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INTRODUCTION

Fin whales Balaenoptera physalus are the largest
marine mammals in the Mediterranean Sea (Notar-
bartolo di Sciara et al. 2003), with an estimated popu-
lation of 3500 individuals. B. physalus feed on the
krill Meganyctiphanes norvegica (euphausiacea) as

revealed both by feces (Orsi Relini & Giordano 1992)
and fatty acid (Ruchonnet et al. 2006) analyses. They
gather during summer in the northern part of the
western basin (Forcada et al. 1996, Monestiez et al.
2006, Cotté et al. 2009), where they are exposed to
shipping collisions, a major threat for the species
(Panigada et al. 2006) particularly in the Mediterra -
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ABSTRACT: We investigated seasonal shifts in diet and distribution of fin whales Bala en optera
physalus occurring in the western Mediterranean Sea. For this purpose, we combined carbon and
nitrogen stable isotope ratios (δ13C, δ15N) along 10 baleen plates collected from stranded fin
whales between 1975 and 2002 with satellite tag deployments on 11 fin whales during summer
2003. Baleen plate stable isotopes were compared with those of the krill Meganyctiphanes
norvegica, the main prey of fin whales in the northwestern Mediterranean Sea. Two plates col-
lected near Malaga, Spain, exhibited larger δ13C variations, while only smaller variations could be
detected in the other 8. While all mean baleen plate results were consistent with the δ13C signa-
ture of Mediterranean M. norvegica, the most depleted δ13C values were intermediate between
those of Atlantic and Mediterranean M. norvegica, suggesting westward migrations perhaps
extending to the Strait of Gibraltar but not extensive, prolonged feeding in the Northeast Atlantic.
This pattern was confirmed by satellite tracking; 1 out of 8 fin whales we successfully tracked left
the Mediterranean for the Atlantic. Longer-term changes in isotopic signatures of baleen plates
exhibited significant depletion trends, indicating that changes due to increasing input of nutrients
and anthropogenic carbon are occurring in the western Mediterranean Sea ecosystem.
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nean, which accounts for 30% (in Notarbartolo di
Sciara et al. 2003) of the world’s merchant shipping
covering only 0.8% of the global ocean surface. Infor-
mation about their population distribution outside
the summer period is lacking, yet it is needed to de -
velop mitigation measures for the conservation of the
species. Mediterranean fin whales are genetically
distinct from the other north Atlantic populations
(Bérubé et al. 1998). The degree of contact be tween
Mediterra nean and Atlantic fin whale popu lations
has been debated for the last 2 centuries, and the pre-
vailing idea is that the stocks are geographically iso-
lated (Notarbartolo di Sciara et al. 2003). Recently,
from fin whale sighting and satellite tracking, Cotté
et al. (2008) suggested a regional fidelity to the north-
western Mediterranean Sea. Sightings have been
recorded in shallow water around Lampedusa Island
in winter (Canese et al. 2006), and Aïssi et al (2008)
suggested a probable year-round distribution along
synchronic seasonal dispatching, with a feeding be -
haviour occurrence in the Ligurian Sea during
late spring and summer and in the Lampedusa area
from late winter to early spring. However, the results
are still insufficient to prove year-round residency
of a large portion of the fin whale Mediterranean
population.

In the present study, the distribution of fin whales
was investigated by monitoring movement using
satellite tags deployed on whales present in the
northwestern Mediterranean Sea during summer.
This approach was complemented by the measure-
ments of stable isotopes in fin whale tissues, which
can be a powerful complement for investigating for-
aging behaviour, not only in terms of diet but also in
terms of movement of marine predators (Kelly 2000,
Bearhop et al. 2004, Bailleul et al. 2010). Recently de -
veloped methods of diet analysis (e.g. lipids and sta-
ble isotopes) are increasingly used to investigate the
feeding habits of predator species. The stable isotope
ratio for an animal’s tissue is often related to that of
its diet, with a difference due to the trophic isotopic
enrichment factor between dietary and consumer tis-
sue (DeNiro & Epstein 1978, 1981). Consumer tissues
are enriched in 15N relative to their food, and, conse-
quently, δ15N measurements serve as indicators of a
consumer trophic position (McCutchan et al. 2003,
Vanderklift & Ponsard 2003) integrated over months
while stomach contents or feces analysis are gener-
ally only representative of the very last foraging
areas visited. Pioneering studies of DeNiro & Epstein
(1981), Minagawa & Wada (1984), and Peterson & Fry
(1987) suggested that consumers become enriched in
15N relative to their food by 3 to 4‰. However a num-

ber of studies reveal a wider range of isotopic 15N
enrichment between trophic levels (1.7 to 4.5 ‰;
Minagawa & Wada 1984, Abend & Smith 1997, Post
2002). A mean 3.4‰ enrichment value was used by
Pinnegar et al. (2003) in their exhaustive western
Mediterranean fishery landing study.

In contrast, small increases of δ13C between prey
and predators are reported in the literature (<2 ‰,
mean 1‰) (De Niro & Epstein 1978, Wada et al. 1991)
providing clues about the ultimate origin of their
food. δ13C values of organic tissue along food chain
are mainly used to assess consumer foraging areas,
i.e. inshore versus offshore, pelagic versus ben thic,
or latitudinal variations in the contribution to food
intake (Kelly 2000, Cherel & Hobson 2007). The ori-
gin of the latitudinal depletion of marine organic mat-
ter δ13C with increasing latitude has been mainly
attributed to changes in the concentration of aqueous
CO2 (Rau et al. 1989, Bentaleb et al. 1998). These
regional and latitudinal δ13C gradients have been
also used as an effective way for investigating sea-
sonal change in the foraging areas of marine preda-
tors (Cherel & Hobson 2007, Cherel et al. 2007).

The whale baleen plates are a particularly suit-
able tissue to investigate the temporal change of the
δ15N and δ13C due to their continuous growth
throughout lifetime (Hobson et al. 2004). The baleen
plates grow down from the gums of the upper jaw
and are arranged in rows that extend down each
side of the mouth. The terminal end continually
wears off. The baleens composed of keratinous pro-
tein are metabolically inactive after formation
(Schell et al. 1989a). Thus, their isotopic composition
is believed to record the diet of the whales through
its synthesis. Schell et al. (1989a,b) measured stable
isotope ratios in the baleen plates of bowhead
whales Balaena mysticetus and found isotopic oscil-
lations along the length of the baleen plates. Similar
oscillations were also found in the baleen of south-
ern right whales Eubalaena australis (Best & Schell
1996). The technique was also successfully applied
to investigate seasonal shift in diet of Minke whales
off Japan (Mitani et al. 2006) and long-term average
diet (Hobson et al., 2004).

The present study focuses on the Mediterranean
Balaenoptera physalus (hereafter fin whale). The
main objectives of our study were to assess seasonal
movements or dietary shift of this population and
their movements inside the Mediterranean Sea by
combining the information provided by: (1) satellite
tracking of individual fin whales marked in the
Mediterranean Sea at the end of summer, and
(2) analyses of δ15N and δ13C signatures along baleen
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plates collected from stranded fin whales in the west-
ern Mediterranean, and of krill Meganycti phanes
norvegica (hereafter krill) sampled in the Mediter-
ranean sea and in the Atlantic ocean.

We assert that the isotopic composition of the krill
consumed throughout the fin whale lifetime is pre-
served. Whenever Mediterranean fin whales migrate,
or shift preys, they should exhibit corresponding
changes in the isotopic signature along their plates.
Stable isotope values should be different be tween
different prey or between the Mediterranean Sea
and the Atlantic Ocean. Finally, from plates collected
from the 1970s to the 2000s, we tried to detect
whether δ13C and δ15N stable isotope signatures shift
over time, revealing some large-scale and long-term
environmental change within the Mediterra nean Sea.

MATERIALS AND METHODS

Sampling of materials

Baleen plates are made of Keratin. They grow from
the gums of the upper jaw and are arranged in rows
that extend down each side of the mouth. Baleen
grows throughout the whale’s lifetime; the terminal
end continually wears off. The outer (outside-facing)

edge of each plate is smooth, while the inner edge is
frayed (see Fig. 1). The frayed edge of each plate
intertwines to form a mat, which functions as a
strainer during filter feeding.

A total of 10 baleen plates (BP) was collected over
the period 1975 to 2002 from 9 fin whales stranded
along the western Mediterranean coast. Eight BPs
were collected on the French coast (BP1 to BP7 and
BP9) and 2 in the Malaga area and the Strait of
Gibraltar, Andalusia, Spain (BPs 8 and 10). BPs 3 and
4 were collected from the same individual stranded
in Port-La-Nouvelle (France). BP3 was collected from
the right upper jaw, whereas BP4 was taken in the
anterior part (see Fig. 1, Table 1).

Krill from the Atlantic Ocean (be tween 38 and
45° N and 12 and 13° W) was sampled during the
POMME 2 and 3 cruises in March and September
2001 using a mid-water trawl. Stable isotopic study
concerned a total of 12 adult and sub-adult individu-
als (6 each for spring and fall), and the 6 adults were
sexed (4 males and 2 females; Table 2). Samples
were immediately frozen at –80°C (see Salomon et al.
2000) until laboratory analysis. For the Mediter-
ranean Sea, we used stable isotopic data and carbon:
nitrogen ratio (C:N) of 12 adult specimens (6 each
from spring and fall) of krill sampled in the Gulf of
Lion (Ferraton 2007; Table 3).
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Fig. 1. Balaenoptera phy sa -
lus. Photographs of the 10
baleen plates (BP) of fin
whales stranded along west-
ern Medi terranean coasts.
Sampling follows the L-axis
(proximal = jaw to plate junc-
tion, L = 0; Distal = Lmax).
Some BPs have conserved
the junction zone between
jaw and plate (see BP1) and
have both outer and inner
edge. The scale is given on 

the side of each BP
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Stable isotope analyses of fin whale baleen plates
and krill

Baleen plates were rinsed with distilled water and
dried in an oven at 50°C. We used a dental drill to col-
lect the keratin powder along the L-axis from the
proximal part (below the gum line) to the to the most
distal, i.e. oldest part of the plates at an interval of
~1 cm so as to represent an approximately constant
time interval. The drilled area was 2 to 3 mm in dia -
meter. The sampling took place at the outer edge
(W = 0) for most of the plates except BP6 (W = 2 cm).
The plates are generally broken in different areas
such as BPs1, 2, 7, and 8, for which an undetermined
and probably significant top portion is missing (Fig. 1).

The powder (0.5 to 1.0 mg) was collected in a glass
tube previously washed with hydrochloric acid and
rinsed with distilled water, and dried at 60°C for 48 h.
The stable-carbon and stable-nitrogen isotope assays
and the C and N contents were performed in 2008 at
the Institut des Sciences de l’Evolution de Montpel-
lier Laboratory. About 70 to 120 µg of homogenized
powder samples were loaded into tin cups and com-
busted at 1200°C in a Euro Vector EA3000 elemental
analyzer. Resultant CO2 and N2 gases were analyzed
by continuous flow using an interfaced GV Optima
Isotope Ratio Mass Spectrometer (IRMS). δ13C and
δ15N values are expressed in δ notation relative to
V-PDB belemnite and atmospheric N2 (air), respec-
tively. The δ notation represents the deviation from
standards in parts per thousand (‰):

δ13C or δ15N = (Rsample/Rstandard – 1) × 1000 (1)

where R = 13C/12C or 15N/14N. Replicate δ15N mea-
surements of both potassium nitrate (n = 36; IAEA-
NO-3-δ15N: 4.7‰) and alanine (ISEM internal stan-
dard unknown origin; n = 41; alanine-δ15N: –0.5‰)
indicate a reproducibility better than 0.2‰ and an
accuracy of 0.1‰. Both accuracy and reproducibility
of the δ13C Nist-8541 graphite (also known as USGS-
24 with a δ13C of –16.1 ‰; n = 34) are 0.3‰. The ala-
nine δ13C accuracy was quite poor (0.5‰), but the re -
producibility was 0.2‰. Using the C and N contents
of the IAEA-NO-3 (N% = 13), and Alanine (C% =
40%), the baleen plate C and N contents (%) were
measured with a precision of 1%.

Whole Atlantic krill individual samples were lyo -
philized, powdered using a mortar pestel and sieved
through a 60 µm mesh. We did not re move the chitin
assuming that the small content (3.7 to 5% of krill
dry weight (DW) according to Raymont et al. 1971)
will not significantly affect the isotopic value of the
whole individual. Moreover it allowed us to compare
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Atlantic krill isotopic composition values to those of
the Mediterranean Sea analysed with chitin intact
(Ferraton 2007). The isotopic measurements were
performed in the laboratory of Littoral Environne -
ment et Sociétés (LIENS). Precision of the ace ta ni lide
is 0.2‰ for 13C and 15N, and ~1% for the C and N
 elemental content. We did not proceed to a cross-
 calibration of standards. Instead we compared the
isotopic results of the 12 bulk Atlantic krill powders
analyzed at an interval time of 4 yr in 2009 at LIENS
and 2005 at ISEM labo ratories. Results show very
consistent δ13C values (differences <0.1‰), while
ISEM δ15N values were consistently de pleted by
0.6‰ compared to LIENS. This difference does not
affect our interpretation.

For the Mediterranean Sea we used
stable isotope and C:N ratio data for
spring and fall Mediterranean krill
from Ferraton (2007). We assumed
that Ferraton’s data were representatitive
endmember of δ13C and δ15N composi-
tions for the Mediterranean fall and
spring krill. High lipid concentration can
mask a large part of the δ13C isotopic
 signature be cause lipids are 13C depleted
(6 to 8‰) compared with  proteins and
carbo hydrates (De Niro & Epstein 1978,
McConnaughey & McRoy 1979). We
tested the effect of the lipid content by
comparing the 12 Atlantic Ocean krill C
and N isotopic compositions measured
before and after the lipid extraction treat-
ment using cyclohexane. Available Medi -
terranean krill isotopic data  concerns only
non-lipid extracted samples.

Satellite tracking

Semi-implantable tags (26 cm in length
× 1.9 cm in diameter) consisted of a
Telonics Argos ST-15 transmitter in a
stainless steel tube, incorporating a flexi-
ble 12.5 cm whip-an ten na, a flexible 4 cm
saltwater switch (SWS), and 2 solid
flanges (0.9 × 1.5 cm) to prevent inward
migration. Half of the anterior housing
was coated with 2.5 g of Gentamycin sul-
fate antibiotic in methacrylate (Eudra grit),
designed for ex tended time-release. The
tag was applied to the fin whale using an
air-powered applicator (Heide- Jørgensen
et al. 2001) with 7 bar pressure from an el-

evated 1 m bow pulpit at a distance of <3 m from a 6 m
outboard-powered boat. Tags were deployed within
2 m of the dorsal fin frontal part. To conserve batteries
and extend tag  operation, tags transmitted for only 4
periods of 1 h daily for 90 d and then every fourth day.
A saltwater switch prevented the tag from transmitting
when underwater. At the surface, transmissions were
programmed to coincide with optimal satellite coverage
within the western Mediterranean Sea.

Statistics

Data were analyzed statistically using the R lan-
guage (R Development Core Team 2010). Isotopic
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Sample       Collection     n   Bulk samples Lipid-free samples
                  date (mo/yr)           δ13C     δ15N   C:N        δ13C       δ15N     C:N

1753_5F        03/2001       1     –20.9     5.3     3.8        –20.9       6.3        3.5
1753_6F        03/2001       1     –21.4     4.5     3.9        –21.2       5.5        3.7
1755_1M      03/2001       1     –21.5     5.7     3.7        –21.4       6.0        3.6
1755_2M      03/2001       1     –20.7     6.8     3.5        –20.6       7.1        3.5
1755_3M      03/2001       1     –21.2     5.9     3.9        –20.8       6.5        3.5
1755_4M      03/2001       1     –20.7     6.6     3.5        –20.7       6.7        3.5
1754_SUB6   09/2001       1     –21.3     7.1     3.9        –21.0       7.1        3.6
1756_SUB1   09/2001       1     –21.1     7.8     3.6        –21.2       7.8        3.6
1756_SUB2   09/2001       1     –21.2     8.4     4.0        –20.9       8.6        3.7
1756_SUB3   09/2001       1     –21.4     7.2     3.9        –21.2       7.3        3.7
1756_SUB4   09/2001       1     –20.9     7.4     4.0        –20.9       7.3        4.0
1756_SUB5   09/2001       1     –21.7     6.9     3.8        –21.4       7.2        3.5

Spring mean                     6     –21.1     5.8     3.7        –20.9       6.3        3.5
±SD                                          ±0.4    ±0.9   ±0.2      ±0.3      ±0.6     ±0.1

Fall mean                          6     –21.3     7.4     3.8        –21.1       7.5        3.7
±SD                                          ±0.3    ±0.6    0.2        ±0.2      ±0.6     ±0.2

Annual mean                   12    –21.2     6.6     3.8        –21.0       6.9        3.6
±SD                                          ±0.3    ±1.1   ±0.2      ±0.3      ±0.8     ±0.1

Table 2. Meganyctiphanes norvegica. δ13C, δ15N, and C:N values of 12 bulk
and 12 lipid free samples of Atlantic krill. Spring, fall, and annual values are 

mean ± SD. F: female, M: male; Sub: sub-adult

Origin, year               Season          n             δ13C             δ15N           C/N

AO, 2001                    Spring           6       –21.1 ± 0.4    5.8 ± 0.9    3.7 ± 0.2
(present study)             Fall             6       –21.3 ± 0.3    7.4 ± 0.6    3.8 ± 0.2
                                   Annual         12      –21.2 ± 0.3    6.6 ± 1.1    3.8 ± 0.2

MS, 2004                    Spring           6       –19.0 ± 0.4    4.1 ± 0.5    5.6 ± 0.4
(Ferraton 2007)             Fall             6       –19.7 ± 0.2    5.0 ± 0.2    5.7 ± 0.1
                                   Annual         12      –19.3 ± 0.5    4.4 ± 0.6    5.6 ± 0.2

Table 3. Meganyctiphanes norvegica. Spring, fall, and annual values of δ13C,
δ15N, and C:N (mean ± SD) of Atlantic Ocean (AO) and Mediterranean Sea 

(MS) (Ferraton 2007) bulk krill samples
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ratios were means ± SD, and statistical tests re -
garding potential differences in variances or means
for different sub-groups were performed using Fisher-
Snedecor and Student’s t-test or Welsh’s test (e.g. see
Wilks 2006), respectively, at a 95% level of signifi-
cance (α = 0.05). Statistical analyses performed on
BPs in the sections that follow refer always to BPs
with W = 0, hence excluding BP6 (W = 2 cm).

RESULTS

Stable isotopes of krill

Bulk powders of 12 Atlantic krill individuals sam-
pled in spring (n = 6; adults) and fall (n = 6; subadults)
were analyzed for C and N stable isotopes and C and
N contents (%) before and after lipid removal by
chemical treatment (Table 2). Sample sizes were too
small to parse out class age or seasonal ef fect. Hence
seasonal effects cannot be independently studied for
the Atlantic krill data.

Using a dependent t-test for paired samples, car-
bon stable isotope values (mean ± SD, n = 12) before
(–21.2 ± 0.3‰) and after (–21.0 ± 0.3‰) chemical
treatment were statistically significantly different (t =
3.1, p < 0.01). For the nitrogen isotopic values, signif-
icant differences between none lipid extracted (6.6 ±
1.1‰) and lipid free samples (6.9 ± 0.8‰) were found
(t = 3.06, p < 0.05). These statistical analyses suggest
an effect of the chemical treatment for carbon and
nitrogen isotopic composition of the krill. These deli -
pi da tion treatments have been discussed in Kiljuenen
et al. (2006) and Post et al. (2007).

Lipid removal does cause slight and statistically sig-
nificant changes in δ13C and δ15N values for whole-
body krill. However, on the ab solute scale the differ-
ences in δ15N and δ13C between lipid extracted and
bulk krill are small, by 0.32 and 0.15‰, respectively,
on average. Therefore in order to allow direct com-
parison with the results provided by Ferraton (2007)
for Mediterranean krill, bulk krill values were used,
for which seasonal δ13C and δ15N differences were
reported (Table 3). Mean δ13C is higher in spring
(–19.0 ± 0.4‰) than during fall (–19.7 ± 0.2‰), and
δ15N mean increases from 4.1 ± 0.5‰ in spring to
5.0 ± 0.1‰ in fall.

Significant differences were found between bulk
krill sampled in the Atlantic Ocean (AO) and the
Mediterranean Sea (MS) at the annual scale for both
the δ13C (MS: –19.3 ± 0.5‰; AO: –21.2 ± 0.3‰; t =
–6.53, p < 0.01) and δ15N (MS: 4.4 ± 0.6‰, AO: 6.6 ±
1.1‰, t = 7.36, p < 0.01).

Assuming enrichments of ~1‰ 13C and 3.4‰ 15N
per trophic level (De Niro & Epstein 1978, 1981) the
δ13C and δ15N annual means for a fin whale feeding
on krill in the MS or in the AO would be –18.3 ±
0.5‰; 7.8 ± 0.6‰ and –20.2 ± 0.3 ‰; 10 ± 1.1‰,
respectively.

Stable isotopes of fin whale baleen plates

The isotopic variations in the 10 baleen plates, re -
presenting 190 pairs of δ13C to δ15N analyses and C:N
ratios along the L-axis of the baleen plates are
reported in Table 4. The mean and SD of all 190 C:N
ratios for all BPs across all baleen lengths is 3.4 ± 0.1
(Table 4), which is in agreement with the theoretical
C:N atomic ratio of keratin (O’Connell & Hedges
1999).

Among all 190 baleen samples and across all
lengths, δ13C and δ15N values ranged between –19.3
and –17‰, and 6.3 and 10.0‰, respectively (Table 1).
The δ13C ranges (max. δ13C to min. δ13C along a
baleen plate) are rather small for most BPs (<1.1 ‰;
Table 1), except for BP8 and BP10 (1.3 and 1.9‰,
respectively). BPs 3, 9, and 10 show the highest δ15N
range values (1.6, 1.5, and 2.2‰, respectively;
Table 1). Both BP1 and BP2 showed a higher δ15N
mean (9.4 ± 0.2‰ and 8.1 ± 0.2‰, respectively) than
the other BPs (6.8 to 7.7‰; p always < 0.05 and even
< 0.001 for most of the BPs, W = 0).

Considering the records along the plate, positive or
negative trends in δ13C and δ15N with respect to the
distance from the top of the plates (W = 0) were found
(Figs. 2 & 3). The relationships between δ13C along
the L-axis were only significant for BP5 and BP9,
which both exhibit significant slopes (p < 0.05).

While δ13C of BP3 (lateral position) and BP4 (frontal
area) were sampled from the same fin whale, no rela-
tionship was found (p = 0.92; Fig. 2). BP4 was half the
size of BP3 and probably represents a shorter time-
span. Mean BP4 δ13C record (–18.1 ± 0.4‰) is very
similar to that found for BP3 between 0 and 15.7 cm
(–18.3 ± 0.2‰) (p > 0.05). δ13C of BP3 showed a
change at ~17.6 to 20.5 cm (mean ± SD = –17.8 ±
0.3‰). The same results were observed regarding
δ15N with relatively similar mean values for BP4
(7.7 ± 0.3 ‰) and BP3 (between 0 and 15.7 cm = 7.4 ±
0.3 ‰, p > 0.05). The mean δ15N values of BP3
between 17.6 and 20.5 cm (6.7 ± 0.3 ‰) are signifi-
cantly lower than the values observed between 0 to
15.7 cm (p < 0.05) and 21.4 to 32.2 cm (p < 0.05). Sig-
nificant covariation between δ13C and δ15N was also
found in BP3 (r2 = 0.33); slope = –0.45, p < 0.001).
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Reference number   L-axis    W-axis    δ13C      δ15N     C:N
(collection year)         (cm)        (cm)       (‰)        (‰)

BP1(1975)                     4              0       –17.84     8.90       3.4
                                     5.7           0       –17.95     9.36       3.4
                                     7.3           0       –17.98     9.30       3.4
                                     9.1           0       –18.55     9.21       3.5
                                   10.5           0       –18.49     9.61       3.4
                                   12              0       –18.18     9.95       3.4
                                   13.7           0       –18.13     9.61       3.4
                                   15.2           0       –17.99     9.53       3.5
                                   16.7           0       –17.87     9.47       3.5
                                   18.2           0       –17.87     9.51       3.5
                                   19.7           0       –17.92     9.40       3.4
                                   21.2           0       –18.07     9.22       3.5
                                   22.7           0       –18.04     9.15       3.4
                                   24.2           0       –18.12     9.36       3.5
                                   25.6           0       –17.75     9.75       3.5
                                   29              0       –18.03     9.38       nd
                                   30.7           0       –17.87     9.60       3.5

BP2 (1980)                    7.1           0       –17.41     8.16       3.6
                                   12.2           0       –17.97     7.99       3.5
                                   16.7           0       –17.74     8.26       3.5
                                   21.3           0       –16.98     7.99       3.5
                                   26.8           0       –17.16     8.20       3.5
                                   31.1           0       –17.61     8.35       3.5
                                   36.4           0       –17.09     7.86       3.5

BP3 (1989)                    0              0       –18.15     7.62       3.4
                                     0.8           0       –18.05     7.60       3.4
                                     1.5           0       –18.45     7.03       3.4
                                     2.4           0       –18.12     6.72       3.4
                                     3.3           0       –17.85     7.35       3.4
                                     4.3           0       –18.35     7.93       3.4
                                     6.3           0       –18.24     7.77       3.4
                                     7.2           0       –18.38     7.70       3.4
                                     8.9           0       –18.37     7.28       3.4
                                     9.9           0       –18.35     7.31       3.4
                                   11.7           0       –18.36     7.73       3.4
                                   14.8           0       –18.53     7.47       3.5
                                   15.7           0       –18.18     7.21       3.4
                                   17.6           0       –18.12     7.14       3.4
                                   18.5           0       –17.69     6.63       3.4
                                   19.5           0       –17.54     6.36       3.4
                                   20.5           0       –17.67     6.70       3.4
                                   21.4           0       –17.89     7.27       3.3
                                   22.4           0       –17.82     6.86       3.4
                                   23.3           0       –17.96     7.08       3.4
                                   24.5           0       –18.10     6.65       3.3
                                   25.4           0       –17.79     7.28       3.4
                                   26.4           0       –17.72     7.23       3.4
                                   27.8           0       –17.95     7.49       3.4
                                   28.2           0       –17.98     7.06       3.4
                                   29              0       –17.64     7.15       3.4
                                   29.9           0       –17.62     7.10       3.4
                                   30.8           0       –17.71     7.01       3.4
                                   31.6           0       –17.83     7.10       3.4
                                   32.2           0       –17.57     7.02       3.3

Reference number   L-axis    W-axis    δ13C      δ15N     C:N
(collection year)         (cm)        (cm)       (‰)        (‰)

BP4 (1989)                    1.7           0       –17.54     7.44       3.4
                                     3.8           0       –17.99     7.54       3.4
                                     4.7           0       –18.12     8.34       3.4
                                     6.4           0       –18.62     7.92       3.4
                                     7.4           0       –18.53     7.46       3.4
                                     9.3           0       –18.44     7.59       3.4
                                   10.4           0           nd        7.78       nd
                                   12.4           0       –17.65     7.70       3.4
                                   13.3           0       –17.78     7.61       3.3

BP5 (1990)                    0.65         0       –18.11     7.64       3.4
                                     1.75         0       –17.91     7.33       3.3
                                     2.85         0       –18.25     7.27       3.3
                                     3.90         0       –18.45     7.09       3.4
                                     5.10         0       –18.19     6.69       3.3
                                     6.20         0       –18.24     7.15       3.3
                                     7.25         0       –18.75     7.11       3.4
                                     8.30         0       –18.56     7.31       3.3
                                     9.40         0       –18.51     7.56       3.3
                                   10.40         0       –18.30     7.25       3.3

BP6 (1992)                    0              2       –17.98     6.71       3.7
                                     2              2       –18.36     7.48       3.5
                                     3.8           2       –18.72     7.38       3.6
                                     5.8           2       –17.98     6.82       3.6
                                     7.8           2       –18.48     7.96       3.4
                                     9.8           2       –18.47     7.60       3.4
                                   12              2       –18.29     7.47       3.7
                                   16.2           2       –18.40     7.75       3.4
                                   18.3           2       –17.76     7.39       3.6
                                   20.2           2       –18.52     7.80       3.4
                                   22.2           2       –18.54     7.84       3.4
                                   23.9           2       –17.91     6.68       3.6
                                   25.8           2       –18.33     7.39       3.4
                                   27.7           2       –18.14     7.90       3.4
                                   29.8           2       –17.84     7.36       3.7
                                   31.6           2       –18.68     7.86       3.6
                                   33.8           2       –18.23     8.06       3.4

BP7 (1993)                    5.2           0       –18.37     7.38       3.4
                                     6.9           0       –18.71     7.45       3.4
                                   10.5           0       –18.45     8.18       3.4
                                   11.7           0       –18.42     7.71       3.4
                                   14.8           0       –18.27     7.74       3.5
                                   16.5           0       –18.28     7.96       3.5
                                   20.1           0       –18.20     7.93       3.4
                                   21.6           0       –18.29     7.95       3.4
                                   26.2           0       –18.24     7.46       3.4
                                   28.4           0       –18.32     7.77       3.4
                                   30              0           nd        7.74       nd
                                   34              0       –18.09     6.84       3.3

BP8 (1996)                    4              0       –18.41     6.87       3.5
                                     5.4           0       –18.90     6.69       3.7
                                     5.8           0       –18.28     7.08       3.5
                                     6.2           0       –19.32     6.69       3.9
                                     6.9           0       –18.78     6.96       3.5
                                     8.3           0       –18.82     6.74       3.6

Table 4. Balaenoptera phy sa lus. Carbon (C) and nitrogen (N) stable isotope and C:N ratios measured along fin whale baleen
plate length (L-axis, see Fig. 1) by plate reference number (collection year). All samples were measured along W = 0 axis 

except for BP6, which was measured as W = 2 cm. nd: lost sample

Table continued on next page
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Stable isotopes signature of krill and fin whale
baleen, and trophic level of fin whales

The mean level of δ15N signature of baleen plates
(7.6 ± 0.7‰) was 3.2 and 1.0‰ higher than that of
bulk (non-lipid-extracted) Meganyctiphanes norve -
gica sampled in the Mediterranean Sea or in the
Atlantic Ocean, respectively. The mean level of δ13C
signature of baleen plates (–18.2 ± 0.4‰) was 1.1 ‰
and 3.0‰ higher than that of annual mean bulk krill
sampled in the Mediterranean Sea or in the Atlantic
Ocean, respectively (Tables 2 & 3).

According to the methods described by De Niro &
Epstein (1978, 1981) we corrected the δ13C and δ15N
values of the Mediterranean Sea and the Atlantic
Ocean krill by 1.0 and 3.4‰, respectively to take into
account the trophic level enrichment factor for car-
bon and nitrogen. When compared to the corrected
spring and fall δ13C and δ15N values of the bulk
Mediterranean and to the corrected annual δ13C and
δ15N values of the bulk Atlantic krill samples, the
δ13C and δ15N values of the 10 BPs are more closely
related to the annualized Mediterranean krill values
(Fig. 4A). All but one (BP2) δ13C mean value fell
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Reference number   L-axis    W-axis    δ13C      δ15N     C:N
(collection year)         (cm)        (cm)       (‰)        (‰)

BP (1996)                      9.1           0       –19.25     6.70       4.0
                                     9.7           0       –18.76     6.57       3.7
                                   10.5           0       –18.78     6.44       3.6
                                   11.2           0       –18.66     6.58       3.6
                                   12              0       –18.02     6.79       3.4
                                   12.7           0       –18.23     6.93       3.5
                                   13.5           0       –18.05     6.61       3.6
                                   15.5           0       –18.20     6.79       3.6
                                   16.4           0       –18.05     7.01       3.5
                                   17.2           0       –17.97     7.07       3.6
                                   18.1           0       –18.64     6.77       3.7
                                   18.9           0       –18.26     7.03       3.6
                                   19.7           0       –18.62     7.00       3.7
                                   20.5           0       –18.21     7.04       3.6
                                   22.4           0       –18.46     6.32       3.5
                                   23.4           0       –18.29     6.64       3.5
                                   24.4           0       –18.73     7.02       3.6
                                   25.4           0       –18.28     6.66       3.5
                                   26.2           0       –18.80     7.23       3.7
                                   27.1           0       –18.39     6.99       3.5
                                   28.2           0       –18.52     6.93       3.6
                                   29.5           0       –18.36     6.69       3.6
                                   30.6           0       –17.99     6.97       3.5
                                   31.8           0       –18.14     6.69       3.5
                                   32.9           0       –18.30     6.88       3.5
                                   33.9           0       –18.08     7.16       3.5

BP9 (2000)                    0.35         0       –17.57     7.29       3.5
                                     1.25         0       –18.05     6.84       3.4
                                     2.15         0       –17.53     7.16       3.4
                                     3              0       –17.79     7.11       3.4
                                     3.85         0       –18.02     7.83       3.4
                                     4.75         0       –18.16     7.55       3.4
                                     5.8           0       –17.86     6.58       3.4
                                     6.85         0       –18.18     6.40       3.4
                                     7.25         0       –18.32     6.36       3.3
                                     8.05         0       –17.90     7.10       3.4
                                     8.7           0       –18.18     7.09       3.3
                                     9.7           0       –18.06     6.83       3.4

BP10 (2002)                  0.9           0       –18.02     7.61       3.3
                                     3              0       –18.15     8.12       3.4
                                     4.1           0       –18.08     8.08       3.4
                                     5.1           0       –18.19     7.73       3.3

Reference number L-axis      W-axis    δ13C      δ15N     C:N
(collection year)         (cm)        (cm)       (‰)        (‰)

BP10 (2002)                  6.2           0       –18.33     7.14       3.4
(continued)                   7.25         0       –18.83     7.31       3.8
                                     8.15         0       –18.46     7.15       3.3
                                     9.25         0       –18.70     7.56       3.4
                                   10.35         0       –18.41     7.68       3.4
                                   10.35         0       –18.34     7.96       3.4
                                   11.45         0       –18.24     7.95       3.4
                                   12.55         0       –18.16     7.90       3.3
                                   13              0       –18.66     8.38       3.6
                                   14.75         0       –18.12     8.35       3.3
                                   16              0       –18.11     8.00       3.4
                                   17.2           0       –18.69     8.49       3.5
                                   18.35         0       –18.50     8.68       3.3
                                   19.5           0       –18.53     8.23       3.3
                                   20.65         0       –18.84     7.17       3.4
                                   21.75         0       –18.94     6.50       3.4
                                   23.25         0       –18.83     8.14       3.4
                                   24.55         0       –19.25     7.95       3.5
                                   27.15         0       –18.26     7.82       3.4
                                   28.55         0       –18.05     8.09       3.4
                                   29.65         0       –17.94     7.23       3.3
                                   30.9           0       –18.14     7.46       3.3
                                   32.1           0       –18.50     7.92       3.5
                                   33.2           0       –18.34     7.97       3.4
                                   34.3           0       –18.15     7.87       3.4
                                   35.5           0       –18.08     7.60       3.5
                                   36.7           0       –18.19     7.29       3.5
                                   37.9           0       –18.24     7.31       3.4
                                   39              0       –18.29     7.34       3.4
                                   40.2           0       –17.95     7.23       3.4
                                   42.4           0       –18.10     7.38       3.3
                                   43.4           0       –19.21     7.08       3.7
                                   44.5           0       –17.79     7.64       3.3
                                   45.6           0       –18.07     7.36       3.3
                                   46.5           0       –17.88     8.10       3.3
                                   47.5           0       –17.95     7.83       3.3
                                   48.5           0       –18.50     7.81       3.5
                                   49.55         0       –17.73     7.47       3.3
                                   50.65         0       –17.37     7.91       3.3
                                   51.55         0       –17.75     7.25       3.3

Table 4. (continued)
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within the reference range corresponding to the
outer-limits of the ±1 SD range of spring and fall val-
ues combined of the δ13Ccorrected values of the Medi -
terranean sea krill (–18.9 to –17.5‰).

When excluding BP2, which is well outside the
range of δ13Ccorrected krill values, all but BP8 are cen-
tered on the ± SD range of the Mediterranean spring
krill mean value, and all but BP9 have few consistent
values with fall Mediterranean krill δ13C. Fig. 4B
shows that some individuals have δ13C values iso-
topic values exceeding the range expected from the
spring and fall Mediterranean krill δ13C values. How-
ever, even the most depleted values (–18.9 to –19.3‰)
of the BPs 8 and 10 plates samples were not consis-
tent with the δ13Ccorrected signature of krill sampled in
the Atlantic Ocean (–20.6 to –19.1‰).

Most δ15N plate values are also consistent with
spring Mediterranean krill δ15N mean value (Fig. 4A).
The main exception being the BP1 with a δ15N ex -
ceeding the δ15N signature expected from the fall
and spring Mediterranean krill isotopic signature.
BP2 has intermediate δ15N values between fall and

spring Mediterranean krill δ15N. BPs 4 and 10 are the
only plates showing consistent δ15N values with both
fall and spring Mediterranean krill δ15N mean value.
All plates except BPs 1, 2, and 4 are characterized by
δ15N values lower than expected from the spring and
fall Mediterranean krill δ15N signatures (Fig. 4C).

Assuming that the euphausid is a primary con-
sumer (i.e. mostly herbivorous and omnivorous), a
trophic level of 2 can be assigned to this species (e.g.
Vander Zanden & Rasmussen 2001). Using mean val-
ues for the whales and their euphausid prey in the
formula proposed by Vander Zanden and Rasmussen
(2001) for the trophic level value (TL):

TL = 2 + (δ15Nbaleen – δ15Nuncorrected M. norvegica) / 3.4 (2)

we calculate a TL of 2.9 ± 0.3 (mean ± SD) for fin
whales based on the annual mean δ15N Mediter-
ranean euphausids. The TL varies between 2.8 in fall
and 3.0 in spring due to the effect of the seasonal
δ15N variability observed in the euphausids. Using
the Atlantic euphausids δ15N values, a mean TL of
2.3 ± 0.4 (2.0 in fall and 2.5 for spring) can be esti-
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Fig. 2. Balaenoptera phy sa lus. Intra-individual stable carbon isotope values (expressed per ml) along the length of baleen plates
of fin whales stranded at western Mediterranean coasts between 1975 and 2002. All plots represent W = 0 sampled whales.
Grey areas represent the range of values comprising >50% of the isotopic ratios of the whole dataset. The dashed vertical band
in Panel BP3 suggests the weaning period. BP3 & BP4 were from the same individual but sampled at lateral and frontal sides 

of the jaw. BP6 is not included because it was sampled at W = 2 cm
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mated. The TL = 2.9 ± 0.3 calculated with the
Mediterranean δ15Nuncorrected M. norvegica value is closer
to the TL = 3.2 estimated from the dietary analysis of
Mediterranean fin whale by Kaschner et al. (2004).

Decadal trends in stable isotope signature

The evolution of the keratin δ13C and δ15N from the
10 BPs of fin whales stranded along the Western
Mediterranean coasts over a 27 yr span is presented
in Fig. 5A,B. δ13C and δ15N mean values show impor-
tant changes between 1975 and 2002. Whereas δ15N
variances statistically significantly increase with
time, the slight positive increase in δ13C variances is
not statistically significant (p > 0.68) from linear
regression. We calculated the regression equation
using the mean values of all BPs (Table 1). The linear
fit shows a strong correlation between δ15N means
and years of collection (r2 = 0.58, n = 10, p = 0.01) and
a smaller one for δ13C (r2 = 0.29, n = 10). A polynomial
fit (third order) applied to both δ13C and δ15N means
increased the correlation between stable isotope evo-
lution and years. The δ13C versus year fit shows a

sinusoidal curve and an isotopic shift in 1980
(Fig. 5A). The δ15N versus year ‘abruptly’ decreases
be tween 1975 and 1980 but shows less variation be -
tween 1990 and 2002 (Fig. 5B).

Satellite tracking

Eleven fin whales were tagged with satellite-moni-
tored radio transmitters off the Provençal coast from
1 August to 20 August 2003. Argos positions were
obtained from 8 individuals over the course of 9 mo
(Table 5). Seven individuals re mained in the north-
western part of the Mediterra nean Sea through fall
and winter, and 1 individual (tag 10842) moved into
the Atlantic Ocean (Fig. 6).

DISCUSSION

Satellite telemetry provides evidence, that some fin
whales migrate from the Medi terranean Sea to the
Atlantic Ocean; however, most individuals remain
within the western basin during fall and winter.
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Fig. 3. Balaenoptera phy sa lus. Intra-individual stable nitrogen isotope values (expressed per ml) along the length of baleen 
plates of fin whales stranded at western Mediterranean coasts between 1975 and 2002. For details see legend of Fig. 2



Bentaleb et al.: Foraging in Mediterranean fin whales 295

6

7

8

9

10

11

12

L axis (cm)

Fall

Fall

Spring

Spring

Atlantic Ocean

Mediterranean Sea

C

0 10 20 30 40 50 60 70

–21

–20

–19

–18

–17

0 10 20 30 40 50 60 70

Spring

Fall

Spring

Fall
Atlantic Ocean

Mediterranean Sea

B

L axis (cm)

BP1

BP2

BP3

BP4

BP5

BP6

BP7

BP8

BP9

BP10

M. norvegica

6

7

8

9

10

11

12

–17–18–19–20–21

M. norvegica Atl. Ocean Spring 2001

M. norvegica Atl. Ocean Fall 2001

M. norvegica Med. Sea Spring 2004

M. norvegica Med. Sea Fall 2004

Grand-mean of all BP’s

Means of individual BP’s

BP2

BP1

BP8

Mediterranean M. norvegica 
δ13C  and  δ15N  reference

A
Atlantic M. norvegica
δ13C  and  δ15N  reference range

BP10

δ15
N

 (‰
)

δ1
5 N

 (‰
)

δ13
C

 (‰
)

δ13C (‰)

Fig. 4. Meganyctiphanes norve -
gica and Balaenoptera phy sa lus.
(A) Nitrogen and carbon stable
isotope ratios of the 10 baleen
plates of stranded fin whales ( )
and of each individual ( ) com-
pared with M. norve gica (krill)
δ13C and δ15N values from the
Mediterranean Sea (h: spring;
j: fall) and Atlantic Ocean
(s: spring; d: fall). δ13C and
δ15N krill data represent trophic
enrichment corrected values
(1 and 3.4‰, respectively) and
non-lipid- extracted values. The
boxes represent the Atlantic
Ocean (– – –) and the Mediter-
ranean Sea (——) krill refer-
ence ranges that correspond to
the outer-limits of the ±1 SD
range of spring and fall values
combined of the δ13Ccorrected val-
ues of the krill. Intra-individual
(B) δ13C and (C) δ15N variations
along the length of the plates
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Therefore this population is exposed, year-round, to
heavy shipping traffic, as the 3 largest Mediter-
ranean ports — Bar ce lona, Marseille, and Genova —
are contiguous to the main fin whale summer forag-
ing grounds (Forcada et al. 1996, Monestiez et al.
2006, Cotté et al. 2009).

The stable isotope analyses of baleen plates reveal
that most stranded fin whales in the northwestern
Mediterranean Sea did not present δ13C oscillations.
Assuming a +3.4‰ trophic enrichment factor for δ15N
and +1‰ for δ13C, these results suggest year-round
residency within the western Mediterranean Sea.
Few δ13C values were either en riched (BP2) or
depleted (BP8, BP10) compared to the δ13C Mediter-
ranean krill reference range (Fig. 4B).

Both δ13C and δ15N variations along
the length of BP2 may be cyclical,
suggesting that BP2 fin whale may
regularly visit different foraging
grounds, possibly by alternating
between the northwestern Medi -
terranean basin (where this whale
was ultimately killed in a ship colli-
sion) during spring– summer seasons
(31 and 12 cm; Fig. 4B) and unidenti-
fied waters (where it fed at the same
high trophic level compared to the
other fin whales) (~21 cm). However,
the high δ13C values of BP2 suggest
that this whale was unlikely to forage
in the Atlantic Ocean. δ13C of BP10
and to a lesser extent BP8, which
were both sampled in the Malaga
region, also exhibit ‘cyclic’ patterns
(Fig. 4B). The high δ13C ranges mea-
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Fig. 5. Balaenoptera phy sa lus. Variations of (A) δ13C and (B)
δ15N values of 10 fin whale baleen plates versus year of collec-
tion, means ± SD. The line curves fitting the data are linear
(δ13C = –0.02 × + 20.14; r2 = 0.29; δ15N = –0.07 × Years + 142.5;
r2 = 0.58) and cubic polynomial regressions (δ13C = 0.0004 ×
Years3 – 2.6145 × Years2 + 5199 × Years – 3 × 106; r2 = 0.70;
δ15N = –8 × 10–05 × Years3 + 0.4886 × Years2 – 981.82 × Years + 

657624; r2 = 0.84)

PTT                Date         Location     Message    Distance 
                   deployed          (d)                (d)              (km)

10836           8/12/03         145.1           192.7           913
10838           8/18/03         278.0           296.0           4260
10842           8/16/03         138.6           138.6           4057
23029           8/18/03         45.1           57.6           1079
23032           8/18/03         43.3           44.3           405
23033            8/4/03          140.4           140.4           761
23041            8/8/03          175.3           228.8           419
23042           8/16/03         301.0           394.0           1461

Averages                           158.3           186.6           1669

Table 5. Balaenoptera phy sa lus. Tag identification number
(PTT), deployment dates, number of days following tagging
with locations, duration of operation (message days), and
minimum distances travelled by 8 fin whales tagged in the
northwestern Mediterranean Sea during August 2003. 

TAG 10842: individual moved into the Atlantic Ocean

Fig. 6. Balaenoptera phy sa lus. Argos locations of 7 individuals tagged with
satellite-monitored radio transmitters off the Provençal coast from 1 August to
20 August 2003. Tags (see Table 5): = 10838, = 23029, = 10838, = 23032,

= 23042, = 10836, = 10842, = 23041. The tag 23032 is not shown, as only
2 locations were obtained from this individual over a 43.3 d period and within 

initial tagging area
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sured along the length of BP8 and BP10 (1.3 and
1.9‰, respectively) suggest a broader foraging area
for these individuals than for the other ones (range:
0.6 to 1.1‰). However, their δ13C suggest that these
individuals spent most of their time in the Mediter-
ranean basin feeding alternatively on spring and fall
resources and exhibited short shifts marked by signif-
icant δ13C depletion. These depleted δ13C values are
intermediate between the Mediterra nean and At -
lantic krill δ13C values, suggesting possible short
excursions in the Atlantic Ocean or the nearby Strait
of Gibraltar. The less-depleted δ13C values observed
in the baleen plates compared to the ex pected
Atlantic Ocean δ13C values can be explained either
by the fact that those excursions were not long en -
ough to allow the plate to equilibrate with the At -
lantic prey δ13C values or that the fin whales
restricted their Atlantic excursions to the Atlantic
side of the Strait of Gibraltar, an historical Spanish
whaling ground in the 1920s and 1950s and consis-
tent with the data provided by satellite tracking (San-
pera & Aguilar 1992; Fig. 6). In this hypothesis, the
‘Gibraltar-Atlantic’ prey δ13C values would be inter-
mediate between Mediterranean and Atlantic values.
As fin whales display maternally directed site fidelity,
we can question the effect of the past intensive whal-
ing on the migration patterns of this population. In
the absence of such intensive whaling we would
expect much higher variations in stable isotope val-
ues with time in the baleen of these whales.

As only 2 (BP10, and, to a lesser extent, BP8) out of
the 10 baleen plates exhibited such ‘cyclic’ patterns
in δ13C, this behavior does not seem to prevail in this
fin whale population. Interestingly both fin whales
from the Malaga area show indications of such
 migratory pattern, suggesting that fin whales en -
countered in this region may be in transit between
the Mediterranean Sea and the Atlantic Ocean.
Indeed the satellite tracking data of the individual
that left the Mediterranean Sea (TAG 10842)
revealed that this fin whale migrated to the Atlantic
Ocean along the Spanish coastline (Fig. 6). In addi-
tion to satellite tracking that allows precise location
of individual fin whales over relatively short periods
of time (mo), the stable isotopes measured along the
baleen plates provide an insight on the main foraging
regions over long-term periods (Hobson et al. 2004).
However, precise reconstructions depend on BP
growth rate data. A first attempt at estimating growth
rate on Mediterranean fin whale is made using BP3.
The concomitant changes of both δ15N and δ13C
between 20.5 and 17.6 cm on BP3 (Figs. 2 & 3) could
result from a shift in trophic level due to prey change

or correspond to the weaning transition period from
maternal milk to prey (Hobson & Schell 1998, Hob-
son & Sease 1998). Though small isotopic changes
are observed (~1‰), our δ13C shifts and depleted
δ15N observed at ~20.5 cm might suggest weaning
age (7 mo in fin whales; International Union for Con-
servation of Nature (IUCN) 1991) was reached, the
juvenile shifting to nutritional independence and
feeding at a lower trophic level than adults (Jenkins
et al. 2001). However there is a very real possibility
that some substantial, unknown amount of wear
may have oc curred for BP3, suggesting that the cal-
culated growth rate of ~20.1 cm yr–1 (32.2 – 20.5 cm =
11.7 cm / 7 mo × 12 mo yr–1) correspond to a lower-
limit growth rate for this female BP3–BP4. Interest-
ingly, BP3 growth rate (~20 cm yr–1) is within the
range of those ob served for adult Minke whales
(12.9 cm yr–1; Mitani et al. 2006); bow head whales
(20 cm yr–1 or less; Schell et al. 1989a,b), and south-
ern right whales (2.7 cm yr–1; Best & Schell 1996).
Applying our minimum growth rate estimate, BP3
whale would be ~1.6 yr old. Because fin whales are
believed to reach sexual maturity at ~6 to 12 yr, it
is likely that the baleen of the adult female BP3
(Table 1) did in fact experience significant erosion at
the distal end; otherwise the length of the ba leen for
a whale of at least 6 yr of age should have been
~120 cm at a minimum. In conclusion, it is likely
that erosion would cause the underestimation of BP3
baleen growth rates, and hence this estimate is to be
viewed as a minimum growth rate value. Using the
minimum growth rate value (20 cm yr–1), the multi
δ13C cycles observed on BP10 and BP8 suggest that
these individuals were regularly alternating between
different foraging grounds, with individuals travel-
ling once or twice a year from the Mediterranean Sea
in the direction of the Atlantic Ocean, and we specu-
late these whales remained in the Gibraltar Strait–
Atlantic continuum.

A 3‰ order enrichment is expected between the
δ15N signature of Meganyctiphanes norvegica and
fin whales if the whales are feeding exclusively on
this prey. We found an enrichment of 2.6 to 3.5‰
(mean ± SD = 3.2 ± 0.8) between Mediterranean krill
and baleen plates, and 0.2 to 1.8‰ between Atlantic
krill and baleen plates. If M. norvegica was the year-
round predominant prey of our study of fin whale
populations, the observed δ15N oscillations should
primarily reflect migratory patterns or seasonal
change in krill δ15N signature. Furthermore, our krill
data show an increase of 0.9 to 1.6‰ during spring
to late summer transition in the Mediterranean Sea
and Atlantic Ocean, respectively. Similarly Bode &
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Alvarez-Ossorio (2004) reported a zooplankton δ15N
increase by more than 3‰ during the spring–sum-
mer transition, partly due to the nitrate depletion dur-
ing phytoplankton growth. According to that hypo -
thesis, and considering a 3.4‰ δ15N enrichment per
trophic level, most fin whales in the present study
could have only fed on krill in Atlantic in winter
when krill δ15N is depleted. However the geographi-
cal source given by the δ13C does not support that
hypothesis (see also the following 2 subsections).

However, an enrichment of <3.4‰ was suggested
in several studies (Ostrom et al. 1993, Abend & Smith
1997). An 2.4‰ enrichment factor for the δ15N would
lead to different interpretations of the migration pat-
tern. For instance BP1 and BP2 δ15N values would
suggest the ingestion of only Atlantic krill and many
values of the other BPs would indicate that whales
feed on both Mediterranean Sea and Atlantic Ocean.
Again the geographical source given by the δ13C
does not corroborate such a scenario.

Hence potential mechanisms of decoupling carbon
and nitrogen isotope signatures should be suggested.
According to Hobson et al. (2004), migration and fast-
ing could be such a mechanism. If whales migrate in
winter and fast in Atlantic waters, highest δ15N are
expected, and carbon from stored fats is used for
baleen formation. It might show that Mediterranean
summer diet δ13C values determine the long-term
substrate values for baleen formation. These hypo -
theses imply that Balaenoptera physalus has a well-
identified fasting period during winter. To our knowl-
edge, no pattern of seasonal period of fasting has
been reported in the literature.

Minagawa & Wada (1984) found a 3.4‰ enrich-
ment factor for δ15N when using whole crustacean, as
was the case in the present study. Furthemore, Hob-
son et al (1996) found a mean value of 3‰ enrich-
ment factor for δ15N between the prey and keratinous
tissues such as whiskers, nails, and hair. We might ex -
pect a similar enrichment factor between the whole
krill prey and keratinous baleen plates of fin whales.
Hence we suggest that a 3.4‰ enrichment factor is
close to the actual number and believe that Meganyc-
tiphanes norvegica is the predominant prey of this
population of fin whales; therefore it follows that the
observed stable isotope oscillations of BP10 and 8 pri-
marily reflect migratory patterns.

We cannot exclude that Mediterranean fin whales
are also feeding on other unknown prey species. Ac -
cording to Canese et al. (2006), zooplankton sam-
pling collected in winter near Lampedusa, where fin
whales fed, indicates the presence of Nyctiphanes
couchi. However we can rule out that Mediterranean

fin whales mainly feed on small mesopelagic fishes
such as sardines or anchovies, as the whales occupy
the same mean trophic level as these fish species
(mean δ15N ranging from 7.69 to 7.87; Pinnegar et al.
2003).

Nonetheless, higher δ15N values were exhibited in
BP1, suggesting that part of this whale’s diet could be
composed of prey from higher trophic levels over ex -
tended periods of time. However, taking into account
the year of stranding (1975), the BP1 δ15N values can
also suggest that the nitrogen isotopic signature at
the base of the food chain was higher 27 yr ago.

Pinnegar et al. (2003) and Pauly et al. (1998) re -
ported a decline in the mean trophic level of landings
for the western Mediterranean Sea and interpreted
it as ‘fishing down the marine food web’, mostly
through diversification and (or) substitution in the
species being targeted (marketed), as might be ex -
pected where the supply of the preferred target spe-
cies has begun to dwindle (Pinnegar et al. 2002). In
addition to this decline, the temporal decrease in
δ13C and δ15N may also provide some evidence of
 significant environmental changes affecting the
Mediterranean Sea.

Schell (2000) reported a depletion of δ13C in Bala -
ena mysticetus plates from the Bering Sea between
1947 and 1997. The δ13C depletion of the Bering Sea
whales (–0.05‰ yr–1) during the last 30 yr is about
twice as much as the one previously reported for the
Indian Ocean (–0.02 yr–1; Gruber et al. 1999) and the
one found in the plates from the Mediterranean fin
whales in the present study (–0.02‰ yr–1) between
1975 and 2002. The δ13C signature of the baleen
plates over the study period suggests increasing δ13C
values between 1975 and 1980 and 1996 and 2002,
and decreasing δ13C between 1980 and 1996 (Fig. 5).
Interestingly, Demirov & Pinardi’s (2002) simulations
of the interannual surface Mediterranean circulation
from 1979 to 1993 identify 2 periods, 1981 to 1987
and 1988 to 1993, which differ in precipitation and
winter wind regimes. Moreover, Conversi et al (2010)
show important changes of the plankton at the end of
the 1980s in the Mediterranean basins and provide
analyses linking local, regional, and basin scale
hydrological properties with 2 major indicators of
large scale climate, the North Atlantic Oscillation
(NAO) index and the Northern Hemisphere Temper-
ature index, suggesting that the Mediterranean shift
is part of a larger scale change affecting the northern
hemisphere.

The driving force explaining the general carbon
isotopic depletion patterns may reflect global hemi-
spheric changes. Schell (2000), assuming constant
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dissolved CO2 concentration, attributed the δ13C de -
pletion in the Bering Sea to a 30 to 40% decrease
in the marine productivity. An alternative hypo -
thesis was proposed by Cullen et al. (2001) who sug-
gested that increased CO2 levels could also explain
the δ13C depletion. Indeed, the atmospheric CO2

 levels in creased significantly due to fossil fuel burn-
ing, land changes, and cement manufacture (IPCC
2007) all resulting in a significant decrease of the
 δ13CatmosphericCO2 (Keeling et al. 2001). However, in a
recent study, Williams et al. (2011) interpreted the
δ13C shift of the Bering Sea as a response to the
increased upwelling intensity linked to the Aleutian
low intensification.

In region off the upwelling the 13C depleted atmo -
spheric anthropogenic CO2 is partially absorbed by
the ocean surface waters, thus decreasing the iso-
topic composition of the marine inorganic carbon
pool. Known as the Suess effect (Gruber et al. 1999,
Tanaka et al. 2003), this anthropogenic CO2 input
affects the isotopic signature of primary producers
and consequently of marine food web, thus possibly
explaining in part the observed baleen plate δ13C
shift noted herein.

Higher marine CO2 content may favour the photo-
synthetic rate, but such conditions would lead to a
δ13C decrease and δ15N increase (predominance of
as similatory nitrate reduction increases phytoplank-
ton δ15N). This phenomenon has a direct effect on the
isotopic signature of primary producers and conse-
quently on the marine food web, explaining the
baleen plate δ13C shift evidenced on a global scale
(Cullen et al. 2001). However, the present δ15N val-
ues (–0.07‰ yr–1) were as significantly depleted as
those observed in the Bering Sea (–0.06‰ yr–1; see
Schell 2000 and comment by Cullen et al. 2001). This
decrease in δ15N is intriguing, but poorly docu-
mented as an ecosystem indicator (Lee et al. 2005).

Atmospheric N2 would be used as a nitrogen source
for primary production (diazotrophy), otherwise the
microbial loop system may become more active, recy-
cling isotopically light NH4

+ used by phyto  plankton.
However, the most likely mechanism to explain such
a rapid change in the Mediterranean Sea would be
a major shift of the nutrient balance in response to
 increased anthropogenic input by coastal run off,
river discharge and atmospheric nitrogen compounds.
Though additional nitrate may stimulate the biological
pump, especially for the Mediterranean Sea, which is
often considered as a nitrate depleted sea, this anthro-
pogenic forcing can also significantly de crease the
productivity of the ecosystem by altering the Redfield
ratios (increase of the N:P and de crease of the Si:N ra-

tios; Béthoux et al. 2002) and consequently modify the
marine community (Turner et al. 2003). Data from the
Gulf of Lions shows an N enrichment with respect to
P due to the Rhone River influence (Diaz et al. 2001).
The changes in N:P:Si ratios observed since the early
1960s (Béthoux et al. 2002) could lead to a decreased
photosynthetic rate or a phytoplankton shift from a
dia tom-dominated ecosystem towards a non-siliceous
one and a more  ‘regeneration- dominated’ community
(Marty et al. 2002).

Superimposed on this declining trend, the potential
impact of the decadal changes of the NAO cannot be
ruled out, causing drier (normal) Mediterranean con-
ditions during the negative (positive) phase. Since
1980, except in 1996, the NAO has been positive. As
a result, the isotopic decline between 1980 and 2002
cannot be attributed to the NAO alone. A complex
combination of circulation alteration, temperature
increase (Goffart et al. 2002, Conversi et al. 2010) and
nutrient availability, anthropogenic impact are likely
affecting marine communities of the Mediterranean
sub-basins.

The combination of satellite tracking and stable iso-
tope signature methods reveals some major aspects of
Mediterranean fin whale foraging, indicating that
most individuals might be year-round residents of the
northwestern Mediterranean Sea and that the largest
predator of the Mediterranean Sea has a trophic level
equivalent to that of anchovies and sardines.

The observed decrease in δ15N is an important eco -
system indicator supporting the assumption of a
changing nitrogen cycle with still unclear effects
(Duce et al. 2008). More efforts need to be directed
toward understanding the nitrogen biogeochemical
cycle. Conversely, the change in δ13C reported is
 consistent with previously well-described studies.
The de  crease in primary production level or shifts in
the primary producers are likely to influence the
Medi terranean food web and consequently fin
whales. How ever, the long term consequences re -
main unknown.
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