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Abstract — In this paper, a reduced basis method is 

introduced to deal with a stochastic problem in a numerical 

dosimetry application in which the field solutions are 

computed using an iterative solver. More precisely, the 

computations already performed are used to build an initial 

guess for the iterative solver. It is shown that this approach 

reduces significantly the computational cost with the same 

accuracy. 

I. INTRODUCTION 

  The lack of knowledge on the electric parameters of 

tissues raises an issue in computational electromagnetic 

applications such as numerical dosimetry [1]. The 

Stochastic Collocation Method (SCM) is an “attractive” 

technique to deal with this kind of problem because existing 

deterministic solvers can be readily applied like in the 

Monte Carlo sampling [2]. In our case, we use the Smolyak 

Adaptive Algorithm (SAA) [3] which enables to build the 

solution gradually by an adaptive choice for the realizations 

of the input random parameters (these realizations will be 

called here the "collocations points"). Every step of the 

SAA involves several collocation points, and each of them 

requires a deterministic computation that can be 

numerically expensive in realistic applications. When the 

deterministic computations are performed sequentially 

using an iterative solver, the computations already 

performed could be used to reduce the numerical cost. The 

authors of [4] proposed to choose as the initial guess for the 

iterative solver the previous computed solution for which 

the collocation point is “close” to the next considered point. 

Here, we propose to compute an initial guess with the 

Reduced Basis Method (RBM). Moreover, the RBM is 

coupled with an A Posteriori Error Indicator (APEI) to 

choose the next collocation point. 

  First we review some aspects of the RBM, see also [5]. 

Numerical experiments on a wave equation problem show 

that the computational cost of the solver can be 

significantly reduced. 

II. REDUCED BASIS METHOD  

A. Finite element approximation 

  We are interested to solve the wave equation for the 

electric field E in a domain      
 
   , where the    are 

non-overlapping subdomains. Each subdomain    is 

characterized by a constant electric parameter 

        
       , where    denotes the vacuum 

permittivity,   
  the relative permittivity,    the conductivity, 

and   the angular frequency.  

  In the stochastic context, the parameters   
  and    are 

considered as independent random variables. For a given 

realization of these random variables, the weak formulation 

on a conforming Finite Element (FE) space    can be 

written:  

                                                      (1) 

with:                              
    

       
 
         

               
 
           ,  

             
         

  
              , 

           and        -      
         . 

   denotes the curl operator,   the canonical inner product, 

   the vacuum permeability,    the electric current source, 

and BT the boundary term. The solution of (1) leads to a 

large sparse linear system: 

                   .                             (2)  

For example, a 3D dosimetry problem in a human head [1] 

involves several million unknowns. Thus, we compute the 

solution using an iterative solver. 

B. Reduced basis approximation 

  Suppose that the problem (1) has been solved for N 

values of the parameters   . In the reduced basis 

formulation, the local FE space    in problem (1) is 

replaced by a space of functions        spanned by the 

N known solutions. The reduced basis formulation is then: 

                                                      (3) 

In order to reduce the iteration number of the solver of (2), 

we choose as the initial guess the solution of (3). 

  Usually, the space     has a much smaller dimension 

than the dimension n of    (N is between 10 and 100).  

  Moreover, the bilinear form a given in (1) is 

decomposed into forms which are independent of the 

parameter   . Thus, given                            , 
we can pre-assemble in an offline procedure corresponding 

matrices: 

     
                                                      (4) 

  
 
   

   
                                  .  

Note that this assembling depends on n, but once the 

matrices are assembled the computational cost for the 

solution of (3) is independent of n.  

C. A posteriori error indicator 

  Every step of the SAA involves a set of collocation 

points  . An APEI is introduced to order the set   as 

usually done in the RBM [6]. Our error indicator is defined 

by using the residual of the linear system (2): 

                                            
where          represents the projection of         into   , 

and     is the euclidian norm. In a similar way to (4), we 

pre-compute in an offline procedure the quantities related to 
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this residual. Then, we choose                       as 

the next collocation point for which system (2) has to be 

solved. This approach is described in Algorithm A1: 

 

Given     and  . 

for i = 1,…, size( ) 

     for each      do 

          Compute         solution of (3) 

                                  
     end 

                           
     Solve (2) with     and           as the initial guess 

                           
               
end 

Algorithm A1: use of the APEI 

III. DOSIMETRY PROBLEM 

  The example concerns a 2D problem of hyperthermia 

where an electromagnetic wave illuminates a tumor in a 

patient (see Fig. 1). We consider that the relative 

permittivity and conductivity of 4 tissues are random 

variables with uniform laws:  

  
      

 
   

   
 
   

               
      

         . 

For this problem, the solution of (2) is computed by using 

the Conjugate Orthogonal Conjugate Gradient (COCG) [7]. 

 
Fig. 1. Mesh for the considered problem 

 

  To test the efficiency of the RBM, 4 strategies to choose 

the initial guess are tested: 

  (i)   the zero vector, 

  (ii) the nearest previous solution [4] with the following 

distance: 

            
   

 
    

 
  
 

   
 
      

 
    

 
 
     

   
    

   

     
      

   
 
       

  (iii)  the reduced basis approximation without using 

APEI, 

  (iv)  the reduced basis approximation by using APEI. 

The efficiency of each approach is evaluated by a 

convergence study of the COCG in computing the 17 

collocation points generated by the two first steps of the 

SAA. The relative residual of the COCG is fixed to     . 

Results are reported in Fig. 2: solution using the RBM 

approximation needs less iterations than (i) and (ii). It 

appears that SCM combined with a RBM reduces the 

number of iterations. The total number of the iterations to 

solve the 17 linear systems (2) is: (i) 4284, (ii) 3403, (iii) 

2550, and (iv) 2502 iterations. 

 
Fig. 2. Iteration number of the solver vs. the number of computed solutions     

    

  The value of the maximum of the APEI is reported in 

Fig. 3: it appears that it decreases monotically. The trend is 

nearly the same for the number of iteration in strategy (iv) 

(see Fig. 3).  

 
Fig. 3. Evolution study of                  
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