆tνn2,Σnj,k ≈ ∆tνn,∗2,Σnj,k

. (85)

Thus, we may define

ηnj,k := 2j(d−1)∆t|ϕ|1‖Dn
j,k‖∞

(
ce,n+1,∗
j,k κn,∗4,(j,k) + (ce,n+1,∗

j,k )2νn,∗2,Σnj,k

)
(86)

as a computable approximation of the upper bound in (64).
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Remark 5.1. In practice the above estimate can be simplified by replacing the velocity smoothness
measures |u|∗i,Σnj,k with the pointwise quantities |u|∗i,Bnj,k , i = 1, 2. In our numerical tests indeed, we

have not noticed any appreciable change when doing so.

Let us end this section by observing that, although (85) may be sufficient in practice, it is

possible to make it rigorous by using slight extensions Σn,λj,k := xnj,k+(Dn
j,k)−1

(
B∞(0, 2−jcp(1+λ))

)
of the domain Σnj,k ≡ Σn,0j,k . Specifically, Lemma 5.2 below gives one sufficient condition on the
extension parameter λ > 0 for the following inequalities to hold true,

|(Fnex)−1|2,〈Σn+1
j,k ∪Fnex(Σnj,k)〉 ≤ |(F

n
ex)−1|2,Fnex(Σn,λj,k ) ≤ ∆tνn

2,Σn,λj,k
. (87)

Lemma 5.2. For λ ≥ 0, we let Σ̃n+1,λ
j,k := Fnex(xnj,k) + (JFnex

(xnj,k))(Dn
j,k)−1

(
B∞(0, 2−jcp(1 + λ))

)
be an affine approximation of Fnex(Σn,λj,k ). Then we have

λ̃ ≥ 2−j∆tL1 =⇒ Σn+1
j,k ⊂ Σ̃n+1,λ̃

j,k (88)

λ̃ ≥ 2−j∆tL2 =⇒ F (Σnj,k) ⊂ Σ̃n+1,λ̃
j,k (89)

and λ ≥ λ̃+ 2−j∆tL3(λ̃) =⇒ Σ̃n+1,λ̃
j,k ⊂ F (Σn,λj,k ) (90)

with

L1 := (1 + ∆tνn1,Bnj,k)
[
α
cp

+ (1 + 2−j∆tκn3,(j,k))
− d+1

d (1 + ∆tκn1,(j,k))
dκn2,(j,k)‖(D

n
j,k)−1‖∞

]
‖Dn

j,k‖∞
L2 := (1 + ∆tνn1,Bnj,k)νn2,Σnj,k

cp
2 ‖(D

n
j,k)−1‖2∞‖Dn

j,k‖∞

L3(λ̃) := (1 + ∆tνn1,Bnj,k)2(∆t)−1|(Fnex)−1|
2,Σ̃n+1,λ̃

j,k

cp
2 (1 + λ̃)2‖(Dn

j,k)−1‖2∞‖Dn
j,k‖∞.

In particular, (87) holds as long as λ ≥ 2−j∆t(max{L1, L2}+L3(λ̃)), with λ̃ = 2−j∆tmax{L1, L2}.

As a consequence, it is possible to derive a rigorous versions of (85), involving the global
smoothness measure νn2 = νn2,Rd , see Corollary 5.3. We shall also describe below a recursive
algorithm for localizing this estimate.

Proof. For the sake of conciseness, we simplify the notations as in the proof of Lemma 3.3. For
the first embedding we consider y ∈ Σ̄γ , i.e., y = x̄γ + J−1

γ D−1
γ z with ‖z‖ < 2−jcp, and observe

that y ∈ Σ̃λ̃γ iff ‖DγJ
ex
γ (y − Fex(xγ))‖∞ < 2−jcp(1 + λ̃). Now, we have

‖DγJ
ex
γ (y − Fex(xγ))‖∞ ≤ ‖DγJ

ex
γ (x̄γ − Fex(xγ))‖∞ + ‖DγJ

ex
γ J
−1
γ D−1

γ z‖∞
≤ ‖DγJ

ex
γ ‖∞en∆t + ‖z‖∞ + ‖DγJ

ex
γ ‖∞‖(Jex

γ )−1 − J−1
γ ‖∞‖D−1

γ z‖∞

< 2−jcp + 2−2j‖Dγ‖|Fex|1,Bγ (22jen∆t + θ
−1− 1

d
γ µd1,γµ2,γ‖D−1

γ ‖∞cp)
< 2−jcp(1 + 2−j∆tL1)

hence the first result. Turning next to (89), we now consider y ∈ Σγ , i.e., y = xγ + D−1
γ z with

‖z‖ < 2−jcp, and observe that Fex(y) ∈ Σ̃λ̃γ iff ‖DγJ
ex
γ (Fex(y)−Fex(xγ))‖∞ < 2−jcp(1 + λ̃). Using

a Taylor expansion for s 7→ Fex(xγ + s(y − xγ)), we first write

‖Fex(y)−Fex(xγ)−(Jex
γ )−1(y−xγ)‖∞ < 1

2 |Fex|2,Σγ (2−jcp‖D−1
γ ‖∞)2 ≤ 2−2j∆t

ν2,Σγ

2 (cp‖D−1
γ ‖∞)2.

It follows that

‖DγJ
ex
γ (Fex(y)− Fex(xγ))‖∞ ≤ ‖z‖∞ + ‖DγJ

ex
γ ‖∞‖Fex(y)− Fex(xγ)− (Jex

γ )−1(y − xγ)‖∞
< 2−jcp(1 + 2−j∆t‖Dγ‖(1 + ∆tν1,Bγ )

cp
2 ν2,Σγ‖D−1

γ ‖2∞)

hence the second embedding. For the last one, we take y ∈ Σ̃λ̃γ , i.e., y = Fex(xγ) + (Jex
γ )−1D−1

γ (z)

with ‖z‖∞ < 2−jcp(1+ λ̃), and observe that Σ̃λ̃γ ⊂ Fex(Σλγ) iff ‖Dγ(F−1
ex (y)−xγ)‖∞ < 2−jcp(1+λ).

29

ha
l-0

06
49

82
1,

 v
er

si
on

 1
 - 

8 
D

ec
 2

01
1



Using that Σ̃λ̃γ ⊂ B∞(Fex(xγ), 2−jcp(1 + λ̃)‖(DγJ
ex
γ )−1‖∞), we now write with a Taylor expension

of s 7→ F−1
ex (Fex(xγ) + s(y − Fex(xγ))) that

‖F−1
ex (y)− xγ − Jex

γ (y − Fex(xγ))‖∞ < 1
2 |F
−1
ex |2,Σ̃λ̃γ (2−jcp(1 + λ̃)‖(DγJ

ex
γ )−1‖∞)2.

It follows that

‖Dγ(F−1
ex (y)− xγ)‖∞ ≤ ‖z‖∞ + ‖Dγ

(
F−1

ex (y)− xγ − Jex
γ (y − Fex(xγ))

)
‖∞

< 2−jcp
(
1 + λ̃+ 2−j‖Dγ‖∞|F−1

ex |2,Σ̃λ̃γ
cp
2 [(1 + λ̃)‖D−1

γ ‖∞(1 + ∆tν1,Bγ )]2
)
,

hence the final result.

Because the above result also involves a local smoothness measure of the backward flow, it is not
directly applicable to find the optimal extension parameter λopt = 2−j∆t(max{L1, L2} + L3(λ̃)).
However, it gives a first estimate based on the global smoothness measure of u, which can be
refined recursively as follows.

Corollary 5.3. Let λ̃ := 2−j∆t‖Dn
j,k‖∞max{L1, L2} and define

λ(0) := λ̃+ 2−j∆t‖Dn
j,k‖∞L

(0)
3 with L

(0)
3 := 1

2ν
n
2 cp(1 + ∆tνn1,Bnj,k)2(1 + λ̃)2‖(Dn

j,k)−1‖2∞ ≥ L3(λ̃).

Then we have

|(Fnex)−1|2,〈Σn+1
j,k ∪Fnex(Σnj,k)〉 ≤ |(F

n
ex)−1|

2,Σ̃n+1,λ̃
j,k

≤ |(Fnex)−1|
2,Fnex(Σn,λ

(0)

j,k )
≤ ∆tνn

2,Σn,λ
(0)

j,k

. (91)

Moreover, it is possible to improve the above estimate. We have indeed

L3(λ̃) ≤ L(1)
3 := 1

2ν
n

2,Σn,λ
(0)

j,k

cp(1 + ∆tνn1,Bnj,k)2(1 + λ̃)2‖(Dn
j,k)−1‖2∞ ≤ L

(0)
3 ,

so that (91) holds with λ(1) := λ̃+ 2−j∆t‖Dn
j,k‖∞L

(1)
3 ≤ λ(0), and this argument can be carried out

recursively to improve the resulting estimates of |(Fnex)−1|2,〈Σn+1
j,k ∪Fnex(Σnj,k)〉.

6 Conclusion and further work

We have introduced a formal class of particle methods for transport problems with high-order
polynomial deformations, and established the convergence of an explicit LTP scheme for the first-
order case. Our preliminary numerical results demonstrate the improved convergence of the LTP
scheme compared to the traditional “smoothed” particle method (TSP) with extended overlapping,
as well as the need of lower remapping frequencies compared to the FSL scheme, leading to lower
numerical diffusion and computational costs. On a practical level we emphasize that implementing
the FSL scheme is made simple by the fact that it only involves pointwise evaluations of the
numerical forward flow, a numerical object at the core of any particle scheme. We also note that
for computational efficiency of algorithms involving pointwise evaluation of the numerical solutions
(e.g., remapping or plotting routines) one may want to first localize the particles in a logical mesh.
For that purpose one can use the criterion given in Section 3.4.

In a near future we shall develop methods to deal with non-linear transport problems arising,
e.g., in plasma models, and further investigate the properties of our adaptive multilevel scheme.
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codes, J. Comp. Phys. 187, 550–571, 2003.

[2] W.B. Bateson and D.W. Hewett, Grid and particle hydrodynamics: beyond hydrodynamics via
fluid-element particle-in-cell, J. Comp. Phys. 144, 358–378, 1998.

[3] J.T. Beale and A. Majda Vortex methods II: Higher order accuracy in two and three dimensions,
Math. Comp. 32, 29–52, 1982.

[4] R. Bellman, The stability of solutions of linear differential equations, Duke Math. J. 10, 643–
647, 1943.

[5] M. Bergdorf,G.-H. Cottet and P. Koumoutsakos, Multilevel adaptive particle methods for
convection-diffusion equations Multiscale Model. Simul. 4, 328–357, 2005.

[6] M. Bergdorf and P. Koumoutsakos, A lagrangian particle-wavelet method Multiscale Model.
Simul. 5, 980–995, 2006.

[7] C.K. Birdsall and A.B. Langdon, Plasma physics via computer simulation, McGraw-Hill, New
York, 1985.

[8] A.J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57, 785–796, 1973.

[9] C. Chui and H. Diamond, A Characterization of Multivariate Quasi-interpolation Formulas
and its Applications, Numer. Math. 57, 105–121, 1990.

[10] A. Cohen and B. Perthame, Optimal approximation orders for transport equations with pseudo-
particle methods, SIAM J. Math. Anal. 32, 616–636, 2000.

[11] C.J. Cotter, J. Frank and S. Reich, The remapped particle-mesh semi-Lagrangian advection
scheme, Q. J. Meteorol. Soc. 133, 251–260, 2007.

[12] G.-H. Cottet and P.D. Koumoutsakos, Vortex methods. Theory and practice, Cambridge Uni-
versity Press, Cambridge, 2000.

[13] G.-H. Cottet, P. Koumoutsakos and M.L.O. Salihi, Vortex methods with spatially varying
cores, J. Comp. Phys. 162, 164–85, 2000.

[14] N. Crouseilles, T. Respaud and E. Sonnendrücker, A forward semi-Lagrangian method for the
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