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On the Hausdorff dimension of graphs of
prevalent continuous functions on compact sets

Frédéric Bayart and Yanick Heurteaux

Abstract Let K be a compact set inRd with positive Hausdorff dimension. Us-
ing a Fractional Brownian Motion, we prove that in a prevalent set of continuous
functions onK, the Hausdorff dimension of the graph is equal to dimH (K) + 1.
This is the largest possible value. This result generalizesa previous work due to
J.M. Fraser and J.T. Hyde ([6]) which was exposed in the conferenceFractal and
Related Fields 2. The case ofα-Hölderian functions is also discussed.

1 Introduction

Letd≥ 1 and letK be a compact subset inRd. Denote byC (K) the set of continuous
functions onK with real values. This is a Banach space when equipped with the
supremum norm,‖ f‖∞ = supx∈K | f (x)|. The graph of a functionf ∈C (K) is the set

Γ K
f = {(x, f (x)) ; x∈ K} ⊂ R

d+1.

It is often difficult to obtain the exact value of the Hausdorff dimension of the graph
Γ K

f of a precised continuous functionf . For example, a famous conjecture says that
the Hausdorff dimension of the graph of the Weierstrass function

f (x) =
+∞

∑
k=0

2−kα cos(2kx),
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where 0< α < 1, satisfies

dimH

(

Γ [0,2π ]
f

)

= 2−α.

This is the natural expected value, but, to our knowledge, this conjecture is not yet
solved.

If we add some randomness, the problem becomes much easier and Hunt proved
in [11] that the Hausdorff dimension of the graph of the random Weierstrass function

f (x) =
+∞

∑
k=0

2−kα cos(2kx+θk)

where(θk)k≥0 is a sequence of independent uniform random variables is almost
surely equal to the expected value 2−α.

In the same spirit we can hope to have a generic answer to the following question:

“What is the Hausdorff dimension of the graph of a continuousfunction?”

Curiously, the answer to this question depends on the type ofgenericity we con-
sider. If genericity is relative to the Baire category theorem, Mauldin and Williams
proved at the end of the 80’s the following result:

Theorem 1.([13]) For quasi-all functions f∈ C ([0,1]), we have

dimH

(

Γ [0,1]
f

)

= 1.

This statement on the Hausdorff dimension of the graph is very surprising because
it seems to say that a generic continuous function is quite regular. Indeed it is conve-
nient to think that there is a deep correlation between strong irregularity properties
of a function and large values of the Hausdorff dimension of its graph.

This curious result seems to indicate that genericity in thesense of the Baire
category theorem is not “the good notion of genericity” for this question. In fact,
when genericity is related to the notion of prevalence (see Section 2 for a precise
definition), Fraser and Hyde recently obtained the following result.

Theorem 2.([6]) Let d∈ N
∗. The set

{

f ∈ C ([0,1]d) ; dimH

(

Γ [0,1]d

f

)

= d+1
}

is a prevalent subset ofC ([0,1]d).

This result says that the Hausdorff dimension of the graph ofa generic continuous
function is as large as possible and is much more in accordance with the idea that a
generic continuous function is strongly irrregular.

The main tool in the proof of Theorem 2 is the construction of afat Cantor set
in the interval[0,1] and a stochastic process on[0,1] whose graph has almost surely
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Hausdorff dimension 2. This construction is difficult to generalize in a compact
setK 6= [0,1]. Nevertheless, there are in the litterature stochastic processes whose
almost sure Hausdorff dimension of their graph is well-known. The most famous
example is the Fractional Brownian Motion. Using such a process, we are able to
prove the following generalisation of Theorem 2.

Theorem 3.Let d≥ 1 and let K⊂ R
d be a compact set such thatdimH (K) > 0.

The set
{

f ∈ C (K) ; dimH

(

Γ K
f

)

= dimH (K)+1
}

is a prevalent subset ofC (K).

In this paper, we have decided to focus to the notion of Hausdorff dimension of
graphs. Nevertheless, we can mention that there are also many papers that deal with
the generic value of the dimension of graphs when the notion of dimension is for
example the lower box dimension (see [5, 9, 12, 16]) or the packing dimension (see
[10, 14]).

The paper is devoted to the proof of Theorem 3 and is organisedas follows. In
Section 2 we recall the basic facts on prevalence. In particular we explain how to
use a stochastic process in order to prove prevalence in functional vector spaces. In
Section 3, we prove an auxiliary result on Fractional Brownian Motion which will
be the key of the main theorem. We finish the proof of Theorem 3 in Section 4.
Finally, in a last section, we deal with the case ofα-Hölderian functions.

2 Prevalence

Prevalence is a notion of genericity who generalizes in infinite dimensional vector
spaces the notion of “almost everywhere with respect to Lebesgue measure”. This
notion has been introduced by J. Christensen in [2] and has been widely studied
since then. In fractal and multifractal analysis, some properties which are true on a
denseGδ -set are also prevalent (see for instance [8], [7] or [1]), whereas some are
not (see for instance [8] or [15]).

Definition 1. Let E be a complete metric vector space. A Borel setA⊂ E is called
Haar-null if there exists a compactly supported probability measureµ such that, for
anyx∈E, µ(x+A)= 0. If this property holds, the measureµ is said to betransverse
to A.
A subset ofE is calledHaar-null if it is contained in a Haar-null Borel set. The
complement of a Haar-null set is called aprevalentset.

The following results enumerate important properties of prevalence and show
that this notion supplies a natural generalization of ”almost every” in infinite-
dimensional spaces:

• If A is Haar-null, thenx+A is Haar-null for everyx∈ E.
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• If dim(E)< +∞, A is Haar-null if and only if it is negligible with respect to the
Lebesgue measure.

• Prevalent sets are dense.
• The intersection of a countable collection of prevalent sets is prevalent.
• If dim(E) = +∞, compacts subsets ofE are Haar-null.

In the context of a functional vector spaceE, a usual way to prove that a setA ⊂
E is prevalent is to use a stochastic process. More precisely,suppose thatW is a
stochastic process defined on a probability space(Ω ,F ,P) with values inE and
satisfies.

∀ f ∈ E, f +W ∈ A almost surely.

Replacingf by− f , we get that the lawµ of the stochastic processW is such that

∀ f ∈ E, µ( f +A) = 1.

In general, the measureµ is not compactly supported. Nevertheless, if we suppose
that the vector spaceE is also a Polish space (that is if we add the hypothesis thatE
is separable), then we can find a compact setQ⊂ E such thatµ(Q) > 0. It follows
that the compactly supported probability measureν = (µ(Q))−1µ|Q is transverse to
E \A.

3 On the graph of a perturbed Fractional Brownian Motion

In this section, we prove an auxilliary result which will be the key of the proof of
Theorem 3. For the definition and the main properties of the Fractional Brownian
Motion, we refer to [4, Chapter 16].

Theorem 4.Let K be a compact set inRd such thatdimH (K) > 0 andα ∈ (0,1).
Define the stochastic process inRd

W(x) =W1(x1)+ · · ·+Wd(xd) (1)

where W1, · · · ,Wd are independent Fractional Brownian Motions starting from0
with Hurst parameter equal toα. Then, for any function f∈ C (K)

dimH

(

Γ K
f+W

)

≥ min

(

dimH (K)

α
, dimH (K)+1−α

)

almost surely.

Let us remark that the conclusion of Theorem 4 is sharp. More precisely, suppose
that f = 0 and letε > 0. It is well known that the Fractional Brownian Motion is
almost-surely uniformly(α −ε)-Hölderian. It follows that the stochastic processW
is also uniformly(α − ε)-Hölderian onK. It is then straightforward that the graph
Γ K

W satisfies
dimH

(

Γ K
W

)

≤ dimH (K)+1− (α − ε) a.s..
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On the other hand, the application

Φ : x∈ K 7−→ (x,W(x)) ∈ R
d+1

is almost-surely(α − ε)-Hölderian. It follows that

dimH

(

Γ K
W

)

≤ dimH (K)

α − ε
a.s..

The proof of Theorem 4 is based on the following lemma.

Lemma 1. Let s> 0, α ∈ (0,1) and W be the process defined as in(1). There exists
a constant C:=C(s)> 0 such that for anyλ ∈R, for any x,y∈R

d,

E

[

1

(‖x− y‖2+(λ +W(x)−W(y))2)s/2

]

≤C

{

‖x− y‖1−s−α provided s> 1
‖x− y‖−αs provided s< 1.

Proof. Observe thatW(x)−W(y) is a centered gaussian variable with variance

σ2 = h2α
1 + · · ·+h2α

d

whereh= (h1, · · · ,hd) = x− y. Hölder’s inequality yields

‖h‖2α ≤ σ2 ≤ d1−α‖h‖2α .

Now,

E

[

1

(‖x− y‖2+(λ +W(x)−W(y))2)s/2

]

=

∫

e−u2/(2σ2)

(‖h‖2+(λ +u)2)s/2

du

σ
√

2π
.

Suppose thats> 1. We get

E

[

1

(‖x− y‖2+(λ +W(x)−W(y))2)s/2

]

≤
∫

du

(‖h‖2+(λ +u)2)s/2σ
√

2π

=

∫ ‖h‖dv

(‖h‖2+(‖h‖v)2)s/2σ
√

2π

≤ ‖h‖1−s−α 1√
2π

∫

dv

(1+ v2)s/2

:= C‖x− y‖1−s−α.

In the case where 0< s< 1, we write

E

[

1

(‖x− y‖2+(λ +W(x)−W(y))2)s/2

]

≤
∫

e−v2/2

(λ +σv)s

dv√
2π

≤ ‖h‖−αs
∫

e−v2/2

(γ + v)s

dv√
2π
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whereγ = λ σ−1. On the other hand,

∫

e−v2/2dv
(γ + v)s =

∫

e−(v−γ)2/2dv
vs ≤

∫ 1

−1

dv
vs +

∫

R\[−1,1]

e−(v−γ)2/2dv
vs

≤
∫ 1

−1

dv
vs +

∫

R

e−x2/2dx

which is a constantC independent ofγ andα.

We are now able to finish the proof of Theorem 4. We use the potential theoretic
approach (for more details on the potential theoretic approach of the calculus of the
Hausdorff dimension, we can refer to [4, Chapter 4]). Suppose first that dimH (K)>
α and letδ be a real number such that

α < δ < dimH (K).

There exists a probability measurem onK whoseδ -energyIδ (m), defined by

Iδ (m) =

∫ ∫

K×K

dm(x)dm(y)

‖x− y‖δ

is finite. Conversely, to prove that the Hausdorff dimensionof the graphΓ K
f+W is at

least dimH (K)+1−α, it suffices to find, for anys< dimH (K)+1−α, a measure
µ onΓ K

f+W with finite s-energy.
Let (Ω ,F ,P) be the probability space where are defined the Fractional Brownian

MotionsW1, · · · ,Wd. For anyω ∈ Ω , definemω as the image of the measurem on
the graphΓ K

f+Wω
via the natural projection

x∈ K 7−→ (x, f (x)+Wω (x)).

Sets= δ +1−α which is greater than 1. Thes-energy ofmω is equal to

Is(mω ) =
∫ ∫

Γ K
f+Wω ×Γ K

f+Wω

dmω(X)dmω(Y)
‖X−Y‖s

=

∫ ∫

K×K

dm(x)dm(y)
(

‖x− y‖2+
(

f (x)+Wω(x)− ( f (y)+Wω(y))
)2
)s/2

.

Fubini’s theorem and Lemma 1 ensure that
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E [Is(mω )] =
∫ ∫

K×K
E







1
(

‖x− y‖2+
(

( f (x)− f (y))+ (W(x)−W(y))
)2
)s/2






dm(x)dm(y)

≤ C
∫ ∫

K×K
‖x− y‖1−s−αdm(x)dm(y)

= CIδ (m)

< +∞.

We deduce that forP-almost allω ∈ Ω , the energyIs(mω) is finite. Sinces can be
chosen arbitrary closed to dimH (K)+1−α, we get

dimH

(

Γ K
f+Wω

)

≥ dimH (K)+1−α almost surely.

In the case where dimH (K) ≤ α, we proceed exactly in the same way, except
that we take anyδ < dimH (K) and we sets= δ

α which is smaller than 1. We then
get

dimH

(

Γ K
f+W

)

≥ dimH (K)

α
almost surely.

4 Proof of Theorem 3

We can now prove Theorem 3. LetK be a compact set inRd satisfying dimH (K)>
0. Remark first that for any functionf ∈ C (K), the graphΓ K

f is included inK ×R.
It follows that

dimH

(

Γ K
f

)

≤ dimH (K ×R) = dimH (K)+1.

Define
G=

{

f ∈ C (K); dimH

(

Γ K
f

)

= dimH (K)+1
}

.

Theorem 4 says that for anyα such that 0< α < min(1,dimH (K)), the setGα of

all continuous functionsf ∈ C (K) satisfying dimH

(

Γ K
f

)

≥ dimH (K)+1−α is

prevalent inC (K). Finally, we can write

G=
⋂

n≥0

Gαn

where(αn)n≥0 is a sequence decreasing to 0 and we obtain thatG is prevalent in
C (K).

Remark 1.It is an easy consequence of Ascoli’s theorem that the law of the process
W is compactly supported inC (K) (remember thatW is almost surely(α − ε)-
Hölderian). Then, we don’t need to use thatC (K) is a Polish space to obtain Theo-
rem 3.
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Remark 2.Let K = [0,1] and f ∈ C ([0,1]). Theorem 3 implies that the setG
⋂

( f +
G) is prevalent. We can then write

f = f1− f2 with dimH

(

Γ [0,1]
f1

)

= 2 and dimH

(

Γ [0,1]
f2

)

= 2

where f1 and f2 are continuous functions.
On the other hand, it was recalled in Theorem 1 that the set

G̃=
{

f ∈ C ([0,1]) ; dimH

(

Γ [0,1]
f

)

= 1
}

contains a denseGδ -set ofC ([0,1]). It follows that any continuous functionf ∈
C ([0,1]) can be written

f = f1− f2 with dimH

(

Γ [0,1]
f1

)

= 1 and dimH

(

Γ [0,1]
f2

)

= 1

where f1 and f2 are continuous functions.
We can then ask the following question: given a real numberβ ∈ (1,2) can we

write an arbitrary continuous functionf ∈ C ([0,1]) in the following way

f = f1− f2 with dimH

(

Γ [0,1]
f1

)

= β and dimH

(

Γ [0,1]
f2

)

= β

where f1 and f2 are continuous functions?
We do not know the answer to this question.

5 The case ofα-Hölderian functions

Let 0< α < 1 and letC α(K) be the set ofα-Hölderian functions inK endowed
with the standard norm

‖ f‖α = sup
x∈K

| f (x)|+ sup
(x,y)∈K2

| f (x)− f (y)|
‖x− y‖α .

It is well known that the Hausdorff dimension of the graphΓ K
f of a function f ∈

C α(K) satisfies

dimH

(

Γ K
f

)

≤ min

(

dimH (K)

α
, dimH (K)+1−α

)

(2)

(see for example the remark following the statement of Theorem 4). It is then natural
to ask if inequality (2) is an equality in a prevalent set ofC α(K). This is indeed the
case as said in the following result.
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Theorem 5.Let d≥ 1, 0<α < 1 and K⊂R
d be a compact set with strictly positive

Hausdorff dimension. The set
{

f ∈ C
α(k) ; dimH

(

Γ K
f

)

= min

(

dimH (K)

α
, dimH (K)+1−α

)}

is a prevalent subset ofC α(K).

This result generalizes in an arbitrary compact subset ofR
d a previous work of

Clausel and Nicolay (see [3, Theorem 2]).

Proof. Let α < α ′ < 1 and letW be the stochastic process defined in Theorem 4
with Hurst parameterα ′ instead ofα. The stochastic processW|K takes values in
C α(K). Moreover, ifα < α ′′ < α ′, the injection

f ∈ C
α ′′
(K) 7−→ f ∈ C

α(K)

is compact. It follows that the law of the stochastic processW|K is compactly sup-
ported inC α (K) (W is α ′′-Hölderian). Then, Theorem 4 ensures that the set

{

f ∈ C
α(K) ; dimH

(

Γ K
f

)

≥ min

(

dimH (K)

α ′ , dimH (K)+1−α ′
)}

is prevalent inC α(K). Using a sequence(αn)n≥0 decreasing toα, we get the con-
clusion of Theorem 5.
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