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ON THE HOMEOMORPHISMS OF THE SPACE OF GEODESIC

LAMINATIONS ON A HYPERBOLIC SURFACE

C. CHARITOS, I. PAPADOPERAKIS, AND A. PAPADOPOULOS

Abstract. We prove that for any orientable connected surface of finite type
which is not a a sphere with at most four punctures or a torus with at most two
punctures, any homeomorphism of the space of geodesic laminations of this
surface, equipped with the Thurston topology, is induced by a homeomorphism
of the surface.
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1. Introduction

In this paper S = Sg,p is an orientable connected surface of finite type, of genus
g ≥ 0 with p ≥ 0 punctures. We assume that S is not a sphere with at most four
punctures or a torus with at most two punctures. Fixing a complete hyperbolic
metric of finite area on S we consider the set GL(S) of geodesic laminations on S
with compact support. As a set of compact subspaces of the metric space S, GL(S)
is equipped with the Hausdorff metric which we denote by dH . We denote by TH

the topology induced by dH , and we call it the Hausdorff topology. We consider on
GL(S) a second topology T, referred to as the Thurston topology (see the definition
in §2 below) and which is weaker than TH . Any homeomorphism h : S → S
induces by push-forward a map h∗ : GL(S) → GL(S) which is a homeomorphism
with respect to both topologies TH and T. The main result of this paper is the
following:

Theorem 1.1. Assume that f : GL(S) → GL(S) is a homeomorphism with respect
to the topology T. Then there is a homeomorphism h : S → S such that h∗ = f.

This shows in particular that the space GL(S) equipped with the Thurston topol-
ogy is definitely not topologically homogeneous. Furthermore, since its homeomor-
phism group is countable, this space does not contain any open set which is a
manifold of any positive dimension, in contrast with measured lamination space
which is topologically a sphere.

The analogous result for the Hausdorff topology is not true but it is conceivabe
that for every isometry f of the metric space (GL(S), dH) , there is a homeomor-
phism h : S → S such that h∗ = f.

The result is in the spirit of several rigidity results that were obtained by various
authors in the context of mapping class group actions on different spaces, and it
is close more specially to the results in [11], [8] and [9] which concern actions by
homeomorphisms. We note that although the statements of these and other rigidity
theorems all look alike, all of them are interesting because each proof displays new
special features of the space on which the mapping class group acts, in different
settings (combinatorial, topological, holomorphic, metric, etc.), and the arguments
in each setting are different.
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The proof of Theorem 1.1 is given in §4. The proof involves the construction from
the homeomorphism f of an automorphism of the complex of curves of S. The main
technical point is to show that f preserves the set of finite laminations. For the
passage between properties of laminations and homeomorphisms of GL(S), the idea
is to translate inclusions Λ1 ⊂ Λ2 between geodesic laminations into set-theoretical
properties between open sets of GL(S).

We would like to thank Ken’ichi Ohshika who read a preliminary version of this
paper and corrected several mistakes.

2. Definitions and Preliminaries

On the surface S, we fix a complete hyperbolic metric of finite area. A geodesic
lamination Λ ⊂ S is a compact non-empty subset which is the union of disjoint
simple geodesics. We say that a geodesic lamination is maximal if it is not a proper
sublamination of any other geodesic lamination. We say that a geodesic lamination
is minimal if it does not contain any proper sublamination. Note that this set-
theoretic definition of a minimal lamination that we make here is not the same
as the usual definition of a minimal laminations, where a lamination is said to be
minimal if its leaves are dense in the support.

A geodesic lamination which is a finite union of geodesics is called a finite lami-
nation. Otherwise, the lamination is said to be infinite.

The following two subsets of GL(S) will play special roles in the sequel:
• FGL(S) is the subset of finite laminations of GL(S) . An element of FGL(S) is

made out of a finite union of disjoint simple closed geodesics {γi} together with a
finite number of infinite geodesics, each spiraling from each end around one geodesic
in {γi}.

• CGL(S) is the set of geodesic laminations whose leaves are simple closed
geodesics.

Obviously CGL(S) ⊂ FGL(S).
For any subset X of S and for any ǫ > 0, we set

Nε(X) = {x ∈ S : ∃y ∈ X with d(x, y) < ε}.

The following definition is classical:

Definition 2.1. Let X and X ′ be two compact subsets of S. The Hausdorff
distance between X and X ′ is the quantity

dH(X,X ′) = inf{ε > 0 : X ⊂ Nε(X
′) and X ′ ⊂ Nε(X}.

It is easy to see that the function dH is a distance function on the set of compact
subsets of S. Such a definition was made by F. Hausdorff for the set of compact
subsets of Rn, and it was used by H. Busemann [1] for the set of compact sets of a
general metric space.

We shall mostly use the notions Nε(X) and dH(X,Y ) for elements X,Y ⊂ S
which are geodesic laminations on S. We denote by dH the restriction of the
Hausdorff metric to GL(S).

We also use the following notation:
For any Λ ∈ GL(S) and for any ε > 0,

Vε(Λ) = {Λ′ ∈ GL(S) : Nε(Λ
′) ⊃ Λ and Nε(Λ) ⊃ Λ′}.

The topology induced by dH on the set of subsets of S as well as its restiction
to GL(S), which we shall denote by TH , are called the Hausdorff topology. For the
topology TH any set Vε(Λ) is open. Moreover, it is easy to see that the collection
of sets Vε(Λ) with ε > 0 and Λ ∈ GL(S), constitute a basis for TH .

We now equip the set GL(S) with a second topology.
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Definition 2.2. Let V be an open subset of S. Set

UV = {Λ ∈ GL(S) : Λ ∩ V 6= ∅}.

We let T be the topology on GL(S) with subbasis the sets UV , where V varies over
the set of open subsets of S.

Following the terminology of ([2], Def. I.4.1.10), we call the topology T on GL(S)
the Thurston topology. The original reference for the topology T is (Thurston [12],
Section 8.10), where T is referred to as the geometric topology. Clearly the topology
T does not satisfy the first axiom of separation. Indeed, take a geodesic lamination
Λ that contains a strict sublamination Λ1 $ Λ2; then every open set for T containing
Λ1 contains Λ. In particular the topology T is not Hausdorff, unlike the topology
TH , which is induced by a metric.

Lemma 2.3. T ⊂ TH i.e. the topology T is weaker than the topology TH .

Proof. It suffices to prove that for each open subset V of S, UV ∈ TH . For Λ ∈ UV ,
we have Λ ∩ V 6= ∅. For any x ∈ Λ ∩ V , there exists an open ball B(x, εΛ) in S of
center x and radius εΛ such that B(x, εΛ) ⊂ V . We now prove the following:

Λ ∈ VεΛ(Λ) ⊂ UV . (∗)

First, it is obvious that Λ ∈ VεΛ(Λ). To prove the inclusion VεΛ(Λ) ⊂ UV we note
that if Λ′ ∈ VεΛ(Λ) then Λ ⊂ NεΛ(Λ

′) and hence x ∈ NεΛ(Λ
′). Therefore we can

find a point y in Λ′ such that d(x, y) < εΛ and hence y ∈ Λ′ ∩ B(x, εΛ) 6= ∅. Since
B(x, εΛ) ⊂ V, this implies that Λ′ ∩ V 6= ∅. Therefore Λ′ ∈ UV and the inclusion
VεΛ(Λ) ⊂ UV is proven.

Now from (∗) we deduce immediately that

UV = ∪{VεΛ(Λ) : Λ ∈ GL(S) and Λ ∩ V 6= ∅}.

Therefore UV ∈ TH . �

The metric space (GL(S), dH) is compact. This is a general result on the Haus-
dorff metric on the set B(X) of compact subsets of a metric space X , and GL(S)
is a closed subset of B(S) (cf. [3],Theorem 3.4 for this special case). Therefore TH

is a compact topology. Since T ⊂ TH , it follows that T is also a compact topology.
In the next theorem we summarize basic properties of minimal geodesic lami-

nations and we also give a description of the structure of maximal geodesic lam-
inations. The properties are all well known from Thurston’s theory, and we give
references for the convenience of the reader.

Theorem 2.4. (I) (Proposition A.2.1, p.142 in [10]) Let Λ be an arbitrary geodesic
lamination of S. Then S − Λ consists of finitely many components. Let U be such
a component. The completion C(U) of U with respect to the metric induced by the
Riemannian metric of S is a complete hyperbolic surface of finite area with geodesic
boundary.

(II) (Corollary A.2.4, p. 143 in [10] or Lemmata 4.2 and 4.3 in [3]) Let Λ be a
minimal geodesic lamination with infinitely many leaves. Then every leaf of Λ is
dense in Λ. Furthermore, Λ contains a finite number of leaves which are isolated
from one side. These leaves appear as boundary geodesics of some C(U), where U
is a component of S − Λ; they will be referred to as boundary leaves of Λ.

(III) Theorem I.4.2.8, p. 83 in [2]) Let Λ be an arbitrary geodesic lamination of S.
Then Λ consists of the disjoint union of a finite number of minimal sublaminations
of Λ together with a finite set of additional geodesics each end of which “spirals”
onto a minimal lamination. Each of the additional geodesics is isolated, i.e. it is
contained in an open subset of S which is disjoint from the rest of the lamination.
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In Item (III) above, the fact that an end of a geodesic spirals on a minimal
sublamination Λ′ of Λ means that the set of accumulation points of this end on the
surface is Λ′.

The following lemma and proposition will also be used in the next section.

Lemma 2.5. Let Λ be an infinite minimal geodesic lamination of S. Then Λ has
at least two boundary leaves.

Proof. The lift of Λ to the universal cover of S is a geodesic lamination Λ̂ of the
hyperbolic plane. Each component of the complement of Λ̂ is an ideal polygon. The
images in S of two boundary leaves of such a polygon give the desired boundary
leaves of Λ. �

Proposition 2.6 (see [2], I 4.2.14 p. 81). The finite laminations are dense in
the space of geodesic lamnitations equipped with the Hausdorff topology. Hence the
same holds for the Thurston topology.

3. On the action of a homeomorphism of GL(S)

We denote by O(S) the set of open subsets of S and we fix an element Λ of
GL(S). We consider the sets

OΛ(S) = {V ∈ O(S) : V ∩ Λ 6= ∅} ⊂ O(S)

and

U(Λ) = ∩V ∈OΛ(S)UV ⊂ GL(S).

We have the following.

Lemma 3.1. Let Λ1,Λ2 ∈ GL(S). Then Λ1 ⊂ Λ2 if and only if Λ2 ∈ U(Λ1).

Proof. Assume that Λ1 ⊂ Λ2. For any V ∈ OΛ1
(S), we consider the set UV . Then

Λ2 ∩ V 6= ∅, hence Λ2 ∈ UV . Therefore Λ2 ∈ U(Λ1).
Conversely, assume Λ2 ∈ U(Λ1). If Λ1 is not a subset of Λ2, then there exists

x ∈ Λ1 with x /∈ Λ2. Since Λ2 is a compact subset of S, there exists ε > 0 such that
the open ball B(x, ε) does not intersect Λ2. This implies that Λ2 /∈ UB(x,ε). This is
a contradiction since Λ2 ∈ U(Λ1). Hence Λ1 ⊂ Λ2. �

Lemma 3.2. Let Λ1,Λ2 ∈ GL(S). Then Λ1 ⊂ Λ2 if and only if U(Λ2) ⊂ U(Λ1).

Proof. First assume that Λ1 ⊂ Λ2 and let Λ′ ∈ U(Λ2). Then Λ′ ∩ V 6= ∅ for each
V ∈ O(S) with V ∩Λ2 6= ∅. Therefore Λ′∩V 6= ∅ for each V ∈ O(S) with V ∩Λ1 6= ∅.
Therefore Λ′ ∈ U(Λ1).

Now assume that U(Λ2) ⊂ U(Λ1). Obviously, Λ2 ∈ U(Λ2) and hence Λ2 ∈ U(Λ1).
From Lemma 3.1, this implies that Λ1 ⊂ Λ2. �

Lemma 3.3. Assume that f is a homeomorphism of GL(S) with respect to the
Thurston topology. If Λ ∈ GL(S), then f(U(Λ)) = U(f(Λ)).

Proof. It suffices to show that

U(f(Λ)) ⊂ f(U(Λ)) ∀Λ ∈ GL(S).

Indeed, this implies

U(f−1(Λ)) ⊂ f−1(U(Λ)),

which implies

f(U(f−1(Λ)) ⊂ U(Λ),

which implies
f(U(Λ0) ⊂ U(f(Λ0),

where Λ0 = f−1(Λ). Thus, we get f(U(Λ0) ⊂ U(f(Λ0) for any Λ0 in GL(S).
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To prove the assertion, we start by

f(U(Λ)) = f(∩{UΛ : V ∈ OΛ(S)}) = ∩{f(UV ) : V ∈ OΛ(S)}.

Now let V0 be an arbitrary element of OΛ(S). Then, Λ is in UV0
and f(Λ) is in

f(UV0
). But f(UV0

) ∈ T (that is, f(UV0
) is an open set of Thurston’s topology).

Therefore, there exist V1, . . . , Vn ∈ Of(Λ)(S) such that

∩1≤i≤nUVi
⊂ f(UV0

).

Therefore, we have
∩{UV : V ∈ Of(Λ)(S)} ⊂ f(UV0

),

which implies that for every V0 ∈ OΛ(S), we have

U(f(Λ)) ⊂ f(UV0
).

Finally, we obtain
U(f(Λ)) ⊂ ∩{f(UV ) : V ∈ OΛ(S)}

which implies U(f(Λ)) ⊂ f(U(Λ)). �

From the above lemmata, we obtain the following:

Corollary 3.4. Assume that f is a homeomorphism of GL(S) with respect to the
Thurston topology and let Λ1,Λ2 ∈ GL(S). Then Λ1 ⊂ Λ2 implies that f(Λ1) ⊂
f(Λ2).

Proof. From Lemma 3.2, the inclusion Λ1 ⊂ Λ2 implies that U(Λ2) ⊂ U(Λ1).
Since f is a bijection, we have f(U(Λ2)) ⊂ f(U(Λ1)). From Lemma 3.3 we get
U(f(Λ2)) ⊂ U(f(Λ1)) which implies again, by Lemma 3.2, that f(Λ1) ⊂ f(Λ2). �

Lemma 3.5. Let f be a homeomorphism of GL(S) with respect to the Thurston
topology. Then f sends a maximal (respectively minimal) geodesic lamination of S
to a maximal (respectively minimal) geodesic lamination of S.

Proof. Let Λ be a maximal geodesic lamination of S. If f(Λ) is not maximal then
there is a maximal geodesic lamination Θ such that f(Λ) $ Θ. Let Λ′ = f−1(Θ).
Then, by Corollary 3.4, we have Λ $ Λ′ which contradicts the maximality of Λ.

Likewise, let Λ be a minimal geodesic lamination of S. If f(Λ) is not minimal,
then there exists a lamination Θ such that Θ $ f(Λ). Let Λ′ = f−1(Θ). Then,
from Corollary 3.4 again, we have Λ′ $ Λ, which contradicts the minimality of Λ.

�

From Theorem 2.4 (III), every Λ ∈ GL(S) has a finite number of sublaminations.
Thus, we give the following definition.

Definition 3.6. Let Λ ∈ GL(S). A chain of sublaminations of Λ is a finite sequence
(Λi), i = 0, 1, .., n of sublaminations of Λ such that ∅ 6= Λn $ Λn−1 $ ... $ Λ1 $
Λ0 = Λ. We denote such a chain by CΛ. The integer n will be called the length of
CΛ and will be denoted by l(CΛ).

A chain of sublaminations CΛ will be called maximal if its length is maximal
among all chains of sublaminations of Λ.

The length of a maximal chain of sublaminations CΛ of Λ depends only on Λ.
Therefore the number l(CΛ) will be referred to as the length of Λ and will be denoted
by length(Λ).

Lemma 3.7. Let f be a homeomorphism of GL(S) with respect to the Thurston
topology and let Λn $ Λn−1 $ ... $ Λ1 $ Λ0 = Λ be a maximal chain of sub-
laminations of Λ. Then f(Λn) $ f(Λn−1) $ ... $ f(Λ1) $ f(Λ0) = f(Λ) is a
maximal chain of sublaminations of f(Λ) and length(Λk) = length(f(Λk)) for each
k = 0, 1, .., n.
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Proof. The proof follows immediately from Corollary 3.4. �

We call a generalized pair of pants a hyperbolic surface which is homeomorphic
to a sphere with three holes, a hole being either a geodesic boundary component
or a cusp.

Now we can prove the following proposition.

Proposition 3.8. Let f be a homeomorphism of GL(S) with respect to the Thurston
topology. Then,

(1) f sends any maximal finite lamination which contains a collection of curves
that decompose S into generalized pair of pants to a maximal finite lamina-
tion that has the same property.

(2) f sends any laminations whose leaves are all closed to a lamination having
the same property. Furthermore if such a lamination Λ has k components
then f(Λ) has also k components.

(3) f sends finite laminations to finite laminations.

Proof. (1) Let Λ be a maximal geodesic lamination. From Theorem 2.4, S − Λ
consists of finitely many open components.

Claim 1: Let U be a component of S − Λ. Then, the completion C(U) of U is
a hyperbolic surface which is isometric either to a hyperbolic ideal triangle or to a
surface of genus 0 with a cusp and an open geodesic as boundary. The latter will be
referred to as a cusped hyperbolic monogon ; it is obtained from a hyperbolic ideal
triangle by gluing together two sides of this ideal triangle.
Proof of Claim 1. The surface C(U) is a complete hyperbolic surface of finite area.
Therefore C(U) has finitely many components which are either closed geodesics or
open geodesics. We may easily verify that if C(U) is not of the type described in
the claim then the lamination Λ would not be maximal because we could add open
geodesics li to Λ and construct a lamination Λ′ % Λ. This proves Claim 1.

Now let λ1, ..., λn be the leaves of Λ which are boundary geodesics of the com-
pletion C(U) of some component U of S − Λ. The leaves λi can be of two types:

(i) an open geodesic of S which is an isolated leaf of Λ;
(ii) an open geodesic of S which is a leaf isolated from one side in Λ.
A geodesic of type (ii) appears as a boundary leaf of a minimal infinite sub-

lamination of Λ. Among the {λi}, we may assume, without loss of generality, that
λ1, ..., λk are the isolated leaves of Λ, for 0 ≤ k ≤ n. From Theorem 2.4, it follows
that if Λ is a finite maximal geodesic lamination then k = n and that if Λ is a
maximal infinite geodesic lamination which is also minimal then k = 0.

To the leaves λ1, ..., λn of Λ we add the leaves c1, ..., cm of Λ which are simple
closed geodesics, if there exist any. Let AΛ = {λ1, .., λn, c1, .., cm}.

We define a generating set for a geodesic lamination to be a set A = {µ1, . . . , µk}
of leaves of Λ such that the union of the closures of the leaves that belong to A is
the lamination Λ. It follows from Theorem 2.4 that every geodesic lamination on
S has a finite generating set.

Our terminology is motivated by Claim 2 that follows now.
Claim 2: The set AΛ = {λ1, .., λn, c1, .., cm} is a generating set for Λ and any

proper sublamination of Λ is the closure of some proper subset of AΛ.
Proof of Claim 2. The claim follows immediately from the definition of A and from
Theorem 2.4 (III).

It is well-known and easy to see, using an Euler characteristic count, that the
maximum number of pairwise disjoint simple closed geodesics in S is equal to 3g−
3 + b and that these geodesics cut S into 2g − 2 + b hyperbolic generalized pairs of
pants. It is also easy to see that the maximum number of open geodesics li of S
which decompose S into hyperbolic ideal triangles is equal to 6g − 6 + 3b.
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Claim 3: If Λ is a maximal finite geodesic lamination that contains a generalized
pair of pants decomposition P then a maximal chain of sublaminations of Λ has
length 9g − 9 + 3b.
Proof of Claim 3. The lamination Λ contains 3g − 3 + b simple closed geodesics,
say c1, .., c3g−3+b, which cut S into generalized pairs of pants, and additional open
isolated geodesics, say λ1, ..., λr, such that each λi spirals about some cj . We may
add to λi open geodesics λ′

k, which from one direction abut to a cusp and from the
other direction spiral about some cj , such that all the geodesics λi and λ′

i decompose
S into hyperbolic ideal triangles. Since the total number of λi and λ′

i is equal to
6g− 6+3b we deduce that the number r of λi is equal to 6g− 6+2b. Therefore the
set AΛ = {λ1, .., λ6g−6+2b, c1, .., c3g−3+b} is a generating set of Λ. From Claim 2, a
chain of sublaminations Λn $ Λn−1 $ ... $ Λ1 $ Λ0 = Λ is maximal if and only if
for each k = 1, .., n, Λk −Λk−1 is a single leaf belonging to AΛ. Such a sequence Λi

can be constructed as follows: From Λ0 = Λ we first remove, one by one, all leaves
λi; after removing all these leaves we continue removing, one by one, all leaves cj .
Obviously n = 9g − 9 + 3b.
Claim 4: Let Λ be a maximal finite geodesic lamination which does not contain a
generalized pants decomposition. Then length(Λ) < 9g − 9 + 3b.
Proof of Claim 4. Since Λ does not contain a generalized pants decomposition it
follows that if c1, . . . , ck are the closed geodesics in Λ, then k is strictly smaller than
3g−3+b. Now as in the proof of Claim 3, we may prove that Λ contains additional
open geodesics λ1, . . . , λ6g−6+2b which spiral about the cj ’s. Obviously, a maximal
chain CΛ of sublaminations of Λ has length less than 9g − 9 + 3b.
Claim 5: Let Λ be a maximal infinite geodesic lamination. Then length(Λ) <
9g − 9 + 3b.

Consider a maximal chain of sublaminations of Λ, say Λk $ Λk−1 $ ... $ Λ1 $
Λ0 = Λ. Let AΛ = {λ1, .., λn, c1, .., cm} be a generating set of Λ, where each λi is an
open geodesic and each ci is a closed geodesic, and we assume that the generating
set AΛ is minimal in the sense that no proper subset of AΛ is a generating set of
Λ.

First, we prove that m < 3g−3+b. We know thatm ≤ 3g−3+b. Ifm = 3g−3+b
then the closed geodesics cut S into generalized pairs of pants. This implies that
a minimal sublamination, say Λ′, of Λ with infinitely may leaves must be in the
interior of a generalized pair of pants. But it is easy to see that such a sublamination
Λ′ does not exist. Therefore m < 3g − 3 + b.

Second, we prove that n ≤ 6g − 6 + 2b. By Theorem 2.4, the leaves λ1, .., λn

are either isolated open leaves or boundary leaves. Since Λ is maximal, for each
component U of S − Λ the completion C(U) is either a hyperbolic ideal triangle
or a cusped hyperbolic monogon. The area of every such surface is equal to π,
therefore, from the Gauss-Bonnet theorem the number of components U is equal
to 4g− 4+ 2b. Now, each hyperbolic ideal triangle has three sides and each cusped
hyperbolic monogon has one side. On the other hand the number of cusped hy-
perbolic monogons is equal to b. Therefore the total number of sides of C(U) is
3(4g − 4 + 2b)− 2b = 12g − 12 + 4b. Now if a leaf λi is isolated it belongs exactly
to two components C(U). If a leaf λi is not isolated then it belongs to a minimal
sublamination of Λ, say Ki. From Lemma 2.5, Ki contains at least two boundary
leaves and we take λi to be one of them. Therefore, among all the sides of the
given C(U), at least two of them are boundary leaves of Ki. This implies that

n ≤ 12g−12+4b
2 = 6g − 6 + 2b. Assume that λ1, ..., λr ∈ AΛ, 0 ≤ r < n are isolated

leaves and λr+1, ..., λn ∈ AΛ are isolated from one side. Every λs with s > r belongs
to a unique minimal infinite sublamination Λ′

s of Λ.
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Now the maximal chain of sublaminations Λk $ Λk−1 $ ... $ Λ1 $ Λ0 = Λ of
Λ is constructed as follows: We pass from Λi−1 to Λi by removing all the isolated
open geodesics λi ∈ AΛ with i ≤ r, then every minimal infinite sublamination Λ′

t

of Λ and every closed geodesic cj ∈ AΛ. Obviously the length of Λ is less than
9g − 9 + 3b. This finishes the proof of Claim 5.

Now, from Lemma 3.7 the homeomorphism f preserves the length of a maximal
lamination Λ and this finishes the proof of (1).

To prove (2), let K be a lamination consisting of k closed geodesics. Then
length(K) = k − 1. Consider a maximal finite geodesic lamination Λ containing a
generalized pants decomposition P withK ⊂ P . We note that in a maximal chain of
sublaminations CΛ of Λ only the sublamination consisting of k closed geodesics have
length k − 1. From (1), f(Λ) is a maximal finite geodesic lamination containing a
pants decomposition. From Lemma 3.7, for each sublamination Λi belonging to CΛ,
we have length(Λi) = length(f(Λi)). Therefore f(K) consists of k closed geodesics.

Now we prove (3). Let K be a finite lamination. Obviously, a minimal sublam-
ination of K consists of a single closed geodesic. Assume that f(K) is not finite.
Then there is an infinite minimal sublamination Λ0 of f(K). From Lemma 3.5, Λ0

is the image of a minimal sublamination K0 of K, via f , i.e. f(K0) = Λ0. But from
(2), f(K0) consists of a single closed geodesic. Therefore we have a contradiction,
which proves (3). �

4. Proof of Theorem 1.1

Assume that f is a homeomorphism of GL(S) for the Thurston topology. We
need the following lemma.

Lemma 4.1. Assume that (Λn) is a sequence of laminations that converges to
a lamination Λ with respect to the Hausdorff topology. Assume also that (Λn)
converges to Λ′ with respect to the Thurston topology. Then Λ′ ⊂ Λ.

Proof. If Λ′ is not contained in Λ then there exists a point x ∈ Λ′ − Λ. Therefore
there exists an open ball B(x, ε) in S of center x and radius ε such that B(x, ε)∩Λ =
∅. We have also that Λ′ ∈ UB(x,ε).

Now, since Λn → Λ with respect to the Hausdorff topology we deduce that there
is n0 ∈ N such that

Λn ∩B(x, ε) = ∅ for n ≥ n0 (∗).
On the other hand, Λn → Λ′ with respect to the Thurston topology. This

implies that there exists n1 ∈ N such that Λn ∈ UB(x,ε) for n ≥ n1 and hence
Λn ∩ B(x, ε) 6= ∅ for n ≥ n1. This gives a contradiction to the relation (∗) which
implies that Λ′ ⊂ Λ. �

Now note that there is a natural identification between the subset CGL(S) and
the complex of curves C(S) of S. Therefore, from Proposition 3.8, f induces an
automorphism on C(S). From [4], [5] and [6] and under the hypothesis of Theorem
1.1, we obtain a homeomorphism h : S → S such that h∗ = f on CGL(S). From
Proposition 2.6, FGL(S) is a dense subset of GL(S) with respect to the Thurston
topology. First we will prove that h∗ = f on FGL(S).

Composing f with (h∗)
−1, if necessary, it suffices to assume that f = id on

CGL(S) and prove that f = id on FGL(S). To do it, we first prove two lemmas:

Lemma 4.2. Let Λ = {γ, γ1, γ2} be a geodesic lamination consisting of two disjoint
simple closed geodesics γ1, γ2 and one open geodesic γ spiraling in one direction
about γ1 and in the other direction about γ2. Then f(Λ) = Λ.
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Proof. We take a generalized pair of pants decomposition P and a finite geodesic
lamination ΛP such that

(1) Λ ⊂ ΛP

(2) the geodesics in P are leaves of ΛP and
(3) for each component γ of P, there are leaves of ΛP spiraling about γ from

different sides of γ and two leaves of ΛP which spiral about γ from different sides
of γ induce opposite orientations on γ.

Such a lamination ΛP can be approximated in the Hausdorff topology and hence
in the Thurston topology by a sequence Cn of simple closed geodesics, where the Cn

are viewed as elements of CGL(S). This implies that f(ΛP ) = ΛP . Indeed, Cn → ΛP

with respect to the Hausdorff topology and hence with respect to the Thurston
topology. Therefore f(Cn) → f(ΛP ) with respect to the Thurson topology. This
implies, since f is the identity on CGL(S), that Cn → f(ΛP ) with respect to the
Thurston topology. From Lemma 4.1 we deduce that f(ΛP ) ⊂ ΛP . But from
Lemma 3.7 the laminations ΛP and f(ΛP ) have the same length. Therefore f(ΛP )
cannot have a smaller number of leaves than ΛP . Therefore f(ΛP ) = ΛP .

Assume now that f(Λ) = Λ′. From Proposition 3.8 and Corollary 3.4, we deduce
that Λ′ = {γ′, γ1, γ2} where γ′ spirals about γ1 and about γ2 and we will prove that
γ′ = γ.

We can find a surface Q ⊂ S with geodesic boundary containing the lamination
Λ and which is the closure of a component of S − P such that Q is one of the
following types:

(i) a torus with one boundary component, with ∂Q = γ1 or ∂Q = γ2;
(ii) a pair of pants with no cusps, with γ1 ∪ γ2 ⊂ ∂Q;
(iii) a generalized pair of pants with a single cusp with ∂Q = γ1 ∪ γ2.
First we show that γ′ ⊂ Q. Let Pγ = P ∪ {γ} ⊂ ΛP . Then, it is not hard to

show, using Corollary 2.6 and Proposition 3.8, that f(Pγ) = P ∪ γ′. Therefore
P ∩ {γ′} = ∅. This implies that if γ′ is not contained in Q then it is contained
in some generalized pair of pants Q′ with γ1, γ2 ∈ ∂Q′ and Int(Q) ∩ Int(Q′) = ∅.
Thus, we may find a simple closed geodesic γ0 of S wich intersects only one of
the geodesics γ, γ′. To prove the last statement we need the assumption on the
topological type of S that we made in the introduction. Assume without loss of
generality that γ ∩ γ0 = ∅ and γ′ ∩ γ0 6= ∅. From Corollary 3.4 the lamination
Λ1 = {γ, γ1, γ2, γ0} is sent to a lamination Λ′

1 which should contain the geodesics
γ′, γ1, γ2, γ0. But this is impossible since γ′ ∩ γ0 6= ∅ and hence Q′ = Q.

Now in the cases (ii) and (iii) above there is a unique leaf of ΛP contained in
Q, namely the leaf γ, which spiral about γ1 and γ2. This implies that γ′ = γ since
f(Λ) = Λ′ ⊂ ΛP = f(ΛP ) and γ′ ⊂ Q.

Consider now the case (i) and without loss of generality we assume that ∂Q =
γ2. In this case we assume furthermore that the lamination ΛP which contains Λ
and which satisfies the requirements (1)-(3) above is chosen such that ΛP ∩ Q =
{γ1, γ2, γ, δ}, where δ is a geodesic spiraling about γ1in both directions but from
different sides of γ1. Therefore, there is again a unique leaf of ΛP contained in Q,
namely the geodesic γ, which spiral about γ1 and γ2. Thus, we deduce again that
γ′ = γ and Lemma 4.2 is proved. �

Lemma 4.3. Let Λ = {γ, γ1} be the geodesic lamination consisting of one simple
closed geodesic γ1 and one open geodesic γ spiraling in both directions about γ1.
Then f(Λ) = Λ.

Proof. First we find a surface Q ⊂ S with geodesic boundary containing γ, γ1 such
that Q is one of the following surfaces:

(i) a torus with one boundary component such that γ1 is not the boundary of Q;
(ii) a torus with one boundary component such that γ1 = ∂Q;
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(iii) a generalized pair of pants with γ1 ⊂ ∂Q.
Then, as in the proof of Lemma 4.2, we prove that γ′ ⊂ Q.
Assume that f(Λ) = Λ′. From Proposition reffinite to finite and Corollary 3.4,

we deduce that Λ′ = {γ′, γ1}, where γ′ spirals in both directions about γ1.
Now in all cases (i)-(iii) we may verify that there is a unique leaf of ΛP contained

in Q, namely the leaf γ, which spirals about γ1. As in Lemma 4.1, this implies that
γ′ = γ. Therefore, Λ = Λ′ and Lemma 4.3 is proven. �

Now we can prove that f = id on FGL(S). Indeed, consider K ∈ FGL(S) such
that f(K) = K ′ 6= K. Then, without loss of generality, we may assume that there is
a leaf γ ofK such that γ is not a leaf ofK ′. First we remark that γ cannot be a closed
geodesic since f({γ}) = {γ} and by Corollary 3.4 f({γ}) = {γ} ⊂ f(K). Let γ be
an open geodesic and assume that γ spirals about two disjoint closed geodesics γ1,
γ2. (The case where γ spirals about a single closed geodesics γ1 in both directions
is treated similarly using Lemma 4.3.) Consider the lamination {γ, γ1, γ2}. By
Lemma 4.2, f({γ, γ1, γ2}) = {γ, γ1, γ2} and hence {γ, γ1, γ2} ⊂ f(K) by Corollary
3.4. Therefore γ is a leaf of f(K), a contradiction which implies that f(K) = K.

Finally we will show that f = id on GL(S). Let Λ ∈ GL(S). Then from Propo-
sition 2.6 such a lamination Λ can be approximated in the Hausdorff topology and
hence in the Thurston topology by a sequence Fn of finite laminations. This im-
plies that f(Λ) = Λ. Indeed, Fn → Λ with respect to the Hausdorff and hence
with respect to the Thurston topology. Therefore f(Fn) = Fn → f(Λ) with respect
to the Thurston topology. From Lemma 4.1 we deduce that f(Λ) ⊂ Λ. Both Λ
and f(Λ) are infinite laminations. Therefore, from Theorem 2.8 (III), Λ and f(Λ)
consist of the disjoint union of a finite number of infinite minimal sublaminations
with a finite set of isolated, open geodesics each end of which spiral onto a minimal
sublamination. Now, if f(Λ) 6= Λ then f(Λ) must consist either of a smaller num-
ber of minimal sublamination of Λ or/and of a smaller number of isolated, open
geodesics. This implies that length (f(Λ)) < length(Λ) which contradicts Lemma
3.7 Therefore f(Λ) = Λ and this finishes the proof of the theorem.
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