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X-ray ptychography is a lensless microscopy method able to provide extended field of view with spatial
resolution above the diffraction limit. A series of intensity coherent diffraction patterns measured in the far
field is used to obtain the numerical deconvolution between the sample scattering contrast and the illumination
function. The measurements are performed with a finite-size beam spot scanned across the sample. The scan
step, smaller than the beam size, ensures a high redundancy in the data set, which allows for the convergence
of the iterative inversion algorithm. This work explores the possibility to use ptychography for the investigation
of strained crystals by means of coherent x-ray Bragg diffraction, taking advantage of the high sensitivity to the
atomic displacement fields. The Bragg diffraction scattering contrast is described by an effective complex-valued
electron density, where the phase holds the information on the displacement field. The detailed two-dimensional
numerical study of Bragg ptychography is presented, both for the known and unknown illumination cases. It
demonstrates the high robustness of the ptychographical iterative engine for highly nonhomogeneous strain fields.
In particular, the local information is extracted from the individual diffraction patterns to calculate the modulus
and phase estimates of the electron density, which are further used to constrain the newly derived algorithm.
From this work, it is foreseen that Bragg ptychography when experimentally feasible, will open the way to the
nondestructive imaging of strain fields at the nanoscale.
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I. INTRODUCTION

The ongoing development of nanoscience relies on the new
material properties which are obtained when the dimensions of
the structures reach the nanometer scale. A detailed description
of the structure at the nanoscale is mandatory to understand
and monitor these properties: for instance, the functionalities
of nanocrystal based devices are highly sensitive to their exact
internal chemical composition and strain fields. In this context,
hard x-ray diffraction methods are of particular interests:
the short wavelength, in the subnanometer range, associated
to a large penetration depth allow for a nondestructive
characterization of the atomic species and positions. However,
the lack of efficient x-ray lens inhibits the possibility for highly
resolved x-ray microscopy and leads to constraining model-
dependent approaches for the analysis of the x-ray diffraction
patterns.1

In the past years, lensless x-ray diffraction microscopy has
been proposed to overcome this limit.2 Instead of lenses, the
sample image is obtained from the numerical resolution of
the phase problem.3 These methods are based on the use of
coherent x-ray beams and the measurements of oversampled
far-field intensity diffraction patterns. The retrieval of the
complex-valued exit wave field at the sample position is
obtained with iterative inversion algorithms.4,5 Applied in the
Bragg geometry, i.e., in the vicinity of a Bragg reflection,
the Bragg coherent diffraction imaging (CDI) has allowed
for the successful determination of the complete three-
dimensional (3D) displacement and strain field in a crystal.6

However, several limits restrict the general application of this
method. As a consequence of the oversampling condition,
Bragg CDI is intended for small and isolated crystals, typically
in the submicrometer range. This upper limit is mostly due
to the actual resolution sustained by the available x-ray

two-dimensional (2D) detectors.7,8 Furthermore, for weak
displacement fields where small phase shifts in the exit field are
expected (like, e.g., surface strain), the obtained reconstruction
does not allow to discriminate between the illumination
wavefront inhomogeneities (as local wavefront curvature) and
the crystal displacement field.9 The opposite case of highly
nonhomogeneous strain fields is also an unsolved problem
because the extremely slow convergence of the inversion pro-
cedure encountered in that case prohibits the practical use of
the method. This latter limit is particularly unfortunate because
highly nonhomogeneous strain fields are present in a wide
variety of materials like epitaxial nanocrystals (quantum dots,
quantum wires), polycrystalline materials with anisotropic
elastic constants, embedded nanocrystals for microelectronics
applications, etc. Several works have attempted to solve this
question. They are all based on the introduction of additional
a priori direct space information; therefore they are sample
dependant and necessitate an extensive numerical feasibility
preanalysis.10–15

Recently, a powerful lensless microscopy approach has
been demonstrated in the x-ray regime: the ptychography. This
method is related to a direct solution of the phase problem
first proposed by Hoppe for electron microscopy in the late
60s.16 It is based on the simultaneous inversions of several
far-field intensity diffraction patterns obtained for different
but overlapping illumination areas onto a large (possibly
infinite) sample.17 The phase retrieval is numerically ensured
with an iterative algorithm like the ptychographical iterative
engine18 (PIE) or other recently demonstrated approaches.19,20

In addition to the possibility of extending the field of view
and thereby imaging samples much larger than the transverse
coherence lengths of the beam,21–23 ptychography also allows
for the deconvolution of the sample scattering contrast from
the illumination function.20,24,25 Quite promising for the Bragg
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case,26 the experimental demonstration of Bragg ptychography
has not been shown yet.

In this paper, we show numerically the potentials of the
ptychography approach for imaging highly nonhomogeneous
strain fields in a crystal. The detailed problem description
and the chosen numerical sample are introduced in Sec. II.
Section III describes the algorithmic tools developed for the
ptychography approach using the error metric to introduce
additional constraints. For Bragg diffraction, the object esti-
mate (modulus and phase) can be extracted and employed as
an a priori information. The results obtained for the known
illumination case are presented in Sec. IV before the most
difficult case of an unknown illumination is described in
Sec. V. We finally address the experimental possibilities and
the actual limitations in Sec. VI.

II. COHERENT X-RAY BRAGG DIFFRACTION

This work investigates the possibility to image strain fields
in a crystal using coherent x rays. The basics of coherent x-ray
Bragg diffraction are summarized in this section before the
description of the chosen numerical sample is given.

A. Description of the direct problem

When only elastic scattering processes are considered,
i.e., far from absorption edges, the weak interaction of a
monochromatic x-ray beam with a crystal allows for the use
of the Born approximation to describe the exit field at the
sample position. In the scalar approximation, the exit field ψ

at position r is simply given by the product of the the exact
electron density ρ and the incident field (called the probe or
illumination function) denoted by P :

ψ(r) = P (r)ρ(r) (1)

for all positions r in the sample plane. For measurements
performed in the far-field regime, the field at the detector plane
is obtained from the Fourier transform of the exit field at
the sample plane. The expression for the far-field intensity I

evaluated at a position q of the reciprocal space follows

I (q) = |E(q)|2 = |(Fψ)(q)|2, (2)

where F denotes the Fourier transform operation and E(q) is
the field in the Fraunhofer regime. The detector giving only
access to the values of I (q) for different q, the phase problem
has to be solved to retrieve the exit field. In addition, a detailed
knowledge of the illumination function is needed in order to
obtain the true electron density ρ from Eq. (1). We note that
in CDI experiments, a perfect plane wave is usually assumed;
this permits to identify the exit field with the sample scattering
contrast.

When the sample is crystalline, the atomic periodicity
results in reciprocal space Bragg peaks observed additionally
to the forward scattered beam. These Bragg peaks hold infor-
mation on shape, size, and eventually strain of the crystalline
parts. In the case of a strained crystal, the displacement vector
field u, which describes the difference between the strained
crystal atomic position with regard to the atomic position in an
ideally nonstrained crystal, has to be introduced in the electron
density distribution. A powerful approximation is so far used

in order to compute the far-field with fast-Fourier-transform
routines.28,29 It allows expressing the crystal scattering contrast
as an effective (complex-valued) electron density:

ρ(r) = |ρ(r)| exp[iφ(r)], (3)

with i = √−1 and where |ρ(r)| is the density in the unstrained
crystal. The phase shift φ(r), resulting from the displacement
field, is given by

φ(r) = Ghkl · u(r) (4)

where Ghkl , the Bragg vector for the chosen hkl reflection, is
related to the considered lattice spacing dhkl .

B. The numerical sample: a strained crystal

The numerical study is performed on the two-dimensional
crystalline samples with effective electronic densities shown in
Fig. 1. The total matrix dimension is 966 × 966 pixels, while
the crystal expands over 390 (respectively, 412) pixels along
the vertical (respectively, horizontal) direction. The modulus
[see Fig. 1(a)] is homogeneous, arbitrarily fixed to unity. In
order to investigate the performances of Bragg ptychography
in the case of highly nonhomogeneous strain fields, two
phase fields are designed, φ1 and φ2 with φ2 = 1.6 × φ1 [see
Figs. 1(b) and 1(c)]. In the following, Sn refers to the sample
whose effective electron density is ρ(r) = |ρ(r)| exp[iφn(r)].

The parameter of relevance, which allows comparing
our work with the available literature concerning diffraction
imaging of nonhomogeneous strain field, is the maximal
variation of the displacement field gradients observed in the

(a) (b) (c)

(e) (f)

Modulus (arb. units) Phase (rad.)

(d)

Intensity (arb. units)
-6 -4 -2 0-3 -1 1 30 0.5 1 1.5

S2S1

FIG. 1. (Color online) Description of the effective electron
density designed for the Bragg ptychography numerical study. The
modulus |ρ(r)| is presented in (a) while the phase fields φ1 and φ2

are shown in (b) and (c) for the S1 and S2 samples, respectively. The
corresponding color scales are shown at the bottom: (left) the modulus
is in arbitrary units and (middle) the phase is in radians. These scales
are common to all electron density maps presented in this work.
(d)–(f) Corresponding coherent far-field intensity patterns assuming a
plane-wave illumination: (d) strain-free case, (e) [respectively, (f)] S1

(respectively, S2) sample, with ρ(r) = |ρ(r)| exp[iφn(r)] and n = 1
(respectively, n = 2). The color intensity scale is logarithmic.
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crystal. One can note that the displacement field gradient
alone is not sufficient to fully characterize the problem, as
a homogenous strain field (with linear displacement field) can
exhibit already large (but homogeneous) displacement field
gradient. For that crystal, the support-based phase retrieval
would be straightforward. When numerical approaches are
concerned, the displacement field is given in phase unit, using
Eq. (4). The φ1 and φ2 phase fields presented here exhibit a
phase gradient variation of 1.2 and 2.1 rad/pixel, respectively.
As a matter of comparison, the phase fields of Refs. 10, 12, 13,
and 27 for instance, present a phase gradient variation of about
2.1, 1.3, 1.2, and 2.1 rad/pixel, respectively. In those works,
the authors had to introduce additional constraints to ensure
the convergence of the inversion process.

The effects of strain onto the intensity of the coherently
diffracted field are illustrated in Figs. 1(e) and 1(f). They
present the far-field intensity distributions calculated for the
two strained crystals illuminated by a plane wave. These
maps have to be compared to the strain-free case shown in
Fig. 1(d). The reciprocal space resolution is defined as 2π/σT ,
where T is the typical size of the crystal (in pixels) and σ

is the one-dimensional (1D) oversampling ratio (σ = 2.5).
Strong differences are observed: while Fig. 1(d) presents the
expected centrosymmetrical behavior, the diffraction patterns
of Figs. 1(e) and 1(f) become asymmetric and hardly show
some similarities with the strain-free case. The patterns
become elongated and distorted specially in the low and
intermediate q regime. The presence of strong intensity values
at the edge of the detector plane points out the necessity to
pay a special attention during the inversion process in order
to avoid simulation artefacts resulting from unwanted aliasing
effects.

III. THE PTYCHOGRAPHY METHOD

In the next parts, the PIE will be used to retrieve the effective
electron density of the sample from the far-field intensity
diffraction patterns (see Sec. IV). Its extended version (ePIE)
will be further employed for the simultaneous retrieval of the
probe function (see Sec. V). Here, we briefly introduce this
algorithm, before we describe the constrained PIE that we
use to overcome the encountered limits of the PIE and ePIE.
Furthermore, we explain how to make profit from the full set
of diffraction patterns to get access to the local information
and obtain thereby a reasonable first estimate of the complex
electron density.

A. The PIE description

The PIE allows the retrieval of the scattering contrast of an
object that deviates the incident field. It uses a set of diffraction
intensity patterns.18 A finite-size illumination is used, obtained
either by a beam defining aperture located close to the object
plane22 or by a focusing lens, so that only a small part of the
crystal is probed.19 The object is scanned across the finite-size
beam spot, paying attention to preserve a rather large amount of
overlapping area between two successive illuminations. A set
of N intensity patterns is obtained, one at each probe position.
We denote this data set by {Ij } for j = 1, . . . ,N . An iteration
of the PIE is the set of the N updates of the object, with

respect to each intensity pattern Ij . When the probe function
is perfectly known, the PIE is initiated with an estimate of the
object ρ0,1, obtained in most cases from a rough estimate of
its support. During the kth iteration, the j th subiteration of
the PIE consists in the following four steps: (i) starting with a
current object ρk,j , the exit field ψk,j is calculated for any r in
the sample plane:

ψk,j (r) = Pj (r)ρk,j (r), (5)

with Pj being the probe position corresponding to the j th
measurement. (ii) The far-field distribution Ek,j corresponding
to the propagation of ψk,j is obtained from

Ek,j (q) = (Fψk,j )(q). (6)

(iii) This quantity is corrected so that the calculated intensity
matches the experimentally measured data; for any q in the
detector plane, one imposes

Êk,j (q) = √
Ij (q)

(Fψk,j )(q)

|(Fψk,j )(q)| . (7)

(iv) The last step allows to update the object estimate, taking
into account the probe function and the overlapping condition

ρk,j+1(r) = ρk,j (r) + β

[ |Pj (r)|
maxr |Pj (r)|

P ∗
j (r)

|Pj (r)|2 + ε

]
× [ψ̂k,j (r) − ψk,j (r)], (8)

where “∗” is the conjugation operation, ψ̂k,j = F−1Êk,j is the
back propagated corrected far field. β is the step-length of the
update (β > 0), and ε avoids division by zero.

These four steps are repeated for the (j + 1)th probe
position. When j = N , the kth iteration is over. Typically,
a few hundred iterations are needed in order to reach the
convergence. The quality of the reconstruction is monitored
through the error metric updated at each iteration.

B. Regularization within the PIE: the constrained PIE (cPIE)

In the following, we describe the constrained PIE (cPIE)
that we have to introduce for Bragg ptychography in order
to overcome the limits encountered by the PIE. The idea
is to enforce the iterative engine to look for a solution
close to a relevant estimate. Indeed, the Bragg diffraction
data set allows for the possibility to extract an already
quite correct preliminary estimate. Interestingly, we note that
another method has been proposed to introduce a support
constraint to the sample, based on a combination of Fresnel
coherent diffraction imaging and ptychography approaches.30

In the following, only the modulus regularization is introduced
for sake of simplicity. It enforces the solution modulus to
resemble an estimate extracted from the diffraction data
set (see Sec. III C). However, the constrained PIE can be
generalized to any other constraints such as the object phase,
the object support, the probe continuity, etc.

The vectorial notation is now used as it corresponds
to an appropriate discretization of the continuous problem.
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We thus have

[dataset] ∀j, Ij = ( Im;j )Lm=1 with Im;j := Ij (qm),
[exit field] ∀j, ψj = ( ψm;j )Lm=1 with ψm;j := ψj (rm),
[electron density] ρ = ( ρm )Mm=1 with ρm := ρ(rm),
[preliminar estimate] ρ = ( ρm )Mm=1 with ρm := ρ(rm),

(9)

where the subscript m denotes the pixel index and ρ is a good
preliminary estimate of the electron density (as obtained for
instance in Sec. III C). L and M are the number of pixels of
the camera and in the object reconstruction space, respectively.
Moreover, we introduce the rectangular matrix31 Pj ∈ CL×M

that leads to the j th exit field induced either by ρ or by ρ

ψj := Pj ρ and ψ
j

:= P j ρ. (10)

The far-field Ej is obtained with the digital Fourier transform
(DFT) of the exit field ψ j :

Ej = Wψj , (11)

where W is the DFT operator.32 Finally, the phases associated
to the j th exit field and its corresponding far field are defined
by

∀j,m exp[iϕm;j (ρ)] := Em;j

|Em;j | ,
(12)

exp[iαm;j (ρ)] := ψm;j

|ψm;j | ,

where the dependency on the electron density ρ is explicitly
indicated.

During the inversion process, these phases are involved in
the expressions of the constraints deduced from the intensity
diffraction pattern, i.e., the dataset, and from the preliminary
estimate, respectively,

∀j, Êj = (Êm;j )Lm=1 with Êm;j (ρ) := √
Im;j × ei ϕm;j (ρ),

ψ̂
j

= (ψ̂
m;j

)Lm=1 with ψ̂
m;j

(ρ) := |ψ
m;j

| × ei αm;j (ρ).
(13)

The exit field ψ̂
j

related to the preliminary estimate constraint

and the exit field ψ̂j (ρ) related to the modulus constraint
imposed by the measurements [defined as ψ̂ j (ρ) = 1

L
W †Êj ]

can now be used in the cPIE. More precisely, for a given initial
guess ρ(0), the cPIE is defined by the following updates for
k = 0,1, . . . :

ρ(k,1) := ρ(k),

j = 1, . . . N, ρ(k,j+1) := ρ(k,j ) − β Dj × δj (ρ(k,j )),
ρ(k+1) := ρ(k,N+1),

(14)

with β > 0 and

δj (ρ) := P†
j [(1 + γ ) ψj (ρ) − ψ̂ j (ρ) − γ ψ̂

j
(ρ)],

(15)

Dj := Diag

( |Pm;j |
maxm |Pm;j | × 1

|Pm;j |2 + ε

)
,

where γ � 0 is a regularization parameter. Note that the
iteration (14) reduces to the standard PIE for γ = 0.

It is easy to establish that δj (ρ) is the gradient (with
respect to ρ†) of the subcriterion Jj defined below. Indeed,
following the medical imaging terminology, the iteration (14)

is an ordered subset algorithm34 that aims at minimizing the
following penalized criterion:

J (ρ) :=
N∑

j=1

Jj (ρ) with Jj (ρ) := εj (ρ) + γRj (ρ),

(16)

where εj (ρ) is the j th error metric that takes into account the
j th measured diffraction pattern

εj (ρ) :=
∑
m

1

L

[√
Im;j − |Em;j (ρ)|]2

, (17)

and where Rj (ρ) is a regularization term that incorporates ad-
ditional constraints. In the sequel, the following regularization

Rj (ρ) :=
∑
m

[ |ψm;j (ρ)| − |ψ
m;j

|]2
(18)

is adopted in order to constrain the modulus of ρ. As for the
standard PIE, the global convergence to a local minimizer
of the criterion J is not guaranteed by the iteration (14)
(see Appendix A). In addition, it should be underlined that
the Euclidean metric εj (ρ) is consistent with a thermal
(Gaussian) noise assumption in the measurements

√
Im;j (see

for instance Ref. 35 for a comprehensive presentation of the
statistical regularization techniques). Hence, this data-fidelity
term [and the iteration (14)] should be modified in order to
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consider a more realistic model like a photon counting process.
Nevertheless, this cPIE is considered in the sequel since it is
of interest as a natural and simple extension of the standard
PIE. We plan to address the global convergence issue and
the introduction of a realistic photon noise model in the near
future.

C. First estimate of the strained crystal

For a better convergence of the PIE, a correct estimate of
the exit field is highly desirable as a first guess to initialize the
inversion cycle. This relies on a good a priori knowledge of
both illumination and object functions. In practice, the probe
field may be estimated with a known object. The relevant
problem reduces to the initialization of the algorithm with a
guessed object ρ as good as possible. We present in this section
how to extract this estimate directly from the set of diffraction
patterns in order to obtain not only a satisfying estimate for the
object modulus but also for the object phase. This approach is
similar to the one used in Ref. 19.

1. The object modulus estimate

The ptychography approach is based on the measurements
of far-field intensities. However, it is still possible to extract the
near-field information as obtained in a scanning transmission
x-ray microscopy experiment.19 This process involves three
steps. First, the estimation of the object modulus is performed
by monitoring the integrated intensity measured at each beam
position onto the sample. The position of each intensity value
is identified with the corresponding beam center position.
This results in a modulus map sampled on a rough grid
determined by the number of illuminations along the two
scanning directions. However, the numerical inversion requires
to start with an estimate sampled with a pixel size resulting
from the inverse of the Fourier space extent. Therefore in a
second step, the rough modulus map is interpolated on a finer
grid, whose pixel size in the x direction is 2π/qx , where
qx is the total shift of the wave-vector transfer sustained
by the detection in the x direction—a similar formula holds
for the y direction. The last step aims at compensating the
broadening resulting from the beam size; as the modulus map
is extracted from the intensity pattern ensemble, measured
with a non-delta-like probe distribution, the obtained quantity
is still convoluted by the probe distribution. The estimate
is further truncated in order to keep only the values larger
than a threshold (fixed to 85% in our case). This approach
assumes that the electron density of the investigated crystal is
homogeneous within the beam spot area, which is true in most
cases.10,12,13,27

This process is tested on the ptychography data set further
used in the inversion process [see Figs. 2(a) and 2(b)].
Each intensity pattern is obtained with an area detector of
256 × 256 pixels. The illumination function is a gaussian beam
with a 1/e2 radius of 73 pixels. Two overlapping ratios O are
considered (see Appendix B for the detailed definition of O).
For O = 35% (respectively, O = 46%), a series of 10 × 10
(respectively, 12 × 12) intensity patterns are obtained with
a beam periodically shifted by 78 (respectively, 64) pixels
along the two directions. These scan parameters ensure that the
whole sample is probed by the different illumination positions.

(a)

(b)

S1

S
2

FIG. 2. (Color online) Intensity data set used for the ptychography
approach. (a) corresponds to the S1 sample and (b) to the S2 sample.
Each data set is composed of 10 × 10 measurements using an area
detector of 256 × 256 pixels. The illumination is a Gaussian beam
(146 pixels in diameter), periodically shifted by 78 pixels along the
two directions. The resulting overlapping ratio is 35%.

The modulus estimate process is shown in Figs. 3(a) and
3(a’), where a reasonable agreement with the exact modulus
is observed. Further improvements could be obtained with a
smaller beam size.

2. The object phase estimate

In the case of highly nonhomogeneously strained crystals,
the diffraction pattern is mostly governed by the phase
associated to the effective electron density, rather than the
sample shape itself. Hence, a strong advantage can be taken
by extracting the local strain information from the set of
diffraction patterns, as suggested in Ref. 19. For each probe
position, an approximation of the phase is obtained, based on
the relative shift of the Bragg peak with regard to a reference
reciprocal space position. Under the Born approximation in
the far-field regime, a strain-free crystal produces a Bragg
peak, whose position is related to the probed lattice spacing.
If the displacement field is linear (homogeneous strain, tilted
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(b)

(c)

(a)

(b’)

(c’)

(a’)

% %

S1

S1

S2

FIG. 3. (Color online) Preliminary estimate of the object ρ ob-
tained from the procedure described in Sec. III C. For an overlapping
ratio O = 46%, (a) gives the modulus estimate and (b) [respectively,
(c)] shows the phase estimate corresponding to the S1 (respectively,
S2) sample. (a’), (b’), and (c’) are the corresponding figures for
O = 35%.

crystal, etc.), the whole Bragg peak is shifted. This shift is
linearly related to the displacement field gradient. In order to
obtain a phase estimate, one can introduce a simple first-order
Taylor expansion of the local displacement field and therefore
of the phase of the exit-field at a given j th probe position:

ψj (x,y)

|ψj (x,y)| = exp[i × (α0,j + αx,j x + αy,j y)] (19)

with α0,j , αx,j , and αy,j being real values. The α0,j values
depend on the choice of the phase origin: they can not be
evaluated in an absolute way because a constant phase shift in
the exit field does not change the diffraction pattern. The αx,j

and αy,j values are estimated for each diffraction patterns, from
the Bragg peak’s shift in the x and y directions, respectively:
a peak shift of 1 pixel along a given direction is produced by
a linear phase with slope of 2π/N radians per pixel, N being
the number of pixels on the detector along the considered
direction. It results in a linear approximation of the exit field
phase on a grid determined by the number of illuminations in
the x and in the y directions. Then, as for the modulus estimate,
these values are interpolated on the finer grid linked to the
object reconstruction space; this gives rise to two functions
αx(x,y) and αy(x,y) that are the components of the global
phase gradient: at the sample position (x0,y0), one has

∇ α(x0,y0) =
(

αx(x0,y0)
αy(x0,y0)

)
; (20)

the integration is thus straightforward. One fundamental point
is that the integration is achieved on the grid of the size of
the object; hence, a unique (meaningless) integration constant
appears. It allows to preserve a continuous phase behavior,
while locally constant gradient values would lead to phase
discontinuities located at the boundaries between the domains
for 2D and 3D systems.

The phase estimate obtained with this method is the phase
of the exit field. However, we can identify this phase with the
phase of the effective electron density, neglecting thereby the
contribution from the eventual wavefront curvature present in
the probe. Indeed, the sample is expected to be located at the
focus plane of the probe, where the wavefront is planar. In
addition, this approach is still valid even if the illumination
phase presents some spatial variation; the whole probe being
shifted during the ptychographical scan, the curvature is
affecting all the diffraction patterns by the same quantity, as
long as the modulus of the object is constant. The errors caused
by taking a real imperfect illumination are thus acceptable
for this phase estimate and will be further corrected by the
ptychography iterative algorithm.

The estimate results are presented in Figs. 3(b), 3(c) and
3(b’), 3(c’) for the two values of the overlapping ratio and for
the two samples. The barycenter of the Bragg peak is used
to evaluate the Bragg peak shift; its (Qx,Qy) coordinates are
defined by

Qx =
∑

qxi I (qxi,qyi)∑
I (qxi,qyi)

,

(21)

Qy =
∑

qyi I (qxi,qyi)∑
I (qxi,qyi)

,

where I (qxi,qyi) is the intensity at the detector pixel with
coordinates (qxi,qyi) and the sum is performed over the
detector plane. We observe that the quality of the phase
estimate is weakly dependent on the overlapping ratio for the
chosen beam size. The phase estimates are rather satisfying, in
good agreement with the object phase of Fig. 1. However,
some discrepancies are observed, which result from the
linear approximation used to model the local phase field.
Higher order terms, and in particular cross terms (e.g., xy

dependency of the phase field), are at the origin of these
discrepancies. In order to solve this problem, we attempted
to introduce the second order terms in the Taylor expansion
by considering the Bragg peaks broadening. However, no one-
to-one relation exists between these second-order coefficients
and the variables describing the broadening. Consequently,
this approximation was not pursued. Other, slightly more
complicated approaches can be found in the literature.36,37

However, the simple integration shown here is sufficient in
order to provide an estimate of the crystal phase field, which
is expected to improve during the inversionprocess.

IV. PTYCHOGRAPHY WITH A KNOWN ILLUMINATION

The results of the inversion using the PIE method are
presented in this part for the two samples S1 and S2. Noise-free
reconstructions with the PIE and cPIE are first considered in
an attempt to give an insight into the systematic errors that may
occur with these reconstruction methods. Then, more realistic
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(a’)

(b’)

(c’)

(a)

S1
+

PIE

S2
+

PIE

S2
+

cPIE

(b)

(c)

FIG. 4. (Color online) Inversion assuming that the illumination function is known. Solutions retrieved for O = 46% and (a) the S1 sample
with the PIE, (b) S2 sample with the PIE, and (c) S2 sample with the modulus cPIE and ρ as initial guess. (a’)–(c’) Same as (a)–(c) with
O = 35%.

data sets corrupted by photon noise are considered in order to
test the performances of the reconstruction algorithms.

In this part, the Gaussian illumination function is supposed
to be known. For the inversion, we use β ∼ 0.5 and ε = 10−3.
However, the values of β and ε have been found to be not
critical for the quality of the inversion results. This argues for
a relative stability of the ptychographical method.

A. Phase retrieval results using the PIE

Figures 4(a), 4(b), 4(a’), and 4(b’) show the retrieved mod-
ulus and phase for the two samples and the two overlapping
values. A total of about 2500 inversion steps are used. The
modulus of the initial guess object ρ(0) is obtained from our
estimation procedure described in Sec. III C, while its phase
is set to zero; we thus have ρ(0) = |ρ|. The good agreement
between the retrieved quantity and the exact solution in the case
of the large overlapping value [see Figs. 4(a) and 4(b)] is a clear
demonstration of the robustness and efficiency of the method.
This is partly a consequence of the use of a finite-size illu-
mination. This locally results in a less inhomogeneous strain
field in comparison to the strain distribution observed in the
whole crystal. However, the discrepancies (like e.g., holes in
the modulus) observed between the retrieved quantity and the
exact solution in the case of the small overlapping value [see
Figs. 4(a’) and 4(b’)] show that the robustness of the method
is mostly a consequence of the overlapping condition, which
produces additional information by the introduction of various

interference terms.17 For cases where the inversions are not sat-
isfying, it is interesting to note that the discrepancies occur in
the retrieved modulus rather than in the retrieved phase. Strong
modulus decreases are observed in the sample regions where
the phase gradient variations are the largest. The fact that it is
easier to retrieve the phase of the sample rather than its modu-
lus is in accordance with the fact that the far-field data set de-
pends strongly on the object phase (see Fig. 1) but weakly on its
modulus, as a consequence of the Fourier transform modeling.

B. Improvements from the use of the phase
estimate and the modulus cPIE

To prevent the formation of holes that appear in the modulus
in the previous PIE inversions, the modulus cPIE is now
applied with regularization parameters set to γ = 0.05 and
0.2 for S1 and S2, respectively. Furthermore, the preliminary
complex-valued estimate ρ deduced from Sec. III C is used
as the initial guess, i.e., ρ(0) = ρ. The results are shown
in Figs. 4(c) and 4(c’). When the result of the solution
reached by the PIE is already almost correct [see Fig. 4(b)],
the regularization is not improving the solution, and even
introduces a certain amount of bias [see Fig. 4(c)]. On the
contrary, a much satisfying solution is found [see Fig. 4(c’)]
when the PIE is far from converging to the true solution [see
Fig. 4(b’)]. These behaviors are in agreement with standard
results from regularization theory (see for instance Ref. 35 for
details).

144109-7



P. GODARD, M. ALLAIN, AND V. CHAMARD PHYSICAL REVIEW B 84, 144109 (2011)

(a)

(b)

S2
+

PIE

S2
+

cPIE

FIG. 5. (Color online) Inversion in the presence of Poisson noise.
Solutions retrieved for the S2 sample and O = 46% by (a) the PIE
and (b) the modulus cPIE with ρ as initial guess. The maximum of
intensity is set to 21 000 photons, corresponding to an average photon
value of 200 000 per diffraction frame.

C. Phase retrieval in the presence of noise

In order to test the robustness of the method in the presence
of noise, a Poisson noise is introduced to the intensity data
for the S2 sample and O = 46%. The intensity maximum
is 21 000 photons, corresponding to an average intensity of
about 200 000 photons on the whole detection area at each
illumination position. These are typical orders of magnitude
of photon counts expected for a third generation synchrotron
source experiment. The retrieved solutions are shown in
Figs. 5(a) and 5(b), using the same methods as the ones used in
Figs. 4(b) and 4(c), i.e., PIE and modulus cPIE, respectively.
While the PIE fails at retrieving the modulus and phase of the
sample scattering contrast, the modulus cPIE (used with the
complex-valued preliminary estimate ρ) leads to a satisfactory
reconstruction of the phase. Though, the reconstruction of
the modulus is still not perfect. However the proposed cPIE
approach leads to an improved solution.

V. PTYCHOGRAPHY WITH AN UNKNOWN
ILLUMINATION

This part presents the study performed in the case where
the illumination function is not perfectly known. One of the
characteristics of the ptychography approach is the possibility
to retrieve both the sample and the probe functions.20,24,25 The
deconvolution process is performed in the extended PIE (ePIE)
by retrieving successively the object and the probe functions
using the same procedure as the one described within the PIE
framework.

In the following, the illumination estimate is a truncated
Gaussian function whose width has been overestimated by
20% and whose amplitude has been overestimated by 10%.
The optimal inversions are obtained when five iterations on
the probe function are followed by five iterations on the object
function.

A. Phase retrieval results with the ePIE

The results of the inversions, performed for the S1 and
S2 samples and the two overlapping values are presented in
Fig. 6. In the most favorable case, the S1 sample and the
large overlapping ratio [see Fig. 6(a)], the inversion is correct
for the retrieved object phase field, while discrepancies are
observed in the retrieved modulus, as previously observed
in this work. Some of these discrepancies are linked to
the chosen scanning step. These are well-known grid arte-
facts due to the translational periodicity of the illumination
function position onto the sample.38 These artefacts could
in principle be suppressed by the choice of a translational
periodic free illumination positioning. For the S1 sample, the
solution gets noisier with the decrease of the overlapping
[see Fig. 6(a’)]. The inversion processes performed for the
S2 sample are both clearly not satisfying [see Figs. 6(b)
and 6(b’)].

B. Improvements from the use of the phase estimate and the
extended modulus cPIE

In order to improve the inversion in the most critical case
observed in the previous section (S2 sample) the modulus
regularization is now introduced. The regularization param-
eters are γ = 0.1 and γ = 0.2 for O = 46% and O = 35%,
respectively. The results, presented in Figs. 6(c) and 6(c’),
exhibit clear improvements, although the object modulus is
still not fully satisfying. However, the phase field is retrieved
with a reasonable agreement.

C. Phase retrieval in the presence of noise

As performed in the case of a known illumination, the
robustness of the inversion for the unknown illumination
case is now tested in the presence of noise. A Poisson noise
is introduced to the intensity data, for the S1 sample with
O = 46%. The intensity maximum is set to 69 000 photons,
corresponding to an average intensity of about 440 000 photons
on the whole detection area at each illumination position. The
retrieved solutions are shown in Fig. 7(a) for the ePIE and
in Fig. 7(b) when the extended modulus cPIE is used, with
ρ as the initial guess. The ePIE clearly fails at retrieving
the object. On the contrary, the extended modulus cPIE gives
satisfying modulus and phase, although the large regularization
parameter (γ = 0.5) introduces a bias. Additional inversions
have been attempted in the most difficult cases, like smaller
overlapping ratio, larger phase fields, or smaller numbers of
photons, without any success. Better solutions could be sought
by using a smaller beam size, a larger overlapping ratio, or a
larger detector area.

Nevertheless, these numerical results already demonstrate
the new possibilities which can be foreseen from the use of
Bragg ptychography in the challenging framework of strain
field imaging.

VI. PERSPECTIVES AND LIMITS

This work numerically demonstrates the possibility to use
x-ray Bragg ptychography in order to image nonhomogeneous
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(a’)

(b’)

(c’)

(a)

S1
+

ePIE

S2
+

ePIE

S2
+

cPIE

(b)

(c)

FIG. 6. (Color online) Inversion in the case of an unknown illumination function. Solutions retrieved for O = 46% and (a) the S1 sample
with the ePIE, (b) S2 sample with the ePIE, and (c) S2 sample with the extended modulus cPIE and ρ as initial guess. (a’)–(c’) Same as (a)–(c)
with O = 35%.

strain fields at the nanoscale. The convergence is obtained
in a fast way, for known or unknown illumination function
cases and is rather robust toward the presence of shot noise.

(a)

S1
+

ePIE

S1
+

cPIE

(b)

FIG. 7. (Color online) Inversion in the presence of Poisson noise,
in the case of an unknown illumination function. Solutions retrieved
for the S1 sample and O = 46% by (a) the ePIE and (b) the extended
modulus cPIE with ρ as initial guess. The maximum of intensity is
set to 69 000 photons, corresponding to an average photon value of
440 000 per diffraction frame.

These results suggest that Bragg ptychography will be able to
overcome the actual limit of Bragg x-ray coherent diffraction
imaging, where the phase retrieval is obtained from a unique
and oversampled coherently diffracted intensity pattern. In
addition to the strain sensitivity, the Bragg ptychography is
allowing for an easy access to the 3D information, generalizing
the 2D approach presented here to the 3D case without
the need for tomographic methods.22 Indeed, in the Bragg
geometry, a small angular exploration along the rocking curve
in the vicinity of the Bragg reflection is transformed into
a translation of the wave-vector transfer across the Bragg
peak.39,40 Therefore using a 2D detector, the full 3D pattern can
be measured for an angular range of about 1◦. The resolution
is expected to be of the same order of magnitude as the one
obtained with CDI methods. However, Bragg ptychography
has not been experimentally demonstrated yet, due to some
severe technical difficulties. In the following, we discuss the
experimental requirements needed to obtain a useful set of
Bragg ptychographical data.

The scientific case for the Bragg x-ray ptychography
method is governed by the achievements obtained by third-
generation synchrotron experimental setups. Beam size, de-
tector resolution, and translation stage specifications have to
be considered. The upper limit of the beam size Df has to
be compared to the resolution δq sustained by the detector:
indeed, the coherence condition implies that beam size larger
than Df = 2π/δq can not be used, because it induces a
reciprocal space frequency that can not be resolved by the
detection resolution. For a detection with a pixel size of about
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25 μm, located at 1 m from the sample, the largest acceptable
beam size is about 6 μm (at 8 keV). The lower beam-size
limit, in the few 100 nm range, is not only resulting from
the decrease of the total number of coherent photons
at the sample position, but also by the achieved accuracy of
the translation stage, needed for scanning the sample across
the beam. In order to ensure enough redundancy in the set of
diffraction patterns, translation steps smaller than about 25%
of the beam size have to be chosen. While piezoelectrical
translation stages are able to provide such specifications
when they are used horizontally, some difficulties may arise
for Bragg diffraction geometry. For a scattering process
defined in the vertical plane, the Bragg condition imposes
the translation stages to be tilted, resulting in mechanical
stresses that affect the translation performances. A more
favorable configuration is composed of an already oriented
crystal mounted onto the piezo-stage, itself mounted onto
a small amplitude cradle, allowing for the measurements
of the coherently diffracted intensity distribution along the
rocking curve. Other favorable geometries are obtained
when the Bragg diffraction is measured in the horizontal
plane.

An important conclusion of our numerical study is the
need for a reasonable a priori knowledge of the illumination
function in order to ensure the convergence of the ePIE for
largest strain fields. Preliminary characterization and analysis
of the beam properties are desirable. This is of particular
importance for experimental setups based on the use of Fresnel
zone plate (FZP) focusing optics: the size of the FZP, often
larger than the beam transversal coherence length, imposes
to reduce the FZP illuminated area in order to ensure a
full coherence onto the FZP and therefore at the sample
position. Hence, the diffraction-limited illumination condition
uses a pair of beam defining slits in front of the focusing
optics, necessarily selecting a partial and asymmetric pattern
of the FZP. It results in a noteworthy modification of the
beam amplitude and phase at the sample position. Fresnel
propagation formalism can be used to predict the beam
behavior and compare it to experimental observations prior the
inversion.41 The numerical description of the coherent beam
wavefront at the sample position shows that the illumination
function can be considered as constant along the 1◦ (or less)
exploration of the rocking curve.

As a conclusion, this work emphasizes the benefits that will
arise from the use of the Bragg ptychography approach; 3D
strain mapping at the nanoscale is highly desirable to tackle a
large range of material science problems like, e.g., dislocation-
induced strain field, nanoscale mechanics in crystalline grain
under external stress, internal stress during phase transition,
epitaxial growth in nanostructures, biocrystallization, etc.
We believe that this method will bring new insights into
nanomaterial science in the near future.

APPENDIX A: THE PIE CONVERGENCE

Following Ref. 34, the iteration (14) can be rewritten

ρ(k) = ρ(k−1) − β

N∑
j=1

Dj × δj (ρ(k−1,j ))

= ρ(0) − β

k−1∑
l=0

N∑
j=1

Dj × δj (ρ(l,j )), (A1)

where δj (ρ) is the gradient of the subcriterionJj [see Eq. (16)]
and with β > 0. Let us assume that this iteration converges
toward ρ�; it implies that

N∑
j=1

Dj × δj (ρ�) ≡ 0,

otherwise the iterations (A1) would diverge. The above
condition is different, in general, from the optimality condition
for the full criterion J that reads

N∑
j=1

δj (ρ�) ≡ 0.

As a result, even if the iterations (14) converge, the resulting
estimate is not in general a local minimizer of the criterion
(A1). Obviously, the same conclusion holds for the standard
PIE iteration since it is just the constrained PIE [see Eqs. (14)
and (15)] with γ = 0.

APPENDIX B: THE OVERLAPPING PARAMETER

The overlapping ratio O quantifies the redundancy in
the ptychography approach. It is a key parameter for the
convergence of the PIE. The overlapping ratio depends on
the size of the beam and the distance R between two successive
illumination positions. In order to take into account the shape
of the probe, we consider a surface overlapping ratio instead of
a linear one.42 The size of the Gaussian beam is identified by
its 1/e2 radius, which contains 86.5% of the total intensity.
The overlapping ratio compares the area common to two
successive illuminations with regard to the number of pixels
in the illumination function. Hence, the analytical expression
of the overlapping ratio is

O = r2
0

2
{π/2 − arcsin(R/2r0) − (R/2r0)[1 − (R/2r0)2]1/2},

(B1)

where r0 is the radius of the beam and R is the step distance. For
the values chosen in this work, i.e., r0 = 73 pixels and R = 64
pixels (respectively, R = 78), the overlapping ratio O is 46%
(respectively, 35%). As a matter of comparison, within a linear
description as the one used in Ref. 42, the linear overlapping
ratio value becomes 56% (respectively, 46%).
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9V. Chamard, M. Dollé, G. Baldinozzi, F. Livet, M. de Boissieu,
S. Labat, F. Picca, C. Mocuta, P. Donnadieu, and T. H. Metzger,
J. Mod. Opt. 57, 816 (2010).

10A. A. Minkevich, M. Gailhanou, J. S. Micha, B. Charlet,
V. Chamard, and O. Thomas, Phys. Rev. B 76, 104106 (2007).

11A. A. Minkevich, T. Baumbach, M. Gailhanou, and O. Thomas,
Phys. Rev. B 78, 174110 (2008).

12A. Diaz, V. Chamard, C. Mocuta, R. Magalh aes Paniago, J. Stangl,
D. Carbone, T. H. Metzger, and G. Bauer, New J. Phys. 12, 35006
(2010).

13N. Vaxelaire, H. Proudhon, S. Labat, C. Kirchlechner, J. Keckes,
V. Jacques, S. Ravy, S. Forest, and O. Thomas, New J. Phys. 12,
35018 (2010).

14V. Favre-Nicolin, F. Mastropietro, J. Eymery, D. Camacho, Y. M.
Niquet, B. M. Borg, M. E. Messing, L. E. Wernersson, R. E. Algra,
E. P. A. M. Bakkers, T. H. Metzger, R. Harder, and I. K. Robinson.
New J. Phys. 12, 35013 (2010).

15M. C. Newton, R. Harder, X. Huang, G. Xiong, and I. K. Robinson,
Phys. Rev. B 82, 165436 (2010).

16W. Hoppe, Acta Crystallogr. Sect. A 25, 495 (1969).
17J. M. Rodenburg and R. H. T. Bates, Philos. Trans. R. Soc. London

A 339, 521 (1992).
18J. M. Rodenburg and H. M. L. Faulkner, Appl. Phys. Lett. 85, 4795

(2004).
19P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and

F. Pfeiffer, Science 321, 379 (2008).
20M. Guizar-Sicairos and J. R. Fienup, Opt. Express 16, 7264 (2008).
21K. Giewekenemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink,

C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, Proc. Natl.
Acad. Sci. USA 107, 529 (2010).

22M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R.
Wepf, O. Bunk, and F. Pfeiffer, Nature (London) 467, 436 (2010).

23A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J.
Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M.
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