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I. INTRODUCTION

The lack of knowledge on the electric parameters of tissues raises an issue in computational electromagnetic applications such as numerical dosimetry [START_REF] Hadjem | Study of Specific Absorption Rate (SAR) Induced in Two Child Head Models and in Adult Heads Using Mobile Phones[END_REF]. The Stochastic Collocation Method (SCM) is an "attractive" technique to deal with this kind of problem because existing deterministic solvers can be readily applied like in the Monte Carlo sampling [START_REF] Xiu | Fast Numerical Methods for Stochastic Computations: A Review[END_REF]. In our case, we use the Smolyak Adaptive Algorithm (SAA) [START_REF] Voyer | Comparison of methods for modeling uncertainties in a 2d hyperthermia problem[END_REF] which enables to build the solution gradually by an adaptive choice for the realizations of the input random parameters (these realizations will be called here the "collocations points"). Every step of the SAA involves several collocation points, and each of them requires a deterministic computation that can be numerically expensive in realistic applications. When the deterministic computations are performed sequentially using an iterative solver, the computations already performed could be used to reduce the numerical cost. The authors of [START_REF] Zhu | A sparse grid based spectral stochastic collocation method for variationsaware capacitance extraction of interconnects under nanometer process technology[END_REF] proposed to choose as the initial guess for the iterative solver the previous computed solution for which the collocation point is "close" to the next considered point. Here, we propose to compute an initial guess with the Reduced Basis Method (RBM). Moreover, the RBM is coupled with an A Posteriori Error Indicator (APEI) to choose the next collocation point.

First we review some aspects of the RBM, see also [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF]. Numerical experiments on a wave equation problem show that the computational cost of the solver can be significantly reduced.

II. REDUCED BASIS METHOD

A. Finite element approximation

We are interested to solve the wave equation for the electric field E in a domain

, where the are non-overlapping subdomains. Each subdomain is characterized by a constant electric parameter , where denotes the vacuum permittivity, the relative permittivity, the conductivity, and the angular frequency.

In the stochastic context, the parameters and are considered as independent random variables. For a given realization of these random variables, the weak formulation on a conforming Finite Element (FE) space can be written:

(1) with:

, , and -. denotes the curl operator, the canonical inner product, the vacuum permeability, the electric current source, and BT the boundary term. The solution of (1) leads to a large sparse linear system: . (2) For example, a 3D dosimetry problem in a human head [START_REF] Hadjem | Study of Specific Absorption Rate (SAR) Induced in Two Child Head Models and in Adult Heads Using Mobile Phones[END_REF] involves several million unknowns. Thus, we compute the solution using an iterative solver.

B. Reduced basis approximation

Suppose that the problem (1) has been solved for N values of the parameters . In the reduced basis formulation, the local FE space in problem (1) is replaced by a space of functions spanned by the N known solutions. The reduced basis formulation is then:

(3) In order to reduce the iteration number of the solver of (2), we choose as the initial guess the solution of (3).

Usually, the space has a much smaller dimension than the dimension n of (N is between 10 and 100). Moreover, the bilinear form a given in (1) is decomposed into forms which are independent of the parameter . Thus, given , we can pre-assemble in an offline procedure corresponding matrices:

. Note that this assembling depends on n, but once the matrices are assembled the computational cost for the solution of (3) is independent of n.

C. A posteriori error indicator

Every step of the SAA involves a set of collocation points . An APEI is introduced to order the set as usually done in the RBM [START_REF] Fares | The reduced basis method for the electric field integral equation[END_REF]. Our error indicator is defined by using the residual of the linear system (2): where represents the projection of into , and is the euclidian norm. In a similar way to (4), we pre-compute in an offline procedure the quantities related to this residual. Then, we choose as the next collocation point for which system (2) has to be solved. This approach is described in Algorithm A1: The example concerns a 2D problem of hyperthermia where an electromagnetic wave illuminates a tumor in a patient (see Fig. 1). We consider that the relative permittivity and conductivity of 4 tissues are random variables with uniform laws:

. For this problem, the solution of ( 2) is computed by using the Conjugate Orthogonal Conjugate Gradient (COCG) [START_REF] Van Der Vorst | A Petrov-Galerkin type method for solving Ax = b, where A is symmetric complex[END_REF]. (i) the zero vector, (ii) the nearest previous solution [START_REF] Zhu | A sparse grid based spectral stochastic collocation method for variationsaware capacitance extraction of interconnects under nanometer process technology[END_REF] with the following distance:

(iii) the reduced basis approximation without using APEI, (iv) the reduced basis approximation by using APEI. The efficiency of each approach is evaluated by a convergence study of the COCG in computing the 17 collocation points generated by the two first steps of the SAA. The relative residual of the COCG is fixed to . Results are reported in Fig. 2: solution using the RBM approximation needs less iterations than (i) and (ii). It appears that SCM combined with a RBM reduces the number of iterations. The total number of the iterations to solve the 17 linear systems (2) is: (i) 4284, (ii) 3403, (iii) 2550, and (iv) 2502 iterations. The value of the maximum of the APEI is reported in Fig. 3: it appears that it decreases monotically. The trend is nearly the same for the number of iteration in strategy (iv) (see Fig. 3). 
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 1 Fig. 1. Mesh for the considered problem To test the efficiency of the RBM, 4 strategies to choose the initial guess are tested:(i) the zero vector, (ii) the nearest previous solution[START_REF] Zhu | A sparse grid based spectral stochastic collocation method for variationsaware capacitance extraction of interconnects under nanometer process technology[END_REF] with the following distance:
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 2 Fig. 2. Iteration number of the solver vs. the number of computed solutions
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 3 Fig. 3. Evolution study of IV. REFERENCES