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On the Hausdorff dimension of graphs of
prevalent continuous functions on compact sets

Frédéric Bayart and Yanick Heurteaux

Abstract Let K be a compact set ii? with positive Hausdorff dimension. Us-
ing a Fractional Brownian Motion, we prove that in a prevalest of continuous
functions onK, the Hausdorff dimension of the graph is equal to gif) + 1.
This is the largest possible value. This result generakizpsevious work due to
J.M. Fraser and J.T. Hyde ([6]) which was exposed in the eenfeeFractal and
Related Fields 2The case ofr-Holderian functions is also discussed.

1 Introduction

Letd > 1 and letk be a compact subsetlif'. Denote by# (K) the set of continuous
functions onK with real values. This is a Banach space when equipped with th
supremum norm| f || = SUpck | T (X)|. The graph of a functiori € €' (K) is the set

M ={(x, f(x) ; xe K} c R

It is often difficult to obtain the exact value of the Hausddifnension of the graph
I of a precised continuous functidn For example, a famous conjecture says that
the Hausdorff dimension of the graph of the Weierstrasstfanc
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where 0< a < 1, satisfies
dim g, (,—f[O,Zr[]) =2—d.

This is the natural expected value, but, to our knowledgs,dbnjecture is not yet
solved.

If we add some randomness, the problem becomes much eadieluanproved
in [11] that the Hausdorff dimension of the graph of the randieierstrass function

+o00
f(x) = S 27K cog 2Kx + 6
() k; cog(2x+ 6)

where (6)k>0 is a sequence of independent uniform random variables issilm
surely equal to the expected value 2r.

In the same spirit we can hope to have a generic answer toltbwiiog question:
“What is the Hausdorff dimension of the graph of a continuingtion?”

Curiously, the answer to this question depends on the typeméricity we con-
sider. If genericity is relative to the Baire category trerar Mauldin and Williams
proved at the end of the 80’s the following result:

Theorem 1.([13]) For quasi-all functions fe € ([0,1]), we have
dim (rf[o-rl]) —1

This statement on the Hausdorff dimension of the graph ig serprising because
it seems to say that a generic continuous function is quifelae. Indeed it is conve-
nient to think that there is a deep correlation between gtioegularity properties
of a function and large values of the Hausdorff dimension§iaph.

This curious result seems to indicate that genericity ingbiese of the Baire
category theorem is not “the good notion of genericity” foistquestion. In fact,
when genericity is related to the notion of prevalence (saeti@ 2 for a precise
definition), Fraser and Hyde recently obtained the follayiesult.

Theorem 2.([6]) Let de N*. The set
{tew(017); dim,, (rf[ovl]") —d+1}

is a prevalent subset &f ([0,1]9).

This result says that the Hausdorff dimension of the grapd @éneric continuous
function is as large as possible and is much more in accoedaitl the idea that a
generic continuous function is strongly irrregular.

The main tool in the proof of Theorem 2 is the construction ¢dtaCantor set
in the intervall0, 1] and a stochastic process [@1] whose graph has almost surely
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Hausdorff dimension 2. This construction is difficult to gealize in a compact
setK # [0,1]. Nevertheless, there are in the litterature stochasticgases whose
almost sure Hausdorff dimension of their graph is well-knowhe most famous
example is the Fractional Brownian Motion. Using such a pss¢we are able to
prove the following generalisation of Theorem 2.

Theorem 3.Let d> 1 and let Kc RY be a compact set such thdim - (K) > 0.
The set
{f € €(K); dimy (I{) = dim,, (K) + 1}

is a prevalent subset &f (K).

In this paper, we have decided to focus to the notion of Hatisdonension of

graphs. Nevertheless, we can mention that there are alsppagers that deal with
the generic value of the dimension of graphs when the notiatinoension is for

example the lower box dimension (see [5, 9, 12, 16]) or th&ipgaimension (see
[10, 14]).

The paper is devoted to the proof of Theorem 3 and is orgamisddilows. In
Section 2 we recall the basic facts on prevalence. In padaticue explain how to
use a stochastic process in order to prove prevalence itidmatvector spaces. In
Section 3, we prove an auxiliary result on Fractional BramnMotion which will
be the key of the main theorem. We finish the proof of Theorem Sédction 4.
Finally, in a last section, we deal with the caseneHolderian functions.

2 Prevalence

Prevalence is a notion of genericity who generalizes in itgfidimensional vector
spaces the notion of “almost everywhere with respect to tghe measure”. This
notion has been introduced by J. Christensen in [2] and hes wédely studied

since then. In fractal and multifractal analysis, some proes which are true on a
denseGs-set are also prevalent (see for instance [8], [7] or [1])evdas some are
not (see for instance [8] or [15]).

Definition 1. Let E be a complete metric vector space. A BorelAet E is called
Haar-nullif there exists a compactly supported probability meaguseach that, for
anyx € E, u(x+A) =0. If this property holds, the measyues said to beransverse
to A.

A subset ofE is calledHaar-null if it is contained in a Haar-null Borel set. The
complement of a Haar-null set is callegheevalentset.

The following results enumerate important properties aévptence and show
that this notion supplies a natural generalization of "atevery” in infinite-
dimensional spaces:

e If Ais Haar-null, therx+ Ais Haar-null for every € E.
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e Ifdim(E) < +, Aiis Haar-null if and only if it is negligible with respect toeh
Lebesgue measure.

e Prevalent sets are dense.

e The intersection of a countable collection of prevalerd seprevalent.

e Ifdim(E) = 4o, compacts subsets Bfare Haar-null.

In the context of a functional vector spaEe a usual way to prove that a s&tc
E is prevalent is to use a stochastic process. More precsagbpose thatV is a
stochastic process defined on a probability spa@2e# ,P) with values inE and
satisfies.

vieE, f+WeA almostsurely

Replacingf by —f, we get that the layu of the stochastic proce¥¥ is such that
vfeE, u(f+A)=1

In general, the measugeis not compactly supported. Nevertheless, if we suppose
that the vector spade is also a Polish space (that is if we add the hypothesisghat
is separable), then we can find a compact¥et E such thatu(Q) > 0. It follows

that the compactly supported probability measute (u(Q))*lu‘Q is transverse to
E\A

3 On the graph of a perturbed Fractional Brownian Motion

In this section, we prove an auxilliary result which will beetkey of the proof of
Theorem 3. For the definition and the main properties of tleetional Brownian
Motion, we refer to [4, Chapter 16].

Theorem 4.Let K be a compact set iR? such thatdim(K) > 0anda € (0,1).
Define the stochastic processif

W(x) = W(xq) + - +W9(xq) 1)

where W,--- WY are independent Fractional Brownian Motions starting frédm
with Hurst parameter equal ta. Then, for any function € % (K)

dimz (MfSw) > min (M ,dim (K)+1— a) almost surely
Let us remark that the conclusion of Theorem 4 is sharp. Meigely, suppose
that f = 0 and lete > 0. It is well known that the Fractional Brownian Motion is
almost-surely uniformlya — €)-Holderian. It follows that the stochastic proc&¥s
is also uniformly(a — €)-Holderian onK. It is then straightforward that the graph
I satisfies
dim,, (Ry) <dimy(K)+1—(a—¢) as.
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On the other hand, the application

@ : xeKi— (x,W(x)) € R
is almost-surelyfa — €)-Holderian. It follows that

dim, () < % a.s.

The proof of Theorem 4 is based on the following lemma.

Lemmal.Lets>0, a € (0,1) and W be the process defined agih There exists
a constant C= C(s) > 0 such that for any\ € R, for any xy € RY,

E 1 <C [x—y[|}"5"% provided s> 1
(Ix=yl2+ (A +W(x) ~W(y))2)¥2] =~ Lx=y|™®*  provided s< 1.

Proof. Observe thatV(x) —W(y) is a centered gaussian variable with variance
O'ZZh%a—i—---—i-hga
whereh = (hy,--- ,hy) = x—y. Holder’s inequality yields
Ih|** < 0 < d*=7 | hj .

Now,

E 1 7 e u?/(20%) du
{(HX—WZ‘F (A +W(x) _W(y))Z)s/Z] a / (I[h[12+ (A +w?2)¥2 ov2m

Suppose that > 1. We get

E{ 1 }</ du
(Ix=yl2+ A +W(X) —W(y)2)92] ~ J (|[h]2+ (A +u)?)s20v/2m
_ [[hi[dv
- /(th\2+(|\hl\V)2)s/20x/ﬁ
—s—a 1 " dv
< [Il* \/ﬁ/ (14 V2)3/2
= Clx—y|*=c.

In the case where @ s< 1, we write

B 1 }</ e V2 dv
(IX=ylI2+ (A +W(x) —W(y))2)s2] = J (A +0ov)sv2m

—\?2/2
< e [ SO
(y+v)sv2n
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wherey = A g~1. On the other hand,

/e"z/zdv_/ -2y /1 dv / e (VV*/2dy
(y+v)s R\[-1,1] Ve

: 2
< —+/e*"/2dx
- ./71VS JR

which is a constan independent of anda.

We are now able to finish the proof of Theorem 4. We use the fiat¢heoretic
approach (for more details on the potential theoretic apgh@f the calculus of the
Hausdorff dimension, we can refer to [4, Chapter 4]). Supgiost that dimy (K) >
o and letd be a real number such that

a < 0 < dimy(K).

There exists a probability measureon K whosed-energyl s(m), defined by

"= o ST

is finite. Conversely, to prove that the Hausdorff dimensibthe grapH'f’iW is at
least dimy(K) + 1— a, it suffices to find, for ang < dim»(K) + 1— o, a measure
Qon I'f'iw with finite s-energy.

Let(Q,.#,P) be the probability space where are defined the FractionaliBiem
MotionsW?,--- WY, For anyw € Q, definem,, as the image of the measureon
the grapH'f'ﬁer via the natural projection

X € K — (X, f(X) +Wgp(X)).
Sets= 6 + 1 — a which is greater than 1. Treenergy ofm, is equal to

)= [ A

f+Ww><rf+Ww

-/ dm(x) dm(y) N
A (xyl2 4 (109 + W) — () + Wo(y)))?)”

Fubini's theorem and Lemma 1 ensure that
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1

E [Is(My)] = E 7 | Amoamy)
e (I yi2+ (709 — £+ WG9~ wiy)) )

<c [ Ixeyl=edmixdmiy)
= Cls(m)
< 400,

We deduce that foP-almost allw € Q, the energyis(my,) is finite. Sinces can be
chosen arbitrary closed to dig(K) +1— a, we get

dimye (Mw,) > dimy(K)+1—a almostsurely

In the case where digp(K) < a, we proceed exactly in the same way, except
that we take any < dim_,(K) and we ses= g which is smaller than 1. We then
get

dimy, (MSw) > dimy (K)

almost surely

4 Proof of Theorem 3

We can now prove Theorem 3. Liétbe a compact set iR satisfying dimy (K) >
0. Remark first that for any functioh< %' (K), the graph™K is included inK x R.
It follows that

dim, (M) < dimyy (K x R) = dim - (K) + 1.
Define
G={f €% (K); dimy (I{) = dimy(K)+1}.
Theorem 4 says that for ary such that 0< o < min(1,dim_,(K)), the setG, of
all continuous functiong € %'(K) satisfying dimy- (I'fK) >dimy(K)+1—-ais
prevalent ing'(K). Finally, we can write

G: ﬂGan

n>0

where(an)n>0 is @ sequence decreasing to 0 and we obtainGhiatprevalent in
% (K).

Remark 11t is an easy consequence of Ascoli's theorem that the lalweoptocess
W is compactly supported if#'(K) (remember thatV is almost surely(a — ¢€)-
Holderian). Then, we don’t need to use th&tK) is a Polish space to obtain Theo-
rem 3.
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Remark 2LetK = [0,1] andf € %([0,1]). Theorem 3 implies that the s&{"(f +
G) is prevalent. We can then write

f=f—f with dimﬂ(rf["’“):z and dim,f(,-f[zfm):z

1

wheref; andf, are continuous functions.
On the other hand, it was recalled in Theorem 1 that the set

G— {f € ¢([0,1)) ; dim,, (rf[ov”) - 1}

contains a dens6s-set of ([0, 1]). It follows that any continuous functiof €
%([0,1]) can be written

f=f—f, with dim%(rf[l‘”“)zl and diw(rf[f’“)zl

wheref; and f, are continuous functions.
We can then ask the following question: given a real nunfber(1,2) can we
write an arbitrary continuous functiohe ([0, 1]) in the following way

f=f—f with dimﬂ(rf[o’“):p and dim%(,-f[o,l]): B

1 2

wheref; andf, are continuous functions?
We do not know the answer to this question.

5 The case ofr-Holderian functions

Let 0< a < 1 and let#?(K) be the set ofx-Holderian functions irk endowed
with the standard norm

10— f(y)l
flla =sup/f(X)|+ sup ———.
1]l XeKI ()] o Iyl

It is well known that the Hausdorff dimension of the gragh of a functionf €
€% (K) satisfies

dim (1K) gmin(dim%m,dim%(K)Jrl—a) )

(see for example the remark following the statement of Téof). It is then natural
to ask if inequality (2) is an equality in a prevalent se#df(K). This is indeed the
case as said in the following result.
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Theorem 5.Letd> 1,0 < a < 1and Kc RY be a compact set with strictly positive
Hausdorff dimension. The set

{f € ¢(K) ; dimy (I{) = min<dim+f(K),dimyf(K)+1a>}

is a prevalent subset & (K).

This result generalizes in an arbitrary compact subsét%a previous work of
Clausel and Nicolay (see [3, Theorem 2]).

Proof. Let a < o’ < 1 and letW be the stochastic process defined in Theorem 4
with Hurst parametea’ instead ofa. The stochastic proce¥¥y takes values in
%% (K). Moreover, ifa < a” < a’, the injection

f e (K)— fe?(K)

is compact. It follows that the law of the stochastic prod&fksis compactly sup-
ported in€? (K) (W is a”-Holderian). Then, Theorem 4 ensures that the set

{f € €Y (K) ; dimy (I'fK) > min <dlm%/(K) , dimp(K)+1— a’)}

is prevalent in6’? (K). Using a sequeno@n)n>o decreasing tar, we get the con-
clusion of Theorem 5.
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